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Caveat

Throughout this talk we work in R2

– Many results, but not all, have higher dimensional
analogues.

All sets considered are assumed to be ‘reasonable’
i.e. Borel or analytic, non-empty and bounded.
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John Marstrand’s 1954 paper

Proceedings of the London Mathematical Society(3),4 (1954),
257-302
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John Marstrand’s 1954 paper

• Projection theorems

+ much more ...

• Intersection with lines – almost every line through almost every
point of an s-set E (s > 1) intersects E in a set of dimension s − 1.

• Radial projections, i.e. projection of sets from points

• Examples to show results are best possible

• The density limr→0Hs(E ∩ B(x , r))/(2r)s of an s-set E ⊂ R2

can only exist and equal 1 on a set of positive Hs -measure if
s = 0, 1 or 2

• Bounds on angular densities (i.e. densities restricted to a sector)

• Discussion of weak tangents to sets
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Marstrand’s projection theorems

Theorem (Marstrand 1954) Let E ⊂ R2 be Borel.
(i) For all θ ∈ [0, π) dimHprojθE ≤ min{dimHE , 1} with

equality for almost all θ ∈ [0, π),
(ii) If dimHE > 1, L(projθE ) > 0 for almost all θ ∈ [0, π).

[projθ denotes orthogonal projection onto the line Lθ, dimH is
Hausdorff dimension, L is Lebsegue measure on Lθ.]

Generalised to projections Rn → V ∈ G (n,m) by Mattila (1975).

That dimHprojθE ≤ min{dimHE , 1} for all θ follows since
projection is a Lipschitz map which cannot increase dimension.
Marstrand’s lower bound proof was geometric and intricate.
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Capacities and Hausdorff dimension of projections

Kaufman’s (1968) potential theoretic proof has become a standard
approach for such problems.

Marstrand’s lower bound may be derived from the capacity
characterisation of Hausdorff dimension. Let M(E ) be the set of
probability measures on E . With the capacity C s(E ) of E ⊂ Rn

given by
1

C s(E )
= inf

µ∈M(E)

∫ ∫
dµ(x)dµ(y)

|x − y |s
,

dimHE = sup
{
s : C s(E ) > 0

}
.

Let µθ be the projection of µ onto line in direction θ. If 0 < s < 1∫ π

0

[ ∫ ∞

−∞

∫ ∞

−∞

dµθ(t)dµθ(u)

|t − u|s

]
dθ =

∫ π

0

[ ∫
E

∫
E

dµ(x)dµ(y)

|x · θ − y · θ|s

]
dθ

≤ c

∫
E

∫
E

dµ(x)dµ(y)

|x − y |s
< ∞
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Length of projections when dimH E = 1

What can we say about L(projθE ) when dimH E = 1? In fact
almost anything can happen!

Theorem (Davies 1952) Given a Borel E ⊂ R2 of finite area, there
is a set of lines L such that E ⊂

⋃
L∈L and area

(⋃
L∈L \E

)
= 0.

Dualising we get:

Theorem Given a Borel set Eθ for each θ ∈ [0, π)
(+ measurability condition), there exists a Borel set E ⊂ R2 such
that L(Eθ△projθE ) = 0 for almost all directions θ.

Alternatively, there is a direct ‘iterated venetian blind’
construction.

Higher dimensional analogues are also valid.
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Exceptional directions

Marstrand’s theorem tells nothing about which particular directions
may have projections with dimension or measure smaller than
typical, i.e. when dimHprojθE < min{dimHE , 1}, or dimHE > 1
and L(projθE ) = 0.

Dimension log 4/ log(5/2) = 1.51, 1-dimensional Sierpinski triangle,
some projections of dimension < 1. properties of projθE depend on

(p,q) where slope θ = p/q.
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Exceptional directions

The set of exceptional directions can’t be ‘too big’:

Theorem (Kaufman, 1968) If E ⊆ R2 and dimHE ≤ 1,

dimH{θ : dimHprojθE < dimHE} ≤ dimH E .

– This follows from a minor modification of the Kaufman’s
potential theoretic argument.

Theorem (F, 1982) If E ⊆ R2 and dimHE > 1,

dimH{θ : L(projθE ) = 0} ≤ 2− dimHE .

– Fourier transform proof.
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Marstrand, Mattila, Falconer, Davies, Kaufman
(Photo: Tuomas Sahlsten, Bristol, 2014)
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Exceptional directions

Improvements by Oberlin, Bourgain, He, Orponen, Guth,
Shmerkin, Wang ...

Oberlin’s Conjecture (2012)
If E ⊆ R2 and
0 ≤ u ≤ min{dimHE , 1},

then
dimH{θ : dimHprojθE < u}

≤ max{2u − dimHE , 0}.

Proved by Ren & Wang (2023+) as a corollary of their proof of
the Furstenberg set conjecture.
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Other fractal dimensions

Are there ‘Marstrand-type’ theorems for such definitions of
dimension?
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Box-counting dimension

The box-counting dimension of a non-empty and compact E ⊂ R2

is

dimBE = lim
r→0

logNr (E )

− log r

where Nr (E ) is the least number of sets of diameter r covering E .

[Taking lower/upper limits gives the lower/upper box dimensions.]
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Box-counting dimensions of projections

Is there a Marstrand-type theorem for box-dimensions?

For E ⊂ R2

dimBE

1 + 1
2dimBE

≤ dimBprojθE ≤ min{dimBE , 1} for almost all θ,

and examples show that these bounds are best possible.

Even so, we do get a ‘Marstrand-type’ theorem: dimBprojθE and
dimBprojθE must be constant for almost all θ, (F & Howroyd,
1996) using a messy argument to get an indirectly defined value.

Using capacities things become much simpler.
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Box-counting dimensions of projections

Define kernels ϕs
r (x) for

s > 0, 0 < r < 1, x ∈ R2 by

ϕs
r (x) = min

{
1,
(

r
|x |
)s}

.

The capacity C s
r (E ) of a compact E ⊂ R2 w.r.t. ϕs

r is

1

C s
r (E )

= inf
µ∈M(E)

∫ ∫
ϕs
r (x − y)dµ(x)dµ(y),

where M(E ) are the probability measures on E . Then for E ⊂ R2

c1C
s
r (E ) ≤ Nr (E ) ≤

{
c2 log(1/r) C

s
r (E ) if s = 2

c2 C s
r (E ) if s > 2

(1),

(c1, c2 depend on s, diamE ). In particular for E ⊂ R2

lim
r→0

logC 2
r (E )

− log r
= lim

r→0

logNr (E )

− log r
= dimBE =: dim2

BE

(can replace dimB and lim by dimB and lim, or dimB and lim).
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Box-counting dimensions of projections

Theorem (F, 2019) Let E ⊂ R2 be non-empty compact.
For all θ ∈ [0, π)

dimB projθE ≤ lim
r→0

logC 1
r (E )

− log r
=: dim1

BE .

with equality for almost all θ ∈ [0, π).

[We can replace dimB and lim by either dimB and lim, or by dimB

and lim.]

We call

dims
BE := lim

r→0

logC s
r (E )

− log r
(E ⊂ R2 or Rn),

using capacity with respect to the kernel ϕs
r (x) = min

{
1,
(

r
|x |
)s}

,
the s-box-dimension profile of E , which should be thought of as
the ’box-dimension of E when regarded from an s-dimensional
viewpoint’.
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Packing dimensions of projections

For E ⊂ R2 and s > 0 we define

dims
PE = inf

{
sup
i

dim
s
BEi : E ⊂

∞⋃
i=1

Ei with each Ei compact
}
.

Then dimPE = dim2
PE .

Theorem (F, 2019) Let E ⊂ R2 be non-empty compact.
For all θ ∈ [0, π)

dimP projθE ≤ dim1
PE .

with equality for almost all θ ∈ [0, π),

One can get bounds for the Hausdorff dimension of the set of
exceptional directions of projections for box and packing
dimensions, for example:

If E ⊆ R2 and 0 ≤ s < 1,

dimH{θ : dimP projθE < dims
PE} ≤ s.
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Intermediate dimensions

(Fraser, Kempton, F, 2020)
Let E ⊆ R2 be non-empty and bounded. For 0 ≤ α ≤ 1 define the
upper α-intermediate dimension of E by

dimαE = inf
{
s ≥ 0 : for all ϵ > 0 and all sufficiently small δ > 0

there is a cover {Ui} of E s.t. δ1/α ≤ |Ui | ≤ δ and
∑

|Ui |s ≤ ϵ
}
.

The lower α-intermediate dimension of E is defined in the same way
except the cover is only required for arbitrarily small δ.

Hausdorff dimension α-Intermediate dimension Box-counting dimension
Then dimαE interpolates between Hausdorff and box dimensions. Thus
dimαE is increasing for α ∈ [0, 1] and

dimHE = dim0E ≤ dimαE ≤ dim1E = dimBE .
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Intermediate dimensions of projections

For projections, α-intermediate dimensions behave like box-dimensions.
Here we use kernels of the form

ϕs,m
r ,α (x) =


1 0 ≤ |x | < r(

r
|x|

)s
r ≤ |x | < rα

rα(m−s)+s

|x|m rα ≤ |x |

For E ⊂ R2 and s ≥ 0 we define dims
αE , dim

s

αE in terms of capacities
w.r.t. this kernel. Then

dimαE = dim2
αE and dimαE = dim

2

αE .

Theorem (Burrell, Fraser, F, 2021) Let E ⊂ R2. Then for almost all θ,

dimαprojθE = dim1
αF and dimαprojθE = dim

1

αF

for all α ∈ [0, 1].
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Assouad dimension

The Assouad dimension of E ⊂ R2 is given by

dimA E = inf
{
α : there exists c > 0 s.t. for all 0 < r < R

and x ∈ E , Nr (B(x ,R) ∩ F ) ≤ c
(
R
r

)α}
.
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Assouad dimension

There’s no ‘almost sure’ Marstrand-type result for Assouad
dimension!

Example (Fraser & Orponen 2017)
Let s be slightly less than 1. The
s-dimensional right Sierpiński
triangle has dimAprojθE = s < 1 if
θ ∈ (−ϵ, ϵ) and dimAprojθE = 1 if
θ ∈ (π/4− ϵ, π/4 + ϵ).

Theorem (Fraser & Orponen 2017, Orponen 2021) Let E ⊂ R2.
Then for almost all θ,

dimAprojθE ≥ min{1, dimAE}.

Moreover
dimH

{
θ : dimAprojθE < min{1, dimAE}

}
= 0
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Assouad specturm

The Assouad spectrum dimϑ
A E , (0 < ϑ < 1) of E ⊂ R2 is given by

dimϑ
A E = inf

{
α : there exists c > 0 s.t. for all 0 < r < 1

and x ∈ E , Nr (B(x , r
ϑ) ∩ F ) ≤ c

( rϑ
r

)α}
.

Question Is there a Marstrand-type result for dimϑ
A E for each

0 < ϑ < 1 and also for the quasi-Assouad dimension
dimqA E = limϑ→1 dim

ϑ
A E?
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Fourier dimension

The Fourier dimension dimF E of E ⊂ R2 is given by
dimF E = sup

{
s ≤ n : there exists c > 0 and µ on E such that

|µ̂(z)| ≤ c |z |−s/2 for all z ∈ R2
}
.

Then dimF E ≤ dimHE by the potential characterisation of dimHE .
Also, µ̂θ(u) = µ̂(uθ) for µ on E and u ∈ Lθ, so

1 ≥ dimF projθE ≥ min{1, dimF E}.

Hence for each θ,

min{1, dimF E} ≤ dimF projθE ≤ dimHprojθE ≤ min{1, dimHE},
In particular, if dimF E = dimHE , that is if E is a Salem set, then

dimF projθE = dimHprojθE = min{1, dimHE} for all θ.

Question Is there a Marstrand-type result for dimF E?
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Mixed estimates

There are various inequalities that bound the a.s. dimensions of
dim projθE in terms of other dimensions E . For example:

Proposition (F, Fraser & Shmerkin, 2021) Let E ⊂ R2. Then for
almost all θ,

dimB projθE ≥ dimBE −max{0, dimqA E − 1}

In particular, if dimqA ≤ max{1, dimBE} then

dimB projθE = min{1, dimBE}.

Similarly, good bounds for the dimension of the set of exceptional
directions may be obtained by invoking other types of dimension.
For example, Fraser & de Orellana (2024) estimate

dimH{θ : dimHprojθE < u}

in terms of the Fourier spectrum dimα
F E .
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Specific classes of set

General problem: Find sets or classes of sets where there are no
exceptional directions for projections or where the exceptional
directions can be identified.

E.g. Salem sets, as above have no exceptional directions.

Finding projection properties of E ⊂ R2 is often tied up with
finding the dimension of E itself.

Kenneth Falconer 70 Years of Fractal Projections



Iterated function systems

A family f1, . . . , fm of contractions on D ⊆ RN , i.e.

|fi (x)− fi (y)| ≤ ci |x − y | x , y ∈ D, ci < 1

is called an iterated function system (IFS).

Given an IFS there exists a unique, non-empty compact set E satisfying

E =
m⋃
i=1

fi (E ),

called the attractor of the IFS.

If the fi are similarities E is called a self-similar set.

If the fi are conformal maps E is called a self-conformal set.

If the fi = Ti + ti are affine contractions on RN , where the Ti are
non-singular contracting linear mappings on Rn and ti ∈ Rn are
translation vectors, E is a self-affine set.

We will generally assume that the union (∗) is disjoint or perhaps satisfies
the open set condition.
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Specific Sets - IFS attractors

self-similar self-affine

self-conformal nonlinear, statistically
nonconformal self-similar
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Self-similar sets

Let f1, . . . , fm : R2 → R2 be an IFS of similarities, so the
self-similar set E ⊂ R2 satisfies

E =
m⋃
i=1

fi (E ). (∗)

Write the similarities as
fi (x) = riOi (x) + ti

where 0 < ri < 1 is the scale factor, Oi is a rotation and ti is a
translation.

The family {f1, . . . , fm} has dense rotations if at least one of the
Oi is a rotation by an irrational multiple of π, equivalently if
group{O1, . . . ,Om} is dense in SO(2,R).
Otherwise {f1, . . . , fm} has finite rotations.
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Self-similar sets

finite rotations dense rotations
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Self-similar sets with finite rotations

Theorem (Farkas 2014) Let E ⊂ R2 be a self-similar set defined by
a family {f1, . . . , fm} of similarities with finite rotations satisfying
the open set condition. Then there is at least one value of θ such
that dimHprojθE < dimHE .

Theorem (Hochman 2014) Let E ⊂ R2 be a self-similar set defined
by a family {f1, . . . , fm} of similarities with finite rotations
satisfying the strong separation condition. Then

dimHprojθE = min{dimHE , 1} for all θ /∈ B where dimHB = 0.
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Self-similar sets with dense rotations

Theorem (Peres & Shmerkin 2009, Hochman & Shmerkin 2012)
Let E ⊂ R2 be a self-similar set defined by a family {f1, . . . , fm} of
similarities with dense rotations. Then

dimHprojθE = min{dimHE , 1} for all θ.

The proof uses the natural invariant measure on E along with
ideas from ergodic scenery flows, CP chains, r -scale entropy,
Marstrand’s theorem, ...

An alternative proof, using compact group extensions was given by
Jin & F (2014).

Corollary With E ⊂ R2 as above, for all non-singular C 1 functions
h : E → R, where N is a neighbourhood of E ,

dimHh(E ) = min{dimHE , 1}.
This follows using the result for projections locally, noting that at
very fine scales h ‘looks like’ a projection of a small copy of E in
some direction.
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Statistically self-similar sets - percolation

A self-similar set E has a natural hierarchical construction. This
enables us to base a percolation process on a self-similar set. At
each stage of the iterated construction we retain each component
independently with some probability p.
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Statistically self-similar sets - percolation

If the underlying self-similar set E is based on m similarities and
p > 1/m then the statistically self-similar set Ep ̸= ∅ with positive
probability, conditional on which dimHEp = s, where
p
∑m

i=1 r
s
i = 1.
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Projection of statistically self-similar sets

Theorem (F & Jin 2015) Let E be a self-similar set with dense
rotations and let Ep be percolation on E where p > 1/m. Then,
conditional on Ep ̸= ∅, almost surely

dimHprojθEp = min{dimHEp, 1} for all θ.

This is a random extension of the deterministic result adding
another level of ergodicity to accommodate the randomness of the
natural measure supported by the random set Ep.
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Self-conformal sets

Theorem (Jin & Bruce 2019) Let {fi}mi=1 be an IFS of C 1+ϵ

conformal mappings fi : U → U on some convex open set U with
OSC holding. Thus f ′i (x) = ri (x)Oi (x) where Oi (x) are rotations
and 0 < r− ≤ ri (x) ≤ r+ < 1. The IFS attractor E is called
self-conformal.
Then

dimHprojθE = min{dimHE , 1} for all θ.

provided that a certain skew product σϕ : {1, 2, . . . ,m} × SO(2) ◀⊃
has a dense orbit. (Analogous condition to dense rotations.)

In particular, this holds for totally
disconnected Julia sets of
z 7→ z2 + c if |c | ≥ 2.5 and
arg(1 +

√
1− 4c)/π is irrational.
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Self-affine sets

Recall that a self-affine set E ⊂ R2 is defined by an iterated
function system of affine mappings

fi (x) = Li (x) + ti where Li is linear and ti is a translation.

Self-affine sets with the same Li and different ti
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Self-affine carpets

The attractor E of an IFS of affine mappings fi (x) = Li (x) + ti is a
self-affine carpet if the Li are diagonal matrices. Thus the IFS
affine functions are defined by specifying the rectangular images of
the unit square.

Bedford-McMullen carpet

Lalley-Gatzouras carpet
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Projections of self-affine carpets

Bedford-McMullen Gatzouras-Lalley

Theorem (Ferguson, Jordan & Shmerkin, 2010) Let E be a
Bedford-McMullen (or Gatzouras-Lalley) carpet with
logm/ log n /∈ Q. Then

dimHprojθE = min{dimHE , 1}

for all θ apart from possibly when θ ∈ {0, π/2}.

Theorem (Burrell, F & Fraser, 2021) Let E be a Bedford-McMullen
carpet with dimHE < 1 ≤ dimBE . Then dimBprojθE < 1 for
almost all θ (regardless of how large dimBE is).
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Projections of general self-affine sets

Let fi (x) = Li (x) + ti be an IFS where Li is linear and ti is a
translation, yielding a self-affine set E .

The dimension theory of self-affine sets has recently developed
rapidly using techniques from ergodic theory, with projection
properties central to this development - Bárány, F, Käenmäki,
Kempton, Morris, Hochman, Peres, Rapaport, Shmerkin, ...

Theorem(Kempton, F, 2017, Bárány, Hochman, Rapaport 2021) If
the self-affine IFS {fi}mi=1 on R2 satisfies the strong open set
condition and is totally irreducible (i.e. the Li do not preserve any
finite union of lines) then

dimHprojθE = min{dimHE , 1} for all θ ∈ [0, π).

Strong open set condition can be replaced by exponential
separation (Hochman & Rapaport 2022)

3-dimensional analogues ? (Morris, Sert, Rapaport ...)
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Other work on dimensions of projections includes

• When do projections of sets have positive Lebesgue measure or
non-empty interior? (Numerous authors)

• Projections of measures - almost all results mentioned have measure
analogues (Numerous authors)

• Equal dimensions of projections in all / nearly all directions for
’structured’ random sets (Jin, F, Shmerkin, Suomala, Käenmäki, Simon,
Rams, ...)

• Generalised projections (Peres, Schlag, ...), radial / angular projections

• Projections onto restricted families of subspaces (Fässler, Orponen,
Järvenpää2, Keleti, Leikas, Käenmäki, Venieri, Gan, Guo, Wang, ...)

• Projections in non-Euclidean spaces: Heisenberg groups, normed
spaces, ... (Mattila, Balogh, Tyson, Iseli, ...)

• Projections in infinite dimensional spaces (Hunt, Kaloshin, ...)

• Multifractal projection results (Hunt, Kaloshin, F, O’Neil, Olsen,
Barral, Bhouri,...)
• ......
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Thank you!
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Digital sundials

Digital sundial theorem
(F, 1986)

Given a subset EV of
each 2-dimensional
subspace V of R3

(+ measurability
condition), there exists
a Borel set E ⊂ R3

such that for almost all
subspaces V
Area(EV△projVE ) = 0.
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