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Donsker’s Invariance Principle

Let (Xt)e>0 be the simple random walk (linearly interpolated). Then

(nlenzt)tZO = (Wt)tZO with W Brownian motion.
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Scaling Limit for the Simple Random Walk

The same convergence happens in all dimensions.

@ Brownian motion is the continuous counterpart of the simple random
walk.

@ Brownian motion is a Gaussian process. Its transition probability
densities P[W: € dy] = p:(x,y) dy are given by the Gaussian heat
kernel

I Sy Cx =yl
pe(x,y) = 2n)? t exr>( — )
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Heat kernel behaviour on fractals
For Brownian motion on fractal spaces like

we have sub-Gaussian heat kernel behaviour

1
B\ B-1
pe(x,y) = Ct‘a/ﬁexp<—C(M> ) B>2

t

(Barlow-Perkins '88; Kumagai '93; Fitzsimmons-Hambly-Kumagai '94, Barlow-Bass '92, '99)
with
@ o = Hausdorff-dimension
e [ = walk dimension
Ec[d(x, W;)] < t?/5.
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The Random Conductance Model (RCM)

Intuitive description
@ Put random conductances (or weights) we € [0, 00) on the edges of
the Euclidean lattice (Z9, E4), d > 2.
@ Look at a continuous time Markov chain X; with jump probabilities
proportional to the edge conductances. Then the jump probability

from x to y ~ x is
w
Py, = —=—2—.

L

* * *
Bond conductivities: blue <« 1, black ~ 1, red > 1.
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Definitions
Environment. Let
o Q = [0,00)f be the space of environments,

o P be a probability law on Q which makes the coordinates (we)eck,
stationary ergodic random variables.
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Definitions
Environment. Let
o Q = [0,00)f be the space of environments,

o P be a probability law on Q which makes the coordinates (we)eck,
stationary ergodic random variables.

Random walk. For w € Q and x € Z9 let P¥ be the law of the random
walk (X;)r>0 on Z9 starting in x with generator

LYf(x) = way (v) — f(x)), py = way.

X yrox yrox

LY is symmetric w.r.t. the measure p*.
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Definitions
Environment. Let
o Q = [0,00)f be the space of environments,
e P be a probability law on € which makes the coordinates (we)eck,

stationary ergodic random variables.

Random walk. For w € Q and x € Z9 let P¥ be the law of the random
walk (X;)r>0 on Z9 starting in x with generator

LYf(x) = way — f(x)), py = way.

X yrox yr~X
LY is symmetric w.r.t. the measure p*.
Heat kernel. Let

Py (Xt = y)

pe(xy) =
7

= p.(y,x).
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Question

Goal: Understand the long-time behaviour of the random walk X and the
heat kernel p¥’(x, y)! Do they exhibit Gaussian behaviour?
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Goal: Understand the long-time behaviour of the random walk X and the
heat kernel p¥’(x, y)! Do they exhibit Gaussian behaviour?

Why should it not be Gaussian?
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Question

Goal: Understand the long-time behaviour of the random walk X and the
heat kernel p¥’(x, y)! Do they exhibit Gaussian behaviour?

Why should it not be Gaussian?
Traps: d =1
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Question

Goal: Understand the long-time behaviour of the random walk X and the
heat kernel p¥’(x, y)! Do they exhibit Gaussian behaviour?

Why should it not be Gaussian?

Traps: d =1
1 K 1
X x+1

x+1

Problems
@ Quenched invariance principle (QIP): For P-a.a. w, under P§,
(0™ X2t) o =2 (T We) o with W Brownian motion on R,
@ Quenched local limit theorem:.

np, (0, [nx]) — Po[E-W; € dx]/E[ug],  P-as.

n—oo

o Gaussian bounds: p#(x,y) < c t=92exp( — c|x — y|?/t).
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Results in the i.i.d. case
Theorem (A.-Barlow-DeuscheI-Hamny '13)

Let d > 2 and (we)ece, be iid. with we > 0 P-a.s. and P(we > 0) > pe.
Then, QIP holds with X = old and o > 0 iff]E[we] < 0.

Previous results: Sidoravicius-Sznitman '04; Berger-Biskup '07; Mathieu-Piatnitski '07;
Biskup-Prescott '07; Mathieu '08; Barlow-Deuschel '10.
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Results in the i.i.d. case

Theorem (A.-Barlow-Deuschel-Hambly '13)

Let d > 2 and (we)ece, be iid. with we > 0 P-a.s. and P(we > 0) > pe.
Then, QIP holds with X = old and o > 0 iff]E[we] < 0.

Previous results: Sidoravicius-Sznitman '04; Berger-Biskup '07; Mathieu-Piatnitski '07;
Biskup-Prescott '07; Mathieu '08; Barlow-Deuschel '10.

Gaussian bound and a local limit theorem hold e.g. in the case of

@ ‘Uniformly elliptic’conductances: 0 < ¢ < we < ¢ < 00 (Delmotte '99;
Barlow-Hambly '09).

@ SRW on i.i.d. percolation clusters (Barlow '04; Barlow-Hambly '09)

But: For w. € [0,1] i.i.d., sub-Gaussian heat kernel decay can occur due
to trapping effects, so

Gaussian bounds and local limit theorem may fail!

(Berger-Biskup-Homeann-Kozma '08; Boukhadra-Kumagai-Mathieu ’14)
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Wyy = A(X) VA(y), A(x) €[0,1] i.i.d. with P[A(x) < t] ~t
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NN I I SR

Wy = A(X) A AX(y), A(x) €[0,1] i.i.d. with P[A(x) < t] ~t
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QIP for ergodic environments
We need moment conditions!
o QIP if E[we] < 0o and E[w;1] < oo in d = 2 (Biskup '11).
e Example with E[wf V weP] < o0, p < 1, for which the QIP fails
(Barlow-Burdzy-Timér '13).
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QIP for ergodic environments
We need moment conditions!
o QIP if E[we] < 0o and E[w;1] < oo in d = 2 (Biskup '11).
e Example with E[wf V weP] < o0, p < 1, for which the QIP fails
(Barlow-Burdzy-Timér '13).

Theorem (A.-Deuschel-Slowik '15)

Assume E[(we)P] < 0o and E[(we)™9] < oo for p,q € (1,00] such that
1/p+1/q <2/d. Then QIP holds.
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QIP for ergodic environments
We need moment conditions!
o QIP if E[we] < 0o and E[w;1] < oo in d = 2 (Biskup '11).
e Example with E[wf V weP] < o0, p < 1, for which the QIP fails
(Barlow-Burdzy-Timér '13).
Theorem (A.-Deuschel-Slowik '15)

Assume E[(we)P] < 0o and E[(we)™9] < oo for p,q € (1,00] such that
1/p+1/q <2/d. Then QIP holds.

I
1
1
1
1
|
:
1
{
d p
2
@ Improved moment condition 1/p+1/q < 2/(d — 1) (Bella-Schiffner '20).
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Quenched local limit theorems

Suppose E[(we)P] < 0o and E[(we) 9] < oo with 1/p+1/q < 2/d.
o Quenched local limit theorem (A.—Deuschel—SIowik, '16; A.-Taylor '21;
Bella-Schiffner '22 )

» The moment condition is sharp!
» The proof requires

(i) QIP,
(ii) Holder regularity of the heat kernel, deduced from a parabolic Harnack
inequality.

@ Quantitative local limit theorem with optimal rates of convergence on
i.i.d. percolation clusters. (Dario-Gu "21)

e Upper Gaussian bounds (A.-Deuschel-Slowik '16,'19)
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Results for ergodic time-dynamic environments

Moment condition:

Suppose E[w;(e)P] < oo and E[wt( ) 9 < oo, for any e € Ey4, t € R,
with p, g € (1, o0] satisfying ﬁ 12

Q[

Sebastian Andres (Sub-)Gaussian Behaviour of RCM September 27th, 2024

14



Results for ergodic time-dynamic environments

Moment condition:

Suppose E[w:(e)P] < oo and E[w:(e)™9] < oo, for any e € Ey4, t € R,
: e 1 1,1 _ 2

with p, g € (1, 00] satisfying ;=5 - £= + = < 7.

Theorem (QIP; A-Chiarini-Deuschel-Slowik '18)

Under the above moment condition the QIP holds with a deterministic,

non-degenerate covariance matrix ¥.2.

Further results:
e 0L wt(e) <1 (Biskup-Rodriguez ’18).
0 0 < c; <wi(e) < e and mixing (A. '14).

Theorem (Quenched local limit theorem; A -Chiarini-Slowik '21)

Under the above moment condition, for all K > 0 and 0 < T1 < To,

lim sup sup |n9p¥ ,.(0,|nx|) — pEu(t,0,x)| =0, P-a.s.
"—>°°|x|gKte[T1,Tz]‘ O Lol = i J
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Application: V¢-Interface Models
Interfaces are ubiquitous in statistical physics:
@ seperation of media (water-oil solution),
@ separation of phases (water-ice at freezing temperature)
@ alloys consisting of two types of metal
° ..

Confluence of the Rhone and Arve Rivers (Geneva, Switzerland)

picture provided by A. Chiarini
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Mathematical model

4\/K ;\(Pi VANDA

x VY IN\/ VY _

@ A d-dimensional interface is the graph of a function ¢ : Z¢ — R.
o ¢, = p(x) is the height of the interface at x € Z9.
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Ginzburg-Landau V¢-interface model

@ The interface is specified by a field of height variables
oe(x), x € 79, t >0, given by

de(x) = =Y V'(¢e(x) — 6¢(y)) dt + v2dwr(x),
y~X

with
» {w(x),x € Z9} collection of independent Brownian motions,
» potential V € C3(R,R,) even and strictly convex 0 < ¢ < V" < c,.
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Ginzburg-Landau V¢-interface model

@ The interface is specified by a field of height variables
oe(x), x € 79, t >0, given by

de(x) = =Y V'(¢e(x) — 6¢(y)) dt + v2dwr(x),
y~X

with
» {w(x),x € Z9} collection of independent Brownian motions,
» potential V € C?(R,R;) even with V" > c_ > 0.
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Ginzburg-Landau V¢-interface model

@ The interface is specified by a field of height variables
oe(x), x € 79, t >0, given by

de(x) = =Y V'(¢e(x) — 6¢(y)) dt + v2dwr(x),
y~X

with
» {w(x),x € Z9} collection of independent Brownian motions,
» potential V € C?(R,R;) even with V" > c_ > 0.

@ Formal Gibbs measure

p=Zep(-H(@) [ do().  on B

xeZd

with formal Hamiltonian H(¢) = %ZXN}, V(o(x) — o(y))-
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Ginzburg-Landau V¢-interface model

@ The interface is specified by a field of height variables
oe(x), x € 79, t >0, given by

doe(x Z V' (¢e(x) — de(y)) dt + V2dwr(x),
yrox
with
» {w(x),x € Z9} collection of independent Brownian motions,
» potential V € C?(R,R;) even with V" > c_ > 0.

@ Formal Gibbs measure

p=Zep(-H(@) [ do().  on B

xeZd

with formal Hamiltonian H(¢) = %ZXN}, V(o(x) — o(y))-
o Example: V(x) = x2 discrete Gaussian free field
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Scaling limit for the space-time covariances

Helffer-Sjostrand representation:

> v
cov (60(0). 1)) = [~ B, [85¢,,(0.)] s
where pV? denotes the heat kernel of the dynamic RCM with

we(x,y) = V”(¢t()’) _¢t(X))-
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Scaling limit for the space-time covariances
Helffer-Sjostrand representation:

> v
cov (60(0). 1)) = [~ B, [85¢,,(0.)] s
where pV? denotes the heat kernel of the dynamic RCM with

we(x,y) = V”(¢t(}’) _¢t(x))-
Theorem (A.-Taylor 21)

Let d >3 and V" > c_. There exists p € (1,00) such that if
E,[V/(Vér(€))?] < oo,

o0

Jim %2 cov, (60(0), dallox))) = [ el +5.0.x) s

Example. Anharmonic crystal potential V/(x) = x2 + Ax*
(see Bricmont-Fontaine-Lebowitz-Spencer '80, ’81).
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RCM with long-range jumps

Moment condition: There exist p, g € (1, o] satisfying 1/p+1/g < 2/d
such that

E[( Z w(0, x) |x|2>p} <oo and E[w(0,x)"9) < oo whenever |x| = 1.

xezd
In particular, w(x,y) > 0 P-a.s. for all x ~ y.

Results:
@ QIP (Biskup-Chen-Kumagai-Wang '21)
@ Quenched local limit theorem (Chen-Kumagai-Wang 24, A.-Slowik '24+)
@ RCMs with stable-like jumps, i.e. conductances i.i.d. of the form

w(x,y) = | “(x,y)

— 0,2).
X_y’d_;’_a) OZE(, )

Convergence towards symmetric a-stable Lévy process
(Crawford—SIy '13, Chen-Kumagai-Wang '21, Berger-Tokushige '24)
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New direction: RCM on fractals

@ Annealed Scaling limit for random walks on (pre-)Sierpinski gasket

graph under uniformly elliptic i.i.d. conductances uniformly bounded

from below (Kumagai-Kusuoka '96)

@ improved to i.i.d. conductances with upper moment condition and
bounded from below in (Croydon—Hamny—Kumagai ’17)

@ Quenched two-sided subdiffusive heat kernel bounds with
polylogarithmic corrections (Kajino-Slowik-Wille '24-+)

Open problems:
@ Quenched scaling limits.
@ Quenched local limit theorems
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Thank you for your attention!
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