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Ahlfors regular conformal dimension
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� (K, d): metric space, A ⊂ X, p > 0.

Hp
d(A) = lim

ε→0
inf
{∑

i |Ui|
p
d

∣∣∣ A ⊂ ⋃iUi, |Ui|d < ε
}

,

where |Ui|d = supx,y∈Ui
d(x, y).

NB. dimH(K, dε) = ε−1dimH(K, d).

� dARC(K, d) := inf
{
p
∣∣ ∃θ ∼

QS
d, Hp

θ(Bθ(x, r)) � rp
}

� d ∼
QS
θ

def.⇐⇒ ∃η : R+ → R+ homeo. s.t.

θ(x,y)
θ(x,z)

≤ η
(
d(x,y)
d(x,z)

)
∀x, y, z ∈ X w/ x 6= z.
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� To get Fp, find a candidate Êp via {Gn}n∈N:
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log 3

-dim. Hausdorff measure w/ m(K) = 1.

fn(w) := 1
m(Kw)

´
Kw
f dm, w ∈ Gn, f ∈ Lp(K,m).
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� To get Fp, find a candidate Êp via {Gn}n∈N:

Êp(f) := limn→∞ rn
∑

x∼y |fn(x)− fn(y)|p.

Fp := {f ∈ Lp(K,m) | Êp(f) <∞}.

Idea [Kusuoka/Zhou’92, PTRF]: Find {rn}n∈N so that

lim
n→∞

rnEGn

p � lim
n→∞

rnEGn

p � sup
n∈N

rnEGn

p



Correct scaling factor ρp
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� C(n)
p := inf

{
EGn
p (f)

∣∣∣ f = Gn1 0

}
, n ∈ N.

[Bourdon/Kleiner’13, GGD]: ∃C ≥ 1 s.t. ∀k, l ∈ N,

C−1 C(k)
p C(l)

p ≤ C(k+l)
p ≤ C C(k)

p C(l)
p .

 ρp := limn→∞
(
C(n)
p

)−1/n ∈ (0,∞) and

C−1ρ−np ≤ C(n)
p ≤ Cρ−np , ∀n ∈ N.

Rmk. [Carrasco’13, Kigami’20]: ρp > 1 ⇔ p > dARC

� Ẽnp (f) := ρnpEGn
p (fn), Êp(f) := supn∈N Ẽnp (f),
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Results of [Murugan/S.’23+]
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Hereafter, ∀p ∈ (1,∞) is fixed.

Thm. Êp � lim
n→∞
Ẽnp � lim

n→∞
Ẽnp on Lp(K,m).

 Fp w/ ‖ · ‖Lp + (Êp)1/p: ref. sep. Banach s.p.

Moreover, Fp ∩ C(K) ⊂
dense

C(K) & Fp.

Rmk. Fp ∩C(K) ⊂
dense

C(K) is new for p ≤ dARC!

NB. [Cao/Chen/Kumagai’24]: Fp ⊂ C(K) ⇔ p > dARC.

F Mod. of path-families to deal with p ≤ dARC.
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Results of [Murugan/S.’23+] (contd.)
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dw,p :=
log (8ρp)

log 3
(p-walk dimension)

Thm. dw,p > p ([S.24]) and Êp � lim
r↓0

Jp,r,

where

Jp,r(f) :=

ˆ
K

 
B(x,r)

|f(x)− f(y)|p

rdw,p
m(dy)m(dx)

Moreover, sup
r>0

Jp,r(f) . lim
r↓0

Jp,r(f).

NB. K 3 x 7→ dEuc(x, x0) 6∈ Fp!



Results of [Murugan/S.’23+] (contd.)
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Thm. ∃(Ep,Fp, µp〈 · 〉) on K:

• Ep � Êp & Ep(u ◦ T ) = Ep(u)∀(u, T ) ∈ Fp×D4.

• [Kajino/S.’24+] (Ep,Fp) satisfies (GenCont)p

• Fp ∩ C(K) = {u ∈ C(K) | u ◦ Fi ∈ Fp ∀i ∈ S},

& Ep(u) = ρnp
∑

w∈{1,...,8}n Ep(u ◦Fw).

• µp〈u〉(Kw) = ρnpEp(u ◦Fw).

• ∀(u,Ψ) ∈ (Fp ∩ C(K))× C1(R), we have

Ψ ◦ u ∈ Fp, dµp〈Ψ◦u〉 = |Ψ′(u)|p dµp〈u〉.
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p := dARC = inf
{
p
∣∣ ∃θ ∼

QS
d, Hp

θ(Bθ(x, r)) � rp
}

Thm. ASSUME inf in dARC is attained, i.e.,

∃θ: optimal metric w.r.t. dARC.

Then ∃u ∈ Fp s.t. Hp
θ � µ

p
〈u〉!

Message: Optimal meas. should be p-energy meas.!

Conj. u can be reduced to a p-harmonic fcn.

Issue: Nonlinearity of p-harmonic fcn.

cf. [Kajino/Murugan’23] for the case p = 2.
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