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Nash equilibria

We consider players ν ∈ {1, . . . ,N} who aim to choose their
decision vectors xν as minimal points of

Qν(x−ν) : min
xν

θν(xν , x−ν) s.t. xν ∈ Xν(x−ν),

given the vector x−ν of all other players’ decisions.

Let Sν(x−ν) denote the minimal point set of Qν(x−ν). Then
x? = (x1,?, . . . , xN,?) is called a (generalized) Nash equilibrium iff

xν,? ∈ Sν(x−ν,?), ν = 1, . . . ,N,

holds.

No cooperation between the players is assumed.
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Example 1

Let N = 2, n1 = n2 = 1

(so that x1 = x−2 = x1 and x2 = x−1 = x2),

θ1(x) = x1, g1
1 (x) = −2x1 + x2,

θ2(x) = x2, g2
1 (x) = x2

1 + x2
2 − 1, g2

2 (x) = −x1 − x2, that is,

Q1(x2) : min
x1

x1 s.t. − 2x1 + x2 ≤ 0,

Q2(x1) : min
x2

x2 s.t. x2
1 + x2

2 − 1 ≤ 0, −x1 − x2 ≤ 0.
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The set of equilibria

With the graph gphSν of the set-valued mapping Sν

E :=
N⋂
ν=1

gphSν

forms the set of all generalized Nash equilibria (GNEs).

The task to identify an element of E is called generalized Nash
equilibrium problem (GNEP).

E may be empty, a singleton, or a non-singleton set.
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How it all started ...

J. von Neumann, Zur Theorie der Gesellschaftsspiele, Mathematische
Annalen, Vol. 100 (1928), 295-320. English translation: On the Theory
of Games of Strategy, in: A.W. Tucker and R.D. Luce (eds.),
Contributions to the Theory of Games, Vol. IV, Annals of the
Mathematics Studies 40. Princeton University Press.

J. von Neumann, O. Morgenstern, Theory of Games and Economic
Behavior, Princeton University Press, 1944.

J. Nash, Non-cooperative games, Annals of Mathematics, Vol. 54
(1951), 286–295.

G. Debreu, A social equilibrium existence theorem, Proceedings of the
National Academy of Sciences, Vol. 38 (1952), 886–893.

K.J. Arrow, G. Debreu, Existence of an equilibrium for a competitive
economy, Econometrica, Vol. 22 (1954), 265–290.
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Prisoners’ dilemma

X1 = X2 = {c (confession), s (silence)}

θ1, θ2 c s

c 8, 8 0, 10

s 10, 0 3, 3

Exercise 1

Is there a Nash equilibrium? And if yes, how many?
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Modified prisoners’ dilemma

X1 = X2 = {c (confession), s (silence)}

θ1, θ2 c s

c 8, 8 5, 10

s 10, 5 3, 3

Exercise 2

Is there a Nash equilibrium? And if yes, how many?
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Equilibrium selection

In the case |E | > 1 the players may prefer some equilibria over
others.

Their preferences may be explained by refined equilibrium concepts

 Equilibrium selection / Nash refinement

J.C. Harsanyi, R. Selten, A General Theory of Equilibrium
Selection in Games, MIT Press Books, Cambridge, 1988.

 Nobel Price in Economic Sciences
to Harsanyi, Nash and Selten, 1994
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Risk dominance

Two main concepts for equilibrium selection:

1 A Nash equilibrium is called risk dominant if it has the largest
basin of attraction (i.e. is less risky).

Risk dominance takes a dynamic/evolutionary point of view, while
we keep the static point of view.
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Payoff dominance

Two main concepts for equilibrium selection:

2 A Nash equilibrium is called payoff dominant if it is Pareto
superior to all other Nash equilibria in the game. When faced
with a choice among equilibria, all players would agree on a
payoff dominant equilibrium since it offers to each player at
least as much payoff as the other Nash equilibria.

The payoff terminology assumes that players maximize utility.
For minimization, rather a cost terminology is appropriate.
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Cost dominance

3 A Nash equilibrium is called cost dominant if it is Pareto
superior to all other Nash equilibria in the game. When faced
with a choice among equilibria, all players would agree on the
cost dominant equilibrium since it offers to each player at
most the costs as the other Nash equilibria.
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Example 2

Let N = 2, n1 = n2 = 1, q1, q2 : R1 → R1 convex quadratic,

θ1(x) = x1, g1
1 (x) = q1(x2)− x1,

θ2(x) = x2, g2
1 (x) = q2(x1)− x2, that is,

Q1(x2) : min
x1

x1 s.t. q1(x2) ≤ x1,

Q2(x1) : min
x2

x2 s.t. q2(x1) ≤ x2.

The functions θ1, θ2, g1
1 and g2

1 are convex in (x1, x2), i.e., not
only with respect to the player variables. This is called complete
convexity.
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Exercise 4

Are any of the GNEs cost dominant? And if yes, which ones?
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Example 3

Let N = 2, n1 = n2 = 1,

θ1(x) = x1, g1(x) = x2
1 + x2

2 − 1,

θ2(x) = x2, g1(x) = x2
1 + x2

2 − 1, that is,

Q1(x2) : min
x1

x1 s.t. x2
1 + x2

2 ≤ 1,

Q2(x1) : min
x2

x2 s.t. x2
1 + x2

2 ≤ 1.

The function g1 appears simultaneously as a constraint of player 1
and of player 2. This is called a shared constraint.
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x2

x1

Q2(x2) : min
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1 + x2
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x2

x1

Q2(x2) : min
x2

x1 s.t. x2
1 + x2

2 ≤ 1
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Q2(x2) : min
x2

x1 s.t. x2
1 + x2

2 ≤ 1
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Example 3

x2

x1

gphS1

x2

x1

gphS2

x1,? ∈ S1(x2,?), x2,? ∈ S2(x1,?)
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Exercise 5

Are any of the GNEs cost dominant? And if yes, which ones?
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Exercise 5

Are any of the GNEs cost dominant? And if yes, which ones?
None!
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Introduction and goal of this mini-course
Optimality notions in multicriteria optimization

Methods for computing nondominated points
Functional descriptions of equilibrium sets
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Equilibrium selection

Pareto superiority vs. Pareto noninferiority

Recall:

A Nash equilibrium is called cost dominant if it is Pareto superior
to all other Nash equilibria in the game. When faced with a choice
among equilibria, all players would agree on a cost dominant
equilibrium since it offers to each player at most the costs as the
other Nash equilibria.

Alternative and more appropriate concept:

A Nash equilibrium is called cost nondominated if it is Pareto
noninferior to all other Nash equilibria in the game. When faced
with a choice among equilibria, the players would not agree on a
cost dominated equilibrium, since this would offer at least one
player lower costs when moving to the dominating equilibrium,
while none of the other players face higher costs.
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Example 2
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Exercise 6

Are any of the GNEs cost nondominated? And if yes, which ones?
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Exercise 6

Are any of the GNEs cost nondominated? And if yes, which ones?
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Exercise 7

Are any of the GNEs cost nondominated? And if yes, which ones?
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Exercise 7

Are any of the GNEs cost nondominated? And if yes, which ones?
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Introduction and goal of this mini-course
Optimality notions in multicriteria optimization

Methods for computing nondominated points
Functional descriptions of equilibrium sets

Noncooperative games
Equilibrium selection

Goal and agenda of this mini-course

Goal:

Design a method to compute (all) cost nondominated GNE(s)
under possibly mild assumptions.

Agenda:

Proper definition of Pareto superiority/noninferiority

Methods for finding (all) Pareto noninferior points of a
multicriteria problem

Functional descriptions of the equilibrium set E

Methods for finding (all) cost nondominated GNE(s)
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The image space

So far, all our graphical examples used the data n = n1 + n2 = 2,
N = 2, θ1(x1, x2) = x1, θ2(x1, x2) = x2.

This results in θ(x) = x so that, in particular, the position of
equilibria x and their image points y = θ(x) are identical.

y1

y2x2

x1

x2

x1

x2

x1

y = θ(x) = x

decision space image space
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The image space

However, the Pareto properties of equilibria x depend on the
position of y = θ(x) in the image space,

and more general functions θ usually lead to image space positions
which are different from the decision space positions.

x2

x1

x2

x1

x2

x1

decision space image space

y1

y2

y = θ(x)
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However, the Pareto properties of equilibria x depend on the
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However, the Pareto properties of equilibria x depend on the
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and more general functions θ usually lead to image space positions
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Domination

y1

y2

y 2

y 1

For y1 ≤ y2 the point y1 dominates y2, and y2 is dominated by y1.
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y 1

For y1 ≤ y2 the point y1 dominates y2, and y2 is dominated by y1.
y1 6= y2

56 / 152 Oliver Stein (KIT) ES, MO and SIP



Introduction and goal of this mini-course
Optimality notions in multicriteria optimization

Methods for computing nondominated points
Functional descriptions of equilibrium sets

Domination and nondomination
Pareto notions
Decision space notions
Relations to optimality

Domination

y1

y2

y 2

y 1

y1 dominates all points in the set y1 + RN
+ = {y ∈ RN | y1 ≤ y},

except for y1 itself.
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Domination

y1

y2

y 2

y 1

y2 is dominated by all points in y2 − RN
+ = {y ∈ RN | y ≤ y2}

except by y2 itself.
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Domination

y1

y2

y 2

y 1 y 3

For N > 1 not all points in RN can be mutually compared
by domination.
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Domination

y1

y2

y 2

y 1 y 3

Still, one may dispose of all points which are “not interesting” ...
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y1

y2

y 2

y 1 y 3

... that is, the dominated ones, ...
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y1

y2

y 2

y 1 y 3

... and rather concentrate one the nondominated points.
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y1

y2

y 2

y 1 y 3

For Y ⊆ RN a point ȳ ∈ Y is called a nondominated point of Y
if there is no y ∈ Y with y ≤ ȳ , y 6= ȳ .
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y1

y2

y 2

y 1

y 3

For Y ⊆ RN a point ȳ ∈ Y is called a dominant point of Y
if all y ∈ Y \ {ȳ} satisfy ȳ ≤ y .
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y1

y2

y 2

y 1 y 3

Since domination is not the opposite of nondomination, the
concepts of nondominated and dominant points are different.
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While a dominant point is always nondominated ...
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y1

y2

... even simple sets Y do not possess a dominant point.
But they possess nondominated points under mild assumptions.
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y1

y2

Exercise 8
Determine the nondominated points of the above set.

68 / 152 Oliver Stein (KIT) ES, MO and SIP



Introduction and goal of this mini-course
Optimality notions in multicriteria optimization

Methods for computing nondominated points
Functional descriptions of equilibrium sets

Domination and nondomination
Pareto notions
Decision space notions
Relations to optimality

Domination

y1

y2

Exercise 8
Determine the nondominated points of the above set.

69 / 152 Oliver Stein (KIT) ES, MO and SIP



Introduction and goal of this mini-course
Optimality notions in multicriteria optimization

Methods for computing nondominated points
Functional descriptions of equilibrium sets

Domination and nondomination
Pareto notions
Decision space notions
Relations to optimality

Domination and Pareto terminology

y1

y2

y 2

y 1

For y1 ≤ y2, y1 6= y2, y1 is also called Pareto superior to y2,
and y2 Pareto inferior to y1.
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y1

y2

y 2

y 1 y 3

Therefore, the concepts of Pareto superior points and
Pareto noninferior points are different ...
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y1

y2

... and even simple sets do not possess Pareto superior points,
but they often possess Pareto noninferior points.
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Decision space and image space

Exercise 9

In equilibrium selection, of which set Y are we interested in
nondominated / Pareto noninferior points?

x2

x1

x2

x1

x2

x1

decision space image space

y1

y2

y = θ(x)
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Exercise 9

In equilibrium selection, of which set Y are we interested in
nondominated / Pareto noninferior points?

Y := θ(E ), the image set of E under the vector function θ.
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In equilibrium selection, of which set Y are we interested in
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Y := θ(E ), the image set of E under the vector function θ.
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Exercise 10

What can we say about the positions of the interesting equilibria?
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y = θ(x)
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Exercise 10

What can we say about the positions of the interesting equilibria?

As preimages of the nondominated points of Y under θ,
they do not possess any special positions.

x2

x1

x2

x1

x2

x1

decision space image space

y1

y2

y = θ(x)
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Efficient points

Nondominance / Pareto noninferiority is an image space concept.

The preimages x of nondominated / Pareto noninferior points
are called efficient points of θ on E .
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x1
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y = θ(x)
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Efficient points

An efficient point x̄ of θ on E cannot be strictly improved in one
objective function θν by moving to some x ∈ E \ {x̄}, without
strictly worsening another objective function θµ, i.e.

θν(x) < θν(x̄) ⇒ ∃µ ∈ {1, . . . ,N} : θµ(x) > θµ(x̄).

x2

x1

x2

x1

x2

x1

decision space image space

y1
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y = θ(x)
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Recall: Pareto superiority vs. Pareto noninferiority

Superiority concept:

A point x̄ ∈ E is called cost dominant if it is Pareto superior to
all other x ∈ E . When faced with a choice among equilibria,
all players would agree on a cost dominant equilibrium x̄ since it
offers to each player at most the costs as the other Nash equilibria.

Noninferiority concept:

A point x̄ ∈ E is called cost nondominated if it is Pareto
noninferior to all other x ∈ E . When faced with a choice
among equilibria, the players would not agree on a cost dominated
equilibrium, since this would offer at least one player lower costs
when moving to the dominating equilibrium, while none of the
other players face higher costs.
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Recall our goal

Goal:

Design a method to compute (all) cost nondominated GNE(s)
under possibly mild assumptions.

With the introduced terminology this means:

compute (all) efficient points of θ on E ,

i.e. (all) preimages of (all) nondominated points of θ(E ).
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Relations to optimality

Multicriteria optimality notions

In the case N = 1, ȳ ∈ θ(E ) is a nondominated point of θ(E ) if

there is no y ∈ θ(E ) with y ≤ ȳ , y 6= ȳ

m

there is no y ∈ θ(E ) with y < ȳ

m

there is no x ∈ E with θ(x) < θ(x̄)
(where x̄ ∈ E is any preimage of ȳ under θ)

m

x̄ is a minimal point of θ on E with minimal value ȳ .
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Exercise 11

In the case N = 1, ȳ ∈ θ(E ) is a dominant point of θ(E ) if

all y ∈ θ(E ) \ {ȳ} satisfy ȳ ≤ y

m

???
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In the case N = 1,

x̄ ∈ E is a minimal point of θ on E with minimal value ȳ = θ(x̄)

m

there is no x ∈ E with θ(x) < ȳ

m

there is no y ∈ θ(E ) with y < ȳ

m

ȳ ∈ θ(E ) is a weakly nondominated point of θ(E ) =: Y .
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m
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Introduction and goal of this mini-course
Optimality notions in multicriteria optimization

Methods for computing nondominated points
Functional descriptions of equilibrium sets

Domination and nondomination
Pareto notions
Decision space notions
Relations to optimality

Weakly nondominated points

y1

y2

Exercise 12
Determine the weakly nondominated points of the above set.
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Introduction and goal of this mini-course
Optimality notions in multicriteria optimization

Methods for computing nondominated points
Functional descriptions of equilibrium sets

The weighted sum method
The weighted Chebyshev norm method

Computation of nondominated points

y1

y2

How can we compute (all) nondominated points of some set
Y ⊆ RN?
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Optimality notions in multicriteria optimization

Methods for computing nondominated points
Functional descriptions of equilibrium sets

The weighted sum method
The weighted Chebyshev norm method

The weighted sum method

Lemma

Let Y ⊆ RN and λ ∈ RN with λ > 0. Then any minimal point of

P(λ) : min 〈λ, y〉 s.t. y ∈ Y

is a nondominated point of Y .

Proof: Assume ȳ is a minimal point of P(λ),
but a dominated point of Y .

⇒ ∃ y ∈ Y : y ≤ ȳ , y 6= ȳ

⇒ 〈λ, y〉 − 〈λ, ȳ〉 = 〈λ, y − ȳ〉 =
∑N

j=1 λj(yj − ȳj) < 0

⇒ ȳ is not minimal �
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Exercise 13
Let Y ⊆ RN and λ ∈ RN with λ ≥ 0, λ 6= 0. Then any minimal
point of

min 〈λ, y〉 s.t. y ∈ Y

is ???
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Optimality notions in multicriteria optimization

Methods for computing nondominated points
Functional descriptions of equilibrium sets

The weighted sum method
The weighted Chebyshev norm method

The weighted sum method

Theorem

Let λ ∈ RN with λ > 0. Then any minimal point x̄ of

ESWSM(λ) : min
x
〈λ, θ(x)〉 s.t. x ∈ E

is an efficient point of θ on E (i.e., a cost nondominated GNE),
and θ(x̄) is a nondominated point of θ(E ) (i.e. a Pareto
noninferior point of θ(E )).

Method for finding some cost nondominated GNE x̄

Choose some λ ∈ RN with λ > 0 and compute some optimal point
x̄ of ESWSM(λ).
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Introduction and goal of this mini-course
Optimality notions in multicriteria optimization

Methods for computing nondominated points
Functional descriptions of equilibrium sets

The weighted sum method
The weighted Chebyshev norm method

The weighted sum method

Conjecture

For any nonempty and compact set Y ⊆ RN the set⋃
λ>0

Argmin{〈λ, y〉| y ∈ Y }

coincides with the set of all nondominated points of Y .

Exercise 14
Is this true or false?
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The weighted sum method

The WSM does not necessarily find all nondominated points of Y

y1

y2
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Methods for computing nondominated points
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The weighted sum method
The weighted Chebyshev norm method

The weighted sum method for Example 3

The WSM does not necessarily find all nondominated points of Y

but only those in the convex hull of Y , which are proper.

x2

x1

gphS1

x2

x1

gphS2
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The weighted Chebyshev norm method

Let ŷ ∈ RN be a point with ŷ < y for all y ∈ Y .

y1

y2
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Let ŷ ∈ RN be a point with ŷ < y for all y ∈ Y .

y1

y2

Then for any weight vector λ ∈ RN , λ > 0, and any y ∈ Y

max
j=1,...,N

λj(yj − ŷj) = ‖y − ŷ‖∞,λ

is a weighted Chebyshev norm of y − ŷ .
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Optimality notions in multicriteria optimization

Methods for computing nondominated points
Functional descriptions of equilibrium sets

The weighted sum method
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The weighted Chebyshev norm method

Lemma

Let Y ⊆ RN . Then ȳ is a nondominated point of Y if and only if
there exists some λ̄ > 0 such that ȳ is a strictly minimal point of

P∞(λ̄) : min ‖y − ŷ‖∞,λ̄ s.t. y ∈ Y .

Proof: Assume ȳ is a strictly minimal point of P∞(λ̄) for some
λ̄ > 0, but a dominated point of Y .

⇒ ∃ y ∈ Y : y ≤ ȳ , y 6= ȳ

⇒ ∀j : λ̄j(yj − ŷj) ≤ λ̄j(ȳj − ŷj) ⇒ ‖y − ŷ‖∞,λ̄ ≤ ‖ȳ − ŷ‖∞,λ̄
⇒ ȳ is not strictly minimal �
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Lemma

Let Y ⊆ RN . Then ȳ is a nondominated point of Y if and only if
there exists some λ̄ > 0 such that ȳ is a strictly minimal point of

P∞(λ̄) : min ‖y − ŷ‖∞,λ̄ s.t. y ∈ Y .

On the other hand, let ȳ be a nondominated point of Y .

With λ̄j := (ȳj − ŷj)
−1, j = 1, . . . ,N, we have ‖ȳ − ŷ‖∞,λ̄ = 1

and ‖y − ŷ‖∞,λ̄ > 1 for all y ∈ Y \ {ȳ},

since any y ∈ Y \ {ȳ} with ‖y − ŷ‖∞,λ̄ ≤ 1 would dominate ȳ .
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The weighted Chebyshev norm method

Lemma

Let E ⊆ Rn. Then x̄ ∈ E is an efficient point of E if and only if
there exists some λ̄ > 0 such that x̄ is a strictly minimal point of

ESWCM(λ̄) : min ‖θ(x)− ŷ‖∞,λ̄ s.t. x ∈ E , θ(x) 6= θ(x̄).

This is due to the strict minimality requirement in the image space.

While for efficient x̄ , any x ∈ E with x 6= x̄ and θ(x) = θ(x̄) is also
efficient, x̄ would not be strictly minimal without the 6=-constraint.

Exercise 15
What are drawbacks of the constraint θ(x) 6= θ(x̄) ?
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While for efficient x̄ , any x ∈ E with x 6= x̄ and θ(x) = θ(x̄) is also
efficient, x̄ would not be strictly minimal without the 6=-constraint.

Exercise 15
What are drawbacks of the constraint θ(x) 6= θ(x̄) ?

It defines an open set, and it depends on the unknown x̄ .
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The weighted Chebyshev norm method

Theorem

Let θ be injective on E. Then the efficient points of θ on E (i.e.,
the cost nondominated GNEs) form the union over all λ > 0 of the
sets of strictly minimal points x̄ of

ESWCM(λ) : min ‖θ(x)− ŷ‖∞,λ s.t. x ∈ E .

Method for finding all cost nondominated GNEs x̄ for injective θ

For all λ > 0 compute all strictly minimal points x̄ of ESWCM(λ).
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The weighted Chebyshev norm method

Note that, by the epigraphical reformulation,

ESWCM(λ) : min ‖θ(x)− ŷ‖∞,λ s.t. x ∈ E

is equivalent to

min
x ,α

α s.t. x ∈ E , λj (θj(x)− ŷj) ≤ α, j = 1, . . . ,N.
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Introduction and goal of this mini-course
Optimality notions in multicriteria optimization

Methods for computing nondominated points
Functional descriptions of equilibrium sets

Karush-Kuhn-Tucker
Joint feasibility
Nikaido-Isoda and a semi-infinite formulation
Variational inequality and another semi-infinite formulation

Recall: The weighted sum method

Method for finding some cost nondominated GNE x̄

Choose λ ∈ RN with λ > 0 and compute an optimal point x̄ of

ESWSM(λ) : min
x
〈λ, θ(x)〉 s.t. x ∈ E
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x
〈λ, θ(x)〉 s.t. xν opt.pt. of Qν(x−ν),

ν = 1, . . . ,N

This is a bilevel problem with N followers.

For its algorithmic treatment it is helpful if all player problems
Qν(x−ν) are convex.
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Player convexity

For each ν ∈ {1, . . . ,N} and each x−ν the set Xν(x−ν) and the
function θν(·, x−ν) : Xν(x−ν)→ R are convex.

Exercise 16

For functional descriptions

Xν(x−ν) = {yν | gν(yν , x−ν) ≤ 0}, ν = 1, . . . ,N,

of the strategy sets with gν : Rn → Rmν , what is a sufficient
condition for their convexity?

114 / 152 Oliver Stein (KIT) ES, MO and SIP



Introduction and goal of this mini-course
Optimality notions in multicriteria optimization

Methods for computing nondominated points
Functional descriptions of equilibrium sets

Karush-Kuhn-Tucker
Joint feasibility
Nikaido-Isoda and a semi-infinite formulation
Variational inequality and another semi-infinite formulation

Player convexity

Player convexity

For each ν ∈ {1, . . . ,N} and each x−ν the set Xν(x−ν) and the
function θν(·, x−ν) : Xν(x−ν)→ R are convex.

Exercise 16

For functional descriptions

Xν(x−ν) = {yν | gν(yν , x−ν) ≤ 0}, ν = 1, . . . ,N,

of the strategy sets with gν : Rn → Rmν , what is a sufficient
condition for their convexity?

114 / 152 Oliver Stein (KIT) ES, MO and SIP



Introduction and goal of this mini-course
Optimality notions in multicriteria optimization

Methods for computing nondominated points
Functional descriptions of equilibrium sets

Karush-Kuhn-Tucker
Joint feasibility
Nikaido-Isoda and a semi-infinite formulation
Variational inequality and another semi-infinite formulation

Player convexity

Player convexity

For each ν ∈ {1, . . . ,N} and each x−ν the set Xν(x−ν) and the
function θν(·, x−ν) : Xν(x−ν)→ R are convex.

Exercise 16

For functional descriptions

Xν(x−ν) = {yν | gν(yν , x−ν) ≤ 0}, ν = 1, . . . ,N,

of the strategy sets with gν : Rn → Rmν , what is a sufficient
condition for their convexity?

Like θν , also gνi , i = 1, . . . ,mν , only need to be (quasi-)convex in
the player variable ν. Problems with convex θν and gνi in all
variables are called completely convex.
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All our graphical examples so far are even completely convex.
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If all θν and gνi are also differentiable in the player variable, one
may define the Lagrangian

Lν(xν , x−ν , γν) = θν(xν , x−ν) + (γν)ᵀgν(xν , x−ν)

of Qν(x−ν) and consider the KKT system

∇xνLν(xν , x−ν , γν) = 0,

0 ≤ γν ⊥ −gν(xν , x−ν) ≥ 0.
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KKT reformulation

Under some CQ, like Slater’s condition for each appearing set
Xν(x−ν), we obtain

E = {x | ∃ γ : ∇xνLν(xν , x−ν , γν) = 0,

0 ≤ γν ⊥ −gν(xν , x−ν) ≥ 0, ν = 1, . . . ,N}

as well as the MPCC reformulation of MPECES(λ)

MPCCES(λ) : min
x ,γ
〈λ, θ(x)〉 s.t. ∇xνLν(xν , x−ν , γν) = 0,

0 ≤ γν ⊥ −gν(xν , x−ν) ≥ 0,

ν = 1, . . . ,N.

Drawback: Slater’s condition is necessarily violated at the
boundaries of the domains of Xν , ν = 1, . . . ,N.
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Violated upper level CQ

Additional problem:

MPCCs intrinsically violate the MFCQ, so that tailored solution
methods should be employed.
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x2

x1

Q1(x2) : min
x1

x1 s.t. q1(x2) ≤ x1

L1(x1, x2, γ1) = x1 + γ1(q1(x2)− x1)

KKT1(x2) : 1− γ1 = 0

γ1 ≥ 0, q1(x2)− x1 ≤ 0, γ1(q1(x2)− x1) = 0
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Reformulation of the equilibrium condition

x ∈
N⋂
ν=1

gphSν

m

For all ν the vector xν is an optimal point of Qν(x−ν).

m

∀ ν : xν ∈ Xν(x−ν)

∀ yν ∈ Xν(x−ν) : θν(xν , x−ν) ≤ θν(yν , x−ν)
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Reformulation of the equilibrium condition

∀ ν : xν ∈ Xν(x−ν)

m

x ∈ X1(x−1)× . . .× XN(x−N) =: Y (x)

m

x ∈ fixY

⇓

x ∈ domY = {x ∈ Rn| Y (x) 6= ∅}.
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Reformulation of the equilibrium condition

Exercise 17

With functional descriptions

Xν(x−ν) = {yν | gν(yν , x−ν) ≤ 0}, ν = 1, . . . ,N

of the strategy sets one obtains

fixY = {x ∈ Rn| gν(x) ≤ 0, ν = 1, . . . ,N}.
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x2

x1

x2

x1

x2 ≤ 2x1 x2
1 + x2

2 ≤ 1, x2 ≥ −x1
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Example 1 – domain and fixed point set

fixY

domY

x1

x2
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These are generalized semi-infinite constraints.

For their algorithmic treatment it is helpful if all player problems
Qν(x−ν) are convex or if the index sets Xν do not depend on x−ν .
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Standard NEPs

A GNEP with constant strategy sets

Xν(x−ν) ≡ Xν , ν = 1, . . . ,N,

is called standard Nash equilibrium problem (NEP).

Standard NEPs satisfy Y (x) = Y := X1 × . . .× XN

and fixY = {x ∈ Rn| x ∈ Y (x) = Y } = Y .
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Standard NEPs

Thus, for a standard NEP the problem

SIPES(λ) : min
x
〈λ, θ(x)〉 s.t. x ∈ Y

θν(x)− θν(yν , x−ν) ≤ 0

∀ yν ∈ Xν , ν = 1, . . . ,N

is a standard semi-infinite optimization problem.

 Solve SIPES(λ) by, e.g., an adaptive discretization method.

Main disadvantage of the semi-infinite approach:
the feasible set of SIPES(λ) violates Slater’s condition.

Exercise 18: Why?
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0 =
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ν=1 |θν(x)− ϕν(x−ν)| =: V (x)
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Example 1 – gap function

V (x) = x1 + x2 + min

{
x1,
√

1− x2
1

}
− x2

2
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This is a purely hierarchical bilevel problem, where the evaluation
of V involves more embedded optimization problems, i.e., it is a
trilevel problem!
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θν(yν , x−ν))

= sup
y∈X1(x−1)×...×XN(x−N)
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ν=1

(θν(xν , x−ν)− θν(yν , x−ν))

= sup
y∈Y (x)

N∑
ν=1

(θν(xν , x−ν)− θν(yν , x−ν))

= sup
y∈Y (x)

ψ(x , y)

with the Nikaido-Isoda function ψ (aka Ky-Fan function).
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The weighted sum method

Method for finding some cost nondominated GNE x̄

Choose λ ∈ RN with λ > 0 and compute an optimal point x̄ of

ESWSM(λ) : min
x
〈λ, θ(x)〉 s.t. gν(x) ≤ 0, ν = 1, . . . ,N

V (x) ≤ 0
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A semi-infinite optimization problem

Method for finding some cost nondominated GNE x̄

Choose λ ∈ RN with λ > 0 and compute an optimal point x̄ of

GSIPES ,NI (λ) : min
x
〈λ, θ(x)〉 s.t. gν(x) ≤ 0, ν = 1, . . . ,N

ψ(x , y) ≤ 0 ∀ y ∈ Y (x)

This is again a generalized semi-infinite inequality
(namely an aggregation of the former N single generalized
semi-infinite inequalities), which violates Slater’s condition.
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Reformulation of the equilibrium condition

x ∈
N⋂
ν=1

gphSν

m

For all ν the vector xν is an optimal point of Qν(x−ν).

m

∀ ν : xν ∈ Xν(x−ν)

∀ ν : ∀ yν ∈ Xν(x−ν) : θν(xν , x−ν) ≤ θν(yν , x−ν)
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Quasi-variational inequalities

∀ ν : ∀ yν ∈ Xν(x−ν) : θν(xν , x−ν) ≤ θν(yν , x−ν)

m (player convexity, differentiability of θν , ν = 1, . . . ,N)

∀ ν : 〈∇xνθν(xν , x−ν), yν − xν〉 ≥ 0 ∀ yν ∈ Xν(x−ν)

m (x ∈ Y (x))

〈F (x), y − x〉 ≥ 0 ∀ y ∈ Y (x), F (x) :=

 ∇x1θ1(x1, x−1)
...

∇xNθN(xN , x−N)


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Quasi-variational inequality reformulation

Method for finding some cost nondominated GNE x̄

Choose λ ∈ RN with λ > 0 and compute an optimal point x̄ of

GSIPES ,QVI (λ) : min
x
〈λ, θ(x)〉 s.t. gν(x) ≤ 0, ν = 1, . . . ,N

〈F (x), y − x〉 ≥ 0 ∀ y ∈ Y (x)

Advantage: The lower level problem has a linear objective function.

If the underlying equilibrium problem is a standard NEP, then the
QVI becomes a VI, fixY = Y , and

SIPES ,VI : min
x
〈λ, θ(x)〉 s.t. x ∈ Y , 〈F (x), y − x〉 ≥ 0 ∀ y ∈ Y

is a standard SIP (aka OPVIC).
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Tikhonov-like method

The solution method for nested VIs, covering OPVICs, from

Lampariello/Neumann/Ricci/Sagratella/St., An explicit
Tikhonov algorithm for nested variational inequalities, COAP,
Vol. 77 (2020), 335-350.

has been successfully applied to some SIPES ,VI in

Lampariello/Neumann/Ricci/Sagratella/St.,
Equilibrium selection for multi-portfolio optimization, EJOR
(2021), DOI: 10.1016/j.ejor.2021.02.033.
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Standard NEPs with polyhedral strategy sets

Consider the special case of an underlying standard NEP with
polytopes Xν , ν = 1, . . . ,N. Then Y is a polytope, and

SIPES ,VI : min
x
〈λ, θ(x)〉 s.t. x ∈ Y , 〈F (x), y − x〉 ≥ 0 ∀ y ∈ Y

is a standard SIP with linear lower level problem.

While the vertex theorem of linear programming yields the
equivalent finite problem

PES ,VI : min
x
〈λ, θ(x)〉 s.t. x ∈ Y , 〈F (x), y − x〉 ≥ 0 ∀ y ∈ vertY

this may be difficult to solve due to a vast set vertY .
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Example for a vast vertex set

In Lampariello/Neumann/Ricci/Sagratella/St.,
Equilibrium selection for multi-portfolio optimization, we have

Xν = {xν ∈ RK | xν ≥ 0, 〈e, xν〉 = 1}, ν = 1, . . . , 25

and

Y = {x ∈ R25K | x ≥ 0, 〈e, xν〉 = 1, ν = 1, . . . , 25}

with K = 10 (⇒ | vertY | = 1025)
and K = 29 (⇒ | vertY | = 2925).
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Benders-like method

1 Yd ← ∅
2 repeat
3 Compute an optimal point x̄ of

PES ,VI ,d : min
x

f (x) s.t. x ∈ Y , 〈F (x), y−x〉 ≥ 0 ∀y ∈ Yd .

4 Compute an optimal vertex ȳ of

LP : min
y
〈F (x̄), y〉 s.t. y ∈ Y .

5 Yd ← Yd ∪ {ȳ}
6 until 〈F (x̄), ȳ − x̄〉 ≥ −ε;
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Numerical results

λ ||x? − x?||1 iterations run time [s]

λ1 0.666517 9 22.796807
λ2 0.658469 10 28.127697
λ3 0.578055 11 43.600155
λ4 0.774364 10 24.194173

Table: data set SX5E, N = 25, K = 10, ε = 10−4

λ ||x? − x?||1 iterations run time [s]

λ1 2.658054 7 214.447290
λ2 3.123464 8 306.947685
λ3 2.850787 7 209.581576
λ4 1.941140 8 290.675761

Table: data set DJ, N = 25, K = 29, ε = 10−3
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Take-home messages

Equilibrium selection / Nash refinement

involves notions and methods from multicriteria optimization

leads to MPCCs or semi-infinite optimization problems

the latter do not enjoy standard CQs and need to be handled
with care
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