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Throughout this talk we work in R?
— Many results, but not all, have higher dimensional
analogues.

All sets considered are assumed to be ‘reasonable’
i.e. Borel or analytic, non-empty and bounded.
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John Marstrand’'s 1954 paper

SOME FUNDAMENTAL GEOMETRICAL
PROPERTIES OF PLANE SETS OF
FRACTIONAL DIMENSIONS
By J. M. MARSTRAND
[Received 27 March 1953.—Read 16 April 1953)

THEOREM II. Any s-set whose dimension does not exceed unity prqem into
a set of dimension s in almost all directions.

Proof. It will be understood throughout the proof tha.b 8 is a fixed
positive number such that s < 1. Suppose then that E is any s-set, and
suppose that ¢ is any positive number such that ¢t < s. It follows from
Lemma 9 that at almost all points (z,y) of E, for all sufficiently small
positive numbers d and any positive number 8 such that § < d, )

2m
! S~ACER df < K,G“‘(1+10g%) =o(8¥) asd—>0.

Proceedings of the London Mathematical Society(3),4 (1954),
257-302
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John Marstrand’'s 1954 paper

e Projection theorems
+ much more ...

e Intersection with lines — almost every line through almost every
point of an s-set E (s > 1) intersects E in a set of dimension s — 1.

e Radial projections, i.e. projection of sets from points
e Examples to show results are best possible

e The density lim,_,o H*(E N B(x,r))/(2r)° of an s-set E C R?
can only exist and equal 1 on a set of positive H°-measure if
s=0,1o0r2

e Bounds on angular densities (i.e. densities restricted to a sector)

e Discussion of weak tangents to sets
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Marstrand's projection theorems

Theorem (Marstrand 1954) Let £ C R? be Borel.

(i) For all # € [0, 7) dimpprojgE < min{dimyE, 1} with
equality for almost all 6 € [0, 7),

(i) If dimyE > 1, L(projyE) > 0 for almost all 6 € [0, 7).
[projy denotes orthogonal projection onto the line Ly, dimy is
Hausdorff dimension, L is Lebsegue measure on Lg.]
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Marstrand's projection theorems

Theorem (Marstrand 1954) Let £ C R? be Borel.

(i) For all # € [0, 7) dimpprojgE < min{dimyE, 1} with
equality for almost all 6 € [0, 7),

(i) If dimyE > 1, L(projyE) > 0 for almost all 6 € [0, 7).
[projy denotes orthogonal projection onto the line Ly, dimy is
Hausdorff dimension, L is Lebsegue measure on Lg.]

Generalised to projections R” — V € G(n, m) by Mattila (1975).
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Marstrand's projection theorems

Theorem (Marstrand 1954) Let £ C R? be Borel.

(i) For all # € [0, 7) dimpprojgE < min{dimyE, 1} with
equality for almost all 6 € [0, 7),

(i) If dimyE > 1, L(projgE) > 0 for almost all 6 € [0, 7).
[projy denotes orthogonal projection onto the line Ly, dimy is
Hausdorff dimension, L is Lebsegue measure on Lg.]

Generalised to projections R” — V € G(n, m) by Mattila (1975).

That dimyprojgE < min{dimyE, 1} for all 6 follows since
projection is a Lipschitz map which cannot increase dimension.
Marstrand’s lower bound proof was geometric and intricate.
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Capacities and Hausdorff dimension of projections

Kaufman's (1968) potential theoretic proof has become a standard
approach for such problems.

Marstrand’s lower bound may be derived from the capacity
characterisation of Hausdorff dimension. Let M(E) be the set of
probability measures on E. With the capacity C°(E) of E C R”

given by
/ / dpu(x)duly)
CS(E) wetice) |x —yls ’

dimyE = sup{s: C°(E) > 0}.
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Capacities and Hausdorff dimension of projections

Kaufman's (1968) potential theoretic proof has become a standard
approach for such problems.

Marstrand’s lower bound may be derived from the capacity
characterisation of Hausdorff dimension. Let M(E) be the set of
probability measures on E. With the capacity C°(E) of E C R”

given by
I // du(x)du(y)
Cs(E) MGM(E |X—y|5 ’

dimyE = sup{s: C°(E) > 0}.
Let g be the projection of p onto line in direction 6. If 0 < s < 1

L e = [ /Ei“é* il
A <
X—=Yyl®

IN
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Length of projections when dimy E =1

What can we say about L(projyE) when dimy E =17 In fact
almost anything can happen!

Theorem (Davies 1952) Given a Borel E C R? of finite area, there
is a set of lines L such that E C |J, . and area(J, o \E) = 0.

Dualising we get:

Theorem Given a Borel set Ey for each 6 € [0, 7)
(+ measurability condition), there exists a Borel set £ C R? such
that L(EgAprojyE) = 0 for almost all directions 6.
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Length of projections when dimy E =1

What can we say about L(projyE) when dimy E =17 In fact
almost anything can happen!

Theorem (Davies 1952) Given a Borel E C R? of finite area, there
is a set of lines L such that E C |J, . and area(J, o \E) = 0.
Dualising we get:

Theorem Given a Borel set Ey for each 6 € [0, 7)

(+ measurability condition), there exists a Borel set £ C R? such
that L(EgAprojyE) = 0 for almost all directions 6.

Alternatively, there is a direct ‘iterated venetian blind’
construction.

i i i s g

A}-chons
large

Higher dimensional analogues are also valid.
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Exceptional directions

Marstrand’s theorem tells nothing about which particular directions
may have projections with dimension or measure smaller than
typical, i.e. when dimyprojgE < min{dimyE, 1}, or dimyE > 1
and L(projyE) = 0.

Dimension log 4/ log(5/2) = 1.51, 1-dimensional Sierpinski triangle,
some projections of dimension < 1. properties of projyE depend on
(p,q) where slope 6 = p/q.
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Exceptional directions

The set of exceptional directions can't be ‘too big':

Theorem (Kaufman, 1968) If E C R? and dimyE <1,
dimy{0 : dimpprojyE < dimyE} < dimy E.

— This follows from a minor modification of the Kaufman's
potential theoretic argument.
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Exceptional directions

The set of exceptional directions can't be ‘too big':

Theorem (Kaufman, 1968) If E C R? and dimyE <1,
dimy{0 : dimpprojyE < dimyE} < dimy E.

— This follows from a minor modification of the Kaufman's
potential theoretic argument.

Theorem (F, 1982) If E C R? and dimyE > 1,
dimy{6 : L(projgE) =0} <2 —dimyxE.

— Fourier transform proof.
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Marstrand, Mattila, Falconer, Davies, Kaufman
(Photo: Tuomas Sahlsten, Bristol, 2014)
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Exceptional directions

Improvements by Oberlin, Bourgain, He, Orponen, Guth,

Shmerkin, Wang ...

Oberlin’s Conjecture (2012)
If EC R? and
0 < u < min{dimyE, 1},
then
dimp{6 : dimyprojgE < u}
< max{2u — dimyE, 0}.

Upper bounds for
dimu{0@:dimuprojeE<u} in cases
dimuE<1 and dimuF>1

—dimuE

—2-dimuF

1 T
YdimuyE  %dimpFdimyE 1

u
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Exceptional directions

Improvements by Oberlin, Bourgain, He, Orponen, Guth,

Shmerkin, Wang ...

Oberlin’s Conjecture (2012)
If EC R? and
0 < u < min{dimyE, 1},
then
dimp{6 : dimyprojgE < u}
< max{2u — dimyE, 0}.

Proved by Ren & Wang (2023+) as a corollary of their proof of

the Furstenberg set conjecture.

Upper bounds for
dimu{0@:dimuprojeE<u} in cases
dimuE<1 and dimuF>1

—dimuE

—2-dimuF

1 T
YdimuyE  %dimpFdimyE 1

u
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Other fractal dimensions
S
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Are there ‘Marstrand-type’' theorems for such definitions of
dimension?
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Box-counting dimension

The box-counting dimension of a non-empty and compact E C R?
is
log N,(E
dimgE — fim 28N (E)
r—0 —logr

where N,(E) is the least number of sets of diameter r covering E.

[Taking lower/upper limits gives the lower/upper box dimensions.]
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Box-counting dimensions of projections

Is there a Marstrand-type theorem for box-dimensions?
For E C R?

dimBE

—————— < dimgprojyE < min{dimgE,1} for almost all 4,
1+%dimBE BProjpL = {dimg }

and examples show that these bounds are best possible.
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Box-counting dimensions of projections

Is there a Marstrand-type theorem for box-dimensions?
For E C R?

dimBE

—————— < dimgprojyE < min{dimgE,1} for almost all 4,
1+%dimBE BProjpL = {dimg }

and examples show that these bounds are best possible.

Even so, we do get a ‘Marstrand-type’ theorem: dimgprojgE and
dimgprojyE must be constant for almost all 8, (F & Howroyd,
1996) using a messy argument to get an indirectly defined value.

Using capacities things become much simpler.
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Box-counting dimensions of projections

Define kernels ¢;7(x) for
s>O, 0<r<1, xeR?by

*(x) = min {1 (‘7”)5}

The capacity C?(E) of a compact E C R2 W.rt, @S is

1 S
= L / / 65(x — y)du(x)du(y).

where M(E) are the probability measures on E. Then for E C R?

clog(l/r) CE(E) ifs=2 1
c C(E) if s >2 (1),

C1C,S(E) S Nr(E) S {

(c1, c2 depend on s,diamE). In particular for E C R?

2
m log C7(E) — Iim log N,(E)

— dimgE =: dim3E
r—0 —logr r—0 —logr

(can replace dimg and lim by dimg and lim, or dimg and lim).
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Box-counting dimensions of projections

Theorem (F, 2019) Let E C R? be non-empty compact.
For all 6 € [0, )
, ) . log C}HE)
< — -’ =
dimg projyE < l% “logr
with equality for almost all 6 € [0, 7).

- dimE.

[Wein replace dimg and lim by either dimg and lim, or by dimg
and lim.]
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Box-counting dimensions of projections

Theorem (F, 2019) Let E C R? be non-empty compact.
For all 6 € [0, )
, ) . log C}HE)
< — -’ =
dimg projyE < rlﬂ “logr
with equality for almost all 6 € [0, 7).

- dimE.

[Wegn replace dimg and lim by either dimg and lim, or by dimg
and lim.]

We call

S
dims E = lim 28 C-(E)

(E C R? or R"),
r—0 —logr

using capacity with respect to the kernel ¢$(x) = min {1, (&)5}
the s-box-dimension profile of E, which should be thought 01l as
the 'box-dimension of E when regarded from an s-dimensional
viewpoint'.
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Packing dimensions of projections

For E C R? and s > 0 we define
o0
dimpE = inf { squi_msBE,- -EC U E; with each E; compact}.
! i=1
Then dimpE = dim3E.

Theorem (F, 2019) Let £ C R? be non-empty compact.
For all 6 € [0, )

dimp projyE < dimbE.
with equality for almost all 6 € [0, 7),
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Packing dimensions of projections

For E C R? and s > 0 we define

o0
dimpE = inf { squi_msBE,- -EC U E; with each E; compact}.

! i=1
Then dimpE = dim3E.
Theorem (F, 2019) Let £ C R? be non-empty compact.
For all 6 € [0, )

dimp projpE < dim,lgE.

with equality for almost all 6 € [0, 7),
One can get bounds for the Hausdorff dimension of the set of

exceptional directions of projections for box and packing
dimensions, for example:

If ECR?and0<s<1,
dimp{6 : dimp projyE < dimpE} <'s.
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Intermediate dimensions

(Fraser, Kempton, F, 2020)
Let E C R? be non-empty and bounded. For 0 < o < 1 define the
upper a-intermediate dimension of E by

dimyE = inf {s > 0: for all e > 0 and all sufficiently small § > 0
there is a cover {U;} of E s.t. 6/ < |Uj| <6 and Y |Uj|* < €}.
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Intermediate dimensions

(Fraser, Kempton, F, 2020)
Let E C R? be non-empty and bounded. For 0 < o < 1 define the
upper a-intermediate dimension of E by

dimyE = inf {s > 0: for all e > 0 and all sufficiently small § > 0
there is a cover {U;} of E s.t. 6/ < |Uj| <6 and Y |Uj|* < €}.

The lower a-intermediate dimension of E is defined in the same way
except the cover is only required for arbitrarily small 6.
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Intermediate dimensions

(Fraser, Kempton, F, 2020)
Let E C R? be non-empty and bounded. For 0 < o < 1 define the
upper a-intermediate dimension of E by

dimyE = inf {s > 0: for all e > 0 and all sufficiently small § > 0
there is a cover {U;} of E s.t. 6/ < |Uj| <6 and Y |Uj|* < €}.

The lower a-intermediate dimension of E is defined in the same way
except the cover is only required for arbitrarily small 6.

Hausdor Fdlmen5|on a—lntermedlate dimension Box—countmg dlmen5|on
Then dimyE interpolates between Hausdorff and box dimensions. Thus
dimyE is increasing for o € [0,1] and

dimyE = dimgE < dim,E < dim;E = dimgE.

Kenneth Falconer 70 Years of Fractal Projections



Intermediate dimensions of projections

For projections, a-intermediate dimensions behave like box-dimensions.
Here we use kernels of the form

ol

1 0< x| <r
=1 () rsk<r o
S * < x|
0_0 r eI

For E C R? and s > 0 we define dim® E, dim,, E in terms of capacities
w.r.t. this kernel. Then

dim,E = dim’E and dim.E = dim.E.
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Intermediate dimensions of projections

For projections, a-intermediate dimensions behave like box-dimensions.
Here we use kernels of the form

g o
1 0<|x|<r
) =) rs k< s
o sl
0_0 r eI

For E C R? and s > 0 we define dim® E, dim,, E in terms of capacities
w.r.t. this kernel. Then

dim,E = dim’E and dim.E = dim.E.

Theorem (Burrell, Fraser, F, 2021) Let £ C R?. Then for almost all 6,
dim_projyE = dim: F and  dim,proj,E = m,le
for all o € [0, 1].
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Assouad dimension

The Assouad dimension of E C R? is given by
dima E = inf {a . there exists c > 0s.t. forall0<r <R
and x € E, N,(B(x,R)NF) < c(é)a}.

o
o
3 a%
- 3 st F e w
Q“. & LR s Q; ko
PeRx a8 o TRy
Mol i H > Pt
8% B b
% 2 W frus
o 930,70 TH 3%
3 b 5
a3
‘-:zﬂo
b p——
#v B, wEs e
*a A aw o R
Poe - < B 5 - B
a axd aR
5 Fog o <)
ey 5 2,
By AR
3% &7 ey
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Assouad dimension

There's no ‘almost sure’ Marstrand-type result for Assouad
dimension!
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Assouad dimension

There's no ‘almost sure’ Marstrand-type result for Assouad
dimension!

Example (Fraser & Orponen 2017)
Let s be slightly less than 1. The dimaproj £ = dimsE
s-dimensional right Sierpiriski e

triangle has dimaprojyE = s < 1 if -
0 € (—¢,€) and dimaprojoE =1 if —

dimaproj E=1

0e(r/4—e m/4+e). —
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Assouad dimension

There's no ‘almost sure’ Marstrand-type result for Assouad

dimension!

Example (Fraser & Orponen 2017)
Let s be slightly less than 1. The dimaproj £ = dimsE
s-dimensional right Sierpiriski e
triangle has dimaprojyE = s < 1 if <

0 € (—¢,€) and dimaprojoE =1 if —

dimpproj E=1 %

0ec(n/d—em/4+e¢). —

Theorem (Fraser & Orponen 2017, Orponen 2021) Let £ C R?.
Then for almost all 6,

dimaprojgE > min{1,dimaE}.

Moreover
dimy {6 : dimaprojgE < min{1,dimaE}} =0
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Assouad specturm

The Assouad spectrum dim% E, (0 < 9 < 1) of E C R? is given by

dim% E = inf {a : there exists ¢ > 0 s.t. forall 0 <r <1

and x € E, N,(B(x,r’) N F) < c(i)a}

Question Is there a Marstrand-type result for dim’Z\ E for each
0 < ¥ < 1 and also for the quasi-Assouad dimension
dimga E = limg_,; dim} E?
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Fourier dimension

The Fourier dimension dimg E of E C R? is given by
dimp E = sup {s < n: there exists ¢ > 0 and y on E such that
17i(2)] < c|z|=5/2 for all z € R2}.

Then dimg E < dimyE by the potential characterisation of dimyE.
Also, f1g(u) = f1(uf) for won E and u € Ly, so

1 > dimg projyE > min{1,dimg E}.
Hence for each 6,
min{1,dimg E} < dimg projgE < dimyprojgE < min{1,dimyE},

In particular, if dimg E = dimyE, that is if E is a Salem set, then
dimg projgE = dimyprojgE = min{1l,dimyE} for all 6.

Question Is there a Marstrand-type result for dimg E?
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Mixed estimates

There are various inequalities that bound the a.s. dimensions of
dim projyE in terms of other dimensions E. For example:

Proposition (F, Fraser & Shmerkin, 2021) Let £ C R2. Then for
almost all 6,

dimg projyE > dimgE — max{0, dimga E — 1}
In particular, if dimga < max{1,dimgE} then

dimg projyE = min{1,dimgE}.
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Mixed estimates

There are various inequalities that bound the a.s. dimensions of
dim projyE in terms of other dimensions E. For example:

Proposition (F, Fraser & Shmerkin, 2021) Let £ C R2. Then for
almost all 6,

dimg projyE > dimgE — max{0, dimga E — 1}
In particular, if dimga < max{1,dimgE} then

dimg projyE = min{1,dimgE}.

Similarly, good bounds for the dimension of the set of exceptional
directions may be obtained by invoking other types of dimension.
For example, Fraser & de Orellana (2024) estimate

dimy{0 : dimyprojyE < u}

in terms of the Fourier spectrum dimg E.
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Specific classes of set

General problem: Find sets or classes of sets where there are no
exceptional directions for projections or where the exceptional
directions can be identified.

E.g. Salem sets, as above have no exceptional directions.

Finding projection properties of E C R? is often tied up with
finding the dimension of E itself.
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Iterated function systems

A family fi, ..., fy of contractions on D C RV, ie.
Ifi(x) = fi(y)| <cilx -yl x,ye€D, <1

is called an iterated function system (IFS).

Given an IFS there exists a unique, non-empty compact set E satisfying
m
E=|Jf(E),
i=1

called the attractor of the IFS.
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Iterated function systems

A family fi, ..., fy of contractions on D C RV, ie.
Ifi(x) = fi(y)| <cilx -yl x,ye€D, <1

is called an iterated function system (IFS).

Given an IFS there exists a unique, non-empty compact set E satisfying
m
E=|Jf(E),
i=1
called the attractor of the IFS.
If the f; are similarities E is called a self-similar set.

If the f; are conformal maps E is called a self-conformal set.

If the f; = T; + t; are affine contractions on RN, where the T; are
non-singular contracting linear mappings on R” and t; € R" are
translation vectors, E is a self-affine set.

We will generally assume that the union (%) is disjoint or perhaps satisfies

the open set condition.
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Specific Sets - IFS attractors
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Self-similar sets

Let fi,...,fn: R?2 = R? be an IFS of similarities, so the
self-similar set E C R? satisfies
E =[] A(E). (%)
i=1

Write the similarities as

f;(X) = r,'O;(X) + t;
where 0 < r; < 1 is the scale factor, O; is a rotation and t; is a
translation.

The family {fi,..., fm} has dense rotations if at least one of the
O; is a rotation by an irrational multiple of 7, equivalently if
group{O1,...,On} is dense in SO(2,R).

Otherwise {fi,..., fm} has finite rotations.
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Self-similar sets
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Self-similar sets with finite rotations

Theorem (Farkas 2014) Let £ C R? be a self-similar set defined by
a family {fi, ..., fn} of similarities with finite rotations satisfying
the open set condition. Then there is at least one value of # such
that dimyprojgE < dimyE.
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Self-similar sets with finite rotations

Theorem (Farkas 2014) Let £ C R? be a self-similar set defined by
a family {fi, ..., fn} of similarities with finite rotations satisfying
the open set condition. Then there is at least one value of # such
that dimyprojgE < dimyE.

Theorem (Hochman 2014) Let £ C R? be a self-similar set defined
by a family {f1,..., i} of similarities with finite rotations
satisfying the strong separation condition. Then

dimpprojyE = min{dimyE, 1} for all & ¢ B where dimyB = 0.
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Self-similar sets with dense rotations

Theorem (Peres & Shmerkin 2009, Hochman & Shmerkin 2012)
Let E C R? be a self-similar set defined by a family {f, ..., fn} of
similarities with dense rotations. Then

dimpprojgE = min{dimyE, 1} for all 6.
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Self-similar sets with dense rotations

Theorem (Peres & Shmerkin 2009, Hochman & Shmerkin 2012)
Let E C R? be a self-similar set defined by a family {fi,...,fm} of
similarities with dense rotations. Then

dimpprojgE = min{dimyE, 1} for all 6.

The proof uses the natural invariant measure on E along with
ideas from ergodic scenery flows, CP chains, r-scale entropy,
Marstrand’'s theorem, ...

An alternative proof, using compact group extensions was given by
Jin & F (2014).
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Self-similar sets with dense rotations

Theorem (Peres & Shmerkin 2009, Hochman & Shmerkin 2012)
Let E C R? be a self-similar set defined by a family {fi,...,fm} of
similarities with dense rotations. Then

dimpprojgE = min{dimyE, 1} for all 6.

The proof uses the natural invariant measure on E along with
ideas from ergodic scenery flows, CP chains, r-scale entropy,
Marstrand’'s theorem, ...

An alternative proof, using compact group extensions was given by
Jin & F (2014).
Corollary With E C R? as above, for all non-singular C* functions
h: E — R, where N is a neighbourhood of E,

dimyh(E) = min{dimyE, 1}.

This follows using the result for projections locally, noting that at
very fine scales h 'looks like' a projection of a small copy of E in
some direction.
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Statistically self-similar sets - percolation
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A self-similar set E has a natural hierarchical construction. This
enables us to base a percolation process on a self-similar set. At
each stage of the iterated construction we retain each component
independently with some probability p.
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Statistically self-similar sets - percolation
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A self-similar set E has a natural hierarchical construction. This
enables us to base a percolation process on a self-similar set. At
each stage of the iterated construction we retain each component
independently with some probability p.
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Statistically self-similar sets - percolation
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A self-similar set E has a natural hierarchical construction. This
enables us to base a percolation process on a self-similar set. At

each stage of the iterated construction we retain each component
independently with some probability p.
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Statistically self-similar sets - percolation
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A self-similar set E has a natural hierarchical construction. This
enables us to base a percolation process on a self-similar set. At
each stage of the iterated construction we retain each component
independently with some probability p.



Statistically self-similar sets - percolation
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A self-similar set E has a natural hierarchical construction. This
enables us to base a percolation process on a self-similar set. At
each stage of the iterated construction we retain each component
independently with some probability p.



Statistically self-similar sets - percolation
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A self-similar set E has a natural hierarchical construction. This
enables us to base a percolation process on a self-similar set. At

each stage of the iterated construction we retain each component
independently with some probability p.
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Statistically self-similar sets - percolation
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If the underlying self-similar set E is based on m similarities and
p > 1/m then the statistically self-similar set E, # () with positive

probability, conditional on which dimyE, = s, where
m s __
p2ilyri =1



Projection of statistically self-similar sets

Theorem (F & Jin 2015) Let E be a self-similar set with dense
rotations and let E, be percolation on E where p > 1/m. Then,
conditional on E, # (), almost surely

dimpprojgEp = min{dimyEp, 1} for all 6.

This is a random extension of the deterministic result adding
another level of ergodicity to accommodate the randomness of the
natural measure supported by the random set E,.
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Self-conformal sets

Theorem (Jin & Bruce 2019) Let {f;}™, be an IFS of C1*¢
conformal mappings f; : U — U on some convex open set U with
OSC holding. Thus f/(x) = ri(x)Oj(x) where O;(x) are rotations
and 0 < r_ < ri(x) < ry < 1. The IFS attractor E is called
self-conformal.
Then

dimyprojyE = min{dimyE, 1} for all 6.

provided that a certain skew product o4 : {1,2,...,m} x SO(2) 2
has a dense orbit. (Analogous condition to dense rotations.)

In particular, this holds for totally

disconnected Julia sets of “
z+— 22+ cif [c| > 2.5 and L
arg(1 4+ /1 — 4c)/m is irrational. o o
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Self-affine sets

Recall that a self-affine set E C R? is defined by an iterated
function system of affine mappings

fi(x) = Li(x) + t; where L; is linear and t; is a translation.

Self-affine sets with the same L; and different t;

Kenneth Falconer 70 Years of Fractal Projections



Self-affine carpets

The attractor E of an IFS of affine mappings fi(x) = Li(x) + ti is a
self-affine carpet if the L; are diagonal matrices. Thus the IFS
affine functions are defined by specifying the rectangular images of
the unit square.

e Bedford-McMullen carpet

21 Lalley-Gatzouras carpet

Kenneth Falconer 70 Years of Fractal Projections



Projections of self-affine carpets
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Bedford-McMullen Gatzouras-Lalley

Theorem (Ferguson, Jordan & Shmerkin, 2010) Let E be a
Bedford-McMullen (or Gatzouras-Lalley) carpet with

logm/logn ¢ Q. Then
dimyprojyE = min{dimyE, 1}
for all 6 apart from possibly when 6 € {0, 7/2}.
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Projections of self-affine carpets
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Bedford-McMullen Gatzouras-Lalley

Theorem (Ferguson, Jordan & Shmerkin, 2010) Let E be a
Bedford-McMullen (or Gatzouras-Lalley) carpet with

logm/logn ¢ Q. Then
dimyprojyE = min{dimyE, 1}
for all 6 apart from possibly when 6 € {0, 7/2}.
Theorem (Burrell, F & Fraser, 2021) Let E be a Bedford-McMullen

carpet with dimyE < 1 < dimgE. Then dimgproj,E < 1 for
almost all 6 (regardless of how large dimgE is).
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Projections of general self-affine sets

Let fi(x) = Li(x) + t; be an IFS where L; is linear and ¢; is a
translation, yielding a self-affine set E.

The dimension theory of self-affine sets has recently developed
rapidly using techniques from ergodic theory, with projection
properties central to this development - Barany, F, Kaenmaki,
Kempton, Morris, Hochman, Peres, Rapaport, Shmerkin, ...
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Projections of general self-affine sets

Let fi(x) = Li(x) + t; be an IFS where L; is linear and ¢; is a
translation, yielding a self-affine set E.

The dimension theory of self-affine sets has recently developed
rapidly using techniques from ergodic theory, with projection
properties central to this development - Barany, F, Kaenmaki,
Kempton, Morris, Hochman, Peres, Rapaport, Shmerkin, ...

Theorem(Kempton, F, 2017, Barany, Hochman, Rapaport 2021) If
the self-affine IFS {£;}™, on R? satisfies the strong open set
condition and is totally irreducible (i.e. the L; do not preserve any
finite union of lines) then

dimyprojgE = min{dimyE, 1} for all 6 € [0, 7).
Strong open set condition can be replaced by exponential
separation (Hochman & Rapaport 2022)

3-dimensional analogues ? (Morris, Sert, Rapaport ...)

Kenneth Falconer 70 Years of Fractal Projections



Other work on dimensions of projections includes

e When do projections of sets have positive Lebesgue measure or
non-empty interior? (Numerous authors)

e Projections of measures - almost all results mentioned have measure
analogues (Numerous authors)

e Equal dimensions of projections in all / nearly all directions for
'structured’ random sets (Jin, F, Shmerkin, Suomala, Kienmaki, Simon,
Rams, ...)

e Generalised projections (Peres, Schlag, ...), radial / angular projections

e Projections onto restricted families of subspaces (Fassler, Orponen,
Jarvenpia?, Keleti, Leikas, Kidenmaiki, Venieri, Gan, Guo, Wang, )

e Projections in non-Euclidean spaces: Heisenberg groups, normed
spaces, ... (Mattila, Balogh, Tyson, Iseli, ...)

e Projections in infinite dimensional spaces (Hunt, Kaloshin, ...)

e Multifractal projection results (Hunt, Kaloshin, F, O'Neil, Olsen,
Barral, Bhouri,...)
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Thank you!
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Digital sundials

Digital sundial theorem
(F, 1986)

Given a subset Ey of
each 2-dimensional
subspace V of R3

(+ measurability
condition), there exists
a Borel set E c R3
such that for almost all
subspaces V

Area ( EVA pro'] v E) = O " DIGITAL SUNDIAL stands in the courtyard of the Cartesian Monastery, home of
Brother Benjamin and the Euclidean monks.

SCIENTIFIC AMERICAN August 1991 89
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