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Abstract: We consider a mixed moving average (MMA) process X driven
by a Lévy basis and prove that it is weakly dependent with rates computable
in terms of the moving average kernel and the characteristic quadruple
of the Lévy basis. Using this property, we show conditions ensuring that
sample mean and autocovariances of X have a limiting normal distribution.
We extend these results to stochastic volatility models and then investigate
a Generalized Method of Moments estimator for the supOU process and
the supOU stochastic volatility model after choosing a suitable distribution
for the mean reversion parameter. For these estimators, we analyze the
asymptotic behavior in detail.
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1. Introduction

Lévy-driven continuous-time moving average processes, i.e. processes (Xt)t∈R of
the form Xt =

∫
R
f(t − s)dLs with f a deterministic function and L a Lévy

process, are frequently used to model time series, especially, when dealing with
data observed at high frequency. Moreover, causal moving averages can be used
to model the volatility process when the dynamics of a logarithmic financial asset
price are modeled. Popular examples include, for instance CARMA processes
[16, 39], the increments of fractionally integrated Lévy processes [38] and non-
Gaussian Ornstein-Uhlenbeck type processes [9] where f(s) = eas1[0,∞)(s) with
a ∈ R

−. By allowing f to depend on a random parameter A and replacing the
Lévy process by a Lévy basis one arrives at so-called mixed moving averages
(MMA in short) as for instance in [3, 10, 27].

An important example of MMA are the supOU processes studied in [3, 10, 25,
27]. In the univariate case, assume

∫
|x|>1

log(|x|) ν(dx) < ∞ and
∫
R− − 1

Aπ(dA) <

∞, where ν is a Lévy measure and π is the probability distribution on R
− of

the random parameter A, see Definition 2.1 for details. If Λ is a Lévy basis on
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R with those characteristics, then the process

Xt =

∫
R−

∫ t

−∞
eA(t−s) Λ(dA, ds) ∀t ∈ R,

is called a supOU process. Whereas a non-Gaussian Ornstein-Uhlenbeck pro-
cess necessarily exhibits autocorrelation eah for h ∈ N, the supOU process has
a flexible dependence structure. For example, its autocorrelations can show a
polynomial decay depending on the probability distribution π. Moreover, when
a discrete probability distribution π for the random parameter A is considered,
we obtain a popular model used, for example, in stochastic volatility models [3],
in modeling fractal activity times [36, 37] and in astrophysics [35].

MMA processes can also be used, under suitable conditions, as building blocks
for more complex models. We study in this paper the class of MMA stochastic
volatility models. An example of the class is the supOU SV model, defined in
[10, 11], where the log-price process (of some financial asset) is defined for t ∈ R

+

as

Jt =

∫ t

0

√
XsdWs, J0 = 0,

and (Ws)s∈R+ is a standard Brownian motion independent of the process (Xs)s∈R+

which is a non-negative supOU process. Some examples of applications of the
supOU SV model can be found in [12, 32, 49].

The aim of this paper is twofold. First, to show that sample moments of an
MMA and of the returns of an MMA SV model have a limiting normal dis-
tribution. Secondly, to develop a statistical estimation procedure for the MMA
and MMA SV model in a semi-parametric framework, where the distribution of
the random parameter A is specified in detail, and establishing its asymptotic
properties.

For this end, it is of high importance to understand the dependence struc-
ture of the class of MMA processes. In [27], it is shown that an MMA process
driven by a Lévy basis is mixing. However, in order to prove distributional limit
theorems which enable valid asymptotic inference stronger notions of asymp-
totic independence are needed. Often one applies strong mixing properties (see
[21, 46]) to this end. Usually they are established by using a Markovian rep-
resentation and showing geometric ergodicity of it. In turn this requires often
smoothness conditions on the driving random noise and it is well-known that
even autoregressive processes of order one are not strongly mixing when the
distribution of the noise is not sufficiently regular (see [1]). We want to obtain
results for MMA processes in general, which typically have no suitable Marko-
vian representation, and without regularity conditions on the driving Lévy basis
apart from moment conditions. As will become obvious later on, the weak de-
pendence concepts introduced by Doukhan and Louhichi [23] and Doukhan and
Dedecker [18], respectively called η-weak dependence and θ-weak dependence,
are very suitable for our purposes. For an extensive introduction on the weak
dependence of causal and non-causal processes we refer the reader to [19]. We
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then show the asymptotic normality of the sample mean and the sample autoco-
variance functions of an MMA process in its non-causal and causal specification.
Moreover for the MMA stochastic volatility models, we show the θ-weak depen-
dence of the return process and the distributional limit of its sample moments.
In [29, 30, 31], the limiting behavior of integrated and partial sums of supOU
processes is analyzed in relation to the growth rate of their moments, called
intermittency when the grow rate is fast. This leads to some conclusions regard-
ing their asymptotic finite dimensional distributions and to identify different
limiting theorems depending on the short or long memory shown by the supOU
process. In our paper, for short memory supOU processes and more general
MMA and MMA SV model we can additionally give, exploiting the weak de-
pendence properties, conditions under which functional central limit theorems
hold in distribution as well as consider general moments.

Later in the paper, we discuss a Generalized Method of Moments (GMM in
short) procedure to estimate the parameters of a supOU and supOU SV model.
Unfortunately, the classical and efficient maximum-likelihood approach seems
not applicable in this case, since the density of the supOU processes is not
known in general. However, the supOU process has a known moment structure
and GMM estimators can be defined as in [48]. In a semiparametric framework,
we consider in detail the case in which the random parameter A is Gamma
distributed and the moment functions are known in closed form. For the GMM
estimators of the supOU process and the return process of a supOU SV model
we show the asymptotic normality of both estimators (whose consistency has
been shown in [48]). Finally, via an explicit computation of the third and fourth
order cumulants of the supOU and return process, we give the explicit form of
the asymptotic covariance matrices of the GMM estimators.

Interestingly, our result can also be seen as a first step in obtaining an es-
timation theory for the ambit processes (homogeneous and stationary) which
include an additional multiplicative random input in the definition of an MMA
process, see [4, 5, 8].

The paper is organized as follows. In Section 2, the definition of a Lévy basis
and MMA process is given. In Section 3, the weak dependence properties of
an MMA process are discussed. In Section 4, the asymptotic distributions of
the moments of non-causal and causal MMA processes are shown. In Section
5, the definition of an MMA SV model is given and the θ-weak dependence
of the return process is analyzed along with its sample moments asymptotic.
In Section 6, the asymptotic normality of the GMM estimators of the supOU
process and of the supOU SV model is then proven.

2. Lévy bases and mixed moving average processes

We start with some preliminary results leading to the definition of an MMA
process. Throughout, we assume that all random variables and processes are
defined on a given complete probability space (Ω,A,P) equipped with a filtration
when relevant. Let S denote a non-empty topological space, B(S) the Borel σ-
field on S, π some probability measure on (S,B(S)) and Bb(S×R) the bounded
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Borel sets of S ×R. A Lévy basis, which is also known as an infinitely divisible
independently scattered random measure, is defined as follows.

Definition 2.1. A family Λ = {Λ(B) : B ∈ Bb(S × R)} of Rd-valued random
variables is called an R

d-valued Lévy basis on S × R if:

• the distribution of Λ(B) is infinitely divisible for all B ∈ Bb(S × R),
• for arbitrary n ∈ N and pairwise disjoint sets B1, . . . , Bn ∈ Bb(S ×R) the

random variables Λ(B1), . . . ,Λ(Bn) are independent and
• for any pairwise disjoint sets B1, B2, . . . ∈ Bb(S × R) with

⋃
n∈N

Bn ∈
Bb(S × R) we have, almost surely, Λ(

⋃
n∈N

Bn) =
∑

n∈N
Λ(Bn).

We restrict ourselves to time-homogeneous and factorisable Lévy bases, i.e.
Lévy bases with characteristic function

E[ei〈u,Λ(B)〉] = eΦ(u)Π(B) (2.1)

for all u ∈ Rd and B ∈ Bb(S×R), where Π = π×λ is the product of a probability
measure π on S and the Lebesgue measure λ on R and

Φ(u) = i〈γ, u〉 − 1

2
〈u,Σu〉+

∫
Rd

ei〈u,x〉 − 1− i〈u, x〉1[0,1](‖x‖) ν(dx)

is the cumulant transform of an infinitely divisible (i.d. in short) distribution
with characteristic triplet (γ,Σ, ν), where γ ∈ R

d, Σ ∈ S
+
d - i.e. the space of the

positive semi-definite matrices - and ν is a Lévy measure - a Borel measure on
R

d with ν(0) = 0 and
∫
Rd(‖x‖2 ∧ 1)ν(dx) < ∞. By L we denote the underlying

Lévy process associated with (γ,Σ, ν) and given by

Lt = Λ(S × (0, t]) and L−t = −Λ(S × (−t, 0)) for t ∈ R
+.

The quadruple (γ,Σ, ν, π) determines the distribution of the Lévy basis com-
pletely and therefore it is called the generating quadruple.

In the following, norms of vectors or matrices are denoted by ‖ · ‖. We are
going to work especially with the Euclidean norm or its induced operator norm
unless otherwise stated. However, due to the equivalence of all norms none of the
results in the paper depends on the choice of the norm. For more information
on Rd-valued Lévy bases see [43] and [45].

Following [43], it can be shown that a Lévy basis has a Lévy-Itô decomposi-
tion.

Theorem 2.1. Let Λ be a homogeneous and factorisable Rd-valued Lévy basis
on S×R with generating quadruple (γ,Σ, ν, π). Then there exists a modification
Λ̃ of Λ which is also a Lévy basis with generating quadruple (γ,Σ, ν, π) such that
there exists an R

d-valued Lévy basis Λ̃G on S × R
d with generating quadruple

(0,Σ, 0, π) and an independent Poisson random measure μ on (Rd×S×R,B(Rd×
S × R)) with intensity measure ν × π × λ which satisfy

Λ̃(B) = γ(π × λ)(B) + Λ̃G(B) +

∫
‖x‖≤1

∫
B

x (μ(dx, dA, ds)− dsπ(dA) ν(dx))
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+

∫
‖x‖>1

∫
B

x μ(dx, dA, ds) (2.2)

for all B ∈ Bb(S × R) and all ω ∈ Ω.
Provided

∫
‖x‖≤1

‖x‖ν(dx) < ∞, it holds that

Λ̃(B) = γ0(π × λ)(B) + Λ̃G(B) +

∫
Rd

∫
B

x μ(dx, dA, ds)

for all B ∈ Bb(S × R) with

γ0 := γ −
∫
‖x‖≤1

x ν(dx). (2.3)

Furthermore, the integral with respect to μ exists as a Lebesgue integral for
all ω ∈ Ω.

Here an R
d-valued Lévy basis Λ̃ on S × R is called a modification of a Lévy

basis Λ if Λ̃(B) = Λ(B) a.s. for all B ∈ Bb(S × R). We refer the reader to
[34, Section 2.1] for further details on the integration with respect to Poisson
random measures.

We also recall the following multivariate extension of [45, Theorem 2.7]. We
denote by A′ the transpose of a matrix A in what follows.

Theorem 2.2. Let Λ be an R
d-valued Lévy basis with generating quadruple

(γ,Σ, ν, π), f : S × R → Mn×d(R) be a B(S × R)-measurable function. Then f
is Λ-integrable as a limit in probability in the sense of Rajput and Rosiński [45],
if and only if∫

S

∫
R

∥∥∥f(A, s)γ+

∫
Rd

f(A, s)x
(
1[0,1](‖f(A, s)x‖)−1[0,1](‖x‖)

)
ν(dx)

∥∥∥ ds π(dA) < ∞,

(2.4)∫
S

∫
R

‖f(A, s)Σf(A, s)′‖ ds π(dA) < ∞, (2.5)

and ∫
S

∫
R

∫
Rd

(
1 ∧ ‖f(A, s)x‖2

)
ν(dx) ds π(dA) < ∞. (2.6)

If f is Λ-integrable, the distribution of
∫
S

∫
R
f(A, s) Λ(dA, ds) is infinitely di-

visible with characteristic triplet (γint,Σint, νint) given by

γint =

∫
S

∫
R

(
f(A, s)γ+

∫
Rd

f(A, s)x
(
1[0,1](‖f(A, s)x‖)−1[0,1](‖x‖)

)
ν(dx)

)
ds π(dA)

(2.7)

Σint =

∫
S

∫
R

f(A, s)Σf(A, s)′ ds π(dA) (2.8)

and

νint(B) =

∫
S

∫
R

∫
Rd

1B(f(A, s)x) ν(dx) ds π(dA) (2.9)

for all Borel sets B ⊆ R
n \ {0}.
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Implicitly, we assume that Σint or νint are different from zero throughout the
paper to rule out the deterministic case.

When the underlying Lévy process has finite variation we can do ω-wise
Lebesgue integration; that is, the integral can be obtained as a Lebesgue integral
for each ω ∈ Ω.

Corollary 2.1. Let Λ be an R
d-valued Lévy basis with characteristic quadruple

(γ, 0, ν, π) satisfying
∫
‖x‖≤1

‖x‖ν(dx) < ∞, and define γ0 as in (2.3), that is

Φ(u) = i〈u, γ0〉+
∫
(ei〈u,x〉 − 1)ν(dx). Furthermore, let f : S × R → Mn×d be a

B(S × R)-measurable function satisfying∫
S

∫
R

‖f(A, s)γ0‖ds π(dA) < ∞, (2.10)

and ∫
S

∫
R

∫
Rd

(
1 ∧ ‖f(A, s)x‖

)
ν(dx) ds π(dA) < ∞. (2.11)

Then, ∫
S

∫
R

f(A, s)Λ(dA, ds) =

∫
S

∫
R

f(A, s) γ0 dsπ(dA)

+

∫
Rd

∫
S

∫
R

f(A, s)xμ(dx, dA, ds), (2.12)

and the right hand side is a Lebesgue integral for every ω ∈ Ω. Moreover, the
distribution

∫
S

∫
R
f(A, s) Λ(dA, ds) is infinitely divisible with characteristic func-

tion

E

(
exp
(
i〈u,
∫
S

∫
R

f(A, s) Λ(dA, ds)〉
))

= ei〈u,γint,0〉+
∫
Rn (ei〈u,x〉−1)νint(dx) u ∈ R

n,

where

γint =

∫
S

∫
R

f(A, s)γ0 ds π(dA),

νint(B) =

∫
S

∫
R

∫
Rd

1B(f(A, s)x) ν(dx) ds π(dA) ∀B ∈ R
n \ {0}.

The above corollary follows immediately from the Lévy-Itô decomposition
(2.2) and the usual integration theory with respect to a Poisson random measure.
We notice that the result (2.12) is an immediate consequence of working with
an underlying Lévy process of finite variation, as no compensation for the small
jumps is needed if

∫
‖x‖≤1

‖x‖ν(dx) < ∞.

We can now introduce an MMA process driven by a Lévy basis.

Definition 2.2. Let Λ be an R
d-valued Lévy basis on S×R and let f : S×R →

Mn×d(R) be a B(S×R)-measurable function satisfying assumptions (2.4), (2.5)
and (2.6). Then, the process

Xt : =

∫
S

∫
R

f(A, t− s) Λ(dA, ds) (2.13)

is well defined for each t ∈ R, infinitely divisible and strictly stationary. It is
called a n-dimensional mixed moving average process and f its kernel function.
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We conclude the section giving sufficient conditions ensuring the finiteness of
moments of an MMA process.

Proposition 2.1. Let X be an n-dimensional MMA process driven by a Lévy
basis Λ satisfying the conditions of Theorem 2.2.

(i) If
∫
‖x‖>1

‖x‖r ν(dx) < ∞ and f ∈ Lr(S × R, π ⊗ λ) for r ∈ [2,∞), then

E[‖Xt‖r] < ∞.
(ii) If

∫
‖x‖>1

‖x‖r ν(dx) < ∞ and f ∈ Lr(S × R, π ⊗ λ) ∩ L2(S × R, π ⊗ λ) for

r ∈ (0, 2), then E[‖Xt‖r] < ∞.

Proof. Following [47, Corollary 25.8], we have to show that
∫
‖x‖>1

‖x‖r νint(dx) <
∞. Since ∫

‖x‖>1

‖x‖r νint(dx)

=

∫
S

∫
R

∫
Rd

‖f(A, s)x‖r1(1,∞)(‖f(A, s)x‖)ν(dx)dsπ(dA)

≤
∫
S

∫
R

∫
Rd

‖f(A, s)‖r‖x‖r1(1,∞)(‖x‖)ν(dx)dsπ(dA)

+

∫
S

∫
R

∫
Rd

‖f(A, s)‖r∨2‖x‖r∨21(0,1)(‖x‖)1(1,∞)(‖f(A, s)x‖)ν(dx)dsπ(dA),

we can conclude that (i) and (ii) follow, given that ν is a Lévy measure.

If the underlying Lévy process L is of finite variation, an analogous proof
gives the following results.

Corollary 2.2. Let X be an n-dimensional MMA process driven by a Lévy
basis Λ satisfying the conditions of Corollary 2.1.

(i) If
∫
‖x‖>1

‖x‖r ν(dx) < ∞ and f ∈ Lr(S × R, π ⊗ λ) for r ∈ [1,∞), then

E[‖Xt‖r] < ∞.
(ii) If

∫
‖x‖>1

‖x‖r ν(dx) < ∞ and f ∈ Lr(S × R, π ⊗ λ) ∩ L1(S × R, π ⊗ λ) for

r ∈ (0, 1), then E[‖Xt‖r] < ∞.

3. Weak dependence properties of a mixed moving average process

Let (At)t∈R be the filtration generated by Λ defined as the σ-algebras At gener-
ated by the set of random variables {Λ(B) : B ∈ B(S×(−∞, t])} for t ∈ R. If an
MMA process is adapted to (At)t∈R, we call it causal. Otherwise it is referred
to as being non-causal.

In the following we will refer by N to the set of the non negative integers, by
N

∗ to the set of the positive integers, by R
− to the set of negative real numbers

and by R
+ to the set of the non negative real numbers.
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3.1. Non-causal case

Let

F =
⋃

u∈N∗

Fu

where Fu is the class of bounded functions from (Rn)u to R Lipschitz with
respect to a distance δ1 on (Rn)u defined by

δ1(x
∗, y∗) =

u∑
i=1

δ(xi, yi), (3.1)

where x∗ = (x1, . . . , xu) and y∗ = (y1, . . . , yu) and xi, yi ∈ R
n for all i = 1, . . . , u.

We consider Rn equipped with the Euclidean norm and then δ(xi, yi) = ‖xi−yi‖.

Definition 3.1. A process X = (Xt)t∈R with values in Rn is called an η-weakly
dependent process if there exists a sequence (η(r))r∈R+ converging to 0, satisfying

|Cov(F (Xi1 , . . . , Xiu), G(Xj1 , . . . , Xjv ))| ≤ c (uLip(F )‖G‖∞ + vLip(G)‖F‖∞)η(r)
(3.2)

for all

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u, v) ∈ N
∗ × N

∗;
r ∈ R

+;
(i1, . . . , iu) ∈ Ru and (j1, . . . , jv) ∈ Rv,
with i1 ≤ . . . ≤ iu ≤ iu + r ≤ j1 ≤ . . . ≤ jv;
functions F : (Rn)u → R and G : (Rn)v → R belonging to F and satisfying
‖G‖∞ ≤ 1, ‖F‖∞ ≤ 1 and Lip(F ) + Lip(G) < ∞,

where Lip(F ) = supx �=y
|F (x)−F (y)|

‖x1−y1‖+‖x2−y2‖+...+‖xn−yn‖ ,

and where c is a constant independent of r. We call (η(r))r∈R+ the sequence of
the η-coefficients.

The above definition makes the asymptotic independence between past and
future explicit, this means that the past is progressively forgotten. In terms
of the initial process X, past and future are elementary events respectively
defined through finite-dimensional marginals as Au = (Xi1 , . . . , Xiu) and Bv =
(Xj1 , . . . , Xjv ) for i1 ≤ . . . ≤ iu ≤ iu + r ≤ j1 ≤ . . . ≤ jv and r ≥ 0.

The weak dependence property, as stated in Definition 3.1, depends upon the
class of functions H = {f ∈ F : ‖f‖∞ ≤ 1}. However, it can also be defined in F
as discussed in [23]. Note, a similar definition can be given for the strong mixing
property introduced by Rosenblatt [46]. Let σ(Au) and σ(Bv) be the σ-algebras
generated by the finite-dimensional marginals Au and Bv and F∗ =

⋃
u∈N

F∗
u

where F∗
u is the class of bounded functions from (Rn)u to R. We define

α(σ(Au), σ(Bv)) = sup
f,g∈H∗

|Cov(f(Au), g(Bv))|, (3.3)
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where H∗ = {f ∈ F∗ : ‖f‖∞ ≤ 1}, and then α-strong mixing coefficient is

α(r) = sup
u,v

max
i1 ≤ . . . ≤ iu
ji ≤ . . . ≤ jv
r = j1 − iu

α(σ(Au), σ(Bv)).

We notice that definition (3.2) holds for a set of functions in H whereas (3.3)
holds for functions belonging to H∗. This means that if a process X is strongly
mixing then it is also weakly dependent but the reverse implication does not
necessarily hold. The only known case of the equivalence of the two definitions
can be found in [22, Proposition 1] where it is shown that an η-weakly dependent
integer valued process satisfies the strong mixing condition.

We now show that a non-causal MMA process is an η-weakly dependent
process.

Proposition 3.1. Let Λ be an R
d-valued Lévy basis with characteristic quadru-

ple (γ,Σ, ν, π) such that E[L1] = 0 and
∫
‖x‖>1

‖x‖2ν(dx) < ∞, f : S × R →
Mn×d(R) a B(S ×R)-measurable function and f ∈ L2(S ×R, π⊗ λ). Then, the
resulting MMA process X is an η-weakly dependent process with coefficients

ηX(r) =
(∫

S

∫
R

tr(f(A,−s)ΣLf(A,−s)′)1(−∞,−r)(2s) ds π(dA)
) 1

2

(3.4)

+
(∫

S

∫
R

tr(f(A,−s)ΣLf(A,−s)′)1(r,+∞)(2s) ds π(dA)
) 1

2

,

for all r ≥ 0, where E[L1L
′
1] = ΣL = Σ+

∫
Rd xx

′ν(dx).

Proof. First, we define ∀t ∈ R and m ≥ 0 the truncated sequence

X
(m)
t =

∫
S

∫
R

f(A, t−s)1[−m,m](t−s) Λ(dA, ds)=

∫
S

∫ t+m

t−m

f(A, t−s) Λ(dA, ds).

(3.5)
Since the kernel function f is square integrable, we have that properties (2.5)
and (2.6) hold and so f is Λ-integrable (Theorem 2.2) and X is well defined.
Moreover, Proposition 2.1 holds, E[X2

t ] < ∞ for all t ∈ R and we can determine
an upper bound of the expectation

E‖Xt−X
(m)
t ‖=E

∥∥∥ ∫
S

∫ t−m

−∞
f(A, t−s) Λ(dA, ds)+

∫
S

∫ +∞

t+m

f(A, t−s)Λ(dA, ds)
∥∥∥

≤
(
E

∥∥∥∫
S

∫ t−m

−∞
f(A, t−s) Λ(dA, ds)

∥∥∥2) 1
2

+
(
E

∥∥∥∫
S

∫ ∞

t+m

f(A, t−s) Λ(dA, ds)
∥∥∥2) 1

2

.

Due to the stationarity of X the above estimation is independent of t and equal
to (∫

S

∫ −m

−∞
tr(f(A,−s)ΣLf(A,−s)′) dsπ(dA)

) 1
2

+
(∫

S

∫ ∞

m

tr(f(A,−s)ΣLf(A,−s)′) dsπ(dA)
) 1

2

(3.6)
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Let F and G belong to the class of bounded functions H, (u, v) ∈ N
∗ × N

∗,
r ∈ R

+, (i1, . . . , iu) ∈ R
u and (j1, . . . , jv) ∈ R

v with i1 ≤ . . . ≤ iu ≤ iu +

r ≤ j1 ≤ . . . ≤ jv, X
∗
i = (Xi1 , . . . , Xiu), X

∗
j = (Xj1 , . . . , Xjv), and X

∗(m)
i =

(X
(m)
i1

, . . . , X
(m)
iu

), X
∗(m)
j = (X

(m)
j1

, . . . , X
(m)
jv

) where for all m ≥ 0

X
(m)
iu

=

∫
S

∫ iu+m

iu−m

f(A, iu − s) Λ(dA, ds)

and (3.7)

X
(m)
j1

=

∫
S

∫ j1+m

j1−m

f(A, j1 − s) Λ(dA, ds).

Then, if j1 − m − iu − m ≥ 0, that can also be expressed as j1 − iu ≥ 2m,
Iu = S × [iu −m, iu +m] and J1 = S× [j1 −m, j1 +m] are disjoint sets or they
have intersection S×{j1 −m} when j1 − iu = 2m. Noting that π×λ(S×{j1 −
m}) = 0 by the definition of a Lévy basis, the two sequences (X

(m)
i )i1,...,iu and

(X
(m)
j )j1,...,jv are independent and so are F (X

∗(m)
i ) and G(X

∗(m)
j ). Therefore,

|Cov(F (X∗
i ), G(X∗

j ))|

≤ |Cov(F (X∗
i )− F (X

∗(m)
i ), G(X∗

j ))|+ |Cov(F (X
∗(m)
i ), G(X∗

j )−G(X
∗(m)
j ))|

≤ 2(E|F (X∗
i )− F (X

∗(m)
i )|+ E|G(X∗

j )−G(X
∗(m)
j )|)

the last relation comes from ‖F‖∞, ‖G‖∞ ≤ 1

≤ 2
(
Lip(F )

u∑
l=1

E‖Xil −X
(m)
il

‖+ Lip(G)
v∑

k=1

E‖Xjk −X
(m)
jk

‖
)

using the result (3.6) for m = r
2

≤ 2(uLip(F ) + vLip(G))

×
{(∫

S

∫
R

tr(f(A,−s)ΣLf(A,−s)′) 1(−∞,−r)(2s) dsπ(dA)
) 1

2

+
(∫

S

∫
R

tr(f(A,−s)ΣLf(A,−s)′) 1(r,+∞)(2s) dsπ(dA)
) 1

2
}

= 2(uLip(F ) + vLip(G))ηX(r),

which converges to zero as r goes to infinity by applying the dominated conver-
gence theorem.

The following Corollary establishes the η weak dependence of an MMA when
its underlying Lévy process has finite mean possibly different from zero.
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Corollary 3.1. Let Λ be an R
d-valued Lévy basis with characteristic quadruple

(γ,Σ, ν, π) and
∫
‖x‖>1

‖x‖2ν(dx) < ∞, f : S × R → Mn×d(R) a B(S × R)-

measurable function satisfying assumption (2.4) and f ∈ L2(S×R, π⊗λ). Then,
the resulting MMA process X is an η-weakly dependent process with coefficients

ηX(r) =
(∫

S

∫
R

tr(f(A,−s)ΣLf(A,−s)′)1(−∞,−r)(2s) ds π(dA)

+
∥∥∥ ∫

S

∫
R

f(A,−s)μ1(−∞,−r)(2s) ds π(dA)
∥∥∥2) 1

2

+
(∫

S

∫
R

tr(f(A,−s)ΣLf(A,−s)′)1(r,+∞)(2s) ds π(dA)

+
∥∥∥ ∫

S

∫
R

f(A,−s)μ1(r,+∞)(2s) ds π(dA)
∥∥∥2) 1

2

(3.8)

for all r ≥ 0, where E[L1] = μ = γ +
∫
‖x‖>1

x ν(dx) and E[L1L
′
1] = ΣL =

Σ+
∫
Rd xx

′ ν(dx).

Proof. Let X
(m)
t defined as in Proposition 3.1 for all t ∈ R and m ≥ 0. Then,

(3.6) becomes(∫
S

∫
R

tr(f(A,−s)ΣLf(A,−s)′)1(−∞,−m)(s) ds π(dA)

+
∥∥∥ ∫

S

∫
R

f(A,−s)μ1(−∞,−m)(s) ds π(dA)
∥∥∥2) 1

2

+
(∫

S

∫
R

tr(f(A,−s)ΣLf(A,−s)′)1(m,+∞)(s) ds π(dA)

+
∥∥∥ ∫

S

∫
R

f(A,−s)μ1(m,+∞)(s) ds π(dA)
∥∥∥2) 1

2

Proceeding as in the proof of Proposition 3.1, the η-coefficients (3.8) are ob-
tained.

When the underlying Lévy process is of finite variation we can lighten the
moment assumptions on the MMA process. The below result applies to all finite
variation MMA process with finite mean.

Corollary 3.2. Let Λ be an R
d-valued Lévy basis with characteristic quadruple

(γ, 0, ν, π) such that
∫
Rd ‖x‖ν(dx) < ∞, f : S × R → Mn×d(R) a B(S × R)-

measurable function and f ∈ L1(S ×R, π ⊗ λ) and define γ0 as in (2.3). Then,
the resulting MMA process X is an η-weakly dependent process with coefficients

ηX(r) =

∫
S

∫
R

∫
Rd

‖f(A,−s)x‖ 1(−∞,−r)
⋃
(r,+∞)(2s) ν(dx) ds π(dA) (3.9)

+

∫
S

∫
R

‖f(A,−s)γ0‖ 1(−∞,−r)
⋃
(r,+∞)(2s) ds π(dA),

for all r ≥ 0.
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Proof. As the kernel function f is in L1, the properties (2.10) and (2.11) are
satisfied. Thus, f is Λ-integrable andX well defined. Moreover, because of Corol-
lary 2.2, E[Xt] < ∞. Using the notation of Proposition 3.1, for all t ∈ R and
m ≥ 0

E‖Xt −X
(m)
t ‖ ≤

∫
S

∫
R

∫
Rd

‖f(A,−s)x‖1(−∞,−m)
⋃
(m,+∞)(s) ν(dx) ds π(dA),

+

∫
S

∫
R

‖f(A,−s)γ0‖ 1(−∞,−m)
⋃
(m,+∞)(s) ds π(dA),

where X
(m)
t is the truncated sequence (3.5). Thus, for m = r

2 and F , G, X∗
i and

X∗
j

|Cov(F (X∗
i ), G(X∗

j ))| ≤ 2(uLip(F ) + vLip(G))

×
{∫

S

∫
R

∫
Rd

‖f(A,−s)x‖ 1(−∞,−r)
⋃
(r,+∞)(2s) ν(dx) ds π(dA)

+

∫
S

∫
R

‖f(A,−s)γ0‖ 1(−∞,−r)
⋃
(r,+∞)(2s) ds π(dA)

}
= 2(uLip(F ) + vLip(G))ηX(r).

Finally, we conclude by applying the dominated convergence theorem.

The η coefficients have some hereditary properties. For example, let h : Rn →
R be a Lipschitz function, then if the sequence (Xt)t∈R is η-weakly dependent,
the same is true for the sequence (h(Xt))t∈R. The latter can be readily checked
directly based on Definition 3.1. Hereditary properties for functions that are not
Lipschitz on the whole space R

n can be found in [2] Lemma 6, for stationary
processes. Below follows a multivariate extension of this Lemma for h : Rn →
R

m.

Proposition 3.2. Let (Xt)t∈R be an R
n-valued stationary process and assume

there exists some constant C > 0 such that E[‖X0‖p]
1
p ≤ C, with p > 1, h : Rn →

R
m be a function such that h(0) = 0, h(x) = (h1(x), . . . , hm(x)) and

‖h(x)− h(y)‖ ≤ c ‖x− y‖(1 + ‖x‖a−1 + ‖y‖a−1), (3.10)

for x, y ∈ R
n, c > 0 and 1 ≤ a < p. Define (Yt)t∈R by Yt = h(Xt). If (Xt)t∈R

is an η-weakly dependent process, then (Yt)t∈R is an η-weakly dependent process
such that

∀ r ≥ 0, ηY (r) = C ηX(r)
p−a
p−1 ,

with the constant C independent of r.

Proof. For (u, v) ∈ N
∗ × N

∗, (i1, . . . , iu) ∈ R
u and (j1, . . . , jv) ∈ R

v with i1 ≤
. . . ≤ iu ≤ iu + r ≤ j1 ≤ . . . ≤ jv, let us call

Y ∗
i = (h(Xi1), . . . , h(Xiu)), Y ∗

j = (h(Xj1), . . . , h(Xjv )).



322 I. V. Curato and R. Stelzer

Let F : Rmu → R, G : Rmv → R bounded, such that ‖F‖∞, ‖G‖∞ ≤ 1, and
Lipschitz functions with respect to the distance (3.1), then

F (Y ∗
i ) = F (h(Xi1), . . . , h(Xiu)), G(Y ∗

j ) = F (h(Xj1), . . . , h(Xjv )),

and

F (M)(Y ∗
i ) = F (h(X

(M)
i1

), . . . , h(X
(M)
iu

)), G(M)(Y ∗
j ) = F (h(X

(M)
j1

), . . . , h(X
(M)
jv

)),

where X
(M)
i = Xi1‖Xi‖≤M and w.l.o.g M > 1. According to Definition 3.1, we

start by analyzing

|Cov(F (Y ∗
i ), G(Y ∗

j ))| ≤ |Cov(F (Y ∗
i )− F (M)(Y ∗

i ), G(Y ∗
j ))|

+ |Cov(F (M)(Y ∗
i ), G(Y ∗

j )−G(M)(Y ∗
j ))|+ |Cov(F (M)(Y ∗

i ), G
(M)(Y ∗

j ))|.
(3.11)

We have that

|Cov(F (Y ∗
i )− F (M)(Y ∗

i ), G(Y ∗
j ))| ≤ 2‖G‖∞E|F (Y ∗

i )− F (M)(Y ∗
i )| (3.12)

≤ 2Lip(F )

u∑
l=1

E‖h(Xil)− h(X
(M)
il

)‖.

By assumption, for each l = 1, . . . , u

E(‖h(Xil)−h(X
(M)
il

)‖) ≤ cE(‖Xil−X
(M)
il

‖(1+‖Xil‖a−1+‖X(M)
il

‖a−1)) (3.13)

≤ cE(‖Xil‖1‖Xil
‖>M ) + cE(‖Xil‖a−1‖Xil‖1‖Xil

‖>M )

+cE(‖Xil‖1‖Xil
‖>M )Ma−1

≤ cE
(
‖Xil‖

‖Xil‖p−1

Mp−1
1‖Xil

‖>M

)
+ cE

(
‖Xil‖a−1 ‖Xil‖p−a

Mp−a
‖Xil‖1‖Xil

‖>M

)

+cE
(
‖Xil‖

‖Xil‖p−1

Mp−1
1‖Xil

‖>M

)
Ma−1

≤ cE(‖Xil‖p1‖Xil
‖>M )M1−p + 2cE(‖Xil‖p1‖Xil

‖>M )Ma−p

≤ 3cE(‖Xil‖p)Ma−p.

Therefore (3.12) is less than or equal to 6c uLip(F )CpMa−p. An analogous
bound holds for |Cov(F (M)(Y ∗

i ), G(Y ∗
j )−G(M)(Y ∗

j ))|. Moreover, F (M) is a Lip-
schitz function on the set A = {x = (x1, . . . , xu) ∈ R

nu : ‖xi‖ ≤ M for i =
1, . . . , u}. Let Z(M),W (M) ∈ A, then

|F (h(Z
(M)
1 ), . . . , h(Z(M)

u ))− F (h(W
(M)
1 ), . . . , h(W (M)

u ))|

≤ Lip(F )

u∑
l=1

‖h(Z(M)
l )− h(W

(M)
l )‖
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≤ c Lip(F )

u∑
l=1

‖Z(M)
l −W

(M)
l ‖(1 + ‖Z(M)

l ‖a−1‖W (M)
l ‖a−1)

≤ 3c Lip(F )Ma−1
u∑

l=1

‖Z(M)
l −W

(M)
l ‖.

The same argument holds also for the function G(M).

X
(M)
t is a process with values in A and η-weakly dependent with the same

coefficients as Xt, then

|Cov(F (M)(Y ∗
i ), G

(M)(Y ∗
j ))| =

≤ 3c (uLip(F ) + vLip(G))Ma−1ηX(r).

To conclude, (3.11) is less than or equal to

6c (uLip(F ) + vLip(G))
(Ma−1

2
ηX(r) + CpMa−p

)
.

By choosing M = ηX(r)
1

1−p and calling C = 6c(Cp + 1
2 ), we obtain that

ηY (r) = C ηX(r)
p−a
p−1 .

For a polynomial function h(x) we have

Corollary 3.3. Let (Xt)t∈R be an R
n-valued stationary process and assume

there exists some constant C > 0 such that E[‖X0‖p]
1
p ≤ C, with p > 1, h : Rn →

R
m be a function such that h(0) = 0 and h(x) = (h1(x), . . . , hm(x)) with hs(·)

for s = 1, . . . ,m being a polynomial with degree at most a for 1 ≤ a < p. Define
(Yt)t∈R by Yt = h(Xt) for t ∈ R an R

m-valued process. If (Xt)t∈R is an η-weakly
dependent process, then (Yt)t∈R is an η-weakly dependent process such that

∀ r ≥ 0, ηY (r) = C ηX(r)
p−a
p−1 ,

with the constant C independent of r.

Proof. The function h satisfies the assumption (3.10) for each polynomial degree
a less than p. Proposition 3.2 can then be applied.

3.2. Causal case

Definition 3.2. A process X = (Xt)t∈R with values in R
n is called a θ-weakly

dependent process if there exists a sequence (θ(r))r∈R+ converging to 0, satisfying

|Cov(F (Xi1 , . . . , Xiu), G(Xj1 , . . . , Xjv))| ≤ c (vLip(G)‖F‖∞)θ(r) (3.14)
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for all

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(u, v) ∈ N
∗ × N

∗,
r ∈ R

+;
(i1, . . . , iu) ∈ R

u and (j1, . . . , jv) ∈ R
v,

with i1 ≤ . . . ≤ iu ≤ iu + r ≤ j1 ≤ . . . ≤ jv;
functions F : (Rn)u→R and G : (Rn)v→R respectively belonging to H∗and H,

where Lip(G) = supx �=y
|G(x)−G(y)|

‖x1−y1‖+‖x2−y2‖+...+‖xn−yn‖ ,

and where c is a constant independent of r. We call (θ(r))r∈R+ the sequence of
the θ-coefficients.

The θ-weak dependence condition is stronger than the one for η-weak de-
pendence. Hence, moment conditions and decay demands on the rate of the
θ-coefficients for central limit theorems are typically weaker than in the case of
η-weak dependence, see [18]. It should be also noticed that η(r) ≤ θ(r) and that
in the case of integer valued processes, [22], the θ-weak dependence implies the
strong mixing condition.

A causal MMA process is defined as follows

Definition 3.3. Let Λ be an R
d-valued Lévy basis on S × R

+ and let f :
S×R

+ → Mn×d(R) be a B(S×R
+)-measurable function satisfying assumptions

(2.4), (2.5) and (2.6). Then, the process

Xt : =

∫
S

∫ t

−∞
f(A, t− s) Λ(dA, ds) (3.15)

is well defined for each t ∈ R, infinitely divisible and strictly stationary. It is
called a causal n-dimensional mixed moving average process and f its kernel
function.

Proposition 3.3. Let Λ be an R
d-valued Lévy basis with characteristic quadru-

ple (γ,Σ, ν, π) such that E[L1] = 0 and
∫
‖x‖>1

‖x‖2ν(dx) < ∞, f : S × R
+ →

Mn×d(R) a B(S × R
+)-measurable function and f ∈ L2(S × R

+, π ⊗ λ). Then,
the resulting causal MMA process X is a θ-weakly dependent process with coef-
ficients

θX(r) =
(∫

S

∫ −r

−∞
tr(f(A,−s)ΣLf(A,−s)′) ds π(dA)

) 1
2

(3.16)

for all r ≥ 0, where E[L1L
′
1] = ΣL = Σ+

∫
Rd xx

′ν(dx).

Proof. First, we define ∀t ∈ R and m ≥ 0 the truncated sequence

X
(m)
t =

∫
S

∫ t

−∞
f(A, t−s)1[0,m](t−s) Λ(dA, ds) =

∫
S

∫ t

t−m

f(A, t−s) Λ(dA, ds).

(3.17)
Since the kernel function f is square integrable, we have that properties (2.5)
and (2.6) hold and then f is Λ-integrable (Theorem 2.2) and X is well defined.
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Thus, because of Proposition 2.1, E[X2
t ] < ∞ for all t ∈ R and we can determine

an upper bound of the expectation

E‖Xt −X
(m)
t ‖ = E

∥∥∥ ∫
S

∫ t−m

−∞
f(A, t− s) Λ(dA, ds)

∥∥∥
≤
(
E

∥∥∥∫
S

∫ t−m

−∞
f(A, t− s) Λ(dA, ds)

∥∥∥2) 1
2

.

Due to the stationarity of X the above estimation is independent of t and equal
to (∫

S

∫ −m

−∞
tr(f(A,−s)ΣLf(A,−s)′) dsπ(dA)

) 1
2

(3.18)

Let F and G belong respectively to the class of bounded functions H∗ and H,
(u, v) ∈ N

∗×N
∗, r ∈ R

+, (i1, . . . , iu) ∈ R
u and (j1, . . . , jv) ∈ R

v with i1 ≤ . . . ≤
iu ≤ iu+r ≤ j1 ≤ . . . ≤ jv, X

∗
i = (Xi1 , . . . , Xiu) and X

∗(m)
j = (X

(m)
j1

, . . . , X
(m)
jv

)
where for all m ≥ 0

Xiu =

∫
S

∫ iu

−∞
f(A, iu − s) Λ(dA, ds)

and (3.19)

X
(m)
j1

=

∫
S

∫ j1

j1−m

f(A, j1 − s) Λ(dA, ds).

Then, if j1 − m − iu ≥ 0, which can also be expressed as j1 − iu ≥ m,
Iu = S × (−∞, iu] and J1 = S × [j1 − m, j1] are disjoint sets or they have
intersection S×{j1−m} when j1−m = iu. Noting that π×λ(S×{j1−m}) = 0,

by the definition of a Lévy basis, the two sequences (Xi)i1,...,iu and (X
(m)
j )j1,...,jv

are independent and so are F (X∗
i ) and G(X

∗(m)
j ). Therefore, let m = r

|Cov(F (X∗
i ), G(X∗

j ))| ≤ |Cov(F (X∗
i ), G(X∗

j )−G(X
∗(m)
j ))|

+|Cov(F (X∗
i ), G(X

∗(m)
j ))| ≤ 2E|G(X∗

j )−G(X
∗(m)
j )|

the last relation comes from ‖F‖∞ ≤ 1

≤ 2Lip(G)

v∑
k=1

E‖Xjk −X
(m)
jk

‖

using the result (3.18)

≤ 2vLip(G)
(∫

S

∫ −r

−∞
tr(f(A,−s)ΣLf(A,−s)′) dsπ(dA)

) 1
2

= 2vLip(G) θX(r),

which converges to zero as r goes to infinity by applying the dominated conver-
gence theorem.
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Also in the case of θ-weak dependence, the θ-coefficients change when the
underlying Lévy process has mean different from zero.

Corollary 3.4. Let Λ be an R
d-valued Lévy basis with characteristic quadruple

(γ,Σ, ν, π) such that
∫
‖x‖>1

‖x‖2ν(dx) < ∞, f : S × R
+ → Mn×d(R) a B(S ×

R
+)-measurable function satisfying assumption (2.4) and f ∈ L2(S×R

+, π⊗λ).
Then, the resulting causal MMA process X is a θ-weakly dependent process with
coefficients

θX(r) =
( ∫

S

∫ −r

−∞ tr(f(A,−s)ΣLf(A,−s)′) ds π(dA)

+‖
∫
S

∫ −r

−∞ f(A,−s)μds π(dA)‖2
) 1

2
(3.20)

for all r ≥ 0, where E[L1] = μ = γ +
∫
‖x‖>1

x ν(dx) and E[L1L
′
1] = ΣL =

Σ+
∫
Rd xx

′ ν(dx).

We conclude the study of the θ-weak dependence properties of an MMA
process with the computation of the θ-coefficients for an underlying Lévy process
of finite variation.

Corollary 3.5. Let Λ be an R
d-valued Lévy basis with characteristic quadruple

(γ, 0, ν, π) such that
∫
Rd ‖x‖ν(dx) < ∞, f : S × R

+ → Mn×d(R) a B(S × R
+)-

measurable function and L1(S×R
+, π⊗λ) and define γ0 as in (2.3). Then, the

resulting causal MMA process X is a θ-weakly dependent process with coefficients

θX(r) =

∫
S

∫ −r

−∞

∫
Rd

‖f(A,−s)x‖ ν(dx) ds π(dA) (3.21)

+

∫
S

∫ −r

−∞
‖f(A,−s)γ0‖ ds π(dA),

for all r ≥ 0.

Proof. The kernel function f is in L1 then the properties (2.10) and (2.11) are
satisfied and then f is Λ-integrable and X well defined and with finite mean by
Corollary 2.2. Using the notation in Proposition 3.3, for all t ∈ R and m ≥ 0

E‖Xt −X
(m)
t ‖ ≤

∫
S

∫ −m

−∞

∫
Rd

‖f(A,−s)x‖ ν(dx) ds π(dA)

+

∫
S

∫ −m

−∞
‖f(A,−s)γ0‖ ds π(dA),

(3.22)

where X
(m)
t is the truncated sequence (3.17). Thus, for m = r and F , G, X∗

i

and X∗
j

|Cov(F (X∗
i ), G(X∗

j ))|

≤ 2vLip(G)
(∫

S

∫ −r

−∞

∫
Rd

‖f(A,−s)x‖ ν(dx) ds π(dA)
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+

∫
S

∫ −r

−∞
‖f(A,−s)γ0‖ ds π(dA)

)
= 2vLip(G) θX(r).

Finally, we conclude by applying the dominated convergence theorem.

Remark 3.1. The η-coefficients of a causal MMA process can be chosen to be
equal to the θ-coefficients for each r ≥ 0. This can be easily seen by noticing
that the truncated sequences (3.7) in Proposition 3.1 are equal to the truncated
sequences (3.19) in Proposition 3.3. This leads to select the parameter m = r
in both proofs. Moreover, (3.6) is equal to (3.18) and then ηX(r) = θX(r). The
same observations hold when comparing the results in Corollary 3.1 or Corollary
3.2 with Corollary 3.4 or Corollary 3.5.

An example of a causal MMA process is the supOU process studied in [3]
and [10]. Let us analyze its weak dependence properties in the univariate case.
We consider the kernel function f(A, s) = eAs1[0,∞)(s), A ∈ R

−, s ∈ R and Λ a
1-dimensional Lévy basis on R−×R with generating quadruple (γ,Σ, ν, π) such
that ∫

|x|>1

log(|x|) ν(dx) < ∞, and

∫
R−

− 1

A
π(dA) < ∞, (3.23)

then the process

Xt =

∫
R−

∫ t

−∞
eA(t−s) Λ(dA, ds) (3.24)

is well defined for each t ∈ R and strictly stationary. For the supOU process, A
represents a random mean reversion parameter.

If E[L1] = 0 and
∫
|x|>1

|x|2ν(dx) < ∞, (3.24) is θ-weakly dependent with

coefficients

θX(r) =
(∫

R−

∫ −r

−∞
e−2Asσ2 ds π(dA)

) 1
2

=
[
− σ2

∫
R−

e2Ar

2A
π(dA)

] 1
2

(3.25)

= Cov(X0, X2r)
1
2 ,

by using [10, Theorem 3.11] and where σ2 = Σ+
∫
R
x2ν(dx).

If E[L1] = μ and
∫
|x|>1

|x|2ν(dx) < ∞, the supOU process is θ-weakly de-

pendent with coefficients

θX(r) =
(
Cov(X0, X2r) +

4μ2

σ4
Cov(X0, Xr)

2
) 1

2

. (3.26)

If
∫
R
|x|ν(dx) < ∞, γ0 = γ −

∫
|x|≤1

x ν(dx) > 0 and ν(R−) = 0, i.e. the under-

lying Lévy process is a subordinator, then (3.24) admits θ-coefficients

θX(r) = −μ

∫
R−

eAr

A
π(dA), (3.27)
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and when in addition
∫
|x|>1

|x|2ν(dx) < ∞

θX(r) =
2μ

σ2
Cov(X0, Xr). (3.28)

Note that in the finite superposition case strong mixing of the supOU process
has been shown in [36, 37] based on Masuda’s result [40]. As this crucially hinges
on an embedding into a finite dimensional Markov process this does not readily
extend to the general case.

Remark 3.2. The necessary and sufficient condition
∫
R− − 1

A π(dA) for the
supOU process to exist is satisfied by many continuous and discrete distributions
π, see [48, Section 2.4] for more details. For example, a probability measure π
being absolutely continuous with density π′ = (−x)αl(x) and regularly varying
at zero from the left with α > 0 (see [13]), i.e. l is slowly varying at zero,
satisfies the above condition. If moreover, l(x) is continuous in (−∞, 0) and
limx→0− l(x) > 0 exists, it holds that

Cov(X0, Xr) ∼
C

rα
, with a constant C > 0 and r ∈ R

+

where for α ∈ (0, 1) the supOU process exhibits long memory and for α > 1 short
memory, see [28, Definition 3.1.2]. Concrete examples where the covariances are
calculated explicitely, in this set-up, can be found in [7].

Remark 3.3. A natural question is whether one can improve the weak depen-
dence coefficients that we obtain.

[24, Lemma 4.1] shows that for stationary processes with finite m-moments
(m > 2 + δ, for δ > 0) being λ-weakly dependent (cf. [24, Definition 2.1]) and
thus η-weakly dependent

|Cov(X0, Xr)| ≤ 9E[‖X0‖m]
1

m−1 λ(r)
m−2
m−1 .

The above arguments can be easily adapted to the causal case and θ-weak depen-
dence where we likewise get

|Cov(X0, Xr)| ≤ 9E[‖X0‖m]
1

m−1 θ(r)
m−2
m−1 .

If the stationary process has finite moments of any order we thus obtain the
inequalities

|Cov(X0, Xr)| ≤ 9 η(r) and |Cov(X0, Xr)| ≤ 9 θ(r). (3.29)

Equation (3.28) shows that our weak dependence coefficients are sharp for
a supOU process having as underlying Lévy process a subordinator with finite
second moment. Note that “sharp” here means that the right and left hand side
of the inequalities (3.29) only differ by a constant, as for the weak dependence
coefficients one usually - like in the upcoming CLTs - only cares about their
summability/integrability in r. The inequalities (3.29) compared to (3.25) and
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(3.26) show that we might obtain smaller weak dependence coefficients for the
supOU process having an underlying Lévy process of infinite variation. In fact
following Remark 3.2, if Cov(X0, Xr) ∼ r−α for α > 0, then the left hand side
in (3.29) decays like r−α whereas the right hand side decays like r−α/2.

Inspecting the proofs of Corollaries 3.2 and 3.5 and Propositions 3.1 and 3.3,
where the η and θ-coefficients are determined, the crucial issue is that we use

the equality (2.12) to compute a bound of the term E‖Xt −X
(m)
t ‖ in the finite

variation case, whereas we bound E‖Xt−X
(m)
t ‖ by means of a second moment in

the infinite variation one. We do the latter because to the best of our knowledge
there are no sharper bounds known for the first absolute moment of an infinitely
divisible distribution that are suitably expressible in terms of the characteristic
triplet in this set-up.

To conclude, we state the hereditary property of a θ-weakly dependent pro-
cess.

Proposition 3.4. Let (Xt)t∈R be an R
n-valued stationary process and assume

there exists some constant C > 0 such that E[‖X0‖p]
1
p ≤ C, with p > 1, h : Rn →

R
m be a function such that h(0) = 0, h(x) = (h1(x), . . . , hm(x)) and

‖h(x)− h(y)‖ ≤ c ‖x− y‖(1 + ‖x‖a−1 + ‖y‖a−1),

for x, y ∈ R
n, c > 0 and 1 ≤ a < p. Define (Yt)t∈R by Yt = h(Xt). If (Xt)t∈R is

a θ-weakly dependent process, then (Yt)t∈R is a θ-weakly dependent process such
that

∀ r ≥ 0, θY (r) = C θX(r)
p−a
p−1 ,

with the constant C independent of r.

Proof. Analogous to Proposition 3.2.

4. Sample moments of an MMA process

We consider a sample of N observations of a univariate MMA process {XΔ, . . . ,
XNΔ}, where Δ is a positive integer.

XiΔ : =

∫
S

∫
R

f(A, iΔ− s)Λ(dA, ds), for i ∈ Z. (4.1)

If the underlying Lévy process L has finite first moment, we define X̃iΔ =
XiΔ − E[X0].

The sample mean of the process X is defined as

1

N

N∑
i=1

XiΔ (4.2)

and its sample autocovariance function at lag k ∈ N.

1

N

N∑
j=1

X̃jΔX̃(j+k)Δ. (4.3)
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W.l.o.g, we consider below E[X0] = 0 and Δ = 1 in order to lighten the
notations and, when the asymptotic properties of the sample auto-covariance
functions are investigated, we focus on the features of the processes

Yj,k = XjXj+k −D(k) for all k ∈ N, (4.4)

where we denote by D(k) the covariances at lag k defined, when E[X0] = 0, by

D(k) = Cov(X0, Xk) = E[X0Xk] =

∫
S

∫
R

f(A,−s)ΣLf(A, k − s)′ ds π(dA),

(4.5)
for k ∈ Z, where E[L1L

′
1] = ΣL = Σ+

∫
Rd xx

′ν(dx).
We start by analyzing the asymptotic properties of the sample mean (4.2)

for a non-causal and a causal MMA process.

Theorem 4.1. Let Λ be an R
d-valued Lévy basis with characteristic quadruple

(γ,Σ, ν, π) such that E[L1] = 0 and
∫
‖x‖>1

‖x‖2+δν(dx) < ∞, for some δ > 0,

f : S×R → M1×d(R) a B(S×R)-measurable function and f ∈ L2+δ(S×R, π⊗
λ) ∩ L2(S × R, π ⊗ λ). If (Xi)i∈Z as defined in (4.1) is an η-weakly dependent
process with coefficients ηX(r) = O(r−β) and β > 4 + 2

δ , then

σ2
η =
∑
k∈Z

Cov(X0, Xk) (4.6)

is finite, non-negative and as N → ∞

1√
N

N∑
i=1

Xi
d→ N (0, σ2

η). (4.7)

Proof. We have that E[X2+δ
0 ] < ∞ for δ > 0 because of Proposition 2.1. More-

over, the η-weakly dependent process X satisfies the sufficient conditions of [24,
Theorem 2.2]. The absolute summability of the series (4.6) follows and so the
asymptotic normality (4.7).

In the case of a causal MMA process, the required decay rate of the θ coeffi-
cients is lower than in the η-weak dependence case.

Theorem 4.2. Let Λ be an R
d-valued Lévy basis with characteristic quadruple

(γ,Σ, ν, π) such that E[L1] = 0 and
∫
‖x‖>1

‖x‖2+δν(dx) < ∞, for some δ > 0,

f : S × R
+ → M1×d(R) a B(S × R

+)-measurable function and f ∈ L2+δ(S ×
R

+, π ⊗ λ) ∩ L2(S × R
+, π ⊗ λ). If (Xi)i∈Z as defined in (4.1) is a θ-weakly

dependent process with coefficients θX(r) = O(r−α) and α > 1 + 1
δ , then

σ2
θ =
∑
k∈Z

Cov(X0, Xk) (4.8)

is finite, non-negative and as N → ∞

1√
N

N∑
i=1

Xi
d→ N (0, σ2

θ). (4.9)



Weak dependence and GMM estimation of MMA 331

Proof. The MMA process has finite 2 + δ-moment for δ > 0 (Proposition 2.1)
and is ergodic, as shown in [27]. By Lemma 2 in [18], the condition D(2, θ/2, X0)
holds. Then, by Corollary 1 in [18] and the ergodicity of the process X, (4.9)
follows by applying [20, Theorem 1].

Remark 4.1. In the special case of the supOU process, being representable as a
finite sum of independent Ornstein-Uhlenbeck processes with gamma or inverse
gaussian marginals, a comparable result can be found in [37, Theorem 2].

Remark 4.2. Theorem 4.1 and 4.2 as well as all the upcoming central limit
theorems can be also formulated as functional central limit theorems, following
[24] and [18] respectively. However, we state the theorems just for the sample
moments we are interested in (and which we are using in Section 6) to lighten
the notations.

For example, denote for t ∈ [0, 1] and n ≥ 1

Sn(t) = X1 + · · ·+X[nt],

in the case of a non-causal MMA process, and

S∗
n(t) = X1 + · · ·+X[nt] + (nt− [nt])X[nt]+1

for a causal MMA process. Then, under the assumptions of Theorem 4.1 or 4.2,
n− 1

2Sn(t) converges in distribution in the Skorohod space D[0, 1] to σηWand

n− 1
2S∗

n(t) converges in distribution in the space C[0, 1] to σθW , respectively.
Here, W denotes a standard Brownian motion.

Remark 4.3. In the finite variation case, (4.7) or (4.9), respectively, hold under∫
‖x‖>1

‖x‖2+δν(dx) < ∞, for some δ > 0, and f ∈ L2+δ(S×R, π⊗λ)∩L1(S×
R, π ⊗ λ) or f ∈ L2+δ(S × R

+, π ⊗ λ) ∩ L1(S × R
+, π ⊗ λ), respectively.

Remark 4.4. Assuming that f is not equal to zero π-almost everywhere and
that f ≥ 0 or f ≤ 0, the asymptotic variance in Theorems 4.1 and 4.2 is not
degenerate. This is the case for example when working with the supOU process
(3.24). Moreover, it is worthy to observe that the assumptions in Theorem 4.2
clearly indicate that we obtain asymptotic normality of the sample mean for a
causal MMA process just in the short memory case.

To find an asymptotic distribution for the sample autocovariance functions
(4.3), we first show that (Yj,k)j∈Z are η-weakly or θ-weakly dependent processes.
In addition to the hereditary properties in Proposition 3.2 and 3.4, we need to
establish when the weak dependence properties of a univariate MMA process
are inherited by the process Zt = (Xt, Xt+1, . . . , Xt+k) for all k ∈ N.

Proposition 4.1. Let Λ be an R
d-valued Lévy basis with generating quadruple

(γ,Σ, ν, π) and f : S × R → M1×d(R) be a B(S × R)-measurable function sat-
isfying the assumptions of Theorem 2.2. If for all t ∈ R, X is a non-causal or
causal MMA as defined in (2.13) or (3.15) respectively, then

Zt =

∫
S

∫
R

g(A, t− s) Λ(dA, ds),
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where g(A, s) =

⎛
⎜⎜⎝

f(A, s)
f(A, s− 1)

. . .
f(A, s− k)

⎞
⎟⎟⎠ is a B(S×R)-measurable function with values

in Mk+1×d(R) and k ∈ N, is an MMA process. Moreover, if X satisfies the
assumptions of Proposition 3.1 (Corollary 3.1) or Proposition 3.3 (Corollary
3.4) then Z is η or θ−weakly dependent respectively with coefficients

ηZ(r) = D ηX(r − 2k) for r ≥ 2k or θZ(r) = D θX(r − k) for r ≥ k, (4.10)

where D = (k+1)
1
2 . In the case when the assumptions of Corollaries 3.2 or 3.5

hold, the process Z is respectively η or θ-weakly dependent with coefficients

ηZ(r) = D ηX(r − 2k) for r ≥ 2k or θZ(r) = D θX(r − k) for r ≥ k, (4.11)

and D = k + 1.

Proof. For k = 1, the first step of the proof consists of checking that g is a
Λ-integrable function as prescribed by Theorem 2.2. W.l.o.g, we consider in our
calculations the norm

‖(x, y)‖ = ‖x‖+ ‖y‖

for x, y ∈ M1×d(R). We have that

∫
S

∫
R

∥∥∥g(A, s)γ+∫
Rd

g(A, s)x
(
1[0,1](‖g(A, s)x‖)−1[0,1](‖x‖)

)
ν(dx)

∥∥∥ ds π(dA)
(4.12)

=

∫
S

∫
R

∥∥∥( f(A, s)
f(A, s− 1)

)
γ

+

∫
Rd

(
f(A, s)

f(A, s− 1)

)
x
(
1[0,1]

(∥∥∥( f(A, s)
f(A, s− 1)

)
x
∥∥∥)−1[0,1](‖x‖)

)
ν(dx)

∥∥∥ ds π(dA)

=

∫
S

∫
R

∥∥∥f(A, s)γ +

∫
Rd

f(A, s)x
(
1[0,1](‖g(A, s)x‖)− 1[0,1](‖x‖)

)
ν(dx)

∥∥∥ ds π(dA)

+

∫
S

∫
R

∥∥∥f(A, s−1)γ+

∫
Rd

f(A, s−1)x
(
1[0,1](‖g(A, s)x‖)−1[0,1](‖x‖)

)
ν(dx)

∥∥∥ ds π(dA).

Noting that

1[0,1](‖g(A, s)x‖) ≤ 1[0,1](‖f(A, s)x‖)

and

1[0,1](‖g(A, s)x‖) ≤ 1[0,1](‖f(A, s− 1)x‖),

it then holds that (4.12) is finite.
Let us pass to the second condition∫

S

∫
R

‖g(A, s)Σg(A, s)′‖ ds π(dA)
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≤
∫
S

∫
R

(
‖f(A, s)Σf(A, s)′‖+ ‖f(A, s− 1)Σf(A, s− 1)′‖

)
ds π(dA).

Therefore, f being a kernel of an MMA process, the above integral is finite.
Finally, we have ∫

S

∫
R

∫
Rd

(
1 ∧ ‖g(A, s)x‖2

)
ν(dx) ds π(dA)

≤ 2

∫
S

∫
R

∫
Rd

(
1 ∧ ‖f(A, s)x‖2

)
ν(dx) ds π(dA)

+2

∫
S

∫
R

∫
Rd

(
1 ∧ ‖f(A, s− 1)x‖2

)
ν(dx) ds π(dA) < ∞.

Thus the kernel function g is a Λ-integrable function. By induction the statement
can be shown for each k ∈ N. Because all the assumptions of Theorem 2.2 hold,
we have that Z is an MMA process.

Depending now on the properties of the underlying Lévy process, we can
distinguish three different scenarios for the η and θ-weak dependence. When X
satisfies the assumptions of Proposition 3.1,

ηZ(r) =
(∫

S

∫
R

tr(g(A,−s)ΣLg(A,−s)′) 1(−∞,−r)(2s) dsπ(dA)
) 1

2

+
(∫

S

∫
R

tr(g(A,−s)ΣLg(A,−s)′) 1(r,+∞)(2s) dsπ(dA)
) 1

2

≤
(∫

S

∫
R

tr(f(A,−s)ΣLf(A,−s)′) 1(−∞,−r)(2s) dsπ(dA) + . . .

+

∫
S

∫
R

tr(f(A, k − s)ΣLf(A, k − s)′) 1(−∞,−r)(2s) dsπ(dA)
) 1

2

+
(∫

S

∫
R

tr(f(A,−s)ΣLf(A,−s)′) 1(r,+∞)(2s) dsπ(dA) + . . .

+

∫
S

∫
R

tr(f(A, k − s)ΣLf(A, k − s)′) 1(r,+∞)(2s) dsπ(dA)
) 1

2

≤ (k + 1)
1
2

(∫
S

∫
R

tr(f(A,−s)ΣLf(A,−s)′) 1(−∞,−r+2k)(2s) dsπ(dA)
) 1

2

+
(∫

S

∫
R

tr(f(A,−s)ΣLf(A,−s)′) 1(r−2k,+∞)(2s) dsπ(dA)
) 1

2

≤ (k + 1)
1
2 ηX(r − 2k),

for each r > 2k. Thus, Z is a k + 1-dimensional MMA process with η coeffi-
cients

ηZ(r) = (k + 1)
1
2 ηX(r − 2k).
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If X satisfies the assumptions of Proposition 3.3, it can be shown similarly that
Z is θ-weakly dependent with coefficients

θZ(r) = (k + 1)
1
2 θX(r − k).

Similar calculations follow in the finite variation case leading to the state-
ments (4.11).

Proposition 4.2. Let Λ be an R
d-valued Lévy basis with characteristic quadru-

ple (γ,Σ, ν, π) and
∫
‖x‖>1

‖x‖2+δν(dx) < ∞, for some δ > 0, f : S × R →
M1×d(R) a B(S×R)-measurable function and f ∈ L2+δ(S×R, π⊗λ)∩L2(S×
R, π ⊗ λ). If (Xi)i∈Z as defined in (4.1) is η or θ-weakly dependent respectively
with coefficients ηX or θX , then for all k ≥ 0 the processes (Yj,k)j∈Z are respec-
tively η or θ-weakly dependent with coefficients

ηY (r) = C(
√
2ηX(r − 2k))

δ
1+δ or θY (r) = C(

√
2θX(r − k))

δ
1+δ .

If L is a process of finite variation and f ∈ L2+δ(S×R, π⊗λ)∩L1(S×R, π⊗λ),
then

ηY (r) = C(2ηX(r − 2k))
δ

1+δ or θY (r) = C(2θX(r − k))
δ

1+δ .

The constant C, appearing in the η and θ-coefficients, is independent of r.

Proof. Let us consider a 2-dimensional process Z = (Xj , Xj+k)j∈Z with k ∈ N.
The η or θ coefficients of the process Z are

ηZ(r) =
√
2ηX(r − 2k) or θZ(r) =

√
2θX(r − k)

by Proposition 4.1. The 2 + δ moment, for δ > 0, of the MMA process exists
because of Proposition 2.1. Let us now consider h : R2 → R as h(x1, x2) = x1x2.
The function h satisfies assumption (3.10), for p = 2+δ, c = 1 and a = 2. Then,
Proposition 3.2 or 3.4 applies and h(Z) = XjXj+k, as well as Yj,k, has either
coefficients

ηY (r) = C(
√
2ηX(r − 2k))

δ
1+δ or θY (r) = C(

√
2θX(r − k))

δ
1+δ .

The finite variation case follows easily by applying Proposition 4.1 and using
the coefficients (4.11).

We can now give a distributional limit theorem for the processes Yj,k, namely
determining the asymptotic distribution of

1

N

N∑
j=1

Yj,k for all k ∈ N.

Corollary 4.1. Let Λ be an R
d-valued Lévy basis with characteristic quadruple

(γ,Σ, ν, π) such that E[L1] = 0,
∫
‖x‖>1

‖x‖4+δν(dx) < ∞, for some δ > 0,

f : S×R → M1×d(R) a B(S×R)-measurable function and f ∈ L4+δ(S×R, π⊗
λ) ∩L2(S ×R, π ⊗ λ). Let (Yj,k)j∈Z be defined as in (4.4) for k ∈ N. If (Xi)i∈Z
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as defined in (4.1) is η-weakly dependent with coefficients ηX(r) = O(r−β) such
that β > (4 + 2

δ )(
3+δ
2+δ ) or it is θ-weakly dependent with coefficients θX(r) =

O(r−α) such that α > (1 + 1
δ )(

3+δ
2+δ ), then

γ2
k =
∑
l∈Z

Cov(Y0,k, Yl,k) =
∑
l∈Z

Cov(X0Xk, XlXl+k)

is finite, non-negative and as N → ∞

1√
N

N∑
j=1

Yj,k
d→ N (0, γ2

k) (4.13)

Proof. Since the results of Proposition 2.1 apply, by using [24, Theorem 2.2] in
the case of an η-weakly dependent process or [20, Theorem 1] when the process
X is θ-weakly dependent, the distributional limit (4.13) holds.

Remark 4.5. The asymptotic variance γ2
k can be expressed in terms of the

fourth order cumulant of a zero mean MMA process and its covariances as fol-
lows. Let us consider an R4-valued MMA process X = (Xi, Xj , Xk, Xl) with
(i, j, k, l) ∈ R

4 and kernel function g(A, s) = [f(A, s − i), f(A, s − j), f(A, s −
k), f(A, s − l)]′ with values in M4×d(R). The Lévy basis Λ, underlying the def-
inition of X, satisfies the assumptions of Corollary 4.1. Thus, X is infinitely
divisible with characteristic triplet (γint,Σint, νint) as given in Theorem 2.2 and
characteristic exponent

log(E[ei〈u,X〉]) = i〈γint, u〉−
1

2
〈u,Σintu〉+

∫
Rd

ei〈u,x〉−1−i〈u, x〉1[0,1](‖x‖) νint(dx).

We denote by κ(i, j, k, l) the fourth order cumulant of X. By [28, Proposition
4.2.2.]

κ(i, j, k, l) = E[XiXjXkXl]− E[XiXj ]E[XkXl]− E[XiXk]E[XjXl]

− E[XiXl]E[XjXk].

On the other hand, cf. [28, Definition 4.2.1],

κ(i, j, k, l) =
∂4

∂u1∂u2∂u3∂u4
log(E[ei〈u,X〉])

∣∣∣
u1=u2=u3=u4=0

=

∫
S

∫
R

∫
Rd

f(A, s−i)xx′ f(A, s−j)′ f(A, s−k)xx′ f(A, s−l)′ ν(dx) ds π(dA).

(4.14)
Then, ∀(l, k) ∈ R

2

Cov(Y0,k, Yl,k) = κ(0, k, l, l + k) +D(l)2 +D(k + l)D(k − l).

where D(l) is defined in (4.5).
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Analogously, the formula to compute the third order cumulant κ(i, j, k) can
be derived. In fact,

κ(i, j, k) =

∫
S

∫
R

∫
Rd

f(A, s− i)xx′ f(A, s− j)′ f(A, s− k)x ν(dx) ds π(dA)

(4.15)
and for a zero mean MMA process holds that E[XiXjXk] = κ(i, j, k). This
computation is useful in Section 6.

Corollary 4.2. Let Λ be an R
d-valued Lévy basis with characteristic quadruple

(γ,Σ, ν, π) such that E[L1] = 0,
∫
‖x‖>1

‖x‖4+δν(dx) < ∞, for some δ > 0,

f : S×R → M1×d(R) a B(S×R)-measurable function and f ∈ L4+δ(S×R, π⊗
λ)∩L2(S×R, π⊗λ). Let Zj = (Yj,0, . . . , Yj,k) for all j ∈ Z. If (Xi)i∈Z is η-weakly
dependent with coefficients ηX(r) = O(r−β) such that β > (4 + 2

δ )(
3+δ
2+δ ) or it is

θ-weakly dependent with coefficients θX(r) = O(r−α) such that α > (1+ 1
δ )(

3+δ
2+δ ),

then respectively for each p, q ∈ {0, . . . , k} with k ∈ N,∑
l∈Z

Cov(X0Xp, XlXl+q) =
∑
l∈Z

k(0, p, l, l+q)+D(l)D(l+q−p)+D(q+l)D(l−p),

where k(l, i, j, k) is defined in (4.14) and D(k) in (4.5) for each l, i, j, k ∈ Z, is
finite and as N → ∞

1√
N

N∑
j=1

Zj
d→ Nk+1(0,Ξ)

where Ξ is equal to[ ∑
l∈Z

Cov(X2
0 , X

2
l )

∑
l∈Z

Cov(X2
0 , XlXl+1) . . .

∑
l∈Z

Cov(X2
0 , XlXl+k)

. . .
∑

l∈Z
Cov(X0X1, XlXl+1) . . .

∑
l∈Z

Cov(X0X1, XlXl+k)
. . . . . . . . .

∑
l∈Z

Cov(X0Xk, XlXl+k)

]

and positive semidefinite.

Proof. Let us consider the vector Z as defined in Proposition 4.1. Given the
assumptions of the Corollary, Z is η-weakly dependent with coefficients ηZ(r) =
DηX(r−2k) or θ-weakly dependent with coefficients θZ(r) = DθX(r−k) because
of Proposition 4.1 and given that the results of Proposition 2.1 apply. We apply
now the function f : Rk+1 → R

k+1 to the vector Z such that

f(Zj) =

⎛
⎜⎝

X2
j
...
XjXj+k

⎞
⎟⎠ = Zj +

⎛
⎜⎝

D(0)
...
D(k)

⎞
⎟⎠ .

The assumptions of Proposition 3.2 hold with p = 4 + δ, c = 1, a = 2,

then f(Zt) is η or θ-weakly dependent with coefficients C(DηX(r − 2k))
2+δ
3+δ or

C(DθX(r− k))
2+δ
3+δ . The process Z is then a process with the same weak depen-

dence coefficients as f(Zt). For all a ∈ R
k+1, a′Z is an η or a θ-weakly dependent
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process, because a linear function is Lipschitz, having the same coefficients as
the process Z. By [24, Theorem 2.2] or [20, Theorem 1], then

1√
N

N∑
j=1

a′Zj
d−→ N (0, a′Σa)

as N → ∞. Applying the Cramer-Wold device, the asymptotic normality of the
vector Z is shown.

Remark 4.6. In this paper we consider the classical case of equidistant obser-
vations. In many applications different sampling schemes are also highly rele-
vant and for some special cases results have been obtained. For example, [14]
considers the asymptotics of the autocovariance function for Lévy-driven moving
average processes sampled at an independent renewal sequence and [26] consider
the asymptotics of the pathwise Fourier transform/periodogram for Lévy-driven
CARMA processes sampled at deterministic irregular grids. Considering inde-
pendent renewal sampled Lévy-driven MMA processes is beyond the scope of the
present paper and the content of future research just starting in [15] where the
preservation of strong mixing and weak dependence properties is discussed in
general.

5. Sample moments of an MMA SV model

Let us consider a Lévy basis with characteristic quadruple (γ, σ2, ν, π) and values
in R and the respective univariate casual MMA process X with kernel function
f : (S × R

+) → R. Its dependence structure is given by

Cov(X0, Xt) =

∫
S

∫ 0

−∞
f(A,−s)σ2f(A, t− s) ds dπ with t ∈ R

and controlled by the probability measure π. If we choose a causal MMA process
as the model for the volatility of a logarithmic asset price, its dependence struc-
ture can be modeled in a versatile way by choosing the distribution π. Then,
the typical decay of the autocovariances of the squared returns, see [17], can be
more easily reproduced.

Let the logarithmic asset price (Jt)t∈R+ be

Jt =

∫ t

0

√
XsdWs, J0 = 0, (5.1)

where (Wt)t∈R+ is a standard Brownian motion and (Xt)t∈R+ is an adapted,
stationary and square-integrable causal MMA process with values in R

+ being
independent of W . We call (5.1) an MMA SV model. In the literature, stochas-
tic volatility models where X is given by a sum of independent non-Gaussian
OU type process are given in [6, 9] which have been later extended to supOU
processes in [10, 11]. The latter is an example of an MMA SV model whose
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dependence structure is going to be analysed in this section. Other financial
market models using supOU processes as building blocks and allowing for short
and long range dependence can be found in [33, 36, 37].

We show the θ-weak dependence of the return process, over equidistant time
intervals [(t− 1)Δ, tΔ]

Yt = JtΔ − J(t−1)Δ =

∫ tΔ

(t−1)Δ

√
XsdWs, (5.2)

where for convenience of notation we consider t ∈ R, and the asymptotic nor-
mality of its related sample moments. To this aim, the moments of the return
process by using the Itô isometry, as in [44], turn out to be determined as a
function of the moments of the integrated process

Vt =

∫ tΔ

(t−1)Δ

Xs ds, (5.3)

for t ∈ R and Δ a positive constant. Note that, (Vt)t∈R corresponds to the
integrated volatility process computed over a time interval [(t − 1)Δ, tΔ]. It is
immediate from the definitions (5.2) and (5.3) that the strict stationarity of
the process (Xs)s∈R and its square-integrability imply the stationarity and the
square-integrability of the processes (Yt)t∈R, (Y

2
t )t∈R and (Vt)t∈R. Note that,

under the square integrability assumption, the moments of the return process
can be determined up to the 4th order.

In general, we consider all processes adapted with respect to the filtration
(At)t∈R generated by the set of random variables {Λ(B) : B ∈ B(S × (−∞, t])}
and the increments of the Brownian motion {(Wu −Ws)s≤u≤t} for all t ∈ R.

In order to ensure that the stochastic integrals involving an MMA process as
integrand are well defined we assume throughout that

(H) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

The Lévy basis Λ has generating quadruple (γ, 0, ν, π) such that∫
R
|x|ν(dx) < ∞, γ −

∫
|x|≤1

xν(dx) ≥ 0 and ν(R−) = 0;

the kernel function f is B(S × R
+)-measurable, non-negative

and satisfies the assumptions of Corollary 2.1;
Xs =

∫ s
−∞ f(A, s− u) Λ(dA, du) is adapted and càdlàg.

Sufficient conditions for an MMA process to have càdlàg sample paths can
be found in [42, Theorem 3.1] and the references therein.

We now show the weak dependence properties of the return process.

Proposition 5.1. Let W be a standard Brownian motion independent of the
Lévy basis Λ and assume Assumptions (H) are satisfied. Then, the return process
defined in (5.2) is θ-weakly dependent with coefficients

θY (r) =
√
Δ θX((r − 1)Δ), (5.4)

where (θX(r))r∈R+ are the coefficients (3.21), for all r ≥ 1.
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Proof. The assumptions (H) imply that the resulting MMA process is non-
negative and the process Yt is well defined and square-integrable by Corollary

2.2. Let Y
(m)
t be defined for m ≥ 0

Y
(m)
t =

∫ tΔ

(t−1)Δ

√
X

(m)
s dWs

where X
(m)
s is defined in (3.17). Then,

E[|Yt − Y
(m)
t |] = E

[∣∣∣ ∫ tΔ

(t−1)Δ

√
Xs −

√
X

(m)
s dWs

∣∣∣] (5.5)

≤ E

[ ∫ tΔ

(t−1)Δ

(
√
Xs −

√
X

(m)
s )2 ds

] 1
2

by using the inequality
√
a+ b−√

a ≤
√
b for all a, b ∈ R+

≤ E

[ ∫ tΔ

(t−1)Δ

|Xs −X(m)
s | ds

] 1
2

≤ E

[ ∫ tΔ

(t−1)Δ

∣∣∣ ∫
S

∫ s−m

−∞
f(A, s− u) Λ(dA, du)

∣∣∣] 1
2 ≤
√

ΔθX(m).

The last inequality follows by (3.22).
Let F and G belong respectively to the class of bounded functions H∗ and H,

(u, v) ∈ N∗×N∗, r ∈ R+, (i1, . . . , iu) ∈ Ru and (j1, . . . , jv) ∈ Rv with i1 ≤ . . . ≤
iu ≤ iu + r ≤ j1 ≤ . . . ≤ jv, Y

∗
i = (Yi1 , . . . , Yiu) and Y

∗(m)
j = (Y

(m)
j1

, . . . , Y
(m)
jv

)
where for all m ≥ 0

Yiu =

∫ iuΔ

(iu−1)Δ

√
Xs dWs and Y

(m)
j1

=

∫ j1Δ

(j1−1)Δ

√
X

(m)
s dWs.

Then, if (j1 − 1)Δ−m− iuΔ ≥ 0 that can also be expresses as j1 − iu ≥ m
Δ +1,

Iu = S × (−∞, iuΔ] and J1 = S × [(j1 − 1)Δ−m, j1Δ] are disjoint sets or have
as intersection a set of measure zero when iuΔ = (j1 − 1)Δ−m, i.e. π × λ(S ×
{iuΔ}) = 0. Then, by the definition of a Lévy basis, the integrands of Yiu and

Y
(m)
j1

are independent and so are Yiu and Y
(m)
j1

because of the independence

of W and the Lévy basis. Then, the sequences (Yi)i≤iu and (Y
(m)
j )j≥j1 are

independent and so are F (Y ∗
i ) and G(Y

∗(m)
j ). Therefore, let m = (r − 1)Δ

|Cov(F (Y ∗
i ), G(Y ∗

j ))|

≤ |Cov(F (Y ∗
i ), G(Y ∗

j )−G(Y
∗(m)
j ))|+ |Cov(F (Y ∗

i ), G(Y
∗(m)
j ))|

≤ 2E|G(Y ∗
j )−G(Y

∗(m)
j )|
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the last relation comes from ‖F‖∞ ≤ 1

≤ 2Lip(G)
v∑

k=1

E|Yjk − Y
(m)
jk

|

using (5.5)

= 2vLip(G)
√
Δ θX((r − 1)Δ),

which converges to zero as r goes to infinity by applying the dominated conver-
gence theorem.

Let us consider a supOU process X defined as in (3.24) such that the un-
derlying Lévy process L is a subordinator. It can be shown that the process is
adapted and càdlàg under the assumptions (ii) and (iii) of [10, Theorem 3.12].
Then, Assumptions (H) are satisfied and we can define a supOU SV model and
the resulting return process

Yt =

∫ tΔ

(t−1)Δ

√∫
R−

∫ s

−∞
eA(s−u) Λ(dA, du)dWs. (5.6)

By applying Proposition 5.1, Y is θ-weakly dependent with coefficients

θY (r) =

√
−Δμ

∫
R−

eAΔ(r−1)

A
π(dA), (5.7)

where μ is the mean of the underlying Lévy process.

We consider a sample of N observations of Y and we define the following sample
moments for the return process.

The sample mean

1

N

N∑
i=1

Y1+i, (5.8)

the sample autocovariance function for k ∈ N

1

N

N∑
j=1

Y1+jY1+j+k, (5.9)

and the fourth order (non-centered) sample moments for k ∈ N

1

N

N∑
j=1

Y 2
1+jY

2
1+j+k. (5.10)

When the asymptotic properties of the sample autocovariance functions are
investigated, we focus on the processes

Wj,k = Y1+jY1+j+k − T (k), (5.11)



Weak dependence and GMM estimation of MMA 341

where we denote by T (k) the covariances of order k defined by

T (k) = E[Y1Y1+k],

whereas in the case of the fourth order sample moments on

W̃j,k = Y 2
1+jY

2
1+j+k −D∗(k)− E[V1]

2, (5.12)

where we denote by D∗(k) the covariances of order k defined by

D∗(k) = Cov(V1, V1+k)

where V is the integrated process defined in (5.3).
Analogous to Proposition 4.1, we show that the θ-weak dependence of the

return process is inherited by the process Zt = (Yt, Yt+1, . . . , Yt+k) for all k ∈ N.

Lemma 5.1. Let Λ be a Lévy basis and X an MMA process satisfying Assump-
tions (H) and W be a standard Brownian motion independent of Λ. We consider
the process

Zt =

⎛
⎜⎝

Yt

...
Yt+k

⎞
⎟⎠ =

⎛
⎜⎜⎝
∫ (t)Δ
(t−1)Δ

√
Xs dWs

...∫ (t+k)Δ

(t+k−1)Δ

√
Xs dWs

⎞
⎟⎟⎠ =

∫ (t+k)Δ

(t−1)Δ

Gs dWs

where Yt is the return process defined in (5.2) and Gs is an Rk+1 × R valued

process defined as Gs =

⎛
⎜⎜⎜⎝

√
Xs1((t−1)Δ,tΔ](s)√
Xs1(tΔ,(t+1)Δ](s)
...√

Xs1((t+k−1)Δ,(t+k)Δ](s)

⎞
⎟⎟⎟⎠. Then, Z is θ-weakly

dependent with coefficients

θZ(r) = D∗√ΔθX((r − k − 1)Δ)

for r ≥ k + 1 being D∗ = (k + 1) and θX given in (3.21).

Proof. For m ≥ 0, let Z
(m)
t be

Z
(m)
t =

∫ (t+k)Δ

(t−1)Δ

√
G

(m)
s dWs

where G
(m)
s =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
X

(m)
s 1((t−1)Δ,tΔ](s)√

X
(m)
s 1(tΔ,(t+1)Δ](s)
...√

X
(m)
s 1((t+k−1)Δ,(t+k)Δ](s)

⎞
⎟⎟⎟⎟⎟⎟⎠
. Then,
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E[‖Zt − Z
(m)
t ‖] = E

[∥∥∥ ∫ (t+k)Δ

(t−1)Δ

Gs −G(m)
s dWs

∥∥∥] (5.13)

≤ E

[ ∫ (t+k)Δ

(t−1)Δ

tr((Gs −G(m)
s )(Gs −G(m)

s )′) ds
] 1

2

by means of the triangular inequality

≤ E

[ ∫ tΔ

(t−1)Δ

(
√

Xs−
√

X
(m)
s )2 ds

] 1
2

+ . . .+E

[ ∫ (t+k)Δ

(t+k−1)Δ

(
√

Xs−
√

X
(m)
s )2 ds

] 1
2

≤ (k + 1)
√
ΔθX(m).

Proceeding as in Proposition 4.1 and in Proposition 5.1 the claim follows.

It can also be shown that the process Zt is mixing, and thus ergodic, pro-
ceeding as in the proof of [27, Theorem 4.2].

The following asymptotic result holds for (5.8).

Theorem 5.1. We assume that Assumptions (H) hold and that∫
|x|>1

|x|1+δν(dx) < ∞, for some δ > 0, and f belongs to L1+δ(S × R
+, π ⊗

λ) ∩ L1(S × R
+, π ⊗ λ). If (Yi)i∈R as defined in (5.2) is a θ-weakly dependent

process such that the volatility process X admits coefficients θX(r) = O(r−α)

with α > 2
(
1 + 1

δ

)
, then σ2

Y = V ar(Y1) is non-negative and as N → ∞

1√
N

N∑
i=1

Y1+i
d→ N (0, σ2

Y ). (5.14)

Proof. Corollary 2.2 applies and the return process is ergodic because of its
mixing properties shown in [27, Theorem 4.2]. [20, Theorem 1] can be applied,
analogously as in Theorem 4.2, assuring the result (5.14) where the asymp-
totic variance of the sample mean is given by the absolute summable series∑

l∈Z Cov(Y1, Y1+l) = V ar(Y1).

Applying Proposition 5.1 and Proposition 3.4, the following can be easily
shown.

Proposition 5.2. We assume that Assumptions (H) hold and that∫
‖x‖>1

‖x‖2+δν(dx) < ∞, for some δ > 0, and f belongs to L2+δ(S×R
+, π⊗λ)∩

L1(S × R
+, π ⊗ λ). If (Yi)i∈Z as defined in (5.2) is θ-weakly dependent process

with coefficients θY as in (5.4), then, for all k > 0 Z = (Wj,0,Wj,1, . . . ,Wj,k)j∈Z

is θ-weakly dependent with coefficients

θZ(r) = C(D∗√ΔθX((r − k − 1)Δ))
δ

1+δ ,

Moreover, if we assume that
∫
‖x‖>1

‖x‖4+δν(dx) < ∞, for some δ > 0, and

f belongs to L4+δ(S × R, π ⊗ λ) ∩ L1(S × R, π ⊗ λ), then the process Z̃ =
(W̃j,0, W̃j,1, . . . , W̃j,k)j∈Z is θ-weakly dependent with coefficients
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θZ̃(r) = C(D∗√ΔθX((r − k − 1)Δ))
δ

3+δ .

The constant C is independent of r and D∗ = k + 1 in the above formulas.

Corollary 5.1. We assume that Assumptions (H) hold and that∫
‖x‖>1

‖x‖2+δν(dx) < ∞, for some δ > 0, and f belongs to L2+δ(S × R
+, π ⊗

λ) ∩ L1(S ×R
+, π ⊗ λ). If (Zi)i∈Z as defined in Proposition 5.2 is θ-weakly de-

pendent such that the volatility process X admits coefficients θX(r) = O(r−α)
with α > (1 + 1

δ )(
2+2δ

δ ), then for each p, q ∈ {0, . . . , k} with k ∈ N,∑
l∈N

Cov(W0,p,Wl,q)

are finite and as N → ∞

1√
N

N∑
j=1

Zj
d→ Nk+1(0,Ψ)

where Ψ is equal to[ ∑
l∈Z

Cov(Y 2
1 , Y 2

l+1)
∑

l∈Z
Cov(Y 2

1 , Yl+1Yl+2) . . .
∑

l∈Z
Cov(Y 2

1 , Yl+1Yl+k+1)

. . .
∑

l∈Z
Cov(Y1Y2, Yl+1Yl+2) . . .

∑
l∈Z

Cov(Y1Y2, Yl+1Yl+k+1)
. . . . . . . . .

∑
l∈Z

Cov(Y1Yk+1, Yl+1Yl+k+1)

]
.

and positive semidefinite.

Proof. Since Corollary 2.2 holds, Z is a θ-weakly dependent process with co-

efficients given in Proposition 5.2, θZ(r) = C(D∗√ΔθX((r − k − 1)Δ))
δ

1+δ . For
all a ∈ R

k+1, a′Z is a θ-weakly dependent process, because a linear function is
Lipschitz, and ergodic having the same θ-coefficients as the process Z. Under
the assumptions of the Corollary, [20, Theorem 1] is then applied and

1√
N

N∑
j=1

a′Zj
d−→ N (0, a′Ψa)

as N → ∞. Applying the Cramer-Wold device, the asymptotic normality of the
vector Z is shown.

Corollary 5.2. We assume that Assumptions (H) hold and that∫
‖x‖>1

‖x‖4+δν(dx) < ∞, for some δ > 0, and f belongs to L4+δ(S × R+, π ⊗
λ) ∩ L1(S ×R

+, π ⊗ λ). If (Z̃i)i∈Z as defined in Proposition 5.2 is θ-weakly de-
pendent such that the volatility process X admits coefficients θX(r) = O(r−α)
with α > (1 + 1

δ )(
6+2δ

δ ), then for each p, q ∈ {0, . . . , k} with k ∈ N,∑
l∈N

Cov(W̃0,p, W̃l,q)

are finite and as N → ∞

1√
N

N∑
j=1

Z̃j
d→ Nk+1(0,M)
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where M is equal to[∑
l∈Z

Cov(Y 4
1 , Y 4

l+1)
∑

l∈Z
Cov(Y 4

1 , Y 2
l+1Y

2
l+2) . . .

∑
l∈Z

Cov(Y 4
1 , Y 2

l+1Y
2
l+k+1)

. . .
∑

l∈Z
Cov(Y 2

1 Y 2
2 , Y 2

l+1Y
2
l+2) . . .

∑
l∈Z

Cov(Y 2
1 Y 2

2 , Y 2
l+1Y

2
l+k+1)

. . . . . . . . .
∑

l∈Z
Cov(Y 2

1 Y 2
k+1, Y

2
l+1Y

2
l+k+1)

]
.

is positive semidefinite.

Proof. The proof follows as in Corollary 5.1, using the θ coefficients of the
process Z̃ as determined in Proposition 5.2.

Remark 5.1. In view of Section 6, let us give explicit formulas of the third
and fourth order cumulant of an integrated process V and of the covariances
Cov(W̃0,p, W̃l,q) for p, q ∈ {0, . . . , k} and k ∈ N under the assumptions of
Corollary 5.2. Let us consider an integrated process as defined in (5.3) with
mean E[V1] = C∗. For all (i, j, k, l) ∈ R

4, we call K(i, j, k) and K(i, j, k, l) the
centered cumulant or order three and four which are respectively equal to

K(i, j, k) =

∫ (i+1)Δ

iΔ

∫ (j+1)Δ

jΔ

∫ (k+1)Δ

kΔ

κ(s, t, u) ds dt du, (5.15)

with κ(s, t, u) given in (4.15), and

K(i, j, k, l) =

∫ (i+1)Δ

iΔ

∫ (j+1)Δ

jΔ

∫ (k+1)Δ

kΔ

∫ (l+1)Δ

lΔ

κ(s, t, u, z) ds dt du dz, (5.16)

where κ(s, t, u, z) is defined in (4.14). Moreover,

D∗(l) = Cov(V1, V1+l) =

∫ Δ

0

∫ (l+1)Δ

lΔ

D(u− s)dsdu, (5.17)

where D(·) is the covariance function, as in (4.5), of the centered MMA pro-
cess underlying the definition of the integrated process.Hence, by means of the
Itô formula, the independence of the process (Xt)t∈R with (Wt)t∈R and using
arguments similar to the formula (40) in [44]

Cov(W̃0,p, W̃l,q)

= K(0, p, l, l+ q) +C∗(K(0, p, l) +K(0, p, l+ q) +K(p, l, l+ q) +K(0, l, l+ q))

+C∗2(D∗(l − p) +D∗(l + q − p) +D∗(l) +D∗(l + q)) +D∗(l)D∗(l + q − p)

+D∗(l + q)D∗(l − p) +A(0, p, l, l + q),

where A(i, j, k, l) is defined in Table 1 for (i, j, k, l) ∈ R
4.
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Table 1

Explicit closed formula for the summand A(i, j, k, l) for (i, j, k, l) ∈ Z4.

(i, j, k, l) A(i, j, k, l)
{l �= i �= j �= k} 0

{i �= j} ∧ {j = k = l} 12
∫ (i+1)Δ
iΔ

∫ (j+1)Δ
jΔ

∫ (j+1)Δ
jΔ

∫ s
jΔ E[XtXzXsXu]dudsdzdt

{i �= j �= k} ∧ {k = l} 4
∫ (i+1)Δ
iΔ

∫ (j+1)Δ
jΔ

∫ (k+1)Δ
kΔ

∫ s
kΔ E[XtXzXsXu]dudsdzdt

{i = j} ∧ {k = l} ∧ {i �= k} 4
∫ (i+1)Δ
iΔ

∫ (i+1)Δ
iΔ

∫ (k+1)Δ
kΔ

∫ s
kΔ E[XtXzXsXu]dudsdzdt

+4
∫ (i+1)Δ
iΔ

∫ t
iΔ

∫ (k+1)Δ
kΔ

∫ (k+1)Δ
kΔ E[XtXzXsXu]dudsdzdt

+16
∫ (i+1)Δ
iΔ

∫ (k+1)Δ
kΔ

∫ t
iΔ

∫ s
kΔ E[XtXsXzXu]dudsdzdt

{i = j = k = l} E

[
24
( ∫ (i+1)Δ

iΔ Xt dt
)2 ∫ (i+1)Δ

iΔ Xs
∫ s
iΔ Xududs

]
+E

[
96
∫ (i+1)Δ
iΔ

∫ s
iΔ Xu

∫ u
iΔ Xz dzduds

]

6. Generalized method of moments for the supOU process and
supOU SV model

In this section, we apply the developed asymptotic theory to determine the
asymptotic normality of GMM estimators of the supOU process and of the
supOU SV model defined in [48].

Let X and Y be a supOU process and a return process as respectively defined
in (3.24) and (5.6). We assume,∫

|x|>1

x2ν(dx) < ∞,

then, as shown in [48, Theorem 2.3 and Theorem 2.8], the supOU process X
and the return process Y have known moments given by

E[X0] =− μ

∫
R−

1

A
π(dA), Var[X0] = −σ2

∫
R−

1

2A
π(dA),

Cov[X0, XkΔ] = −σ2

∫
R−

eAkΔ

2A
π(dA),

and

E[Y1] = 0, V ar[Y1] = −Δμ

∫
R−

1

A
π(dA), Cov(Y1, Y1+k) = 0,

E[Y 2
1 ] = −Δμ

∫
R−

1

A
π(dA),

V ar(Y 2
1 ) = −3σ2

∫
R−

1

A2

(eAΔ

A
− 1

A
−Δ
)
π(dA) + 2

(
−Δμ

∫
R−

1

A
π(dA)

)2
,

Cov(Y 2
1 , Y

2
1+k) = −σ2

∫
R−

1

2A3
(sk+1 − 2sk + sk−1)π(dA),

where μ = E[L1] and σ2 = V ar[L1] are the mean and variance of the underlying
Lévy process and sk := eAΔk.
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Assumption 6.1. Let us assume that the mean reversion parameter A is
Gamma distributed. That is, we assume that π is the distribution of Bξ where
B ∈ R− and ξ is Γ(απ, 1) distributed with απ > 2.

We emphasize that setting the second parameter of the Gamma distribution
equal to one does not restrict the model since this is equivalent to varying
B. Under Assumption 6.1, we observe the decay of the autocovariances of the
supOU process as given in Remark 3.2, notice that in this set-up α = απ − 1.

The moments of the supOU process X and of the return process Y , under
Assumption 6.1, have been computed in [48, Section 2.2]

E[X0] =− μ

B(απ − 1)
, Var[X0] = − σ2

2B(απ − 1)
,

Cov[X0, XkΔ] = −σ2(1−BkΔ)1−απ

2B(απ − 1)
,

(6.1)

E[Y1] = 0 V ar(Y1) = − Δμ

B(απ − 1)
, Cov(Y1, Y1+k) = 0,

E[Y 2
1 ] = − Δμ

B(απ − 1)
,

V ar(Y 2
1 ) = −3σ2 (1−BΔ)3−απ − 1−ΔB(απ − 3)

B3(απ − 1)(απ − 2)(απ − 3)
+ 2
(
− Δμ

B(απ − 1)

)2
,

Cov(Y 2
1 , Y

2
1+k) = − σ2(fk+1 − 2fk + fk−1)

2B3(απ − 1)(απ − 2)(απ − 3)
,

(6.2)

where fk := (1 − BΔk)3−απ . Therefore, the moment structure, up to the 2nd
order for the supOU process and up to the 4th order for the return process,
depends only on the parameter vector θ := (μ, σ2, απ, B).

6.1. SupOU process

Suppose we observe a sample {Xt : t = 1Δ, . . . , NΔ} for the supOU process
with Δ a positive constant. We construct the following moment functions, as in
[48], by using the auto-covariances up to a lag m ≥ 2 of X.

First, let us define X
(m)
t = (XtΔ, X(t+1)Δ, . . . , X(t+m)Δ) for t = 1, . . . , N−m

and the measurable function h : Rm+1 ×Θ → R
m+2 as

h(Xt, θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hE(X
(m)
t , θ)

h0(X
(m)
t , θ)

...

hk(X
(m)
t , θ)

...

hm(X
(m)
t , θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

XtΔ + μ
B(απ−1)

X2
tΔ −

(
μ

B(απ−1)

)2
+ σ2

2B(απ−1)

XtΔX(t+1)Δ −
(

μ
B(απ−1)

)2
+ σ2(1−BΔ)1−απ

2B(απ−1)

...

XtΔX(t+k)Δ −
(

μ
B(απ−1)

)2
+ σ2(1−BkΔ)1−απ

2B(απ−1)

...

XtΔX(t+m)Δ −
(

μ
B(απ−1)

)2
+ σ2(1−BmΔ)1−απ

2B(απ−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.3)

We can now define the sample moment function for the supOU process as

gN,m(X, θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
N−m

∑N−m
t=1 hE(X

(m)
t , θ)

1
N−m

∑N−m
t=1 h0(X

(m)
t , θ)

...
1

N−m

∑N−m
t=1 hk(X

(m)
t , θ)

...
1

N−m

∑N−m
t=1 hm(X

(m)
t , θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.4)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
N−m

∑N−m
t=1

(
XtΔ + μ

B(απ−1)

)
1

N−m

∑N−m
t=1

(
X2

tΔ −
(

μ
B(απ−1)

)2
+ σ2

2B(απ−1)

)
1

N−m

∑N−m
t=1

(
XtΔX(t+1)Δ −

(
μ

B(απ−1)

)2
+ σ2(1−BΔ)1−απ

2B(απ−1)

)
...

1
N−m

∑N−m
t=1

(
XtΔX(t+k)Δ −

(
μ

B(απ−1)

)2
+ σ2(1−BkΔ)1−απ

2B(απ−1)

)
...

1
N−m

∑N−m
t=1

(
XtΔX(t+m)Δ −

(
μ

B(απ−1)

)2
+ σ2(1−BmΔ)1−απ

2B(απ−1)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and estimate θ0 by minimizing the objective function

θ̂N,m
0 = argmin gN,m(X, θ)′AN,mgN,m(X, θ) (6.5)

where AN,m is a positive definite matrix to weight the m+2 different moments
collected in gN,m(X, θ).

We aim to show the asymptotic normality of the GMM estimator (6.5).
Hence, we first need to show that the moment function h(Xt, θ0) satisfies a
central limit theorem.

Theorem 6.1. Let Λ be a real valued Lévy basis with generating quadruple
(γ,Σ, ν, π) satisfying assumptions (3.23) such that

∫
|x|>1

|x|4+δ ν(dx) < ∞ for



348 I. V. Curato and R. Stelzer

some δ > 0 and let Assumption 6.1 hold with απ − 1 > (1 + 1
δ )(

6+2δ
2+δ ). Let X be

the resulting supOU process, then h(Xt, θ0) is a θ-weakly dependent process,

HΣ =
∑
l∈Z

Cov(h(X0, θ0), h(Xl, θ0)) (6.6)

is finite, positive semidefinite and as N → ∞
√
NgN,m(X, θ0)

d−→ N (0, HΣ). (6.7)

Proof. Proposition 2.1 shows that the 4 + δ-th moments of the supOU pro-
cess exist. We call C := − μ

B(απ−1) and, following the notations of Section

4, D(k) = −σ2(1−BΔk)1−απ

2B(απ−1) for k = 0, . . . ,m. We then consider the vector

Z = (XtΔ, X(t+1)Δ, . . . , X(t+m)Δ) and the function f : Rm+1 → R
m+2 such

that

f(Zt) = f

⎛
⎜⎜⎜⎜⎜⎜⎝

XtΔ

X(t+1)Δ

. . .
X(t+k)Δ

. . .
X(t+m)Δ

⎞
⎟⎟⎟⎟⎟⎟⎠

= h(Xt, θ0) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C
D(0) + C2

. . .
D(k) + C2

. . .

. . .
D(m) + C2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Z is a θ-weakly dependent process with coefficients

θZ(r) = DθX(r −mΔ)

where θX is given in Formula (3.26). The assumptions of Proposition 3.4 hold
with p = 4 + δ, c = 1, a = 2, thus f(Zt) is a θ-weakly dependent process

with coefficients C(DθX(r − mΔ))
2+δ
3+δ for r ∈ N. Hence, h(Xt, θ0) is a θ-weak

dependent process with the same coefficients and mean zero. We have that

θh(r) = CD
2+δ
3+δ

(
− σ2(1−B(2r−2mΔ))1−απ

2B(απ−1) +
(

−2μ(1−B(r−mΔ))1−απ

2B(απ−1)

)2) 2+δ
6+2δ

, where

απ satisfies the inequality (απ−1) > 2(1+ 1
δ )(

3+δ
2+δ ) by assumption. Analogously

to the proof of Corollary 4.2, by applying [20, Theorem 1] and the Cramer-Wold
device, we obtain the distributional result (6.7).

Remark 6.1. The coefficients of the matrix Cov(h(X0, θ0), h(Xl, θ0)) for l ∈ Z

are
Cov(hE(X

(m)
0 , θ0), hE(X

(m)
l , θ0) = D(l), (6.8)

Cov(hE(X
(m)
0 , θ0), hp(X

(m)
l , θ0)) = κ(0, l, l + p) + C(D(l) +D(l + p)), (6.9)

Cov(hp(X
(m)
0 , θ0), hq(X

(m)
l , θ0)) = κ(0, p, l, l + q) (6.10)

+C(κ(0, p, l) + κ(0, p, l + q) + κ(p, l, l + q) + κ(0, l, l + q))

+C2(D(l−p)+D(l+q−p)+D(l)+D(l+q))+D(l)D(l+q−p)+D(l+q)D(l−p),
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for p, q ∈ {0, . . . ,m}, where C and D(l) are defined in the proof of Theorem 6.1
and κ(i, j, k) and κ(i, j, k, l) are respectively the cumulants of the supOU process
of order three and four for i, j, k, l ∈ {0, . . . ,m} defined in (4.15) and (4.14).

In Table 2, the explicit expressions of the autocovariances and cumulants of
the supOU process are reported.

Corollary 6.1. Let Λ be a real valued Lévy basis with generating quadruple
(γ, 0, ν, π) such that

∫
R
|x| ν(dx) < ∞ and

∫
|x|>1

|x|4+δ ν(dx) < ∞ for some

δ > 0 and let Assumption 6.1 hold with απ − 1 > (1 + 1
δ )(

3+δ
2+δ ). Let (Xt)t∈R be

the resulting supOU process, then h(Xt, θ0) is a θ-weakly dependent process,

HΣ =
∑
l∈Z

Cov(h(X0, θ0), h(Xl, θ0))

is finite, positive semidefinite and as N → ∞
√
NgN,m(X, θ0)

d−→ N (0, HΣ).

The proof of the Corollary follows the same steps as Theorem 6.1.

Remark 6.2. Under the assumptions of Corollary 6.1, a slower decay of the
autocovariances of a supOU process is required to obtain asymptotic normality
compared to Theorem 6.1. Moreover, if all the moments of the underlying Lévy
process exist then the asymptotic result of Corollary 6.1 holds assuming that
απ > 2. The latter assumption results in the slowest decay of the autocovariances
of X that can be reached under short memory, see Remark 3.2 remembering that
in the notations of this section α = απ − 1, whereas the asymptotic result of
Theorem 6.1 holds, under these assumptions, for απ > 3.

Several assumptions have to be made to show the asymptotic normality of
the GMM estimator (6.5):

Assumption 6.2. The parameter space Θ is compact and large enough to in-
clude the true parameter vector θ0.

Assumption 6.3. The matrix AN,m converges in probability to a positive def-
inite matrix of constants A.

Assumption 6.4. The matrix HΣ is positive definite.

In our set-up we always need to choose a parameter space such that μ ≥ 0,
σ2 > 0, απ > 2 and B < 0. However, Assumption 6.2 remains reasonable, due
to the fact that typically an optimization procedure is used to determine θ̂N,m

and then some parameter bounds are always imposed in practice.

Theorem 6.2. Let Λ be a real valued Lévy basis with generating quadruple
(γ,Σ, ν, π) and X a supOU process satisfying assumptions (3.23) such that∫
|x|>1

|x|4+δ ν(dx) < ∞ for some δ > 0. Let Assumption 6.1 hold with απ − 1 >

(1+ 1
δ )(

6+2δ
2+δ ) or απ−1 > (1+ 1

δ )(
3+δ
2+δ ) if in addition

∫
R
|x| ν(dx) < ∞. Moreover,

if Assumption 6.2, 6.3 and 6.4 hold, then as N goes to infinity
√
N(θ̂N,m

0 − θ0)
d−→ N (0,MHΣM

′)
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Table 2. Explicit closed formula for the summands appearing in (6.8),(6.9) and (6.10), where p ≤ q and μ = E[L1], σ2 = V ar[L1], s = σ−3E[(L1 −
μ)3] and η = σ−4E[(L1 − μ)4].

{l ≥ 0} {l < 0}
Cov(X0, XlΔ) =

−σ2(1−BΔl)1−απ

2B(απ−1)
Cov(X0, XlΔ) =

−σ2(1+BΔl)1−απ

2B(απ−1)

{l ≥ 0} {l < 0}
κ(0, l, l+ p) =

−sσ3(1−BΔ(2l+p))1−απ

3B(απ−1)
κ(0, p, l) =

−sσ3(1−BΔ(p−l))1−απ

3B(απ−1)

{l ≥ p} {0 < l < p} ∨ {l ≤ 0}
κ(p, l, l + q) =

−sσ3(1−BΔ(2l−2p+q))1−απ

3B(απ−1)
κ(p, l, l+ q) =

−sσ3(1−BΔ(p−l+q))1−απ

3B(απ−1)

{l ≥ 0} {l < 0}
κ(0, p, l, l+ q) = − (η−3)σ4

4B(απ−1)
(1−BΔ(p+ 2l + q))1−απ κ(0, p, l, l + q) = − (η−3)σ4

4B(απ−1)
(1−BΔ(p+ q − 2l))1−απ
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where

M = (G′
0AG0)

−1G′
0A, G0 = E[

∂h(Xt, θ)

∂θ′
]θ=θ0 ,

and HΣ =
∑
l∈Z

Cov(h(X0, θ0), h(Xl, θ0)).

Proof. We follow the steps of the proof of [41, Theorem 1.2]. This involves
checking Assumption 1.1-1.9 in [41]. Note that Assumption 1.1-1.3 in [41] are
sufficient to give the consistency of the estimator, as obtained in [48, Theo-
rem 3.2]. We show them for completeness. Assumption 1.1(i) is fulfilled by the
function h(Xt, θ) by construction. Assumption 1.1.(ii) is satisfied since the true
parameter vector θ0 is identifiable as shown in [48, Proposition 3.3]. Asssump-

tion 1.2 in [41] requires that supθ∈Θ |g(i)N,m(X, θ)−E[h(i)(Xt, θ)]|
p−→ 0 as N → ∞,

for all i = 1, . . . ,m+ 2, i.e. each vector component of gN,m(X, θ)− E[h(Xt, θ)]
converges uniformly in probability to zero for each θ ∈ Θ. Assumption 1.4-1.6
in [41] represent three sufficient conditions that if fulfilled imply as consequence
Assumption 1.2 in [41]. We then show that all three of them hold in our set-up.
Assumption 1.4 in [41] corresponds to our Assumption 6.2 and Assumption 1.5
in [41] follows from the ergodicity of the supOU process. Showing Assumption
1.6 in [41] means to prove that a stochastic Lipshitz-type assumption holds for
each component of the function h(Xt, θ). Let θi = (μi, σ

2
i , α

i
π, Bi) be parameter

vectors belonging to Θ for i = 1, 2. Then, for example for the first component∣∣∣hE(X
(m)
t , θ1)− hE(X

(m)
t , θ2)

∣∣∣ = ∣∣∣ μ1

B1(α1
π − 1)

− μ2

B2(α2
π − 1)

∣∣∣.
That means, by construction, the terms where Xt appears cancel out and the
stochastic Lipschitz-type condition reduces to a Lipschitz continuity condition
on the non-random terms in each component of h(Xt, θ). Since the terms have
bounded first partial derivatives, they are Lipshchitz continuous and Assump-
tion 1.6 in [41] holds. Assumption 1.3 in [41] is implied by our Assumption 6.3.
Assumption 1.7 in [41] is fulfilled by construction, then h(Xt, θ) is continuously

differentiable w.r.t. θ in Θ. Let GN,m(X, θ) = 1
N−m

∑N−m
t=1

∂h(Xt,θ)
∂θ′ , Assump-

tion 1.8 in [41] requires that a weak law of large numbers applies to ∂h(Xt,θ)
∂θ′ in

a neighborhood of θ0. That is, for each sequence θ∗N such that θ∗N
p−→ θ0 then

GN,m(X, θ∗N ) → G0. We have that the matrix

∂h(Xt, θ)

∂θ′
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1
B(απ−1)

0 − μ
B(απ−1)2

− μ
B2(απ−1)

− 2μ
B2(απ−1)2

1
2B(απ−1)

2μ2

B2(απ−1)3
− σ2

2B(απ−1)2
2μ2

B3(απ−1)2
− σ2

2B2(απ−1)

. . . . . . . . . . . .

− 2μ
B2(απ−1)2

(1−BΔk)1−απ

2B(απ−1)
ã(Δ, μ, σ2, απ , B, k) b̃(Δ, μ, σ2, απ , B, k)

. . . . . . . . . . . .

− 2μ
B2(απ−1)2

(1−BΔm)1−απ

2B(απ−1)
ã(Δ, μ, σ2, απ , B,m) b̃(Δ, μ, σ2, απ , B,m)

⎤
⎥⎥⎥⎥⎥⎥⎦
,
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where

ã(Δ, μ, σ2, απ, B, k) =
2μ2

B2(απ − 1)3
− σ2((απ − 1)ln(1−BΔk) + 1)

2B(απ − 1)2(1−BΔk)απ−1

and

b̃(Δ, μ, σ2, απ, B, k) =
2μ2

B3(απ − 1)2
+ σ2BΔk(απ − 1)− (1−BΔk)

2B2(απ − 1)(1−BΔk)απ

for k = 1 . . . ,m. Then, ∂h(Xt,θ)
∂θ′ does not depend on Xt, GN,m(X, θ) = ∂h(Xt,θ)

∂θ′

and G0 = ∂h(Xt,θ0)
∂θ′ . By the continuous mapping theorem Assumption 1.8 in

[41] then follows. Assumption 1.9 in [41] follows by Theorem 6.1 or Corollary
6.1. Then, because of Assumption 6.4, the asymptotic normality of the estimator
follows from the same steps as in the proof of [41, Theorem 1.2] when we replace
fT and FT by gN,m and GN,m.

6.2. SupOU SV model

We work now with a sample {Yt : t = 1, . . . , N} of the return process and define

Y
(m)
t = (Yt+1, Yt+2, . . . , Yt+m+1) for t = 1, . . . , N −m.
The moment function is given by the measurable function h̃ : Rm+1 × Θ →

Rm+2 as

h̃(Yt, θ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

h̃V ar(Y
(m)
t , θ)

h̃0(Y
(m)
t , θ)

h̃1(Y
(m)
t , θ)

...

h̃m(Y
(m)
t , θ)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y 2
t+1 +

μΔ
B(απ−1)

Y 4
t+1 − 3

(
Δμ

B(απ−1)

)2
+ 3σ2 (1−BΔ)3−απ−1−ΔB(απ−3)

B3(απ−1)(απ−2)(απ−3)

Y 2
t+1Y

2
t+2 −

(
Δμ

B(απ−1)

)2
+ σ2 f2−2f1+f0

2B3(απ−1)(απ−2)(απ−3)

...

Y 2
t+1Y

2
t+1+m −

(
Δμ

B(απ−1)

)2
+ σ2 fm+1−2fm+fm−1

2B3(απ−1)(απ−2)(απ−3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.11)

In this case, the sample moment function of the return process is

gN,m(Y, θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
N−m

∑N−m
t=1 h̃V ar(Y

(m)
t , θ)

1
N−m

∑N−m
t=1 h̃0(Y

(m)
t , θ)

1
N−m

∑N−m
t=1 h̃1(Y

(m)
t , θ)

...
1

N−m

∑N−m
t=1 h̃m(Y

(m)
t , θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6.12)
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Table 3

Explicit closed formula for the summand A(i, j, k) for (i, j, k) ∈ Z3.

(i, j, k) A(i, j, k)
{i �= j �= k} 0

{i �= j} ∧ {j = k} 4
∫ (i+1)Δ
iΔ

∫ (j+1)Δ
jΔ

∫ s
jΔ E[XtXsXu]dudsdt

{i = j = k} 12
∫ (i+1)Δ
iΔ

∫ (i+1)Δ
iΔ

∫ s
iΔ E[XtXsXu]dudsdt

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
N−m

∑N−m
t=1

(
Y 2
t+1 +

μΔ
B(απ−1)

)
1

N−m

∑N−m
t=1

(
Y 4
t+1 − 3

(
Δμ

B(απ−1)

)2
+ 3σ2 (1−BΔ)3−απ−1−ΔB(απ−3)

B3(απ−1)(απ−2)(απ−3)

)
1

N−m

∑N−m
t=1

(
Y 2
t+1Y

2
t+2 −

(
Δμ

B(απ−1)

)2
+ σ2 f2−2f1+f0

2B3(απ−1)(απ−2)(απ−3)

)
...

1
N−m

∑N−m
t=1

(
Y 2
t+1Y

2
t+1+m −

(
Δμ

B(απ−1)

)2
+ σ2 fm+1−2fm+fm−1

2B3(απ−1)(απ−2)(απ−3)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and θ0 can be estimated by minimizing the objective function

θ̂∗N,m
0 = argmin gN,m(Y, θ)′AN,mgN,m(Y, θ) (6.13)

where AN,m is a positive definite matrix to weight the m+2 different moments
collected in gN,m(Y, θ).

The consistency of the estimator (6.13) is shown in [48, Theorem 3.2], and
as before we need to show that the moment function h̃(Y, θ) satisfies a central
limit theorem.

Theorem 6.3. Let Λ be a real valued Lévy basis with generating quadruple
(γ, 0, ν, π), Assumptions (H) be satisfied such that

∫
|x|>1

|x|4+δ ν(dx) < ∞, for

some δ > 0, and let Assumption 6.1 hold with απ − 1 > (1 + 1
δ )(

6+2δ
δ ). Let

(Yt)t∈R be the resulting return process of a supOU SV model, then

WΣ =
∑
l∈Z

Cov(h̃(Y0, θ0), h̃(Yl, θ0))

is finite, positive semidefinite and as N → ∞
√
NgN,m(Y, θ0)

d−→ N (0,WΣ).

Proof. Proceeding as in Theorem 6.1, it can be shown that h̃(Yt, θ0) is a
θ-weakly dependent process with zero mean, by using Lemma 5.1 and Proposi-

tion 3.4. Given the θ-coefficients (3.28), we have θh̃(r) = CD∗ δ
3+δ ×(

− Δμ(1−BΔ(r−m−1))1−απ

B(απ−1)

) δ
6+2δ

, where απ − 1 > (1 + 1
δ )(

6+2δ
δ ) by assump-

tion. Then applying [20, Theorem 1] and the Cramer-Wold device the result
follows.
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Table 4. Explicit closed formula for the summands (6.14),(6.15) and (6.16), where p ≥ q, fk = (1 − BΔk)3−απ , gk = (1 − BΔk)4−απ , hk =
(1−BΔk)5−απ and μ = E[L1], σ2 = V ar[L1], s = σ−3E[(L1 − μ)3] and η = σ−4E[(L1 − μ)4].

{l ≥ 1}
Cov(Y 2

1 , Y 2
l+1) =

−σ2(fl+1−2fl+fl−1)

2B3(απ−1)(απ−2)(απ−3)

{l ≥ p} ∧ {2l− 2p+ q ≥ 2}
K(p, l, l+ q) =

−sσ3(2g2l−2p+q−1−g2l−2p+q−2+g2l−2p+q+2−2g2l−2p+q+1)

6B4(απ−1)(απ−2)(απ−3)(απ−4)

{l ≥ 0} ∧ {2l + q ≥ 2}
K(0, l, l+ q) =

−sσ3(2g2l+q−1−g2l+q−2+g2l+q+2−2g2l+q+1)

6B4(απ−1)(απ−2)(απ−3)(απ−4)

{l ≥ 0} ∧ {2l+ q + p ≥ 3}
K(0, p, l, l+ q) = − (η−3)σ4(−2h2l+q+p+3h2l+q+p−1−3h2l+q+p−2+h2l+q+p−3+h2l+q+p+3−3h2l+q+p+2+3h2l+q+p+1)

12B5(απ−1)(απ−2)(απ−3)(απ−4)(απ−5)
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Remark 6.3. We observe that,

E[Y 2
1 ] = E[V1] = − Δμ

B(α− 1)
:= C∗,

V ar[Y 2
1 ] = 3V ar(V1) + 2E(V1)

2 = −3σ2 (1−BΔ)3−απ − 1−ΔB(απ − 3)

B3(απ − 1)(απ − 2)(απ − 3)

+2
(
− Δμ

B(απ − 1)

)2
:= D∗(0),

and

Cov(Y 2
1 , Y

2
1+k) = Cov(V1, V1+k) = −σ2 fk+1 − 2fk + fk−1

2B3(α− 1)(α− 2)(α− 3)
:= D∗(k),

where V is the integrated process as defined in (5.3) and C∗ and D∗(k) are de-
fined in Remark 5.1. Thus, the coefficients of the matrix Cov(h̃(Y0, θ0), h̃(Yl, θ0)
for l ∈ Z and p, q ∈ {0, . . . ,m} are

Cov(h̃V ar(Y
(m)
0 , θ0), h̃V ar(Y

(m)
l , θ0) = D∗(l), (6.14)

Cov(h̃V ar(Y
(m)
0 , θ0), h̃p(Y

(m)
l , θ0)) =K(0, l, l + p) +A(0, l, l + p)

+C∗(D∗(l) +D∗(l + p)),
(6.15)

Cov(h̃p(Y
(m)
0 , θ0), h̃q(Y

(m)
l , θ0)) = K(0, p, l, l + q) +A(0, p, l, l + q)

+ C∗(K(0, p, l) +K(0, p, l + q) +K(p, l, l + q) +K(0, l, l + q))

+ C∗2(D∗(l + q − p) +D∗(l − p) +D∗(l + q) +D∗(l))

+D∗(l)D∗(l + q − p) +D∗(l + q)D∗(l − p),

(6.16)

where A(i, j, k) and A(i, j, k, l) are defined in Table 3 and Table 1, respectively,
and K(i, j, k) and K(i, j, k, l) in (5.15) and (5.16). In Table 4, the explicit ex-
pressions of the summands in (6.14), (6.15) and (6.16) can be found for a
selection of indices l, p, q. The remaining cases can be easily derived by using
the calculations in Table 2.

Remark 6.4. Note that if all the moments of the underlying Lévy process exist
than the asymptotic result of Theorem 6.3 holds assuming that απ > 3.

Additional assumptions have to be made before showing the asymptotic nor-
mality of the GMM estimator (6.13):

Assumption 6.5. The parameter vector θ0 is identifiable, i.e. E[h̃(Y, θ)] = 0
for all Y if and only if θ = θ0.

Assumption 6.6. The matrix WΣ is positive definite.
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Regarding Assumption 6.5, it has been shown in [48, Corollary 3.6] that
identifiability holds if the number of lags m in the definition of the moment
function is infinity, the so called asymptotic identifiability. In practice, we always
work with a finite number of lags. Although proving identifiability rigorously
seems to be out of reach, the asymptotic identifiability suggests that Assumption
6.5 should be satisfied if m is sufficiently large. It will be interesting to analyze
how this affects the precision of our estimator in a simulation study. This is,
however, beyond the scope of the present paper.

Finally, we recall that in our set-up μ > 0, σ2 > 0, απ > 2 and B < 0 and
the parameter space Θ is large enough to contain the true parameter vector.

Theorem 6.4. Let Λ be a real valued Lévy basis with generating quadruple
(γ, 0, ν, π), Assumptions (H) be satisfied such that

∫
|x|>1

|x|4+δ ν(dx) < ∞, for

some δ > 0, and let Assumption 6.1 hold with απ − 1 > (1 + 1
δ )(

6+2δ
δ ). If,

moreover, Assumptions 6.2, 6.3, 6.5 and 6.6 hold, then as N goes to infinity

√
N(θ̂∗N,m

0 − θ0)
d−→ N (0,MWΣM

′)

where

M = E[G∗′
0 AG

∗
0]

−1G∗′
0 A, G∗

0 = E[
∂h̃(Yt, θ)

∂θ′
]θ=θ0 ,

and WΣ =
∑
l∈Z

Cov(h̃(Y0, θ0), h̃(Yl, θ0).

Proof. We check that Assumptions 1.1-1.9 in [41] hold. Assumptions 1.1-1.7
follow by Assumptions 6.2, 6.3 and 6.5 and by construction of the moment
function. The line of the proof, in this case, is exactly the same as in Theorem
6.2. The matrix

∂h̃(Yt, θ)

∂θ′

is equal to
⎡
⎢⎢⎢⎢⎣

Δ
B(απ−1)

0 − Δμ
B(απ−1)2

− Δμ
B2(απ−1)

− 6Δ2μ
B2(απ−1)2

3f1−1−ΔB(απ−3)

B3(απ−1)(απ−2)(απ−3
a(Δ, μ, σ2, απ , B) b(Δ, μ, σ2, απ , B)

. . . . . . . . . . . .

− 2Δ2μ
B2(απ−1)2

fm+1−2fm−fm−1

2B3(απ−1)(απ−2)(απ−3)
c(Δ, μ, σ2, απ , B,m) d(Δ, μ, σ2, απ , B,m)

⎤
⎥⎥⎥⎥⎦

where

a(Δ, μ, σ2, απ , B) =
6Δ2μ2

B2(απ − 1)3

+ 3
σ2

B3

(απ − 2)(απ − 3) + (απ − 1)(απ − 2) + (απ − 1)(απ − 2)

(απ − 1)2(απ − 2)2(απ − 3)2

− 3σ2

B3
f1l1 +

3σ2Δ((απ − 1) + (απ − 2))

B2(απ − 1)2(απ − 2)2
,
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b(Δ, μ, σ2, απ , B) =
6Δ2μ2

B3(απ − 1)2

+
3σ2

(απ − 1)(απ − 2)(απ − 3)

( (απ − 3)(2Δ +Δr1)

B3
− 3

f1 − 1

B4

)
,

c(Δ, μ, σ2, απ , B, k) =
2Δ2μ2

B2(απ − 1)3
− σ2

2B3
(fk+1lk+1 − 2fklk + fk−1lk−1) for k = 1, . . . ,m,

and

d(Δ, μ, σ2, απ , B, k) =
2Δ2μ2

B3(απ − 1)2
+

σ2

2B3(απ − 1)(απ − 2)
(rk+1Δ(k + 1)− 2rkΔk

+ rk−1Δ(k − 1))

− 3σ2

2B4(απ − 1)(απ − 2)(απ − 3)
(fk+1 − 2fk + fk−1),

for k = 1, . . . ,m, with rk := (1−BΔk)2−απ , fk := (1−BΔk)3−απ and

lk =
1

(απ − 1)2(απ − 2)2(απ − 3)2)

[
ln(1−BΔk)(απ − 1)(απ − 2)(απ − 3)

+ (απ − 2)(απ − 3) + (απ − 1)(απ − 3) + (απ − 1)(απ − 2)
]
,

for k ∈ {0, . . . ,m + 1}. Therefore, ∂h̃(Yt,θ)
∂θ′ does not depend on Yt and, as in

the proof of Theorem 6.2, the continuous mapping theorem can be applied to
show that Assumption 1.8 in [41] holds. Assumption 1.9 follows by the proof
of Theorem 6.3. Then, because of Assumption 6.6, the normality of the GMM
estimator follows from the same steps as in the proof of [41, Theorem 1.2].

In [48, Section 4] a simulation study on the estimators (6.5) and (6.13) looks at
their finite sample performances (Theorem 6.2 and 6.4 are applicable to the set-
up of the study). The analysis performed shows results in line with asymptotic
normality derived theoretically in this paper. To obtain reliable estimation of
supOU processes and supOU SV model, a substantial amount of data is needed.
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[41] Mátyás, L. (1999). Generalized method of moments estimation, Vol. 5.
Cambridge University Press. MR1688695

[42] Moser, M. and Stelzer, R. (2013). Functional regular variation of Lévy-
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