

Nikodym type sets avoiding
lines in many directions

András Máté
University of Warwick

Fractal Geometry and Stochastics 7
Chemnitz, Germany

26 September 2024

ON THE DIMENSION OF s -NIKODYM SETS

DAMIAN DĄBROWSKI, MAX GOERING, AND TUOMAS ORPONEN

ABSTRACT. Let $s \in [0, 1]$. We show that a Borel set $N \subset \mathbb{R}^2$ whose every point is linearly accessible by an s -dimensional family of lines has Hausdorff dimension at most $2 - s$.

CONTENTS

1. Introduction	2
1.1. Related work	2
1.2. Proof outline	4
1.3. Acknowledgements	6
2. Notation and preliminaries	6
2.1. A metric on the space of lines	6
2.2. Dyadic cubes, tubes, (δ, t) -sets, and Frostman measures	6
2.3. Configurations and the X -ray measure	8
3. From sets to configurations	9
4. Estimates for X -ray measures	11
4.1. Sobolev norms	11
4.2. Sobolev estimates for X -ray measures	13
4.3. Proof of Theorem 4.1	16
5. A δ -discretised Marstrand slicing theorem	18
6. Main proof	21

Otto Nikodym & Stefan Banach

Theorem (Nikodym 1927)

For every $x \in \mathbb{R}^2$ one can find a line l_x going through x such that

$$\bigcup_{x \in \mathbb{R}^2} l_x \setminus \{x\}$$

has Lebesgue measure zero.

Theorem (Nikodym 1927)

There is a set $E \subset \mathbb{R}^2$
of full Lebesgue measure
such that
for every $x \in E$
there is a line l_x
that goes through x
but no other point of E .

Theorem (Nikodym 1927)

For every $x \in \mathbb{R}^2$ one can
find a line l_x going
through x such that

$$\bigcup_{x \in \mathbb{R}^2} l_x \setminus \{x\}$$

has Lebesgue measure
zero.

Can we have more lines
through every point ?

ON ACCESSIBILITY OF PLANE SETS AND DIFFERENTIATION
OF FUNCTIONS OF TWO REAL VARIABLES

By R. O. DAVIES

Received 14 June 1951

1. The paper is in three parts, of which the first is devoted to the proof of certain lemmas, which form the basis for the results proved in Parts II and III, and which are summed up in Lemma 6, §3. In Part II we consider questions relating to linear

Theorem (Nikodym 1927)

There is a set $E \subset \mathbb{R}^2$
of full Lebesgue measure
such that
for every $x \in E$

there is a line l_x
that goes through x
but no other point of E .

Theorem (Nikodym 1927)

For every $x \in \mathbb{R}^2$ one can
find a line l_x going
through x such that

$$\bigcup_{x \in \mathbb{R}^2} l_x \setminus \{x\}$$

has Lebesgue measure
zero.

↑

We can have continuum
many lines in a dense
set of directions.

65

(Davies 1951)

Can we have lines in
directions of positive Hausdorff dimension?

Can we have lines in
directions of positive Hausdorff dimension?

No.

Can we have lines in
directions of positive Hausdorff dimension?

No.

How big the set E can be to have
lines in a t -dimensional set of
directions? (Dabrowski, Goerung, Orponen 2024)

That is...

Definition

Let $s \in [0, 1]$.

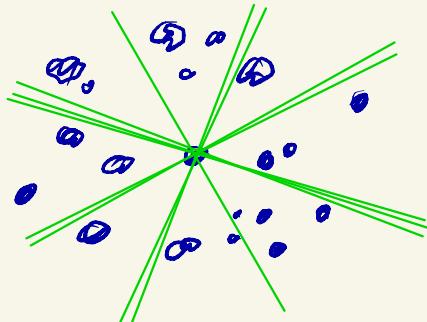
$E \subset \mathbb{R}^2$ is an s -Nikodym set

if E is Borel

and

for every $x \in E$

there is an s -dimensional
family of lines through x
that only intersect E in x .



Definition

Let $s \in [0, 1]$.

$E \subset \mathbb{R}^2$ is an s -Nikodym set

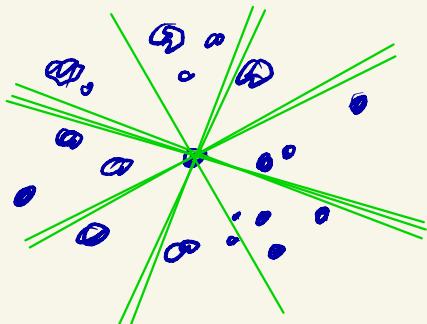
if E is Borel

and

for every $x \in E$

there is an s -dimensional family of lines through x

that only intersect E in x .



Jun 2024

Theorem (D. Dąbrowski,
M. Goering, T. Orponen
2024)

For any s -Nikodym set E ,

$$\dim_H E \leq 2-s.$$

ON THE DIMENSION OF s -NIKODYM SETS

DAMIAN DĄBROWSKI, MAX GOERING, AND TUOMAS ORPONEN

ABSTRACT. Let $s \in [0, 1]$. We show that a Borel set $N \subset \mathbb{R}^2$ whose every point is linearly accessible by an s -dimensional family of lines has Hausdorff dimension at most $2 - s$.

CONTENTS

Definition

Let $s \in [0, 1]$.

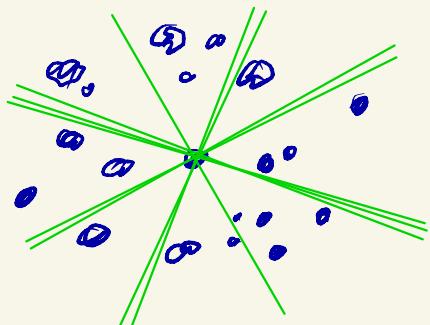
$E \subset \mathbb{R}^2$ is an s -Nikodym set

if E is Borel

and

for every $x \in E$

there is an s -dimensional family of lines through x that only intersect E in x .



Theorem (D. Dabrowski,
M. Ghering, T. Oiponen
2024)

For any s -Nikodym set E ,

$$\dim_H E \leq 2-s.$$

Question

Is this sharp?

Are there s -Nikodym sets of dimension $2-s$?

Definition

Let $s \in [0, 1]$.

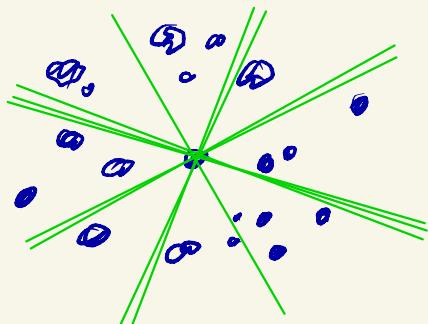
$E \subset \mathbb{R}^2$ is an s -Nikodym set

if E is Borel

and

for every $x \in E$

there is an s -dimensional family of lines through x that only intersect E in x .



Theorem (D. Dabrowski,
M. Ghering, T. Oiponen
2024)

For any s -Nikodym set E ,

$$\dim_H E \leq 2-s.$$

Question

Is this sharp?

Are there s -Nikodym sets of dimension $2-s$?

Answer (A.M. 2024+)

Yes.

In the construction...

Should the lines through each $x \in E$
go in the same s -dimensional
set of directions (independently of x)?

In the construction...

Should the lines through each $x \in E$ go in the same s -dimensional set of directions (independently of x)?

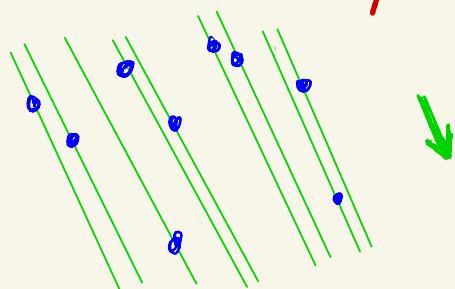
Not necessarily

In the construction...

Should the lines through each $x \in E$ go in the same s -dimensional set of directions (independently of x)?

Not necessarily,

but if they do, this is a question about projections.



Theorem (A.M. 2024+) $\forall s \in [0, 1]$

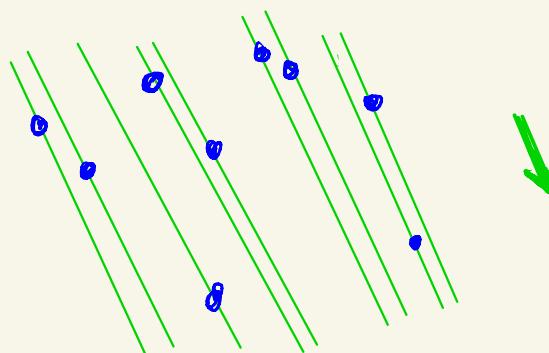
There is a compact set $E \subset \mathbb{R}^2$ of Hausdorff dimension $2-s$ and an s -dimensional set of directions such that each orthogonal projection in these directions is injective.

$\forall s \in [0, 1]$

$\exists E \subset \mathbb{R}^2 \quad \dim_H E = 2-s$

$\exists D$ set of directions such that

$\text{proj}_D|_E$ is injective $\forall x \in D$.



Theorem (A.M. 2024+) $\forall s \in [0, 1]$

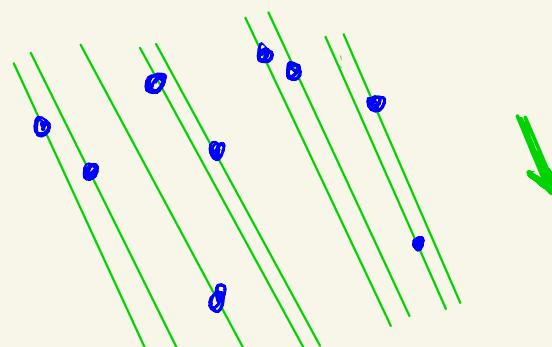
There is a compact set $E \subset \mathbb{R}^2$ of Hausdorff dimension $2-s$ and an s -dimensional set of directions such that each orthogonal projection in these directions is injective.

$\forall s \in [0, 1]$

$\exists E \subset \mathbb{R}^2 \quad \dim_H E = 2-s$

$\exists D$ set of directions such that

$\text{proj}_D|_E$ is injective $\forall x \in D$.



↗ Exceptional set of projections.

Theorems about exceptional projections

Theorem (Kaufman)

$E \subset \mathbb{R}^2$ Borel

$$\dim_H E = \underline{s} \in [0, 1]$$

Except for a set of directions of $\dim \underline{s}$,

$$\dim_H \text{proj}_d E = s.$$

Theorem (Falconer)

$E \subset \mathbb{R}^2$ Borel

$$\dim_H E = \underline{\underline{s}} \in [0, 1]$$

Except for a set of directions of $\dim \underline{\underline{s}}$,

$\text{proj}_d E$
has positive Lebesgue measure.

Theorems about exceptional projections

Theorem (Kaufman)

$E \subset \mathbb{R}^2$ Borel

$$\dim_H E = \underline{s} \in [0,1]$$

Except for a set of directions of $\dim \underline{s}$,

$$\dim_H \text{proj}_d E = s.$$

Theorem (Kaufman, Mattila)

And these results are sharp.

(Fractal construction based on discrete constructions by Erdős and Flekes.)

Theorem (Falconer)

$E \subset \mathbb{R}^2$ Borel

$$\dim_H E = \underline{s} \in [0,1]$$

Except for a set of directions of $\dim \underline{s}$,

$\text{proj}_d E$
has positive Lebesgue measure.

sharpness means:

Theorem (Kaufman, Mattila)

$$\forall s \in [0, 1]$$

there is a compact

$$\text{set } E \subset \mathbb{R}^2$$

$$\dim_H E = 2 - s - \varepsilon$$

such that

$$\dim_H \text{proj}_\alpha E < 1 - \varepsilon'$$

for s -dimensional many α .

Theorem (Kaufman, Mattila)

$$\forall s \in [0, 1]$$

there is a compact set $E \subset \mathbb{R}^2$

$$\dim_H E = 2 - s - \varepsilon$$

such that

$$\dim_H \text{proj}_\alpha E < 1 - \varepsilon'$$

for s -dimensional many α .

Could we make these projections injective as well?

Theorem (Kaufman, Mattila)

$$\forall s \in [0, 1]$$

there is a compact set $E \subset \mathbb{R}^2$

$$\dim_H E = 2 - s - \varepsilon$$

such that

$$\dim_H \text{proj}_\alpha E < 1 - \varepsilon'$$

for s -dimensional many α .

Could we make these projections injective as well?

Small projection
= lots of overlaps

Theorem (Kaufman, Mattila)

$$\forall s \in [0, 1]$$

there is a compact set $E \subset \mathbb{R}^2$

$$\dim_H E = 2 - s - \varepsilon$$

such that

$$\dim_H \text{proj}_\alpha E < 1 - \varepsilon'$$

for s -dimensional many α .

Could we make these projections injective as well?

Small projection
= lots of overlaps

Theorem (Kaufman, Mattila)

$$\forall s \in [0, 1]$$

there is a compact set $E \subset \mathbb{R}^2$

$$\dim_H E = 2 - s - \varepsilon$$

such that

$$\dim_H \text{proj}_\alpha E < 1 - \varepsilon'$$

for s -dimensional many α .

Could we make these projections injective as well?

Small projection
= lots of overlaps
so probably not?

Theorem (Kaufman, Mattila)

$$\forall s \in [0, 1]$$

there is a compact set $E \subset \mathbb{R}^2$

$$\dim_H E = 2 - s - \varepsilon$$

such that

$$\dim_H \text{proj}_\alpha E < 1 - \varepsilon'$$

for s -dimensional many α .

Could we make these projections injective as well?

~~Small projection~~

~~= lots of overlaps
so probably not?~~

Yes we can.

Theorem (Kaufman, Mattila)

$$\forall s \in [0, 1]$$

there is a compact set $E \subset \mathbb{R}^2$

$$\dim_H E = 2 - s - \varepsilon$$

such that

$$\dim_H \text{proj}_\alpha E < 1 - \varepsilon'$$

for s -dimensional many α .

Could we make these projections injective as well?

~~Small projection~~

~~= lots of overlaps
so probably not?~~

Yes we can.

Injectivity is not a quantitative property.

Theorem (Kaufman, Mattila)

$$\forall s \in [0, 1]$$

there is a compact set $E \subset \mathbb{R}^2$

$$\dim_H E = 2 - s - \varepsilon$$

such that

$$\dim_H \text{proj}_\alpha E < 1 - \varepsilon'$$

for s -dimensional many α .

Theorem (A.M. 2024+)

$$\forall s \in [0, 1]$$

there is a compact set $E \subset \mathbb{R}^2$

$$\dim_H E = 2 - s - \varepsilon$$

such that

$$\dim_H \text{proj}_\alpha E < 1 - \varepsilon'$$

for s -dimensional many α , and these projections are injective.

Rectangular grid

0 0 0 0 0 0 0 0 0 0 0 0 0 0

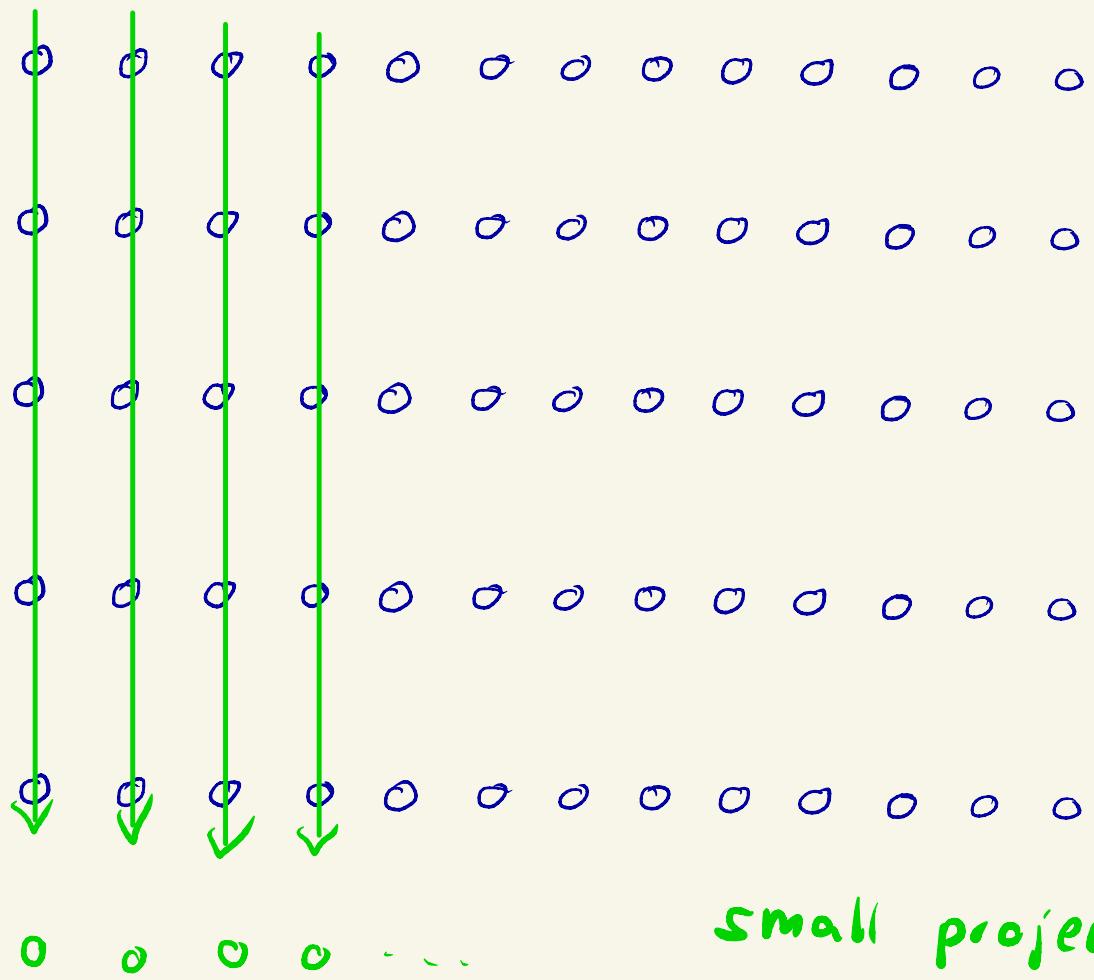
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

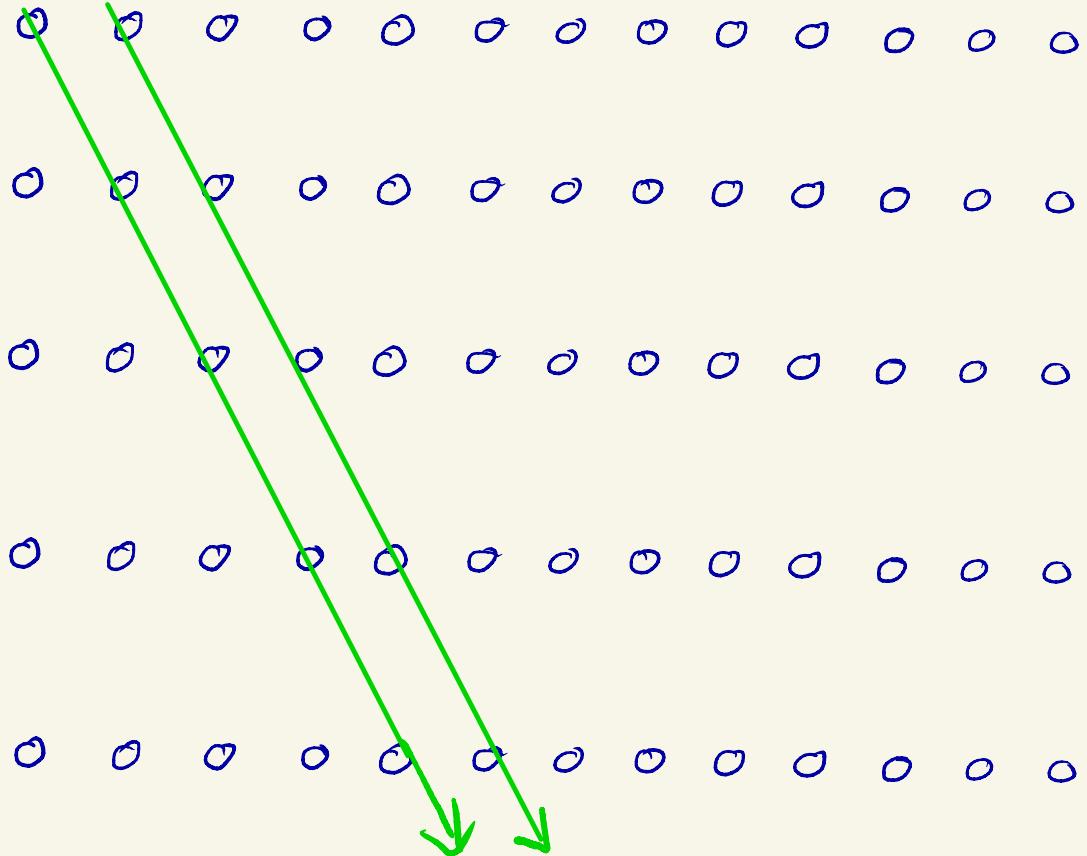
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rectangular grid

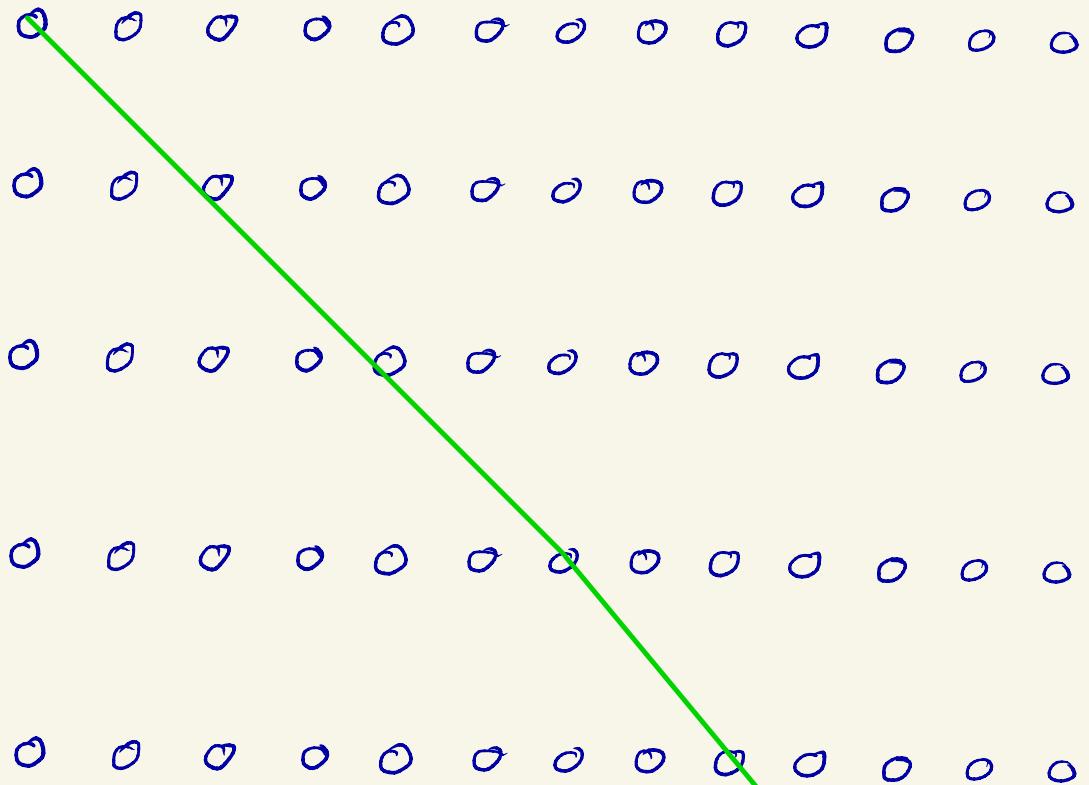


Rectangular grid



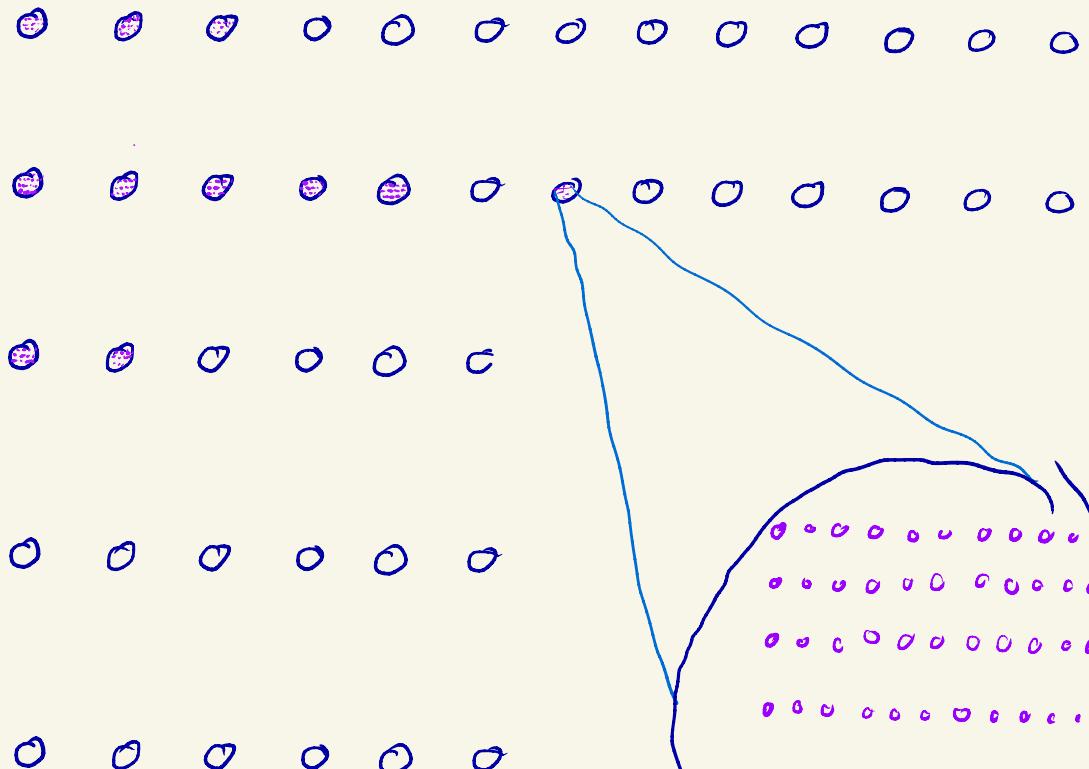
small projection

Rectangular grid



small projection

Rectangular grid



Next level:
intersect it
with a
much much
finer
similar*
rectangular
grid

*affine

Rectangular grid

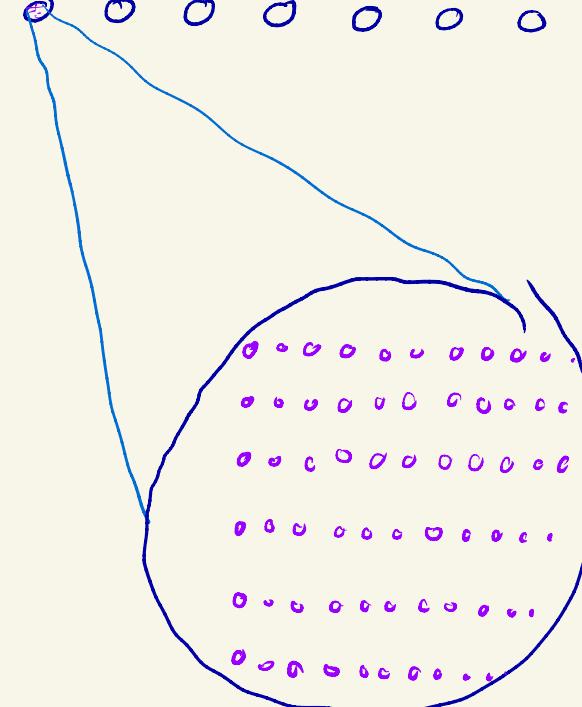
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



Next level:
intersect it
with a
much much
finer
similar*
rectangular
grid

*affine

This how an Elekes-Kaufman-Mattila constr. work

Rectangular grid

0 0 0 0 0 0 0 0 0 0 0 0 0 0

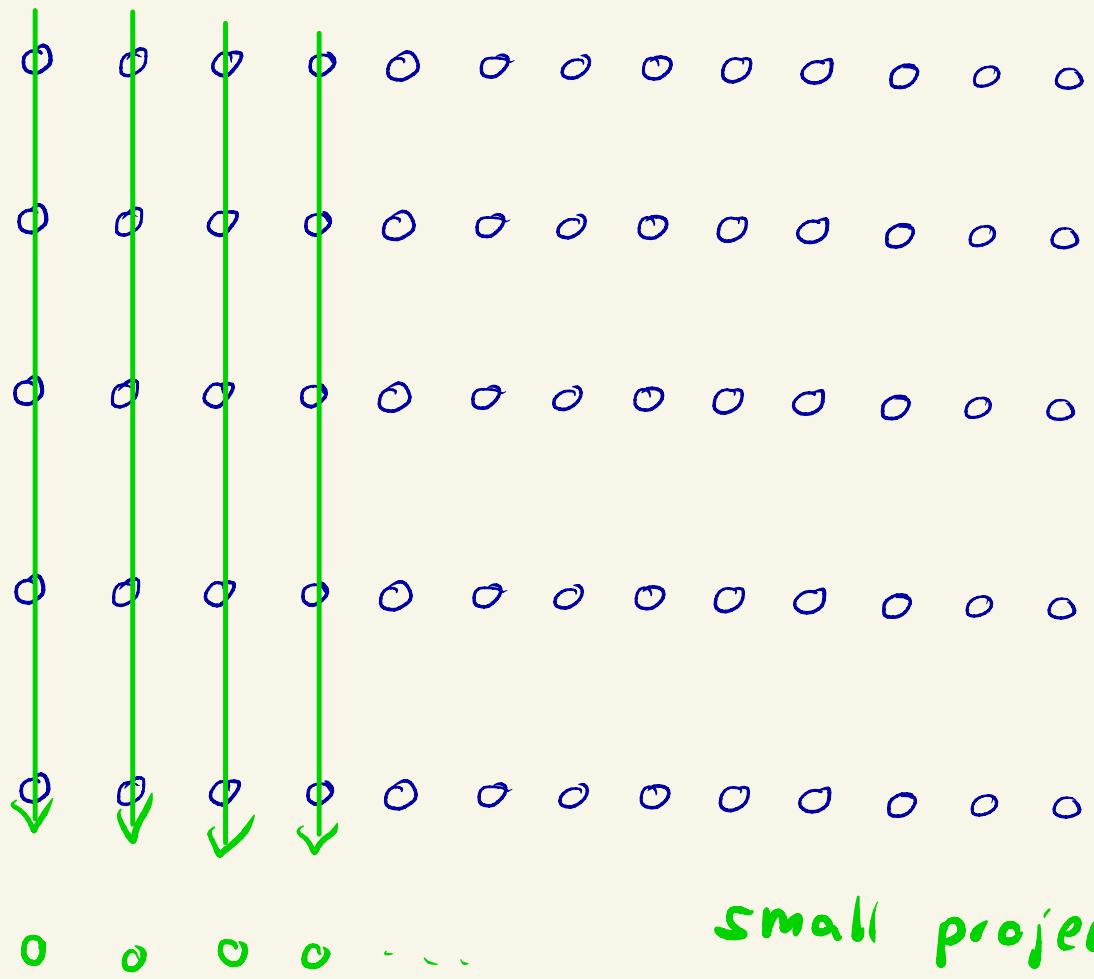
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rectangular grid



0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

To make these
projections
injective...

To make these
projections
injective...

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

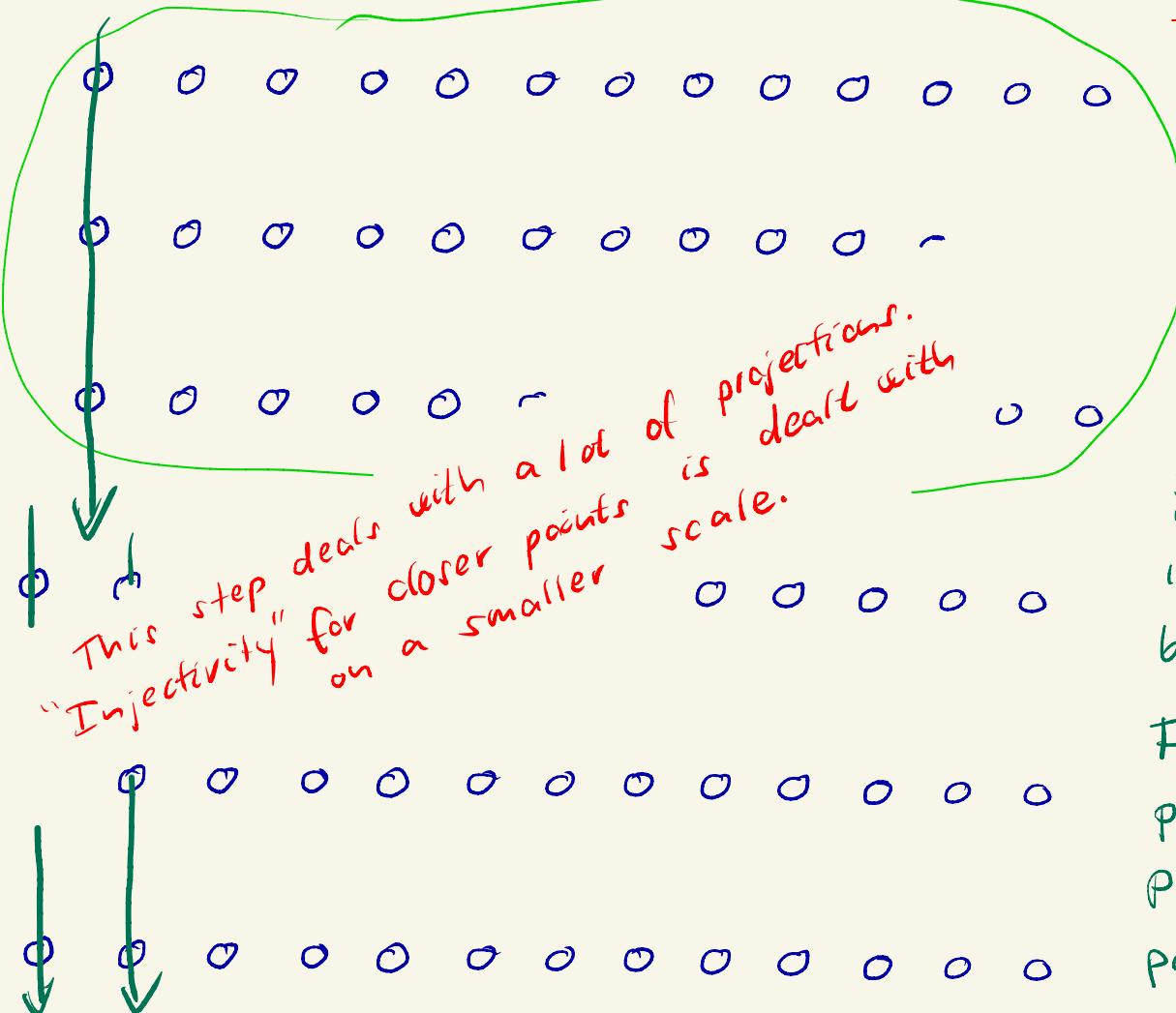
To make these
projections
injective...



To make these projections injective...

Projection
is only "twice"
bigger.

Far away
points do not
project to same
point.



"Small" projections

can be made injective"

"Small" projections

can be made injective"

This turns out to be useful

for a very different problem as well.

On the center of distances

Wojciech Bielas^{1,2} · Szymon Plewik¹ ·
Marta Walczyńska^{1,2}

Received: 22 February 2017 / Revised: 20 June 2017 / Accepted: 4 October 2017 /

Published online: 28 November 2017

© The Author(s) 2017. This article is an open access publication

Abstract We introduce the notion of a center of distances of a metric space.

Topological Methods in Nonlinear Analysis
Volume 63, No. 2, 2024, 413–427
DOI: 10.12775/TMNA.2023.023

© 2024 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University in Toruń

ON THE OPERATOR OF CENTER OF DISTANCES BETWEEN THE SPACES OF CLOSED SUBSETS OF THE REAL LINE

ARTUR BARTOSZEWICZ — MAŁGORZATA FILIPCZAK
GRAŻYNA HORBACZEWSKA — SEBASTIAN LINDNER
FRANCISZEK PRUS-WIŚNIOWSKI

Remarks on center of distances

Małgorzata Filipczak

46TH SUMMER SYMPOSIUM IN REAL ANALYSIS
THE PROMISED LAND SYMPOSIUM
JUNE 17–21, 2024

Definition

For a set $A \subset \mathbb{R}$ let

$S(A) = \{d \geq 0 : \forall a \in A$
 $a+d$ or $a-d$
is in $A\}$

"center of distances" of A .

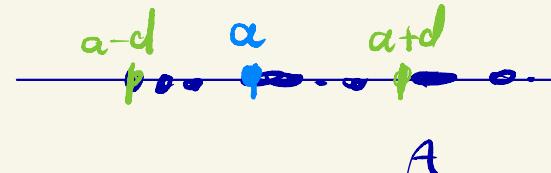
Why? Why not.

European Journal of Mathematics (2018) 4:687–698
<https://doi.org/10.1007/s40879-017-0199-4>

RESEARCH ARTICLE

On the center of distances

Wojciech Bielas^{1,2} · Szymon Plewik¹ ·
Marta Walczyńska^{1,2}



Definition

For a set $A \subset \mathbb{R}$ let

$S(A) = \{d \geq 0 : \forall a \in A$
 $a+d$ or $a-d$
is in $A\}$

"center of distances" of A .

Why? Why not.

European Journal of Mathematics (2018) 4:687–698
<https://doi.org/10.1007/s40879-017-0199-4>

RESEARCH ARTICLE

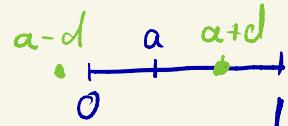
On the center of distances

Wojciech Bielas^{1,2} · Szymon Plewik¹ ·
Marta Walczyńska^{1,2}

Examples

$$A = [0, 1]$$

$$S(A) =$$



Definition

For a set $A \subset \mathbb{R}$ let

$S(A) = \{d \geq 0 : \forall a \in A$
 $a+d$ or $a-d$
is in $A\}$

"center of distances" of A .

Why? Why not.

European Journal of Mathematics (2018) 4:687–698
<https://doi.org/10.1007/s40879-017-0199-4>

RESEARCH ARTICLE

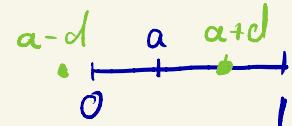
On the center of distances

Wojciech Bielas^{1,2} · Szymon Plewik¹ ·
Marta Walczyńska^{1,2}

Examples

- $A = [0, 1]$

$$S(A) = [0, \frac{1}{2}]$$



Definition

For a set $A \subset \mathbb{R}$ let

$S(A) = \{d \geq 0 : \forall a \in A$
 $a+d$ or $a-d$
is in $A\}$

"center of distances" of A .

Why? Why not.

European Journal of Mathematics (2018) 4:687–698
<https://doi.org/10.1007/s40879-017-0199-4>

CrossMark

RESEARCH ARTICLE

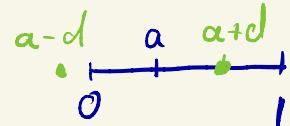
On the center of distances

Wojciech Bielas^{1,2} · Szymon Plewik¹ ·
Marta Walczyńska^{1,2}

Examples

- $A = [0, 1]$

$$S(A) = [0, \frac{1}{2}]$$



- $A = \text{middle-third Cantor set}$

$$\frac{2}{3} \in S(A) ?$$

Definition

For a set $A \subset \mathbb{R}$ let

$S(A) = \{d \geq 0 : \forall a \in A$
 $a+d$ or $a-d$
is in $A\}$

"center of distances" of A .

Why? Why not.

European Journal of Mathematics (2018) 4:687–698
<https://doi.org/10.1007/s40879-017-0199-4>

RESEARCH ARTICLE

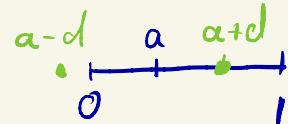
On the center of distances

Wojciech Bielas^{1,2} · Szymon Plewik¹ ·
Marta Walczyńska^{1,2}

Examples

- $A = [0, 1]$

$$S(A) = [0, \frac{1}{2}]$$



- $A = \text{middle-third Cantor set}$

$\frac{2}{3} \in S(A)$? Yes.

Definition

For a set $A \subset \mathbb{R}$ let

$S(A) = \{d \geq 0 : \forall a \in A$
 $a+d$ or $a-d$
is in $A\}$

"center of distances" of A .

Why? Why not.

European Journal of Mathematics (2018) 4:687–698
<https://doi.org/10.1007/s40879-017-0199-4>

CrossMark

RESEARCH ARTICLE

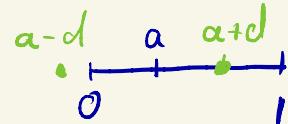
On the center of distances

Wojciech Bielas^{1,2} · Szymon Plewik¹ ·
Marta Walczyńska^{1,2}

Examples

- $A = [0, 1]$

$$S(A) = [0, \frac{1}{2}]$$



- $A = \text{middle-third Cantor set}$

$$\frac{2}{3} \in S(A) ? \quad \text{Yes.}$$

$$\frac{2}{3^k} \in S(A) ?$$

Definition

For a set $A \subset \mathbb{R}$ let

$S(A) = \{d \geq 0 : \forall a \in A$
 $a+d$ or $a-d$
is in $A\}$

"center of distances" of A .

Why? Why not.

European Journal of Mathematics (2018) 4:687–698
<https://doi.org/10.1007/s40879-017-0199-4>

RESEARCH ARTICLE

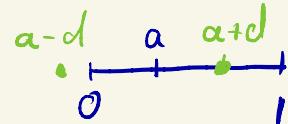
On the center of distances

Wojciech Bielas^{1,2} · Szymon Plewik¹ ·
Marta Walczyńska^{1,2}

Examples

- $A = [0, 1]$

$$S(A) = [0, \frac{1}{2}]$$



- $A = \text{middle-third Cantor set}$

$$\frac{2}{3} \in S(A) ? \quad \text{Yes.}$$

$$\frac{2}{3^k} \in S(A) ? \quad \text{Yes.}$$

Definition

For a set $A \subset \mathbb{R}$ let

$S(A) = \{d \geq 0 : \forall a \in A$
 $a+d$ or $a-d$
is in $A\}$

"center of distances" of A .

Why? Why not.

European Journal of Mathematics (2018) 4:687–698
<https://doi.org/10.1007/s40879-017-0199-4>

CrossMark

RESEARCH ARTICLE

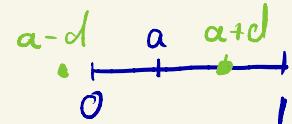
On the center of distances

Wojciech Bielas^{1,2} · Szymon Plewik¹ ·
Marta Walczyńska^{1,2}

Examples

- $A = [0, 1]$

$$S(A) = [0, \frac{1}{2}]$$



- $A = \text{middle-third Cantor set}$

$$\frac{2}{3} \in S(A) ? \quad \text{Yes.}$$

$$\frac{2}{3^k} \in S(A) ? \quad \text{Yes.}$$

$$S(A) = \left\{ \frac{2}{3^k} : k \geq 1 \right\} \cup \{0\} ?$$

Definition

For a set $A \subset \mathbb{R}$ let

$S(A) = \{d \geq 0 : \forall a \in A$
 $a+d$ or $a-d$
is in $A\}$

"center of distances" of A .

Why? Why not.

European Journal of Mathematics (2018) 4:687–698
<https://doi.org/10.1007/s40879-017-0199-4>

RESEARCH ARTICLE

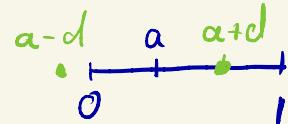
On the center of distances

Wojciech Bielas^{1,2} · Szymon Plewik¹ ·
Marta Walczyńska^{1,2}

Examples

- $A = [0, 1]$

$$S(A) = [0, \frac{1}{2}]$$



- $A = \text{middle-third Cantor set}$

$$\frac{2}{3} \in S(A) ? \quad \text{Yes.}$$

$$\frac{2}{3^k} \in S(A) ? \quad \text{Yes.}$$

$$S(A) = \left\{ \frac{2}{3^k} : k \geq 1 \right\} \cup \{0\} ?$$

Yes.

Theorem (M. Filipczak et al)

Let $\underline{B} \subset [0, \infty)$ be compact,

$0 \in B$.

Then there is a closed
set $A \subset [0, \infty)$ such that

$$S(A) = B.$$

Topological Methods in Nonlinear Analysis
Volume 63, No. 2, 2024, 413–427
DOI: 10.12775/TMNA.2023.023

© 2024 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University in Toruń

ON THE OPERATOR OF CENTER OF DISTANCES
BETWEEN THE SPACES OF CLOSED SUBSETS
OF THE REAL LINE

ARTUR BARTOSZEWCZ — MAŁGORZATA FILIPCZAK
GRAŻYNA HORBACZEWSKA — SEBASTIAN LINDNER
FRANCISZEK PRUS-WIŚNIOWSKI

Theorem (M. Filipczak et al)

Let $\underline{B} \subset [0, \infty)$ be compact,
 $0 \in B$.

Then there is a closed
set $A \subset [0, \infty)$ such that
 $S(A) = B$.

About the proof:

A is a locally finite
union of intervals,
dealing with the
complementary intervals
of B one by one.

Topological Methods in Nonlinear Analysis
Volume 63, No. 2, 2024, 413–427
DOI: 10.12775/TMNA.2023.023

© 2024 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University in Toruń

ON THE OPERATOR OF CENTER OF DISTANCES BETWEEN THE SPACES OF CLOSED SUBSETS OF THE REAL LINE

ARTUR BARTOSZEWCZ — MAŁGORZATA FILIPCZAK
GRAŻYNA HORBACZEWSKA — SEBASTIAN LINDNER
FRANCISZEK PRUS-WIŚNIOWSKI

Theorem (M. Filipczak et al)

Let $\underline{B} \subset [0, \infty)$ be compact,
 $0 \in B$.

Then there is a closed
set $A \subset [0, \infty)$ such that

$$S(A) = B.$$

Topological Methods in Nonlinear Analysis
Volume 63, No. 2, 2024, 413–427
DOI: 10.12775/TMNA.2023.023

© 2024 Juliusz Schauder Centre for Nonlinear Studies
Nicolae Copernicus University in Toruń

ON THE OPERATOR OF CENTER OF DISTANCES
BETWEEN THE SPACES OF CLOSED SUBSETS
OF THE REAL LINE

ARTUR BARTOSZEWCZ — MAŁGORZATA FILIPCZAK
GRAŻYNA HORBACZEWSKA — SEBASTIAN LINDNER
FRANCISZEK PRUS-WIŚNIOWSKI

About the proof:

A is a locally finite
union of intervals,
dealing with the
complementary intervals
of B one by one.

Question (Filipczak et al)

Is there a compact A
for every such compact B ?
with $S(A) = B$.

The expected answer is "No".

Three questions (Filipczak et al)

Question 1

Is there a compact A for every compact $B \subset (0, \infty)$
with $0 \in B$
such that $S(A) = B$?

Three questions (Filipczak et al)

Question 1

Is there a compact A for every compact $B \subset (0, \infty)$
with $0 \in B$
such that $S(A) = B$?

Question 2

Is there a set A for every set $B \subset (0, \infty)$
with $0 \in B$
such that $S(A) = B$?

Three questions (Filipczak et al)

Question 1

Is there a compact A for every compact $B \subset (0, \infty)$
with $0 \in B$
such that $S(A) = B$?

Question 2

Is there a set A for every set $B \subset (0, \infty)$
with $0 \in B$
such that $S(A) = B$?

Question 3

Is there a Borel set A for every Borel set $B \subset (0, \infty)$
with $0 \in B$
such that $S(A) = B$?

Three questions

(Filipczak et al)

Answers? by AM 2024+

Question 1

Is there a compact A for every compact $B \subset (0, \infty)$
such that $S(A) = B$? No, as expected.

Question 2

Is there a set A for every set $B \subset (0, \infty)$
such that $S(A) = B$?

Question 3

Is there a Borel set A for every Borel set $B \subset (0, \infty)$
such that $S(A) = B$?

Three questions

(Filipczak et al)

Answers? by AM 2024+

Question 1

Is there a compact A for every compact $B \subset (0, \infty)$
such that $S(A) = B$? No, as expected.

Question 2

Is there a set A for every set $B \subset (0, \infty)$
such that $S(A) = B$?

Question 3

Is there a Borel set A for every Borel set $B \subset (0, \infty)$
such that $S(A) = B$?

Three questions

(Filipczak et al)

Answers? by AM 2024+

Question 1

Is there a compact A for every compact $B \subset (0, \infty)$
with $0 \in B$
such that $S(A) = B$? No, as expected.

Question 2

Is there a set A for every set $B \subset (0, \infty)$
with $0 \in B$
such that $S(A) = B$? Yes!

Question 3

Is there a Borel set A for every Borel set $B \subset (0, \infty)$
with $0 \in B$
such that $S(A) = B$?

Three questions

(Filipczak et al)

Answers? by AM 2024+

Question 1

Is there a compact A for every compact $B \subset (0, \infty)$
with $0 \in B$
such that $S(A) = B$? No, as expected.

Question 2

Is there a set A for every set $B \subset (0, \infty)$
with $0 \in B$
such that $S(A) = B$? Yes!

Question 3

Is there a Borel set A for every Borel set $B \subset (0, \infty)$
with $0 \in B$
such that $S(A) = B$? Yes!

Solution to Q1 is real analysis.

$\leftarrow \forall \text{compact } B \ \exists \text{ compact } A \ S(A) = B$

Solution to Q2 is transfinite recursion.

$\leftarrow \forall B \ \exists A \ S(A) = B$

Solution to Q3 is by replacing the Axiom of Choice in the transfinite recursion with "choice" based on a fractal set...

$\forall \text{Borel } B \ \exists \text{ Borel } A \ S(A) = B$

Solution to Q1 is real analysis.

$\leftarrow \forall \text{compact } B \ \exists \text{ compact } A$

$$S(A) = B$$

Solution to Q2 is transfinite recursion.

$\leftarrow \forall B \ \exists A \ S(A) = B$

Solution to Q3 is by replacing the Axiom of Choice in the transfinite recursion with "choice" based on a fractal set...

$\forall \text{Borel } B \ \exists \text{ Borel } A \ S(A) = B$

... with lots of injective projections.

Q3 is solved by the following.

Thm (A.M 2024+)

There exists a closed set $E \subset \mathbb{R}^2$ such that

- $\text{proj}_x E = \mathbb{R}$
- all other rational projections are injective
- moreover, "lots of linear independence over \mathbb{Q} "
the linear equations

$$\sum_{i=1}^n \alpha_i x_i + \beta_i y_i = 0 \quad \text{with } \alpha_i \in \mathbb{Q}, \beta_i \in \mathbb{Q} \setminus \{0\}$$

have NO SOLUTIONS among distinct points $(x_i, y_i) \in E$.

Q3 is solved by the following.

Thm (A.M 2024+)

There exists a closed set $E \subset \mathbb{R}^2$ such that

- $\text{proj}_x E = \mathbb{R}$
- all other rational projections are injective
- moreover, "lots of linear independence over \mathbb{Q} "
the linear equations

$$\sum_{i=1}^n \alpha_i x_i + \beta_i y_i = 0 \quad \text{with } \alpha_i \in \mathbb{Q}, \beta_i \in \mathbb{Q} \setminus \{0\}$$

have NO SOLUTIONS among distinct points $(x_i, y_i) \in E$.

Using E ,

given $B \subset [0, \infty)$

let

$A = \mathbb{R} \setminus \cup \{ \text{certain linear images of } E \cap (B^c \times \mathbb{R}) \}$

