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LP-type energy functionals (1 < p < o0)

p-energy functional: £,(u) ::/ |Vu|P dz

n

(1,p)-Sobolev s.p.: F, := {u € L? | E,(u) < oo}

p-energy measures: u = |Vul|? dx

Q. Counterpart of (8p,.7-'p,u1<’.>) on i — K ?
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LP-type energy functionals (1 < p < o0)

n

p-energy functional: £,(u) ::/ |Vu|P dz
(1, p)-Sobolev s.p.: F, :={u € L? | Ey(u) < oo}

p-energy measures: u = |Vul|? dx

Q. Counterpart of (8p,.7-'p,u1<°.>) on i — K ?

Thm. Vp € (1, 00) 3 nice (€, Fp, uf.,) on K.
Previous results: [Kigami'23, S.’24’] for p > dagc;

darc: Ahlfors regular conformal dimension
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Ahlfors regular conformal dimension

¢ (K, d): metric space, A C X, p > 0.
H5(A) = lim inf {33, i[5 | A € U, Us, [Uil, < <},
where |U;|,; = sup, ,cp, d(z, y).
NB. dimy (K, d°) = ¢ 'dimp (K, d).
O darc(K,d) := inf{p | 30 & d, Hy(Bo(z, 7)) < 1P}

o d et 0 £ dn: Ry — R, homeo. s.t.

ea) < (Ue)) Va,y,z € X w/ @ # 2.
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Attainment problem of darc

darc(K,d) = inf{p | 36 e d, Hy(Bge(z, 7)) < 7P}

O darc (ﬂ) = 7, but by [Bishop/Tyson’01, Keith/Laakso’04]

<d
log3 — ARC(E) <

log 2 log 8

1 .
i log 3
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Q. Is inf attained? (Talk by R. Anttila)
Conj. [Kajino/Murugan’23, Invent.] IF inf is attained

= Jh € “F,": “p-harm. fcn.” s.t. H) < ““?M"'

where p = dagrc, 0: a metric attaining darc-
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How to get p-energy forms?

¢ To get F,, find a candidate gp via {G,, }nen:
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m: -dim. Hausdorff measure w/ m(K) = 1.

fo(w) = e [, fdm, w € Gy, f € LP(K, m).
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How to get p-energy forms?

¢ To get F,, find a candidate f,A'p via {G,, }nen:
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log 8

M foes

-dim. Hausdorff measure w/ m(K) = 1.

fo(w) = e [, fdm, w € Gy, f € LP(K, m).

Ep(f) = iMoo T Y gy | (@) — Fuly) [P
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How to get p-energy forms?

¢ To get F,, find a candidate f,A'p via {G,, }nen:
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How to get p-energy forms?

¢ To get F,, find a candidate “,A'p via {G,, }nen:

RO
’ @ ‘O' ‘<>.
OROE

Ep(F) = T o0 Tn gy [ (@) — Fuly) P
F, = {f € LP(K,m) | £,(f) < oo}.
Idea [Kusuoka/Zhou'92, PTRF]: Find {7, },cn so that

lim rngf’” = lim 7,E%" =< sup r,ECn

p
n—oo N
n—oo ne 4/10



Correct scaling factor p,

ocgﬂzznﬁ{ggwf)‘fzzl c.

o},nEN.

[Bourdon/Kleiner'13, GGD]: dC > 1 s.t. Vk,l € N,

—1 (k) k+1 k)l
c-teeh < ckth < ccelkiclh.
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Correct scaling factor p,

o Cl = inf{gfn(f) ‘ F=al } n € N.

[Bourdon/Kleiner'13, GGD]: dC > 1 s.t. Vk,l € N,
—1 k l k+1 k l
c-teeh < ckth < ccelkiclh.

RAr= (0, 00) and

~ pp = limy, 00 (CI(,”))
C-l'p;m<clM < Cp;™, VneN.

Rmk. [Carrasco’13, Kigami'20]: pp, > 1 < p > daRrc

o EP(F) = pRES~(fa),  Ep(f) = subnen EX(S),
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Results of [Murugan/S.’23+]

Hereafter, Vp € (1, c0) is fixed.

Thm. &, < lim £ < lim £ on LP(K,m).
n—oo n—o00

~ Fow/ | -l + (gp)l/p: ref. sep. Banach s.p.
Moreover, 7, NC(K) C C(K) & F,.

dense
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Results of [Murugan/S.’23+]

Hereafter, Vp € (1, c0) is fixed.

Thm. S = lim gg = lim g" on LP(K, m).

n—o0 n— oo

~ Fow/ | -l + (gp)l/p: ref. sep. Banach s.p.
Moreover, 7, NC(K) C C(K) & F,.

dense

Rmk. 7, NC(K) C C(K) is new for p < dagc!
dense

NB. [Cao/Chen/Kumagai'24]: .’Fp C C(K) & p > darc.

% Mod. of path-families to deal with p < dagc.
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Results of [Murugan/S.’23+| (contd.)

d . log (8py)
WsP 7 log3

(p-walk dimension)
Thm. d,, > p ([s:24]) and &, = %Jp,r,

where

JpplJf)) = /K]i( | |f(513)r; FW)l m(dy)m(dx)

w,p

Moreover, sup Jpo(F) S lim Jp, . (f)-
r]0

NB. K 5z — dEuc(wva) € fp'
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Results of [Murugan/S.’23+| (contd.)

Thm. EI(Ep,Tp,u y) on K

&, <E & E(uoT) = E(u)V(u,T) € F, X Dy.

® [Kajino/S."24+] (€p, F,) satisfies (GenCont),,

e F,NC(K)={u € C(K)|uoF;, € F,Vi € S},
& &) = P ueq. s E(uo Fu).

o 1, (Ku) = plE,(uo Fy).

o V(u,¥) € (F, N C(K)) x C*(R), we have

Vou€ Fp  dpige,y = [V'(W)[" dup,.
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Results of [Murugan/S.’23+| (contd.)

p := darc = inf{p ‘ 30 o5 d, Hy(Bo(z, 7)) < P}

Thm. ASSUME inf in dagrc is attained, i.e.,

30: optimal metric w.r.t. dagrc.
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Results of [Murugan/S.’23+| (contd.)

p := darc = inf{p ‘ 30 o5 d, Hy(Bo(z, 7)) < P}

Thm. ASSUME inf in dagc is attained, i.e.,
30: optimal metric w.r.t. dagrc.

Then Ju € F, s.t. Hj < u<u>

Message: Optimal meas. should be p-energy meas.!

Conj. u can be reduced to a p-harmonic fcn.

Issue: Nonlinearity of p-harmonic fcn.

cf. [Kajino/Murugan’23] for the case p = 2. /10



