
Renditeermittlung
Die Rendite ist im Finanzwesen der in Prozent eines Bezugswerts ausgedrückte

Effektivzins, den ein Anleger innerhalb eines Jahres erzielt. Mit Hilfe der Ren-
dite können verschieden gestaltete Finanzangebote gegenüber gestellt werden.
Relevante Faktoren wie z. B. Laufzeit, Kupon- und Rückzahlungen fließen somit
in die Renditeermittlung rechnerisch korrekt ein, was Finanzprodukte untere-
inander vergleichbar macht. Für Finanzakteure ist daher die Kenntnis der Ren-
dite unerlässlich, woraus sich eine wichtige Problemstellung ableitet:

Wie berechnet man Renditen unterschiedlicher Finanzprodukte?

Exemplarisch betrachten wir zwei endfällige Anleihen mit folgenden Kondi-
tionen:

Anleihe A Anleihe B
Laufzeit n 16 Jahre 20 Jahre
Kupon p 2, 5% p.a. 1, 7% p.a
Rückzahlung R 100 Euro 100 Euro
Kurs P 123, 75 Euro 102, 85 Euro

Unterstellen wir den Effektivzinssatz i, so wird man alternativ zum Kauf einer
Anleihe den Betrag P samt Zinsen ansparen können:

P · (1 + i)n.

Die endfällige Anleihe bringt insgesamt eine Rückzahlung, sowie zwischenzeitlich
zum Zinssatz i angelegte Kuponzahlungen ein:

R +

n−1∑
k=0

p · (1 + i)k = R + p · (1 + i)n − 1

i
.

Gemäß dem Äquivalenzprinzip sollen beide Alternativen unter einer fairen Ef-
fektivverzinsung gleichwertig sein, d. h.

P · (1 + i)n = R + p · (1 + i)n − 1

i
.

Aus dieser Gleichung kann die Rendite berechnet werden. Das ist äquivalent
zur Lösung des Nullstellenproblems bzgl. i:

P · (1 + i)n · i− p · (1 + i)n −R · i + p = 0.

Wir wollen das Newton-Verfahren zur Lösung solcher Nullstellenprobleme ken-
nen lernen.

Für eine stetig differenzierbare Funktion f : R → R wird das zugehörige
Nullstellenproblem wie folgt formuliert:

f (x∗) = 0,

wobei x∗ ∈ R eine Nullstelle von f bezeichnet. Wir wollen das Nullstel-
lungsproblem iterativ lösen, d. h. eine Folge von approximativen Lösungen(
x(k)

)
k∈N konstruieren, die gegen eine Nullstelle x∗ von f konvergiert:

x(k) → x∗ für k →∞.
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Die Idee des Newton-Verfahrens zur sukzessiven Konstruktion approximativer
Lösung des Nullstellenproblems besteht in der Linearisierung der Funktion f .
Die Taylor-Formel erster Ordnung um die k-te Iterierte liefert:

f(x) ≈ f
(
x(k)

)
+ f ′

(
x(k)

)
·
(
x− x(k)

)
.

Wir vernachlässigen den Approximationsfehler und lösen das linearisierte Null-
stellenproblem:

f
(
x(k)

)
+ f ′

(
x(k)

)
·
(
x− x(k)

)
= 0.

Falls die Ableitung f ′
(
x(k)

)
6= 0 nicht verschwindet, ist die Lösung davon als

die (k + 1)-te Iterierte des Newton-Verfahrens zu nehmen:

x(k+1) = x(k) −
f
(
x(k)

)
f ′
(
x(k)

) , k = 0, 1, . . .

Für die Wohldefiniertheit des Newton-Verfahrens wird üblicherweise angenom-
men, dass die Ableitung von f an der Nullstelle x∗ nicht verschwindet:

f ′ (x∗) 6= 0.

Dann verschwindet wegen der Stetigkeit die Ableitung von f an der Stelle x(k) ≈
x∗ auch nicht:

f ′
(
x(k)

)
6= 0.

Aus geometrischer Sicht wird im k-ten Schritt des Newton-Verfahrens die Null-
stelle x(k+1) der Tangente f

(
x(k)

)
+ f ′

(
x(k)

)
·
(
x− x(k)

)
bestimmt, die sich im

Punkt x(k) an den Graphen der Funktion f anschmiegt. Offenbar konvergiert
das Newton-Verfahren nicht immer – man muß genügend nahe an einer Null-
stelle starten. Man sagt auch, dass das Newton-Verfahren im Allgemeinen lokal
konvergiert, siehe Abbildung 1.
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Figure 1: Newton-Verfahren

Exemplarisch wenden wir das Newton-Verfahren zur iterativen Berechnung
von
√

2. Das ist die Nullstelle der Funktion

f(x) = x2 − 2.

Der k-te Schritt des Newton-Verfahrens lautet:

x(k+1) = x(k) −
f
(
x(k)

)
f ′
(
x(k)

) = x(k) −
(
x(k)

)2 − 2

2x(k)
=

x(k)

2
+

1

x(k)
.
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Diese Iterationsvorschrift zur Berechnung von
√

2 war in Mesopotamien bere-
its zur Zeit von Hammurapi I. ca. 1750 v. Chr. bekannt. Um 100 n. Chr.
wurde sie von Heron von Alexandria im ersten Buch seines Werkes ”‘Metrica”’
beschrieben. Wir führen einige Schritte des Newton-Verfahrens aus:

x(0) 1

x(1) 1, 5

x(2) 1,4166666666666

x(3) 1,4142156862745

x(4) 1,4142135623747

x(5) 1,414213562373095
. . .

Nach 2 Schritten wurde die Genauigkeit von zwei, nach 3 Schritten von fünf,
und nach 4 Schritten von elf Nachkommastellen erreicht. Diese Beobachtung
deutet auf die quadratische Konvergenz der Folge

(
x(k)

)
k∈N gegen x∗:∣∣∣x(k+1) − x∗

∣∣∣ ≤ C ·
∣∣∣x(k) − x∗

∣∣∣2 ,
wobei C > 0 eine positive Konstante bezeichnet. In diesem Fall verdoppelt sich
die Anzahl der signifikanten Nachkommastellen in jedem Iterationsschritt. Um
uns davon zu überzeugen, nehmen wir ohne Beschränkung der Allgemeinheit
C ≥ 1 an und wählen den Startpunkt x(0) so nahe an der Nullstelle x∗, dass
gilt:

C ·
∣∣∣x(0) − x∗

∣∣∣ ≤ 0, 1.

Dann folgt mit Hilfe der quadratischen Konvergenz:

∣∣x(k+1) − x∗
∣∣ ≤ C ·

∣∣∣x(k) − x∗
∣∣∣2 ≤ C ·

(
C ·
∣∣∣x(k−1) − x∗

∣∣∣2)2

= C3 ·
∣∣∣x(k−1) − x∗

∣∣∣4
≤ . . . ≤ C2k+1−1 ·

∣∣∣x(0) − x∗
∣∣∣2k+1

≤
(
C ·
∣∣∣x(0) − x∗

∣∣∣)2k+1

= (0, 1)2
k+1

.

Wir zeigen, dass das Newton-Verfahren die quadratische Konvergenz für
zweifach stetig differenzierbare Funktionen garantiert. Dafür definieren wir die
folgende Hilfsabbildung:

Φ(x) = x− f(x)

f ′(x)
.

Das Newton-Verfahren lässt sich damit als eine Fixpunktiteration schreiben:

x(k+1) = x(k) −
f
(
x(k)

)
f ′
(
x(k)

) = Φ
(
x(k)

)
.

Wir wollen die Taylor-Formel zweiter Ordnung für Φ verwenden. Dafür berech-
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nen wir ihren Funktionswert und ihre Ableitungen an der Nullstelle x∗:

Φ (x∗) = x∗ − f (x∗)

f ′ (x∗)
= x∗,

Φ′ (x∗) =

(
x− f(x)

f ′(x)

)′∣∣∣∣∣
x=x∗

= 1− (f ′ (x∗))
2 − f (x∗) · f ′′ (x∗)
(f ′ (x∗))

2 =
f (x∗) · f ′′ (x∗)

(f ′ (x∗))
2 = 0,

Φ′′ (x∗) =

(
f (x) · f ′′ (x)

(f ′ (x))
2

)′∣∣∣∣∣
x=x∗

= f (x∗) ·

(
f ′′ (x)

(f ′ (x))
2

)′∣∣∣∣∣
x=x∗

+ f ′ (x∗) · f ′′ (x∗)

(f ′ (x∗))
2 =

f ′′ (x∗)

f ′ (x∗)
.

Es gilt nun mit Hilfe der Taylor-Formel zweiter Ordnung für Φ an der Nullstelle
x∗:∣∣∣x(k+1) − x∗

∣∣∣ =
∣∣∣Φ(x(k)

)
− Φ (x∗)

∣∣∣ ≈ ∣∣∣∣Φ′ (x∗) · (x(k) − x∗
)

+
Φ′ (x∗)

2
·
(
x(k) − x∗

)2∣∣∣∣
=

∣∣∣∣ f ′′ (x∗)2f ′ (x∗)
·
(
x(k) − x∗

)2∣∣∣∣ ≤ ∣∣∣∣ f ′′ (x∗)2f ′ (x∗)

∣∣∣∣ · ∣∣∣x(k) − x∗
∣∣∣2 = C ·

∣∣∣x(k) − x∗
∣∣∣2 .

Wir ermitteln die Rendite i einer endfälligen Anleihe aus der Gleichung:

f(i) = P · (1 + i)n · i− p · (1 + i)n −R · i + p = 0.

Das Newton-Verfahren liefert die Iteration:

i(k+1) = i(k) −
f
(
i(k)
)

f ′
(
i(k)
) .

Mit der Ableitung

f ′(i) = n · P · (1 + i)n−1 · i + P · (1 + i)n − n · p · (1 + i)n−1 −R

haben wir:

i(k+1) = i(k)−
P ·
(
1 + i(k)

)n · i(k) − p ·
(
1 + i(k)

)n −R · i(k) + p

n · P ·
(
1 + i(k)

)n−1 · i(k) + P ·
(
1 + i(k)

)n − n · p ·
(
1 + i(k)

)n−1 −R
.

Für beide zu vergleichende Anleihen A und B führen wir einige Newton-Iterationen
mit dem Startwert i(0) = 1 aus:

Anleihe A Anleihe B

i(0) 1 1

i(1) 0, 99999965608259140 0, 99999957943665610

i(2) 0, 01996257611672059 0, 01650606105406120

i(3) 0, 01996257018091080 0, 01650605626623298
. . . . . .

Die Rendite der Anleihe A beträgt etwa 1, 996 %, während die Anleihe B lediglich
1, 651 % hergibt. Die Anleihe A ist somit als gewinnträchtiger im Vergleich zur
Anleihe B einzustufen.
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