

On random walks and Fourier decay

Amir Algom

The University of Haifa-Oranim

Fractal Geometry and Stochastics 7, Chemnitz, 23.09.2024

Definition of the Fourier transform

Question 0 What does Fourier decay have to do with random walks?

Fix $\nu \in \mathcal{P}(\mathbb{R})$, and $q \in \mathbb{R}$.

Def Fourier transform of ν at q is

$$\mathcal{F}_q(\nu) := \int \exp(2\pi iqx) d\nu(x)$$

Fourier decay problem $\mathcal{F}_q(\nu) = o(1)$? (is ν Rajchman) Rate of decay?

Shmerkin (2014) $\exists \beta > 0$, $|\mathcal{F}_q(\nu)| = O\left(\frac{1}{|q|^\beta}\right) \Rightarrow \forall \mu \in \mathcal{P}(\mathbb{R})$
with $\dim \mu = 1$, $\mu * \nu \ll \lambda$
 $\lambda :=$ Leb. mea. on \mathbb{R} .

Some examples

- 1 Riemann-Lebesgue Lemma: if $\nu \ll \lambda \Rightarrow \nu$ Rajchman.
- 2 Heuristics for dynamically defined measures: $\mathcal{F}_q(\nu) \neq o(1) \Rightarrow \nu$ has some (approximate) arithmetic structure.
- 3 Heuristics for smoothly defined measures:
Poly. Fourier decay \iff
spectral gap for derivative cocycle \iff
exp. fast renewal Theorem for derivative cocycle.

Bernoulli Convolutions

On random
walks and
Fourier decay

Amir Algom

For $r \in (0, 1)$, $\nu_r \sim \sum \pm r^n$, \pm IID unbiased.

Question For which $\frac{1}{2} < r < 1$ is $\nu_r \ll \lambda$?

Theorem (Erdős, 1939) If r^{-1} Pisot $\Rightarrow \nu_r$ not Rajchman $\Rightarrow \nu_r$ not abs. continuous.

Idea of proof $\mathcal{F}_q(\nu_r) = \prod_{j=0}^{\infty} \cos(2\pi r^j q)$.

Use: r^{-1} Pisot $\Rightarrow \exists a = a(r) \in (0, 1)$,
 $\text{dist}(r^j, \mathbb{Z}) < a^{|j|}$, $\forall j \in \mathbb{Z}$.

Self-conformal measures

On random
walks and
Fourier decay

Amir Algom

$\Phi = \{f_1, \dots, f_n\} \subseteq C^{1+\gamma}([0, 1])$ non-sing. contractions (IFS),

$\mathbf{p} = (p_1, \dots, p_n)$ prob. vector, $p_i > 0$.

$\exists! K \subseteq [0, 1], K \neq \emptyset$ compact s.t. $K = \bigcup_{i=1}^n f_i(K)$

$\exists! \nu_{\mathbf{p}} \in \text{Prob. mea.}(K)$ s.t. $\nu_{\mathbf{p}} = \sum_{i=1}^n p_i \cdot f_i \nu_{\mathbf{p}}$

$\nu_{\mathbf{p}}$ = self-conformal measure.

Self-similar measures

On random
walks and
Fourier decay

Amir Algom

$\Phi \subseteq \text{Aff}([0, 1]) \Rightarrow \nu = \text{self similar measure.}$

Example Ber. conv. ν_r , $\Phi = \{r \cdot x - 1, r \cdot x + 1\}$, $\mathbf{p} = (\frac{1}{2}, \frac{1}{2})$

Solomyak 2019 Poly. F-decay is typical for self-similar measures.

What is a non linear IFS?

Def of linear We call $\Phi \subset C^2$ linear if:

$$\forall f \in \Phi, x \in K, \quad f''(x) = 0$$

Note $\Phi \subseteq C^\omega$ and Φ linear $\Rightarrow \Phi$ is self-similar.

Question (Hochman) \exists linear $\Phi \subseteq C^\infty$, Φ not conjugate to self-similar?

A. Ben-Ovadia, Shannon Yes, even s.t. $f'|_K \equiv c = c_\Phi, \forall f \in \Phi$.

Main results

Thm (A. - Rodriguez Hertz - Wang, 2023)

- 1 $\Phi \subset C^2$ not cong. to linear $\Rightarrow \forall$ self-conformal mea. poly. F-decay.
- 2 $\Phi \subset C^\omega$ and $\exists f \in \Phi \setminus \text{Aff}(\mathbb{R})$ $\Rightarrow \forall$ self-conformal mea. poly. F-decay.

Related Jordan-Sahlsten (2016), Bourgain-Dyatlov (2017), Li (2022), Sahlsten-Stevens (2022), Baker-Sahlsten (2023), Algom-Chang-Wu-Wu (2024), Baker-Banaji (2024), Baker-Khalil-Sahlsten (2024).

A random walk and stopping time

$$\Phi = \{f_1, f_2, \dots, f_n\} \subset C^2, K = K_\Phi, \mathbf{p} \text{ s.t. } \nu = \nu_{\mathbf{p}}.$$

A random walk Fix $x \in K, I \in \{1, \dots, n\}^m$,

$$S_m(I) := -\log |f'_I(x)|, \text{ Note } S_m \rightarrow \infty.$$

Stopping time For $k > 0, \omega \in \{1, \dots, n\}^{\mathbb{N}}$,

$$\tau_k(\omega) := \min\{m : S_m(\omega|_m) > k\}.$$

Def $S_{\tau_k}(\omega) = S_{\tau_k(\omega)}(\omega|_{\tau_k(\omega)}) =$
RV on $[k, k+1]$ w.r.t $\mathbf{p}^{\mathbb{N}}$ on $\{1, \dots, n\}^{\mathbb{N}}$.

F-decay for self conformal measures - outline of method

On random walks and Fourier decay

Amir Algom

Want: $|\mathcal{F}_q(\nu)| = O\left(\frac{1}{|q|^\alpha}\right)$. Assume: $\Phi \subset C^2$ not conj. to linear.

Pick $k \approx \log |q|$.

Linearization $|\mathcal{F}_q(\nu)| \lesssim \int \left| \mathcal{F}_{qe^{-S_{\tau_k}(\omega)}}(\nu) \right| d\mathbf{p}^{\mathbb{N}}(\omega)$

Use: self conformality.

Equidistribution $\exists \epsilon = \epsilon(\Phi, \mathbf{p}), \kappa = \kappa(\Phi, \mathbf{p}) \ll_C \lambda_{[0,1]}$ s.t.:
 $\text{dist}(S_{\tau_k} - k, \kappa) = O(e^{-k \cdot \epsilon})$

Use: Renewal Theorem with exp. error term.

Related: Renewal Theorem of Li (2019).

$|\mathcal{F}_q(\nu)| \lesssim \int_k^{k+1} \left| \mathcal{F}_{q \cdot e^{-z}}(\nu) \right| dz$ up to errors

High oscillations $\leq O\left(e^{-k \cdot \dim_{\infty} \nu \cdot \epsilon'}\right)$. Use: Lemma of Hochman.