

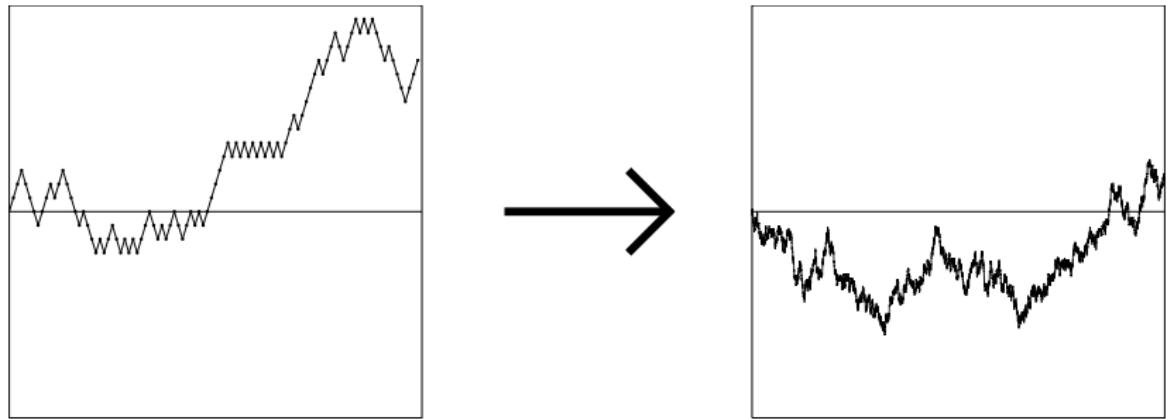
Gaussian vs. Sub-Gaussian Behaviour of Random Conductance Models

Sebastian Andres

Technische Universität Braunschweig

Fractal Geometry and Stochastics 7
Chemnitz, September 27th, 2024

Donsker's Invariance Principle

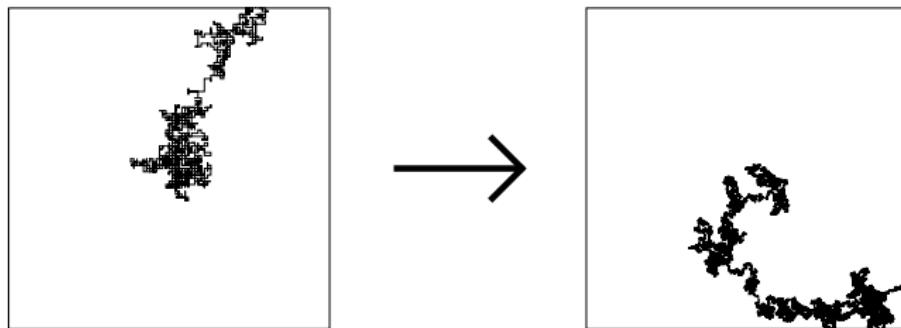


Let $(X_t)_{t \geq 0}$ be the simple random walk (linearly interpolated). Then

$$(n^{-1} X_{n^2 t})_{t \geq 0} \xrightarrow[n \rightarrow \infty]{} (W_t)_{t \geq 0} \quad \text{with } W \text{ Brownian motion.}$$

Scaling Limit for the Simple Random Walk

The same convergence happens in all dimensions.

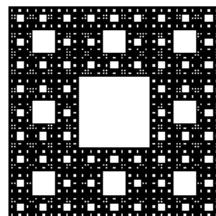
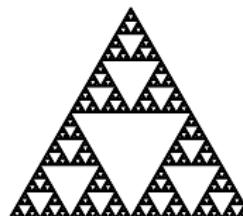


- Brownian motion is the continuous counterpart of the simple random walk.
- Brownian motion is a **Gaussian process**. Its transition probability densities $P_x[W_t \in dy] = p_t(x, y) dy$ are given by the Gaussian **heat kernel**

$$p_t(x, y) = \frac{1}{\sqrt{(2\pi)^d}} t^{-d/2} \exp\left(-\frac{|x - y|^2}{t}\right).$$

Heat kernel behaviour on fractals

For Brownian motion on fractal spaces like



we have **sub-Gaussian** heat kernel behaviour

$$p_t(x, y) \asymp c t^{-\alpha/\beta} \exp\left(-c \left(\frac{d(x, y)^\beta}{t}\right)^{\frac{1}{\beta-1}}\right), \quad \beta > 2$$

(Barlow-Perkins '88; Kumagai '93; Fitzsimmons-Hambly-Kumagai '94, Barlow-Bass '92, '99)
with

- α = Hausdorff-dimension
- β = walk dimension

$$E_x[d(x, W_t)] \asymp t^{2/\beta}.$$

The Random Conductance Model (RCM)

Intuitive description

- Put random conductances (or weights) $\omega_e \in [0, \infty)$ on the edges of the Euclidean lattice (\mathbb{Z}^d, E_d) , $d \geq 2$.
- Look at a continuous time Markov chain X_t with jump probabilities proportional to the edge conductances. Then the jump probability from x to $y \sim x$ is

$$P_{xy} = \frac{\omega_{xy}}{\sum_{z \sim x} \omega_{xz}}.$$



Bond conductivities: blue $\ll 1$, black ≈ 1 , red $\gg 1$.

Definitions

Environment. Let

- $\Omega = [0, \infty)^{E_d}$ be the space of environments,
- \mathbb{P} be a probability law on Ω which makes the coordinates $(\omega_e)_{e \in E_d}$ stationary ergodic random variables.

Definitions

Environment. Let

- $\Omega = [0, \infty)^{E_d}$ be the space of environments,
- \mathbb{P} be a probability law on Ω which makes the coordinates $(\omega_e)_{e \in E_d}$ stationary ergodic random variables.

Random walk. For $\omega \in \Omega$ and $x \in \mathbb{Z}^d$ let P_x^ω be the law of the random walk $(X_t)_{t \geq 0}$ on \mathbb{Z}^d starting in x with generator

$$\mathcal{L}^\omega f(x) = \frac{1}{\mu_x^\omega} \sum_{y \sim x} \omega_{xy} (f(y) - f(x)), \quad \mu_x^\omega := \sum_{y \sim x} \omega_{xy}.$$

\mathcal{L}^ω is symmetric w.r.t. the measure μ^ω .

Definitions

Environment. Let

- $\Omega = [0, \infty)^{E_d}$ be the space of environments,
- \mathbb{P} be a probability law on Ω which makes the coordinates $(\omega_e)_{e \in E_d}$ stationary ergodic random variables.

Random walk. For $\omega \in \Omega$ and $x \in \mathbb{Z}^d$ let P_x^ω be the law of the random walk $(X_t)_{t \geq 0}$ on \mathbb{Z}^d starting in x with generator

$$\mathcal{L}^\omega f(x) = \frac{1}{\mu_x^\omega} \sum_{y \sim x} \omega_{xy} (f(y) - f(x)), \quad \mu_x^\omega := \sum_{y \sim x} \omega_{xy}.$$

\mathcal{L}^ω is symmetric w.r.t. the measure μ^ω .

Heat kernel. Let

$$p_t^\omega(x, y) = \frac{P_x^\omega(X_t = y)}{\mu_y^\omega} = p_t^\omega(y, x).$$

Question

Goal: Understand the long-time behaviour of the random walk X and the heat kernel $p_t^\omega(x, y)$! Do they exhibit Gaussian behaviour?

Question

Goal: Understand the long-time behaviour of the random walk X and the heat kernel $p_t^\omega(x, y)$! Do they exhibit Gaussian behaviour?

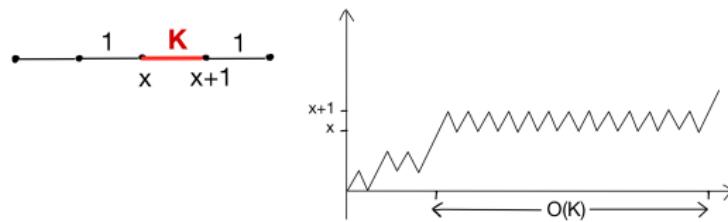
Why should it not be Gaussian?

Question

Goal: Understand the long-time behaviour of the random walk X and the heat kernel $p_t^\omega(x, y)$! Do they exhibit Gaussian behaviour?

Why should it not be Gaussian?

Traps: $d = 1$

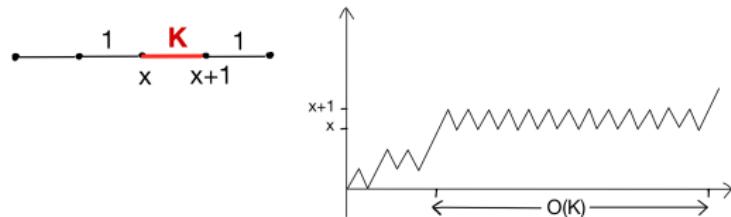


Question

Goal: Understand the long-time behaviour of the random walk X and the heat kernel $p_t^\omega(x, y)$! Do they exhibit Gaussian behaviour?

Why should it not be Gaussian?

Traps: $d = 1$



Problems

- **Quenched invariance principle (QIP):** For \mathbb{P} -a.a. ω , under P_0^ω , $(n^{-1}X_{n^2t})_{t \geq 0} \xrightarrow[n \rightarrow \infty]{} (\Sigma \cdot W_t)_{t \geq 0}$ with W Brownian motion on \mathbb{R}^d .
- **Quenched local limit theorem:**

$$n^d p_{n^2t}^\omega(0, \lfloor nx \rfloor) \xrightarrow[n \rightarrow \infty]{} P_0[\Sigma \cdot W_t \in dx] / \mathbb{E}[\mu_0^\omega], \quad \mathbb{P}\text{-a.s.}$$

- **Gaussian bounds:** $p_t^\omega(x, y) \asymp c t^{-d/2} \exp(-c|x - y|^2/t)$.

Results in the i.i.d. case

Theorem (A.-Barlow-Deuschel-Hambly '13)

Let $d \geq 2$ and $(\omega_e)_{e \in E_d}$ be i.i.d. with $\omega_e \geq 0$ \mathbb{P} -a.s. and $\mathbb{P}(\omega_e > 0) > p_c$. Then, QIP holds with $\Sigma = \sigma \text{Id}$ and $\sigma > 0$ iff $\mathbb{E}[\omega_e] < \infty$.

Previous results: Sidoravicius-Sznitman '04; Berger-Biskup '07; Mathieu-Piatnitski '07; Biskup-Prescott '07; Mathieu '08; Barlow-Deuschel '10.

Results in the i.i.d. case

Theorem (A.-Barlow-Deuschel-Hambly '13)

Let $d \geq 2$ and $(\omega_e)_{e \in E_d}$ be i.i.d. with $\omega_e \geq 0$ \mathbb{P} -a.s. and $\mathbb{P}(\omega_e > 0) > p_c$. Then, QIP holds with $\Sigma = \sigma \text{Id}$ and $\sigma > 0$ iff $\mathbb{E}[\omega_e] < \infty$.

Previous results: Sidoravicius-Sznitman '04; Berger-Biskup '07; Mathieu-Piatnitski '07; Biskup-Prescott '07; Mathieu '08; Barlow-Deuschel '10.

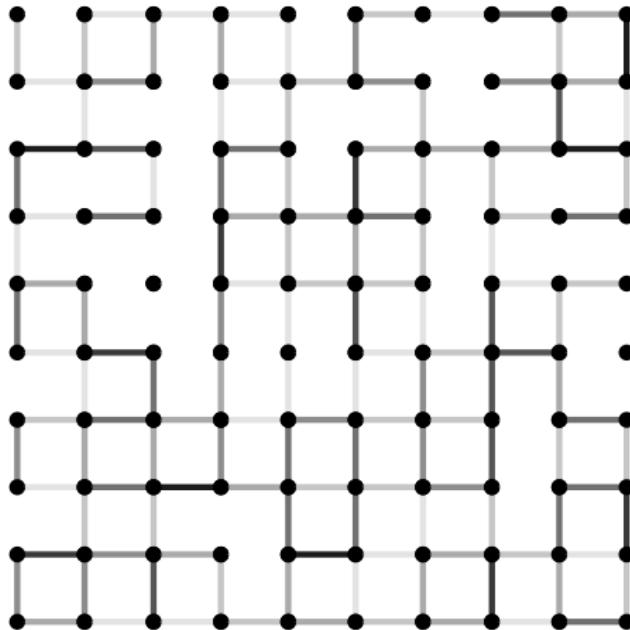
Gaussian bound and a local limit theorem hold e.g. in the case of

- 'Uniformly elliptic' conductances: $0 < c_1 \leq \omega_e \leq c_2 < \infty$ (Delmotte '99; Barlow-Hambly '09).
- SRW on i.i.d. percolation clusters (Barlow '04; Barlow-Hambly '09)

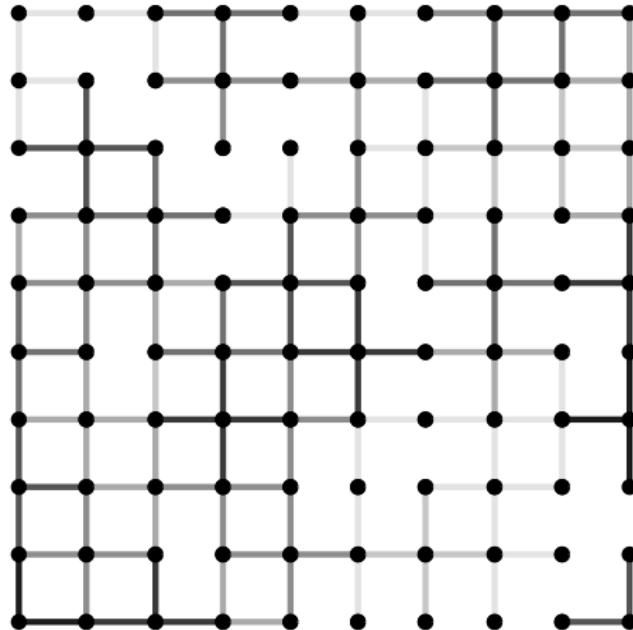
But: For $\omega_e \in [0, 1]$ i.i.d., sub-Gaussian heat kernel decay can occur due to trapping effects, so

Gaussian bounds and local limit theorem may fail!

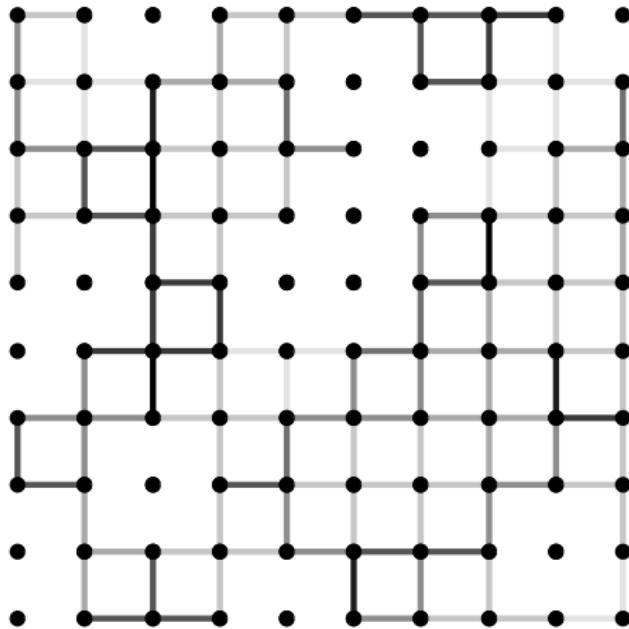
(Berger-Biskup-Hoffmann-Kozma '08; Boukhadra-Kumagai-Mathieu '14)



$\omega_e \in [0, 1]$ i.i.d. with $\mathbb{P}[\omega_e \leq t] \sim t$



$$\omega_{xy} = \lambda(x) \vee \lambda(y), \quad \lambda(x) \in [0, 1] \text{ i.i.d. with } \mathbb{P}[\lambda(x) \leq t] \sim t$$



$$\omega_{xy} = \lambda(x) \wedge \lambda(y), \quad \lambda(x) \in [0, 1] \text{ i.i.d. with } \mathbb{P}[\lambda(x) \leq t] \sim t$$

QIP for ergodic environments

We need moment conditions!

- QIP if $\mathbb{E}[\omega_e] < \infty$ and $\mathbb{E}[\omega_e^{-1}] < \infty$ in $d = 2$ (Biskup '11).
- Example with $\mathbb{E}[\omega_e^p \vee \omega_e^{-p}] < \infty$, $p < 1$, for which the QIP fails (Barlow-Burdzy-Timár '13).

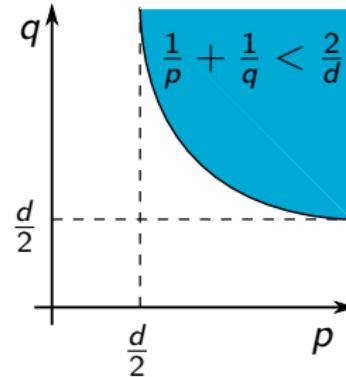
QIP for ergodic environments

We need moment conditions!

- QIP if $\mathbb{E}[\omega_e] < \infty$ and $\mathbb{E}[\omega_e^{-1}] < \infty$ in $d = 2$ (Biskup '11).
- Example with $\mathbb{E}[\omega_e^p \vee \omega_e^{-p}] < \infty$, $p < 1$, for which the QIP fails (Barlow-Burdzy-Timár '13).

Theorem (A.-Deuschel-Slowik '15)

Assume $\mathbb{E}[(\omega_e)^p] < \infty$ and $\mathbb{E}[(\omega_e)^{-q}] < \infty$ for $p, q \in (1, \infty]$ such that $1/p + 1/q < 2/d$. Then QIP holds.



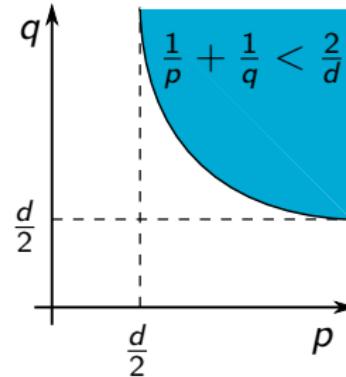
QIP for ergodic environments

We need moment conditions!

- QIP if $\mathbb{E}[\omega_e] < \infty$ and $\mathbb{E}[\omega_e^{-1}] < \infty$ in $d = 2$ (Biskup '11).
- Example with $\mathbb{E}[\omega_e^p \vee \omega_e^{-p}] < \infty$, $p < 1$, for which the QIP fails (Barlow-Burdzy-Timár '13).

Theorem (A.-Deuschel-Slowik '15)

Assume $\mathbb{E}[(\omega_e)^p] < \infty$ and $\mathbb{E}[(\omega_e)^{-q}] < \infty$ for $p, q \in (1, \infty]$ such that $1/p + 1/q < 2/d$. Then QIP holds.



- Improved moment condition $1/p + 1/q < 2/(d-1)$ (Bella-Schäffner '20).

Quenched local limit theorems

Suppose $\mathbb{E}[(\omega_e)^p] < \infty$ and $\mathbb{E}[(\omega_e)^{-q}] < \infty$ with $1/p + 1/q < 2/d$.

- Quenched local limit theorem (A.-Deuschel-Slowik, '16; A.-Taylor '21; Bella-Schäffner '22)
 - ▶ The moment condition is sharp!
 - ▶ The proof requires
 - (i) QIP,
 - (ii) Hölder regularity of the heat kernel, deduced from a **parabolic Harnack inequality**.
- Quantitative local limit theorem with optimal rates of convergence on i.i.d. percolation clusters. (Dario-Gu '21)
- Upper Gaussian bounds (A.-Deuschel-Slowik '16, '19)

Results for ergodic time-dynamic environments

Moment condition:

Suppose $\mathbb{E}[\omega_t(e)^p] < \infty$ and $\mathbb{E}[\omega_t(e)^{-q}] < \infty$, for any $e \in E_d$, $t \in \mathbb{R}$, with $p, q \in (1, \infty]$ satisfying $\frac{1}{p-1} \cdot \frac{q+1}{q} + \frac{1}{q} < \frac{2}{d}$.

Results for ergodic time-dynamic environments

Moment condition:

Suppose $\mathbb{E}[\omega_t(e)^p] < \infty$ and $\mathbb{E}[\omega_t(e)^{-q}] < \infty$, for any $e \in E_d$, $t \in \mathbb{R}$, with $p, q \in (1, \infty]$ satisfying $\frac{1}{p-1} \cdot \frac{q+1}{q} + \frac{1}{q} < \frac{2}{d}$.

Theorem (QIP; A.-Chiarini-Deuschel-Slowik '18)

Under the above moment condition the QIP holds with a deterministic, non-degenerate covariance matrix Σ^2 .

Further results:

- $0 \leq \omega_t(e) \leq 1$ (Biskup-Rodriguez '18).
- $0 < c_1 \leq \omega_t(e) \leq c_2$ and mixing (A. '14).

Theorem (Quenched local limit theorem; A.-Chiarini-Slowik '21)

Under the above moment condition, for all $K > 0$ and $0 < T_1 \leq T_2$,

$$\lim_{n \rightarrow \infty} \sup_{|x| \leq K} \sup_{t \in [T_1, T_2]} |n^d p_{0, n^2 t}^\omega(0, \lfloor nx \rfloor) - p_{\text{BM}}^\Sigma(t, 0, x)| = 0, \quad \mathbb{P}\text{-a.s.}$$

Application: $\nabla\phi$ -Interface Models

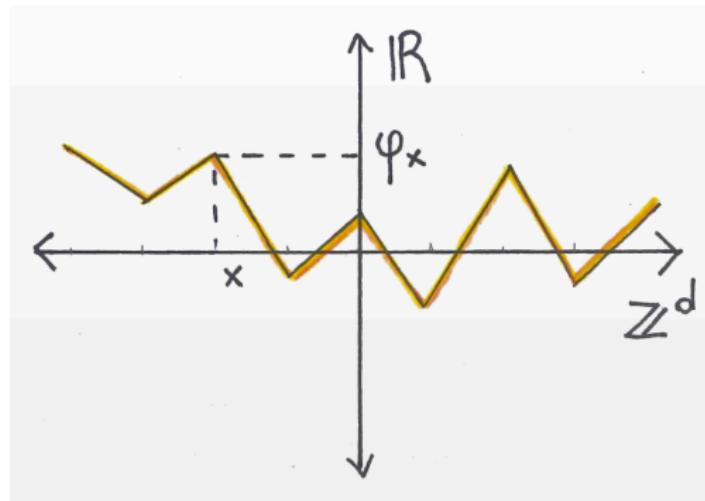
Interfaces are ubiquitous in statistical physics:

- separation of media (water-oil solution),
- separation of phases (water-ice at freezing temperature)
- alloys consisting of two types of metal
- ...

Confluence of the Rhone and Arve Rivers (Geneva, Switzerland)

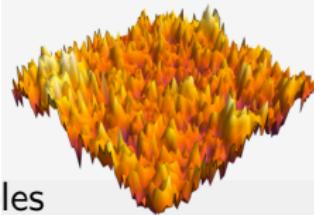
picture provided by A. Chiarini

Mathematical model



- A d -dimensional interface is the graph of a function $\varphi : \mathbb{Z}^d \rightarrow \mathbb{R}$.
- $\varphi_x = \varphi(x)$ is the height of the interface at $x \in \mathbb{Z}^d$.

Ginzburg-Landau $\nabla\phi$ -interface model



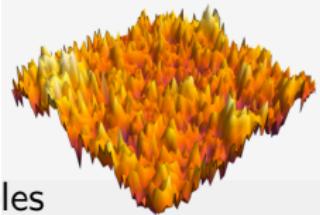
- The interface is specified by a field of height variables $\phi_t(x)$, $x \in \mathbb{Z}^d$, $t \geq 0$, given by

$$d\phi_t(x) = - \sum_{y \sim x} V'(\phi_t(x) - \phi_t(y)) dt + \sqrt{2} dw_t(x),$$

with

- ▶ $\{w(x), x \in \mathbb{Z}^d\}$ collection of independent Brownian motions,
- ▶ potential $V \in C^2(\mathbb{R}, \mathbb{R}_+)$ even and strictly convex $0 < c_- \leq V'' \leq c_+$.

Ginzburg-Landau $\nabla\phi$ -interface model



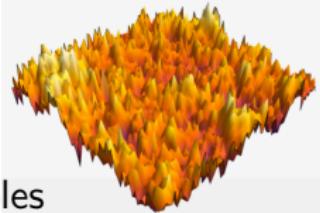
- The interface is specified by a field of height variables $\phi_t(x)$, $x \in \mathbb{Z}^d$, $t \geq 0$, given by

$$d\phi_t(x) = - \sum_{y \sim x} V'(\phi_t(x) - \phi_t(y)) dt + \sqrt{2} dw_t(x),$$

with

- ▶ $\{w(x), x \in \mathbb{Z}^d\}$ collection of independent Brownian motions,
- ▶ potential $V \in C^2(\mathbb{R}, \mathbb{R}_+)$ even with $V'' \geq c_- > 0$.

Ginzburg-Landau $\nabla\phi$ -interface model



- The interface is specified by a field of height variables $\phi_t(x)$, $x \in \mathbb{Z}^d$, $t \geq 0$, given by

$$d\phi_t(x) = - \sum_{y \sim x} V'(\phi_t(x) - \phi_t(y)) dt + \sqrt{2} dw_t(x),$$

with

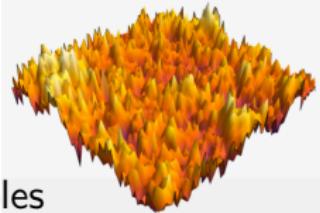
- ▶ $\{w(x), x \in \mathbb{Z}^d\}$ collection of independent Brownian motions,
- ▶ potential $V \in C^2(\mathbb{R}, \mathbb{R}_+)$ even with $V'' \geq c_- > 0$.

- Formal Gibbs measure

$$\mu = \frac{1}{Z} \exp(-H(\phi)) \prod_{x \in \mathbb{Z}^d} d\phi(x), \quad \text{on } \mathbb{R}^{\mathbb{Z}^d}$$

with formal Hamiltonian $H(\phi) = \frac{1}{2} \sum_{x \sim y} V(\phi(x) - \phi(y))$.

Ginzburg-Landau $\nabla\phi$ -interface model



- The interface is specified by a field of height variables $\phi_t(x)$, $x \in \mathbb{Z}^d$, $t \geq 0$, given by

$$d\phi_t(x) = - \sum_{y \sim x} V'(\phi_t(x) - \phi_t(y)) dt + \sqrt{2} dw_t(x),$$

with

- ▶ $\{w(x), x \in \mathbb{Z}^d\}$ collection of independent Brownian motions,
 - ▶ potential $V \in C^2(\mathbb{R}, \mathbb{R}_+)$ even with $V'' \geq c_- > 0$.
- Formal Gibbs measure

$$\mu = \frac{1}{Z} \exp(-H(\phi)) \prod_{x \in \mathbb{Z}^d} d\phi(x), \quad \text{on } \mathbb{R}^{\mathbb{Z}^d}$$

with formal Hamiltonian $H(\phi) = \frac{1}{2} \sum_{x \sim y} V(\phi(x) - \phi(y))$.

- Example: $V(x) = \frac{1}{2}x^2$ **discrete Gaussian free field**

Scaling limit for the space-time covariances

Helffer-Sjöstrand representation:

$$\text{cov}_\mu(\phi_0(0), \phi_t(x)) = \int_0^\infty \mathbb{E}_\mu [p_{0,t+s}^{\nabla\phi}(0, x)] ds.$$

where $p^{\nabla\phi}$ denotes the heat kernel of the dynamic RCM with

$$\omega_t(x, y) := V''(\phi_t(y) - \phi_t(x)).$$

Scaling limit for the space-time covariances

Helffer-Sjöstrand representation:

$$\text{cov}_\mu(\phi_0(0), \phi_t(x)) = \int_0^\infty \mathbb{E}_\mu [p_{0,t+s}^{\nabla\phi}(0, x)] ds.$$

where $p^{\nabla\phi}$ denotes the heat kernel of the dynamic RCM with

$$\omega_t(x, y) := V''(\phi_t(y) - \phi_t(x)).$$

Theorem (A.-Taylor '21)

Let $d \geq 3$ and $V'' \geq c_-$. There exists $p \in (1, \infty)$ such that if $\mathbb{E}_\mu[V''(\nabla\phi_t(e))^p] < \infty$,

$$\lim_{n \rightarrow \infty} n^{d-2} \text{cov}_\mu(\phi_0(0), \phi_{n^2 t}(\lfloor nx \rfloor)) = \int_0^\infty p_{\text{BM}}^\Sigma(t+s, 0, x) ds.$$

Example. Anharmonic crystal potential $V(x) = x^2 + \lambda x^4$
(see Bricmont-Fontaine-Lebowitz-Spencer '80, '81).

RCM with long-range jumps

Moment condition: There exist $p, q \in (1, \infty]$ satisfying $1/p + 1/q < 2/d$ such that

$$\mathbb{E} \left[\left(\sum_{x \in \mathbb{Z}^d} \omega(0, x) |x|^2 \right)^p \right] < \infty \quad \text{and} \quad \mathbb{E} [\omega(0, x)^{-q}] < \infty \text{ whenever } |x| = 1.$$

In particular, $\omega(x, y) > 0$ \mathbb{P} -a.s. for all $x \sim y$.

Results:

- QIP (Biskup-Chen-Kumagai-Wang '21)
- Quenched local limit theorem (Chen-Kumagai-Wang '24, A.-Slowik '24+)
- RCMs with stable-like jumps, i.e. conductances i.i.d. of the form

$$\omega(x, y) = \frac{\tilde{\omega}(x, y)}{|x - y|^{d+\alpha}}, \quad \alpha \in (0, 2).$$

Convergence towards symmetric α -stable Lévy process
(Crawford-Sly '13, Chen-Kumagai-Wang '21, Berger-Tokushige '24)

New direction: RCM on fractals

- Annealed Scaling limit for random walks on (pre-)Sierpinski gasket graph under uniformly elliptic i.i.d. conductances uniformly bounded from below (Kumagai-Kusuoka '96)
- improved to i.i.d. conductances with upper moment condition and bounded from below in (Croydon-Hambly-Kumagai '17)
- Quenched two-sided subdiffusive heat kernel bounds with polylogarithmic corrections (Kajino-Slowik-Wille '24+)

Open problems:

- Quenched scaling limits.
- Quenched local limit theorems
- ...

Thank you for your attention!