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Abstract

We define a non-parametric estimator of the integrated leverage effect as the integrated covariation
between the logarithmic asset price and its volatility. In Curato and Sanfelici (2015), a consistent estimator
of the leverage effect has been introduced through a pre-estimate of the Fourier coefficients of the volatility.
This is a novel approach compared to the ones present in the literature which use a pre-estimate of the spot
volatility path. In this paper, we show the asymptotic normality of the Fourier estimator for non-equidistant
observations. Moreover, its finite sample properties are analyzed in a simulation study also in the presence
of microstructure noise.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The leverage effect is defined as the correlation between financial asset returns and the change
of their volatilities. Dating back to the seminal papers of Black [9] and Christie [15], this effect
has been related to the so called financial leverage: as asset prices decline, companies are more
leveraged since the relative value of their debt rises relative to that of their equity causing the
assets to become more volatile. Therefore, the financial leverage implies a negative correlation
– i.e. leverage effect – between the analyzed asset returns and the change of their own volatility.
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This fact has been incorporated in classical stochastic volatility models as in [6,7,23] where
the correlation between the processes driving the logarithmic price and the volatility is modeled
by a negative constant parameter. However, the validity of this model assumption has been
questioned in several works as well as the dependence of the leverage effect, solely, on the
financial leverage—as discussed in [2]. First, it has been documented that the effect is not
constant, but itself evolves in time [10,35] and there may be important asymmetries in the way
in which the volatility responds to price changes [4], i.e. in the presence of positive shocks
(positive return) the volatility may not change or even increase. Moreover, in [13], the authors
consider a random correlation parameter between the processes driving the logarithmic price
and the volatility in order to model the stochastic skew observed in the currency option data
sets. All the above facts motivated the growth of sophisticated mathematical models in which
the aforementioned correlation is modeled as a time varying function or, more generally, as a
stochastic process itself.

Several authors have proposed non-parametric procedures for estimating the integrated
covariation between the logarithmic price and its corresponding volatility, the so called integrated
leverage effect, in an Itô semimartingale set-up. The logarithmic price and the volatility are
modeled as continuous processes in [8,30] and as semimartingales with jumps, in price and
volatility, in [1,4,17]. In [4], the leverage is modeled as a time varying function whereas in
subsequent publications, [1,8,17,30], the effect is considered stochastic. The common feature of
these estimators is the use of a pre-estimate of the spot volatility in the definition of the integrated
covariation by means of different techniques—Fourier transform method [8,17] or local averages
of integrated volatility estimators as in [1,4,30]. When high-frequency data are employed, the
estimation error due to the latency of the volatility path affects the estimates and bias corrections
are typically employed in order to obtain asymptotically unbiased estimators.

In this paper, we propose a different methodology for the estimation of the integrated leverage
effect. We model the logarithmic price p and the volatility ν by means of two continuous
Itô semimartingales correlated by means of a stochastic process ρ. We do not assume any
specific functional form of the volatility, of the variance of the volatility and of the correlation
processes. As first shown in Malliavin and Mancino [26,27], the Fourier coefficients of the latent
volatility process can be expressed via the Bohr convolution of the Fourier coefficients of the
return process. This strategy allows to handle non-equidistant observations of the price and
microstructure noise contamination and easily provide an estimator of the spot volatility path
by means of the Fourier–Féjer inversion formula. In [8], the Fourier spot volatility estimator is
employed in the definition of the integrated leverage effect. However, the asymptotic normality of
the latter has not yet been proved. In [19], a new consistent estimator of the integrated leverage
effect is introduced modifying the one given in [8]. The Fourier methodology allows to treat
the estimation error due to the latency of the volatility process in a novel way by defining an
estimation strategy only in the frequency domain. In fact, a pre-estimate of the volatility path is
not necessary in order to obtain the estimates. The latency of the volatility, in the estimation of
the integrated covariation, can be handled by computing N Fourier coefficients of the volatility
process. This is a step that requires the preliminary computation of M Fourier coefficients of
the return process. The parameters M and N are called cutting frequencies. In a discrete time
framework, let the logarithmic price p be observed on a grid Sn := {0 = t0,n ≤ t1,n ≤ · · · ≤

tkn ,n = T }, for all i = 0, . . . , kn and kn ≤ n, and define τ (n) := maxi=0,...,kn−1|ti+1,n − ti,n|. If
the asymptotic ratios N 3/M → 0 and Mτ (n) → a, with a > 0 as N , M, n → ∞ and τ (n) → 0
are satisfied, we can prove a central limit theorem for the integrated leverage effect estimator
initially presented in [19]. The above ratios play a fundamental role in the theorem and in the
finite sample properties of the estimator, as discussed in detail in Sections 3 and 5.
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Due to the different modeling set-ups assumed by the authors in [1,4,8,17,30], comparing
different estimators of the integrated leverage effect is difficult. The estimators in [1,30] are the
most similar to the one defined in this work. However, they do not allow to consider a general
specification of the stochastic correlation between the Itô semimartingales p and ν, respectively,
the logarithmic price and the volatility process, as the model set-up presented in Section 2 does.
In the case of equidistant observations, a rate of convergence of n

1
4 for the estimation error, can be

reached in [1,30]. Moreover in [30], when non-equidistant observations of the price process are
considered or microstructure noise contamination is present, a central limit theorem is obtained
respectively under specific assumptions on Sn – the latter is a typical framework under which
central limit theorems based on realized volatility estimates hold [5] – or additive microstructure
noise. Although, there is no formal proof for this so far, the rate n

1
4 is probably the optimal rate

of convergence for the integrated leverage effect, as discussed in [3, Chapter 8, Theorem 8.14.].
This said, the central limit theorem here presented achieves a rate less than 1/6 when the ratio
between the cutting frequencies N and M is optimally chosen. We show that this is independent
of the structure of the time grid Sn , the parameter a and depends on the L2-norm of the Dirichlet
kernel involved in the determination of the Fourier coefficients of the return and the volatility
processes.

The Fourier estimator can be used to estimate the integrated leverage effect under very general
model specification as for example the Generalized Heston model, presented in [34]. This is
a continuous stochastic volatility model where three independent Brownian motions drive the
dynamics of the logarithmic price and the volatility processes. To conclude, we then test the
finite sample performances of the Fourier estimator on logarithmic price and volatility paths,
drawn by the above model and the classical Heston model [23], on not-equidistant time grids
and in the presence of additive microstructure noise contamination. An optimal selection rule for
the cutting frequencies M and N is given for Monte Carlo data based on the minimization of the
mean squared error of the estimate. In fact, being the mean squared error the sum of the squared
bias and the variance, it constitutes a suitable criterion to select the cutting frequencies in the
finite sample.

The paper is organized as follows. The model setting is carefully described in Section 2. In
Section 3, we define the Fourier estimator of the integrated leverage effect and its asymptotic
properties. In Section 4, the detailed proof of the central limit theorem is given. In Section 5, we
present a simulation analysis to test the finite sample properties of the estimator and a selection
rule for the cutting frequencies. Section 6 concludes.

2. Model setting

Suppose that W (t), t ≥ 0, and Z (t), t ≥ 0, are two correlated standard Brownian motions
defined on the complete probability space (Ω ,F,F ,P). That is, a canonical probability space
where Ω = C0(R+), and F = (Ft ) is the usual augmentation of the natural filtration generated
by W and Z . The correlation process is defined as ρ(t) with values in [−1, 1] such that
⟨dW (t), d Z (t)⟩ = ρ(t)dt . The temporal window, in which our analysis is performed, is [0, 2π ]
in order to lighten the notations in what follows. However, by rescaling the unit of time all the
results apply on a general interval [0, T ].

The logarithmic price and the volatility processes are defined as solutions of the system of
equations{

dp(t) = a(t) dt + σ (t) dW (t)
dν(t) = b(t) dt + γ (t) d Z (t) (1)
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where ν(t) = σ 2(t) is the process we call volatility throughout the paper. The processes that
appear in (1) satisfy the following assumptions:

H1. a(t), b(t), σ (t), γ (t) and ρ(t) are R-valued processes, almost surely continuous on [0, 2π ]
and adapted to the filtration F such that

E
[

sup
t∈[0,2π ]

|a(t)|4
]

< ∞, E
[

sup
t∈[0,2π ]

|b(t)|4
]

< ∞,

E
[

sup
t∈[0,2π ]

|σ (t)|4
]

< ∞, E
[

sup
t∈[0,2π ]

|γ (t)|4
]

< ∞,

E
[

sup
t∈[0,2π ]

|ρ(t)|4
]

< ∞.

H2. Let D1,p be the space of R-valued measurable and adapted processes admitting a first
order Malliavin derivative D that is p-integrable. We define D1,∞

=
⋂

p≥1D1,p. Then, the
processes a(t), b(t), σ (t), γ (t) ∈ D1,∞ and ∀p ≥ 1

E
[

sup
s,t∈[0,2π ]

⏐⏐⏐Dsa(t)
⏐⏐⏐p]

< ∞, E
[

sup
s,t∈[0,2π ]

⏐⏐⏐Dsb(t)
⏐⏐⏐p]

< ∞,

E
[

sup
s,t∈[0,2π ]

⏐⏐⏐Dsσ (t)
⏐⏐⏐p]

< ∞, E
[

sup
s,t∈[0,2π ]

⏐⏐⏐Dsγ (t)
⏐⏐⏐p]

< ∞.

We refer the reader to [31, Section 1.5] for further details regarding the construction of the
space D1,∞ and to [31] for the basic theory of Malliavin calculus.

We denote by (H) the ensemble of all the above assumptions. Model (1) describes the dynamics
of an underlying efficient price process in the absence of market frictions. The parametric models,
e.g. Heston, CEV, and the Generalized Heston model defined in [34] satisfy our assumptions.

Remark 1. Assumption (H2) is clearly satisfied for diffusion processes having globally
Lipschitz coefficients with linear growth [31, Theorem 2.2.1]. Moreover, Feller diffusions – as
in the Heston model – satisfy Assumption (H2), [21]. For example,

dν(t) = κ(β − ν(t))dt + χ
√

ν(t)dW (t),

assuming that 2κβ ≥ χ2, admits a solution ν(t) ∈ D1,∞.

The leverage process η(t) is defined by means of the covariation between the returns and the
increments of the volatility process as

⟨dp(t), dν(t)⟩ = η(t)dt. (2)

We are interested in estimating the integrated covariation between the logarithmic price p and
the volatility process ν

η̂ =

∫ 2π

0
η(t)dt. (3)

Remark 2. In [1], the authors work on an underlying model that admits jumps in the logarithmic
price and the volatility dynamics, see [1, Assumption (H)]. In the continuous case, the estimator
in [1] can still be used but at the cost of more restrictive assumptions on the volatility process
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than in our Assumptions (H). A more careful comparison can be made with the results in [30].
Here, a(t), b(t) and γ (t) are assumed to be locally bounded in absolute value and σ (t), in
particular, locally bounded away from zero. However, a stochastic correlation process ρ(t), as for
example in the Generalized Heston model [34], cannot be defined in the model set-up described
in [30], see [30, Appendix A] therein for more details on the filtration on which the processes are
considered adapted. To conclude, it is important to notice that a different underlying filtration,
as long as it contains the driving processes W and Z , can be chosen to include the model set-up
we are interested in studying. However, we choose this specific filtration in view of the use of
Malliavin calculus that is pivotal in the proof of Theorem 3.

3. The Fourier estimator of the integrated leverage effect

3.1. Definition of the Fourier coefficients

In this section, we define the estimators of the Fourier coefficients of the leverage process and
their statistical properties.

Following [26], we define the Fourier coefficients of the returns and of the increments of the
volatility process as

c(l; dp) =
1

2π

∫ 2π

0
e−ilt dp(t), (4)

and

c(l; dv) =
1

2π

∫ 2π

0
e−ilt dv(t), (5)

for each l ∈ Z.
Given two functions Φ and Ψ on the integers Z, we say that the Bohr convolution product

exists if the following limit exists for all integers h

(Φ ∗ Ψ )(h) := lim
N→∞

1
2N + 1

∑
|l|≤N

Φ(l)Ψ (h − l).

Under Assumptions (H), let (p(t), ν(t)) be a solution of system (1). For a fixed h, defining
Φ(l) := c(l; dv) and Ψ (h − l) := c(h − l, dp), the limit in probability of the Bohr convolution
product exists and converges to the hth Fourier coefficient of the leverage process. This result is
shown in [27, Theorem 2.1] in the case of the covariance process. The hth Fourier coefficient of
η(t) is

c(h; η) = lim
N→∞

2π

2N + 1

∑
|l|≤N

c(l; dν)c(h − l; dp) =
1

2π

∫ 2π

0
e−ihtη(t)dt. (6)

The above identity has the obvious drawback to be feasible only when continuous observations of
the logarithmic price and the volatility process are available. Therefore, we have two bottlenecks
to overcome, namely, the latency of the volatility process and the availability of discrete
observations of the logarithmic price. We present below an estimation procedure in which two
errors – that respectively allow to measure the impact of the two bottlenecks – arise. We call
them, respectively, truncation error and discretization error.

Let us assume, first, that we can observe continuously the logarithmic price and that the
volatility process is latent.
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Let DN (t) denote the normalized Dirichlet kernel defined by

DN (t) =
1

2N + 1

∑
|l|≤N

eilt (7)

and D′

N (t) its first derivative

D′

N (t) =
1

2N + 1

∑
|l|≤N

ileilt . (8)

Remark 3. In the Fourier analysis, the properties of the first derivative of the Dirichlet kernel
are of interest when the summability of the first derivative of a classical Fourier series expansion
– for deterministic and periodic functions – is investigated, for an overview on the topic see [33].
When the Bohr convolution product is used to define the Fourier coefficients (6), the first
derivative of the Dirichlet kernel implicitly appears in their definition.

We recall some useful properties of the normalized Dirichlet kernel. The proof of the results
below is straightforward and we omit it.

Proposition 1. Let DN (t) be the normalized Dirichlet kernel defined in (7), then the following
properties are satisfied.

1.
∫ 2π

0 |DN (u)|2 du =
2π

2N+1 ,
2. ∀p > 1, there exists a constant Cp such that

∫ 2π

0 |DN (u)|p du =
Cp

2N+1 .

For all l ̸= 0, by means of the use of the integration by parts formula, we have that

c(l; dν) = ilc(l; ν) +
1

2π
(ν(2π ) − ν(0)), (9)

where

c(l; ν) =
1

2π

∫ 2π

0
e−iltν(t)dt.

Therefore, the limit (6) becomes

c(h; η) = lim
N→∞

2π

2N + 1

∑
|l|≤N

(ilc(l; ν) +
1

2π
(ν(2π ) − ν(0)))c(h − l; dp) (10)

= lim
N→∞

2π

2N + 1

∑
|l|≤N

ilc(l; ν)c(h − l; dp)

+
2π

2N + 1

∑
|l|≤N

1
2π

(ν(2π ) − ν(0))c(h − l; dp)

= lim
N→∞

1
2π

∫ 2π

0

∫ 2π

0
e−iht D′

N (t − s)ν(s) ds dp(t)

+
1

2π

∫ 2π

0
(ν(2π ) − ν(0))e−iht DN (t) dp(t).
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The second summand converges to 0 in probability as N converges to infinity. In fact, by applying
the Itô isometry and the Cauchy–Schwarz inequality

E
[⏐⏐⏐ 1

2π

∫ 2π

0
(ν(2π ) − ν(0))e−iht DN (t) dp(t)

⏐⏐⏐2]
≤ C

2π

2N + 1

because of Proposition 1 and Assumption (H1), where C is a constant independent of N .
Thus, when the volatility is a latent process

c(h; η) = lim
N→∞

2π

2N + 1

∑
|l|≤N

ilc(l; ν)c(h − l; dp) (11)

Formula (11) can also be interpreted as subtracting c(0, ν) – the 0th Fourier coefficient of
the volatility – from the Fourier coefficients c(l; dν) defined in (9) for each l ̸= 0. In order to
construct a feasible estimation procedure for the hth Fourier coefficient of the leverage process,
we consider the truncation of the limit in (11). Thus,

cN (h; η) =
2π

2N + 1

∑
|l|≤N

ilc(l; ν)c(h − l; dp) (12)

in which only the Fourier coefficients of the return and volatility process appear. In [8], the
estimation procedure is described starting from Eq. (10). With respect to this approach, we
have the fundamental advantage to require only the knowledge of the Fourier coefficients of
the volatility process. Therefore, the error due to the estimation of a spot volatility path can be
overcome defining an estimation strategy only in the frequency domain.

We can now assume to observe p(t) on a discrete non-equidistant time grid, a step that adds
to the procedure a discretization error. Let

Sn := {0 = t0,n ≤ t1,n ≤ · · · ≤ tkn ,n = 2π}, for all i = 0, . . . , kn and kn ≤ n.

We define τ (n) := maxi=0,...,kn−1|ti+1,n − ti,n| and the discrete observed return as δi,n(p) =

p(ti+1,n) − p(ti,n) for all i = 0, . . . , kn − 1. By means of the classical definition of the discrete
Fourier transform, we estimate c(s; dp) as

cn(s; dp) =
1

2π

kn−1∑
i=0

e−isti,n δi,n(p) (13)

for any integer s such that |s| ≤ M + N . We define the estimators of the Fourier coefficients of
the volatility process as in [26]

cn,M (l; ν) =
2π

2M + 1

∑
|s|≤M

cn(s; dp)cn(l − s; dp) (14)

for any integer l such that |l| ≤ N . Finally, using the definition (12), (13) and (14), we get the
estimators of the Fourier coefficients of the leverage process for any integer h such that |h| ≤ N .

cn,M,N (h; η) =
2π

2N + 1

∑
|l|≤N

ilcn,M (l; ν)cn(h − l; dp). (15)

The above estimators are written as functions of the parameters n, M and N , respectively, the
number of observations available, the number of the Fourier coefficients of the discrete observed
return and of the latent volatility. The parameters M and N are called cutting frequencies.
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Remark 4. The Fourier methodology differs from the one used in the papers [1,30], not just
because it is an analysis in the frequency domain, but also as regards the use of the observed
values of p(t) in the computation of the integrated leverage effect. In fact, from (13) and (14),
it can be observed that each Fourier coefficient of the return and the volatility processes is
computed using all available observations in Sn . In contrast in the papers [1,30], a pre-estimate
of the volatility path is used, specifically, local average of integrated realized volatility estimators
are employed. The observations are then divided into blocks. The observations in each block are
used to determine a point estimation of the volatility path therein.

Therefore, we have the estimation error decomposition

cn,M,N (h; η) −
1

2π

∫ 2π

0
e−ihtη(t)dt

=
2π

2N + 1

∑
|l|≤N

(ilcn,M (l; ν)cn(h − l; dp) − ilc(l; ν)c(h − l; dp)) (16)

+
2π

2N + 1

∑
|l|≤N

ilc(l; ν)c(h − l; dp) −
1

2π

∫ 2π

0
e−ihtη(t)dt (17)

where the two summands are respectively called discretization and truncation error. The
estimation of their orders of magnitude in L1-norm is presented in detail in the case of the 0th
Fourier coefficient in Section 4.2 and can be found for each hth Fourier coefficient in [19]. This
result is crucial in order to show the following consistency result.

Theorem 2. For all |h| ≤ N, let cn,M,N (h; η) be the estimators of the Fourier coefficients of the
leverage process defined in (15). We assume that Assumptions (H),

N 2

M
→ 0 and Mτ (n) → a (18)

with a > 0 hold true as n, N , M → ∞ and τ (n) → 0. Then

cn,M,N (h; η)
P
−→

1
2π

∫ 2π

0
e−ihtη(t)dt. (19)

We refer the reader to [19] for the proof.

Remark 5. The parameter a greater than zero is a necessary assumption for showing an
inequality needed to compute the order of magnitude of the L1-norm of the discretization error
(16). It was first shown in [16, Lemma 3], and we recall the result in Section 4.1.

3.2. Integrated estimator

An estimator of the integrated covariation (3) can be simply obtained by means of definition
(15) for h = 0

η̂n,M,N = 2πcn,M,N (0; η). (20)

The consistency of η̂n,M,N follows by the consistency of the estimator of the 0th Fourier
coefficient already proved in Theorem 2. We call the estimator (20) the Fourier estimator of
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the integrated leverage effect. The explicit form of the estimator (20) is

η̂n,M,N =

kn−1∑
j=0

kn−1∑
j ′=0

kn−1∑
j ′′=0

DM (t j,n − t j ′,n)D′

N (t j ′,n − t j ′′,n)δ j,n(p)δ j ′,n(p)δ j ′′,n(p)

=

∑
j, j ′, j ′′: j ̸= j ′

DM (t j,n − t j ′,n)D′

N (t j ′,n − t j ′′,n)δ j,n(p)δ j ′,n(p)δ j ′′,n(p) (21)

+

∑
j, j ′, j ′′: j= j ′

D′

N (t j ′,n − t j ′′,n)δ2
j,n(p)δ j ′′,n(p), (22)

where DM and D′

N are respectively defined in (7) and (8).
The term (21) depends on products of odd Itô semimartingale increments, whereas (22)

depends on the product between simple and square returns at each possible lag in the considered
time window. The contribution of different lags of squared returns in the definition of the leverage
effect has also been considered in [1].

Under the modeling assumptions in (1), we are able to prove that the estimation error
converges stably in law1 to a mixed normal distribution.

Theorem 3. We assume that Assumptions (H) and the following relations

N 3

M
→ 0 and Mτ (n) → a (23)

with a > 0 hold true as n, N , M → ∞ and τ (n) → 0. Then
√

N
(
η̂n,M,N − η̂

)
st
−→

∫ 2π

0

√
ϕ(s)dW ′(s) (24)

where

ϕ(s) = π (ν(s)γ 2(s) + η2(s)) +
π

2
ν(0)γ 2(s) +

π

2
(ν(2π ) − ν(0))2ν(2π ) (25)

and W ′ is a Brownian motion defined on an extension of the original probability space (Ω ,F,P)
and independent of the original σ -algebra F.

Remark 6. The asymptotic rate of convergence of the estimation error is less than 1/6. This
depends on the L2-norm of the Dirichlet kernel, see Proposition 1, appearing in the truncation
error (17) which also has the leading order of magnitude in the error decomposition. The
parameter a, consequently, does not appear in the asymptotic conditional variance, as shown in
detail in Section 4.2, because the discretization error (16) is negligible in probability. Therefore,
the asymptotic properties of the estimator (20) do not depend on the structure of the time grid on
which the logarithmic price is observed.

The main martingale representation of the estimation error and the complete proof of
Theorem 3 are presented in Section 4.

The integrated asymptotic variance∫ 2π

0
ϕ(s)ds (26)

1 Let Yn be a sequence of R-valued measurable random variables on (Ω ,F,P). We say that Yn converges stably in law
with limit Y , written Yn

st
−→ Y , where Y is defined on an extension of the original probability space (Ω ′,F′,P′), if for any

bounded, continuous function g and any bounded F-measurable random variable Z it holds that E[g(Yn)Z ] → E′[g(Y )Z ]
as n → ∞.
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can be estimated in the Fourier framework. In fact, we can define an estimator for the 0th Fourier
coefficient of the stochastic function ϕ(s). First, we introduce the estimators of the Fourier
coefficients of the volatility of volatility process γ 2(s), for each |h| ≤ P

cn,M,N (h; γ 2) =
2π

2N + 1

∑
|l|≤N

l(l − h)cn,M (l; ν)cn,M (h − l; ν), (27)

and the Laplace estimator of the spot volatility for t ∈ (0, 2π )

ν̂(t) =

∑
i, j>0

δi,n(p)δ j,n(p)
sin(M(ti,n − t j,n))

M(ti,n − t j,n)
1
h

(1 −
|t − t j,n|

h
)1[−1,1](

t − t j,n

h
), (28)

The estimators (27) and (28) have been introduced respectively in [32] and [18]. Therefore,
estimating preliminarily |s| ≤ M + N + P Fourier coefficients cn(s; dp),

cn,N ,M,P (0, ϕ) =
1
2

∑
| j |≤P

cn,M,N ( j, γ 2)cn,M (− j, ν) + cn,M,N ( j, η)cn,M,N (− j, η)

+
1
4
ν̂(t1)cn,M,N (0; γ 2) +

1
4

(ν̂(t2) − ν̂(t1))2ν̂(t2) (29)

where P is a constant less than N and t1 = 0 + ϵ and t2 = 2π − ϵ, for an ϵ > 0 and small, are
the points in which we estimate the volatility path. The first and second summands of (25) are
defined following the estimation methodology described in [29]. Here, the estimator of the 0th
Fourier coefficient of products of even power of latent variables is introduced for the quarticity.
The asymptotic ratios between the parameters n, N , M, P and h need to be carefully studied in
order to show that 2πcn,N ,M,P (0, ϕ) is a consistent estimator of (26). This problem is outside
the scope of the present paper. However, estimators based on realized covariances, see for a
review [3], can also be employed.

3.3. Path estimator and multivariate set-up

We now illustrate some applications and open problems connected to the Fourier methodology
developed in this section.

First of all, it can be applied to the estimation of a leverage process path. In fact, the estimators
(15) can be used to define for all t ∈ (0, 2π ),

η̂n,M,N (t) =

∑
|h|≤N

(
1 −

|h|

N

)
eiht cn,M,N (h; η). (30)

This is a consistent estimator of η(t), a result that can be readily proved by means of the use of
the Féjer Theorem for continuous functions and Theorem 2. However, as of today, there is no
proof of a central limit theorem for the estimator (30).

Starting by the estimation strategy that leads to the estimators (15), it is also easy to approach
the estimation of the leverage effect in a multivariate set-up. Furthermore, when prices of
different financial assets are recorded on non-synchronous time grid, as when working with tick
data, the Fourier estimators overcome easily this challenging problem.

For simplicity, in the following, let us consider a 2-dimensional logarithmic price process. We
assume that p(t) = (p1(t), p2(t)) and its covariance matrix process Σ are solutions of the system
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of equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dpi (t) = ai (t) dt +

d∑
r=1

σ r
i (t)dWr (t)

dΣi, j (t) = bi, j (t) dt +

p∑
k=1

Λk
i, j (t) d Zk(t) for all i, j = 1, 2,

(31)

where Σi, j =
∑d

r=1σ
r
i (t)σ r

j (t) with values in S+

2 , the set of the positive semidefinite matrices,
W and Z are respectively a d-dimensional and a p-dimensional Brownian motion such
that ⟨dWr (t), d Zk(t)⟩ = ρr,k(t)dt . The processes ai (t), bi, j (t), σ r

i (t), Λk
i, j (t), ρr,k(t) satisfy

Assumptions (H) for each i, j = 1, 2, r = 1, . . . , d and k = 1, . . . , p. Thus, the covariation
between the logarithmic prices, for l = 1, 2, and the elements of the covariance matrix, for
i, j = 1, 2, are defined by

⟨dpl(t), dΣi, j ⟩ = ηl
i, j (t)dt,

and, their respective integrated covariation as∫ 2π

0
ηl

i, j (t)dt. (32)

When p1(t) and p2(t) are observed on two time grids Sn and Sn′ , not necessarily the same, we
can then compute the Fourier coefficients of their returns by using the discrete Fourier transform
as in (13) and of the elements of their covariance matrix Σi, j using the estimators defined in [27].
Estimators of (32), that determine the response of variances and covariance to the returns of the
asset price p1(t), for i, j = 1, 2, are defined by

η̂n,M,N ,i, j =
4π2

2N + 1

∑
|l|≤N

ilcn,n′,M (l;Σi, j )cn(−l; dp1). (33)

Similar estimators can be defined with respect to the asset price p2(t). We use the subscript n′ in
the above definition to indicate the presence of non-synchronicity in the time grids Sn and Sn′ .

The estimators (33) constitute interesting instruments for the analysis of stochastic volatility
models, e.g. for equity indices or aggregate market portfolio, when the asymmetric joint dynamic
dependencies between financial assets are of interest. A different approach to model the leverage
effect in a multivariate set-up, using high frequency data, can be found in [12] in the context of
a GARCH model. The model exploits estimates of variances and covariances based on the signs
of high frequency returns, measure known as realized semivariances [11], into the modeling of
the conditional variance matrix.

One final remark on the asymptotic properties of the estimators (33). The non-synchronicity of
the observed logarithmic prices affects the asymptotical unbiasedness of the Fourier estimator,
see [16] in the case of the covariance matrix estimation, then the asymptotic properties in the
univariate set-up are not straightforwardly extendable in this scenario and are open problems in
literature.

4. Proof of Theorem 3

4.1. Notations and preliminary results

First, we introduce some preliminary definitions.
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Definition 1. A summability kernel is a sequence {kn} of continuous t-periodic functions
satisfying:

1. 1
t

∫ t
0 kn(s) ds = 1.

2. 1
t

∫ t
0 |kn(s)| ds ≤ A where A ∈ N.

3. For all 0 < δ < t
2 , limn→∞

∫ t−δ

δ
|kn(t)| dt = 0.

A positive summability kernel is one such that kn(s) ≥ 0 for all s and n.

Definition 2. In the interval [−t/2, t/2] for each t ∈ (0, 2π ], we call

DN (s, t) =
1

2N + 1

∑
|k|≤N

eis 2π
t k

=
1

2N + 1
sin((2N + 1)(2π/t)s/2)

sin((2π/t)s/2)
, (34)

the rescaled Dirichlet kernel.

The above kernel appears when we perform the Fourier estimation methodology in a time
window [0, t].

Lemma 4. Let DN (s, t) be the rescaled Dirichlet kernel defined in the interval [−t/2, t/2] for
each t ∈ (0, 2π ]. Then

1. ∫ t

0
|DN (s, t)|2ds =

t
2N + 1

, ∀ N ∈ N. (35)

2. For each p > 1, there exists a constant C p such that∫ t

0
|DN (s, t)|pds ≤ t

C p

2N + 1
, ∀N ∈ N. (36)

3. The sequence of continuous t-periodic functions

KN (s, t) =
1

N + 1
sin2((N + 1)(2π/t)s/2)

sin2((2π/t)s/2)
(37)

is a positive summability kernel respect to the argument s.
4. Let us consider the sequence of continuous t-periodic functions

N D2
N (s, t) =

N
2N + 1

K2N (s, t),

and a continuous function g : [0, t) → R such that the left limit g(t−) = lims→t− g(s) exists
and is finite. Then, for all ϵ ∈ (0, t/2)

1
t

∫ ϵ

0
+

∫ t

t−ϵ

N D2
N (s, t) g(s)ds →

g(0) + g(t−)
4

(38)

as N → ∞.

Proof. Using classical trigonometric tools it is easy to show that (35)–(36)–(37) hold. The Féjer
theorem [25, Theorem 3.1, Chapter 1] has to be employed to show (38).

Another important tool used in our proof is Lemma 5, that gives an estimation of the L p-norm
of the rescaled Dirichlet kernel in discrete time.
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We consider the following notations. Consider a discrete non-equidistant time grid Sn for any
n ≥ 1, we define φn(s) := supi=0,...,kn {si,n : si,n ≤ s}, thus the rescaled Dirichlet kernel

DN (φn(s), t) =
1

2N + 1

∑
|k|≤N

eiφn (s) 2π
t k

satisfies the following property.

Lemma 5. We assume that τ (n) → 0 as n → +∞ and that Nτ (n) → a, where a > 0 as
N , n → +∞. Then for all t ∈ (0, 2π ]

∀p > 1, ∃C p, lim sup
n,N→+∞

τ (n)−1 sup
s∈[0,t]

∫ t

0
|DN (φn(s) − φn(u), t)|pdu ≤ C p. (39)

Proof. For t = 2π , Lemma 5 is proved in [16, Lemma 3]. For t ∈ (0, 2π ), the proof is a
straightforward extension of the latter.

Hereafter, we will use the following equivalent integral definition for the Fourier coefficients
(13)

cn(s; dp) =
1

2π

∫ 2π

0
e−isφn (u)dp(u). (40)

4.2. Martingale representation of the estimation error

Along the proof, C will denote a positive constant, not necessarily the same at different
occurrences.

Let us decompose

√
N

(
η̂n,M,N −

∫ 2π

0
η(t)dt

)
(41)

=
√

N
( 4π2

2N + 1

∑
|l|≤N

ilcn,M (l; ν)cn(−l; dp) − ilc(l; ν)c(−l; dp)
)

(42)

+
√

N
( 4π2

2N + 1

∑
|l|≤N

ilc(l; ν)c(−l; dp) −

∫ 2π

0
η(t)dt

)
. (43)

The summand (42) represents the discretization error of the estimate whereas the summand (43)
represents the truncation error.

Applying the Cauchy–Schwarz inequality to the summand (42)

E
[⏐⏐⏐ 4π2

2N + 1

∑
|l|≤N

ilcn,M (l; ν)cn(−l; dp) − ilc(l; ν)c(−l; dp)
⏐⏐⏐]

≤
4π2

2N + 1

∑
|l|≤N

|l|
(
E[cn,M (l; ν)2]

1
2 E[(cn(−l; dp) − c(−l; dp))2]

1
2

+ E[c(−l; dp)2]
1
2 E[(cn,M (l; ν) − c(l; ν))2]

1
2

)
.
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The L2-norm of the Fourier coefficients c(l; dp) defined in (4) is bounded under Assumptions
(H), whereas for each |l| ≤ M + N

E
[
(cn(l; dp) − c(l; dp))2

]
(44)

≤ E
[( 1

2π

∫ 2π

0
(e−ilφn (t)

− e−ilt )σ (t) dW (t) +
1

2π

∫ 2π

0
(e−ilφn (t)

− e−ilt ) a(t) dt
)2]

.

After using the Itô isometry (44) is less than or equal to

CE
[ 1

4π2

∫ 2π

0
(e−il(φn (t)−t)

− 1)(eil(φn (t)−t)
− 1)σ 2(t) dt

]
+ CE

[ 1
4π2

(∫ 2π

0
e−ilt (e−il(φn (t)−t)

− 1) a(t) dt
)2]

By means of the Hölder inequality with p = ∞ and p = 1 and Taylor’s formula

E
[ 1

4π2

∫ 2π

0
(e−il(φn (t)−t)

− 1)(eil(φn (t)−t)
− 1)σ 2(t) dt

]
≤ C

∫ 2π

0
(|l| |φn(t) − t | + l2o(|φn(t) − t |2))2dt ≤ C N 2τ 2(n) + o(1),

and

E
[ 1

4π2

(∫ 2π

0
e−ilt (e−il(φn (t)−t)

− 1) a(t) dt
)2]

≤ C
∫

[0,2π ]2
(|l| |φn(t) − t | + l2o(|φn(t) − t |2))(|l| |φn(s) − s| + l2o(|φn(s) − s|2))dtds

≤ C N 2τ 2(n) + o(1)

By definition (14) and applying the product rule to the term cn(s; dp)cn(l − s; dp), we obtain
the following decomposition

cn,M (l; ν) =
1

2π

∫ 2π

0
e−ilφn (t)ν(t)dt

+ IM,n + ĨM,n + H 1
M,n + H 2

M,n + H 3
M,n + H̃ 1

M,n + H̃ 2
M,n + H̃ 3

M,n.

Referring to DM (φn(s)) as the normalized Dirichlet kernel for t = 2π and s ∈ [0, 2π ]

IM,n =
1

2π

∫ 2π

0

∫ t

0
e−ilφn (u) DM (φn(t) − φn(u))σ (u) dW (u) σ (t) dW (t),

H 1
M,n =

1
2π

∫ 2π

0

∫ t

0
e−ilφn (u) DM (φn(t) − φn(u)) a(u) du σ (t) dW (t),

H 2
M,n =

1
2π

∫ 2π

0

∫ t

0
e−ilφn (u) DM (φn(t) − φn(u))σ (u) dW (u) a(t) dt,

H 3
M,n =

1
2π

∫ 2π

0

∫ t

0
e−ilφn (u) DM (φn(t) − φn(u)) a(u) du a(t) dt,

ĨM,n =
1

2π

∫ 2π

0
e−ilφn (t)

∫ t

0
DM (φn(t) − φn(u))σ (u) dW (u) σ (t) dW (t),

H̃ 1
M,n =

1
2π

∫ 2π

0
e−ilφn (t)

∫ t

0
DM (φn(t) − φn(u)) a(u) du σ (t) dW (t),
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H̃ 2
M,n =

1
2π

∫ 2π

0
e−ilφn (t)

∫ t

0
DM (φn(t) − φn(u))σ (u) dW (u) a(t) dt,

H̃ 3
M,n =

1
2π

∫ 2π

0
e−ilφn (t)

∫ t

0
DM (φn(t) − φn(u)) a(u) du a(t) dt.

The L2-norm of ĨM,n , H̃ 1
M,n , H̃ 2

M,n H̃ 3
M,n , respectively, have the same order of magnitude as

IM,n , H 1
M,n , H 2

M,n and H 3
M,n . Then, we just present the estimation of the L2-norm of the latter

quantities.

E[(IM,n)2] = E
[ 1

4π2

∫ 2π

0

(∫ t

0
e−ilφn (u) DM (φn(t) − φn(u))σ (u)dW (u)

)2
ν(t)dt

]
≤ CE[ sup

t∈[0,2π ]
ν2(t)]

∫ 2π

0

∫ t

0
D2

M (φn(t) − φn(u))dudt ≤
C
M

by means of Lemma 5. Using similar tools, it can be shown that

E[(H 1
M,n)2] ≤

C

M
2
p

and E[(H 3
M,n)2] ≤

C

M
2
p
,

for p ∈ (1, 2). Regarding the estimation of the term H 2
M,n , the duality property for the stochastic

integrals, [31, Formula 1.42], has to be used in order to obtain

E[(H 2
M,n)2] ≤

C

M
2+p
2p

,

for p ∈ (1, 2). The complete computations of the above estimations can be found in [19, Theorem
3.1]. Then, it can be proved

E[(cn,M (l; ν) − c(l; ν))2] ≤ CE
[( 1

2π

∫ 2π

0

(
e−ilφn (t)

− e−ilt
)
ν(t)dt

+ IM,n + ĨM,n + H 1
M,n + H 2

M,n + H 3
M,n + H̃ 1

M,n + H̃ 2
M,n + H̃ 3

M,n

)2]
≤ C N 2τ 2(n) +

C
M

+ o(1)

by means of the use of Hölder inequality and Taylor’s formula as in (44) and that the L1-norm
of the discretization error

E
[⏐⏐⏐√N

4π2

2N + 1

∑
|l|≤N

ilcn,M (l; ν)cn(l; dp) − ilc(l; ν)c(l; dp)
⏐⏐⏐]

≤ C N
5
2 τ (n) + C

N
3
2

√
M

+ o(1).

Due to Assumptions (23) the above terms go to zero as n, N , M → ∞ and τ (n) → 0.
Using the product rule we obtain that the truncation error (43) – because of formula (9) – can

be decomposed as
√

N
( 4π2

2N + 1

∑
|l|≤N

ilc(l; ν)c(−l; dp) −

∫ 2π

0
η(t)dt

)
=

√
N

∫ 2π

0

∫ s

0
DN (s − u)dp(u)dν(s)

(M1,N (2π ))

+
√

N
∫ 2π

0

∫ s

0
DN (s − u)dν(u)dp(s)

(M2,N (2π ))
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−
√

N
∫ 2π

0

∫ s

0
DN (u)dp(u)dν(s)

(M3,N (2π ))

−
√

N
∫ 2π

0

∫ s

0
DN (s)dν(u)dp(s)

(M4,N (2π ))

−
√

N
∫ 2π

0
DN (u)η(u)du

(M5,N (2π ))

.

Let us analyze the first double integral

E
[⏐⏐⏐ ∫ 2π

0

∫ s

0
DN (s − u)dp(u)dν(s)

⏐⏐⏐] = E
[⏐⏐⏐ ∫ 2π

0

∫ s

0
DN (s − u)σ (u)dW (u)γ (s)d Z (s)

+

∫ 2π

0

∫ s

0
DN (s − u)σ (u)dW (u)b(s)ds +

∫ 2π

0

∫ s

0
DN (s − u)a(u)d(u)γ (s)d Z (s)

+

∫ 2π

0

∫ s

0
DN (s − u)a(u)dub(s)ds

⏐⏐⏐]
The first two summands of the above decomposition have a L1-norm respectively of order
O(N−

1
2 ) and O(N−

2+p
4p ) and the third and the fourth one are of order O(N−

1
p ), where p ∈ (1, 2).

These estimations are performed by means of the use of Proposition 1, the Hölder inequality and
the duality property for the stochastic integrals, [31, Formula 1.42], in the case of the second
summand. In the next section, we work extensively with similar estimations and present the exact
calculations. The above calculations show that the drift components of the logarithmic price and
the volatility process are negligible in probability with respect to the diffusive components under
Assumptions (23). The L1-norm of the summands M1,N (2π ), M2,N (2π ), M3,N (2π ), M4,N (2π )
has evidently the same order of magnitude.

By means of Proposition 1,

E[|M5,N (2π )|] ≤ CE
[

sup
t∈[0,2π ]

|η(t)|
]√

N
(∫ 2π

0
|DN (u)|pdu

) 1
p

≤
C

N
2−p
2p

.

Choosing p ∈ (1, 2) we obtain that the term M5,N (2π ) converges to zero in L1-norm as N → ∞.
Thus,

E
[⏐⏐⏐√N

4π2

2N + 1

∑
|l|≤N

ilc(l; ν)c(−l; dp) −

∫ 2π

0
η(t)dt

⏐⏐⏐]
≤ E[|M1,N (2π ) + M2,N (2π ) + M3,N (2π ) + M4,N (2π )|] + op(1).

In the error decomposition (41), the truncation error (43) has the leading order of magnitude
and the discretization error (42) is negligible in probability. Therefore, its asymptotic distribution
just depends on Mi,N (2π ) for i = 1, . . . , 4.

To simplify notation we consider the process p(t) and ν(t) as martingales in the following{
dp(t) =

√
ν(t)dW (t)

dν(t) = γ (t)d Z (t)
(45)
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In order to show the asymptotic result in (24), we need another preliminary step. We define

MN (t) =
√

N
∫ t

0

∫ s

0
DN (s − u, t)dp(u)dν(s)

(M1,N (t))

+
√

N
∫ t

0

∫ s

0
DN (s − u, t)dν(u)dp(s)

(M2,N (t))

−
√

N
∫ t

0

∫ s

0
DN (u, t)dp(u)dν(s)

(M3,N (t))

−
√

N
∫ t

0

∫ s

0
DN (s, t)dv(u)dp(s)

(M4,N (t))

where we remind the reader that DN (s − u, t) is the rescaled Dirichlet kernel defined in (34).

Remark 7. The intuition behind the definition of the process MN (t) is the following. In order to
estimate∫ t

0
η(s)ds,

we should employ an estimator of the 0th Fourier coefficient of the leverage process using
observations of the logarithmic price in [0, t]. By means of Lemmas 4 and 5, we can show
that the asymptotic properties of the error distribution depend exactly on the sequence MN (t) for
each t .

The definition of MN (t) makes it now possible to use Jacod’s stable limit Theorem, [24,
Theorem 2.1], and then for t = 2π to determine the asymptotic error distribution of the Fourier
estimator of the integrated leverage effect.

4.3. Asymptotic error distribution

Jacod’s stable limit theorem implies that it suffices to study for all t ∈ [0, 2π ] the probability
limit of the brackets ⟨MN (t), W (t)⟩, ⟨MN (t), Z (t)⟩, ⟨MN (t), MN (t)⟩ and ⟨MN (t), N (t)⟩ where
N (t) belongs to the set of the bounded martingales adapted to the filtration F with N (0) = 0
such that ⟨W (t), N (t)⟩ = 0 and ⟨Z (t), N (t)⟩ = 0. The limit ⟨MN (t), N (t)⟩ is obviously equal to
zero for all N (t). Thus, we divide the proof into three steps. In the first two steps we prove the
asymptotic orthogonality of the sequence with respect to the Brownian motions W and Z . In the
last we focus our attention on the limit in probability of the quadratic variation process.

In what follows, we indicate

Y1,N (z, s) =

∫ s

0
DN (z − u, t)dp(u) (46)

Y2,N (z, s) =

∫ s

0
DN (z − u, t)dν(u) (47)

Y3,N (s) =

∫ s

0
DN (u, t)dp(u) (48)

First step: we prove that for each t ∈ [0, 2π ], ⟨MN (t), W (t)⟩ converges to zero in the L2-
norm.

E[⟨MN (t), W (t)⟩2]

= E[|⟨M1,N (t), W (t)⟩ + ⟨M2,N (t), W (t)⟩ + ⟨M3,N (t), W (t)⟩ + ⟨M4,N (t), W (t)⟩|2]
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= E
[

N
(∫ t

0
Y1,N (s, s)γ (s)ρ(s)ds +

∫ t

0
Y2,N (s, s)

√
ν(s)ds

−

∫ t

0
Y3,N (s)γ (s)ρ(s)ds −

∫ t

0

∫ s

0
DN (s, t)dν(u)

√
ν(s)ds

)2]
≤ C N

∫
[0,t]2

E[Y1,N (s, s)Y1,N (s ′, s ′)γ (s)ρ(s)γ (s ′)ρ(s ′)]dsds ′

(I1,1)

+ C N
∫

[0,t]2
E[Y2,N (s, s)Y2,N (s ′, s ′)

√
ν(s)

√
ν(s ′)]dsds ′

(I1,2)

+ C N
∫

[0,t]2
E[Y3,N (s)Y3,N (s ′)γ (s)ρ(s)γ (s ′)ρ(s ′)]dsds ′

(I1,3)

+ C N
∫

[0,t]2
|DN (s, t)DN (s ′, t)|E[(ν(s) − ν(0))(ν(s ′) − ν(0))

√
ν(s)

√
ν(s ′)]dsds ′

(I1,4)

The integrals I1,1, I1,2 and I1,3 can be treated using the same procedure. We will only evaluate
I1,1. We show the calculation in the set of integration {s ≤ s ′

: (s, s ′) ∈ [0, t]2
}. In its

complementary set, the duality property for the stochastic integrals leads to the terms discussed
below where s ′ is in place of the variable s and vice versa. By means of the product rule [31,
Lemma 1.2.2] and [31, Formula (1.65)]

N
∫

0≤s≤s′≤t
E[Y1,N (s, s)Y1,N (s ′, s ′)γ (s)ρ(s)γ (s ′)ρ(s ′)]dsds ′

= N
∫

0≤s≤s′≤t
E[γ (s)ρ(s)γ (s ′)ρ(s ′)

∫ s

0
DN (s − u, t)DN (s ′

− u, t)1{u≤s′}ν(u)du]dsds ′

+ N
∫

0≤s≤s′≤t
E[γ (s)ρ(s)γ (s ′)ρ(s ′)

∫ s

0
DN (s − u, t)

√
ν(u)

×

(∫ s′

u
DN (s ′

− v, t)Du(
√

ν(v))dW (v)
)

du]dsds ′

+ N
∫

0≤s≤s′≤t
E[Y1,N (s ′, s ′)

∫ s

0
DN (s − u, t)

√
ν(u)

× Du(γ (s)ρ(s)γ (s ′)ρ(s ′))du]dsds ′.

We have that using Fubini’s theorem and Assumption (H2)

N
∫

0≤s≤s′≤t
E[γ (s)ρ(s)γ (s ′)ρ(s ′)

∫ s

0
DN (s − u, t)DN (s ′

− u, t)1{u≤s′}ν(u)du]dsds ′

≤ C N
∫ t

0

(∫ t

u
|DN (s − u, t)|ds

∫ t

u
|DN (s ′

− u, t)|ds ′

)
du

≤ C N
(∫ t

0
|DN (s − u, t)|pdu

) 2
p

≤
C

N
2−p

p

.

The Cauchy–Schwarz inequality and the property of the rescaled Dirichlet kernel lead to⏐⏐⏐N ∫
0≤s≤s′≤t

E[γ (s)ρ(s)γ (s ′)ρ(s ′)
∫ s

0
DN (s − u, t)

√
ν(u)
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×

(∫ s′

u
DN (s ′

− v, t)Du(
√

ν(v))dW (v)
)

du]dsds ′

⏐⏐⏐
≤ C N

∫
0≤s≤s′≤t

∫ s

0
|DN (s − u, t)|du

(∫ s′

0
D2

N (s ′
− v, t)dv

) 1
2
dsds ′

≤
C

N
2−p
2p

.

We proceed similarly for the third summand

N
∫

0≤s≤s′≤t
E[Y1,N (s ′, s ′)

∫ s

0
DN (s − u, t)

√
ν(u)Du(γ (s)ρ(s)γ (s ′)ρ(s ′))du]dsds ′

≤ C N
∫

0≤s≤s′≤t

(∫ s′

0
D2

N (s ′
− u, t)du

) 1
2
(∫ s

0
|DN (s − u, t)|pdu

) 1
p
dsds ′

≤
C

N
2−p
2p

.

It remains to evaluate the integral I1,4

N
∫

[0,t]2
|DN (s, t)DN (s ′, t)|E[(ν(s) − ν(0))(ν(s ′) − ν(0))

√
ν(s)

√
ν(s ′)]dsds ′

≤ C N
(∫ t

0
|DN (s, t)|pds

) 2
p

≤
C

N
2−p

p

.

Therefore, choosing p ∈ (1, 2) all the above estimates go to zero as N → ∞.

Second step: proceeding as in the computation of the First step, the bracket ⟨MN (t), Z (t)⟩
converges to zero in L2-norm for all t ∈ [0, 2π ].

Third step: we have that

⟨MN (t), MN (t)⟩
= ⟨M1,N (t), M1,N (t)⟩ + 2⟨M1,N (t), M2,N (t)⟩ + 2⟨M1,N (t), M3,N (t)⟩

+ 2⟨M1,N (t), M4,N (t)⟩
+ ⟨M2,N (t), M2,N (t)⟩ + 2⟨M2,N (t), M3,N (t)⟩ + 2⟨M2,N (t), M4,N (t)⟩
+ ⟨M3,N (t), M3,N (t)⟩
+ 2⟨M3,N (t), M4,N (t)⟩ + ⟨M4,N (t), M4,N (t)⟩. (49)

The first bracket

⟨M1,N (t), M1,N (t)⟩ = N
∫ t

0

(∫ s

0
DN (s − u, t)dp(u)

)2
γ 2(s) ds

= N
∫ t

0

∫ s

0
D2

N (s − u, t) ν(u) du γ 2(s) ds

(I3,1)

+ 2N
∫ t

0

∫ s

0
Y1,N (s, u) DN (s − u, t) dp(u) γ 2(s) ds

(I3,2)

.

where the Itô isometry is applied to Y 2
1,N (s, s).

We will use the same procedure to compute all the brackets in (49) labeling each integral for
the convenience of the reader.

⟨M2,N (t), M2,N (t)⟩ = N
∫ t

0

∫ s

0
D2

N (s − u, t) γ 2(u) du ν(s) ds

(I3,3)
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+ 2N
∫ t

0

∫ s

0
Y2,N (s, u) DN (s − u, t) dν(u) ν(s) ds

(I3,4)

⟨M3,N (t), M3,N (t)⟩ = N
∫ t

0

∫ s

0
D2

N (u, t) ν(u) du γ 2(s) ds

(I3,5)

+ 2N
∫ t

0

∫ s

0
Y3,N (u) DN (u, t) dp(u) γ 2(s) ds

(I3,6)

⟨M4,N (t), M4,N (t)⟩ = N
∫ t

0
D2

N (s, t)
(∫ s

0
dν(u)

)2
ν(s)ds

(I3,7)

2⟨M1,N (t), M2,N (t)⟩ = 2N
∫ t

0

∫ s

0
D2

N (s − u, t) η(u) du η(s) ds

(I3,8)

+ 2N
∫ t

0

∫ s

0
Y1,N (s, u) DN (s − u, t) dν(u) η(s) ds

(I3,9)

+ 2N
∫ t

0

∫ s

0
Y2,N (s, u) DN (s − u, t) dp(u) η(s)ds

(I3,10)

2⟨M1,N (t), M3,N (t)⟩ = −2N
∫ t

0

∫ s

0
DN (s − u, t) DN (u, t) ν(u) duγ 2(s)ds

(I3,11)

− 2N
∫ t

0

∫ s

0
Y1,N (s, u) DN (u, t) dp(u) γ 2(s)ds

(I3,12)

− 2N
∫ t

0

∫ s

0
Y3,N (u) DN (s − u, t) dp(u) γ 2(s) ds

(I3,13)

2⟨M1,N (t), M4,N (t)⟩ = −2N
∫ t

0
DN (s, t)

∫ s

0
DN (s − u, t)η(u)duη(s) ds

(I3,14)

− 2N
∫ t

0
DN (s, t)

∫ s

0
Y1,N (s, u) dν(u)η(s)ds

(I3,15)

− 2N
∫ t

0
DN (s, t)

∫ s

0
(ν(u) − ν(0))DN (s − u, t) dp(u)η(s) ds

(I3,16)

2⟨M2,N (t), M3,N (t)⟩ = −2N
∫ t

0

∫ s

0
DN (s − u, t)DN (u, t)η(u) du η(s) ds

(I3,17)

− 2N
∫ t

0

∫ s

0
Y2,N (s, u)DN (u, t) dp(u) η(s) ds

(I3,18)
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− 2N
∫ t

0

∫ s

0
Y3,N (u)DN (s − u, t) dν(u) η(s) ds

(I3,19)

2⟨M2,N (t), M4,N (t)⟩ = −2N
∫ t

0
DN (s, t)

∫ s

0
DN (s − u, t)γ 2(u) du ν(s)ds

(I3,20)

− 2N
∫ t

0
DN (s, t)

∫ s

0
Y2,N (s, u)dν(u) ν(s)ds

(I3,21)

− −2N
∫ t

0
DN (s, t)

∫ s

0
(ν(u) − ν(0))DN (s − u, t)dν(u)ν(s)ds

(I3,22)

2⟨M3,N (t), M4,N (t)⟩ = 2N
∫ t

0
DN (s, t)

∫ s

0
DN (u, t)η(u)duη(s)ds

(I3,23)

+ 2N
∫ t

0
DN (s, t)

∫ s

0
Y3,N (u)dν(u)η(s)ds

(I3,24)

+ 2N
∫ t

0
DN (s, t)

∫ s

0
(ν(u) − ν(0))DN (u, t)dp(u)η(s)ds

(I3,25)

.

The integrals

I3,1 + I3,3 + I3,5 + I3,7 + I3,8 →
t
2

∫ t

0
(ν(s)γ 2(s) + η2(s))ds +

t
4
ν(0)

∫ t

0
γ 2(s)ds

+
t
4

(ν(t) − ν(0))2ν(t)

as N → ∞ a.s. and for all t ∈ [0, 2π ].
In the integrals I3,1, I3,3 and I3,8, the sequence N D2

N is centered in s for each s ∈ (0, t), we
then compute the limit using the result (38) and considering the sequence just integrated with
respect to the interval [s − ϵ, s) for ϵ ∈ (0, s/2). For the integral I3,5, the sequence N D2

N is
centered in 0 and the same applies but considering the sequence integrated with respect to the
interval [0, ϵ) for ϵ ∈ (0, s/2) and s ∈ (0, t). Just for the computation of the limit involving the
integral I3,7, the full result in (38) is used.

The integrals I3,11, I3,14, I3,17, I3,20 and I3,23 converge to zero in L1-norm for all t ∈ [0, 2π ].
The computation for each integral is similar. It is based on the use of the property of the rescaled
Dirichlet kernel. We evaluate just the integral I3,11.

E
[⏐⏐⏐ − 2N

∫ t

0

∫ s

0
DN (s − u, t) DN (u, t) ν(u) duγ 2(s)ds

⏐⏐⏐]
≤ CE[ sup

t∈[0,2π ]
|ν(t)γ 2(t)|]2N

∫ t

0

(∫ s

0
|DN (s − u, t)DN (u, t)|r du

) 1
r

ds

≤ C2N
∫ t

0

(∫ s

0
|DN (s − u, t)|pdu

) 1
p
(∫ s

0
|DN (u, t)|p′

du
) 1

p′

ds

≤ C
1

N
2−p
2p

1

N
2−p′

2p′
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applying the Young’s inequality for convolutions with p, p′
∈ (1, 2) and r > 1 such that

1
p +

1
p′ = 1 +

1
r . The above term goes to zero as N → ∞.

It can be proved that I3,15, I3,16, I3,21, I3,22, I3,24 and I3,25 converge to zero in L2-norm using
the same procedure. We present the computation for the integral I3,15. We call

PN (s) =

∫ s

0
Y1,N (s, u)dν(u),

then the L2-norm of the integral I3,15

E
[(

−2N
∫ t

0
DN (s, t)PN (s)η(s)ds

)2]
= 4N 2

∫
[0,t]2

DN (s, t)DN (s ′, t)E
[

PN (s)PN (s ′)η(s)η(s ′)
]

dsds ′. (50)

Using several times the Cauchy–Schwarz and the Burkholder–Gundy inequalities

E[PN (s)PN (s ′)η(s)η(s ′)] ≤ CE
[(∫ s

0
Y1,N (s, u) dν(u)

)2(∫ s′

0
Y1,N (s ′, v)dν(v)

)2] 1
2

≤ CE
[∫ s

0
Y 4

1,N (s, u)γ 4(u) du
] 1

2

≤ C
(∫ s

0

(∫ u

0
D2

N (s − w, t)dw
)2

du
) 1

2
≤

C
N

.

Then, for all t ∈ (0, 2π ], (50) is less than or equal to

C N
∫

[0,t]2
|DN (s, t)DN (s ′, t)|dsds ′

≤
C

N
2−p

p

which goes to zero choosing p ∈ (1, 2) as N → ∞.
We evaluate the integrals I3,2, I3,4, I3,6, I3,9, I3,10, I3,12, I3,13, I3,18 and I3,19 and show that they

converge to zero in L2-norm. In this case, the computation in L2-norm is more technical and
involves the use of Malliavin calculus. We explain the procedure in the case of the integral I3,2.
Let us call

Z N (s) =

∫ s

0
Y1,N (s, u) DN (s − u, t) dp(u),

then the L2-norm of the integral I3,2

E
[⏐⏐⏐2N

∫ t

0

∫ s

0
Y1,N (s, u) DN (s − u, t) dp(u) γ 2(s) ds

⏐⏐⏐2]
= 4N 2

∫
[0,t]2

E[Z N (s)Z N (s ′)γ 2(s)γ 2(s ′)]dsds ′. (51)

We show the calculation in the set of integration {s ≤ s ′
: (s, s ′) ∈ [0, t]2

}. In the complementary
set we obtain equal terms, substituting the variable s ′ with s and vice versa, with the same
asymptotic behavior. By means of the product rule [31, Lemma 1.2.2] and [31, Formula (1.65)],
we obtain

E[Z N (s)Z N (s ′)γ 2(s)γ 2(s ′)] = G1
N (s, s ′) + G2

N (s, s ′) + G3
N (s, s ′),

where

G1
N (s, s ′) = E

[
γ 2(s)γ 2(s ′)

∫ s

0
Y1,N (s, u)DN (s − u, t)ν(u)Y1,N (s ′, u)
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× DN (s ′
− u, t)1{u≤s′}du

]
,

G2
N (s, s ′) = E

[
γ 2(s)γ 2(s ′)

∫ s

0
Y1,N (s, u)DN (s − u, t)

√
ν(u)

×

(∫ s′

u
DN (s ′

− v, t)Du(Y1,N (s ′, v)
√

ν(v))dW (v)
)

du
]
,

G3
N (s, s ′) = E[Z N (s ′)

∫ s

0
Y1,N (s, u)DN (s − u, t)

√
ν(u)Du(γ 2(s)γ 2(s ′))du].

Then, we study

4N 2
∫

0≤s≤s′≤t
(G1

N (s, s ′) + G2
N (s, s ′) + G3

N (s, s ′))dsds ′. (52)

Let us turn our attention to the first summand.

4N 2
∫

0≤s≤s′≤t
G1

N (s, s ′)dsds ′

≤ C N 2
∫

0≤s≤s′≤t

∫ s

0
E[Y 2

1,N (s, u)Y 2
1,N (s ′, u)]

1
2

× |DN (s − u, t)DN (s ′
− u, t)|1{u≤s′}dudsds ′. (53)

We observe that, using successively the Cauchy–Schwarz and the Burkholder–Gundy inequali-
ties

E[Y 2
1,N (s, u)Y 2

1,N (s ′, u)]
1
2 (54)

≤ E
[(∫ u

0
DN (s − v, t)

√
ν(v)dW (v)

)4] 1
4 E

[(∫ u

0
DN (s ′

− v, t)
√

ν(v)dW (v)
)4] 1

4

≤ CE
[(∫ t

0
D2

N (s − v, t)dv
)2] 1

2
≤

C
N

.

Coming back to the estimation of the first summand, we have that (53) is less than or equal to

C N
∫

0≤s≤s′≤t

∫ s

0
|DN (s − u, t)DN (s ′

− u, t)|1{u≤s′}dudsds ′

≤ C N
∫ t

0

(∫ t

u
|DN (s − u, t)|ds

)2
du ≤ C N

∫ t

0

(∫ t

0
|DN (s − u, t)|pds

) 2
p
du

≤
C

N
2
p −1

.

We used Fubini’s theorem and the property of the rescaled Dirichlet kernel to attain this result.
Therefore, choosing p ∈ (1, 2) this term goes to zero.

Regarding the second summand: first of all we observe that the Malliavin derivative

Du(Y1,N (s ′, v)
√

ν(v)) = Y1,N (s ′, v)Du(
√

ν(v)) + DN (s ′
− u, t)

√
ν(u)1{u≤v}

√
ν(v)

+

∫ v

u
DN (s ′

− v′, t)Du(
√

ν(v′))dW (v′)
√

ν(v)

and we can decompose the summand as follows

4N 2
∫

0≤s≤s′≤t
G2

N (s, s′)dsds′
=
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4N 2
∫

0≤s≤s′≤t
E

[
γ 2(s)γ 2(s′)

∫ s

0
Y1,N (s, u)DN (s − u, t)

√
ν(u)

×

(∫ s′

u
DN (s′

− v, t)Y1,N (s′, v)Du(
√

ν(v))dW (v)
)

du
]
dsds′

(I3,26)

+ 4N 2
∫

0≤s≤s′≤t
E

[
γ 2(s)γ 2(s′)

∫ s

0
Y1,N (s, u)DN (s − u, t)

√
ν(u)

×

(∫ s′

u
DN (s′

− v, t)DN (s′
− u, t)

√
ν(u)1{u≤v}

√
ν(v)dW (v)

)
du

]
dsds′

(I3,27)

+ 4N 2
∫

0≤s≤s′≤t
E

[
γ 2(s)γ 2(s′)

∫ s

0
Y1,N (s, u)DN (s − u, t)

√
ν(u)

×

(∫ s′

u
DN (s′

− v, t)
√

ν(v)
∫ v

u
DN (s′

− v′, t)Du(
√

ν(v′))dW (v′)dW (v)
)

du
]
dsds′

(I3,28)

.

Throughout the below estimate we use the Cauchy–Schwarz inequality. The integral I3,26 is less
than or equal to

C N 2
∫

0≤s≤s′≤t

∫ s

0
|DN (s − u, t)|E

[⏐⏐⏐Y1,N (s, u)
∫ s′

u
DN (s ′

− v, t)Y1,N (s ′, v)

× Du(
√

ν(v))dW (v)
⏐⏐⏐2] 1

2
dudsds ′

≤ C N 2
∫

0≤s≤s′≤t

∫ s

0
|DN (s − u, t)|E

[ ∫ s′

0
Y 2

1,N (s, u)D2
N (s ′

− v, t)Y 2
1,N (s ′, v)

× Du(
√

ν(v))2dv
] 1

2
dudsds ′

≤ C N 2
∫

0≤s≤s′≤t

∫ s

0
|DN (s − u, t)|E[ sup

u,v∈[0,t]
Du(

√
ν(v))4]

1
4

×

[∫ s′

0
E[|Y 2

1,N (s, u)Y 2
1,N (s ′, v)|

2
]

1
2 D2

N (s ′
− v, t)dv

] 1
2
dudsds ′,

we observe that, using successively Cauchy–Schwarz and Burkholder–Gundy inequalities

E[|Y 2
1,N (s, u)Y 2

1,N (s ′, v)|
2
]

1
2 ≤ E[Y 8

1,N (s, u)]
1
4 E[Y 8

1,N (s ′, v)]
1
4

≤ CE[
(∫ t

0
D2

N (w, t)dw
)4

]
1
2 ≤

C
N 2 .

Therefore I3,26 is less than or equal to

≤ C N
∫

0≤s≤s′≤t

∫ s

0
|DN (s − u, t)|

[∫ s′

0
D2

N (s ′
− v, t)dv

] 1
2
dudsds ′

= C N
∫

0≤s≤s′≤t

(∫ s

0
|DN (s − u, t)|du

)(∫ s′

0
D2

N (s ′
− v, t)dv

) 1
2
dsds ′

≤
C

N
2−p
2p

.

Therefore, choosing p ∈ (1, 2), the above term goes to zero.
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Using several times the Cauchy–Schwarz inequality, we have that I3,27 is less than or equal
to

C N 2
∫

0≤s≤s′≤t

∫ s

0
|DN (s − u, t)|

× E
[⏐⏐⏐ ∫ s′

u
Y1,N (s, u)DN (s ′

− v, t)DN (s ′
− u, t)1{u≤v}

×

√
ν(u)

√
ν(v)dW (v)

⏐⏐⏐2] 1
2
dudsds ′

= C N 2
∫

0≤s≤s′≤t

∫ s

0
|DN (s − u, t)|E

[ ∫ s′

u
Y 2

1,N (s, u)D2
N (s ′

− v, t)

× D2
N (s ′

− u, t)1{u≤v}ν(u)ν(v)dv
] 1

2
dudsds ′

≤ C N 2
∫

0≤s≤s′≤t

∫ s

0
|DN (s − u, t)|

[ ∫ s′

u
D2

N (s ′
− v, t)D2

N (s ′
− u, t)

× E[Y 4
1,N (s, u)]

1
2 1{u≤v}dv

] 1
2
dudsds ′

by means of the estimate (54)

≤ C N
3
2

∫
0≤s≤s′≤t

∫ s

0
|DN (s − u, t)DN (s ′

− u, t)|

×

[∫ t

0
D2

N (s ′
− v, t)1{u≤v}dv

] 1
2
dudsds ′

≤ C N
∫

0≤s≤s′≤t

∫ s

0
|DN (s − u, t)||DN (s ′

− u, t)|dudsds ′

≤ C N
∫ t

0

(∫ t

u
|DN (s − u, t)|ds

)(∫ t

u
|DN (s ′

− u, t)|ds ′

)
du ≤

C

N
2
p −1

.

We obtain the last estimate using Fubini’s theorem and the properties of the Dirichlet kernel.
Also in this case, if we choose p ∈ (1, 2), the above term goes to zero.

Proceeding as in the previous cases, I3,28 is less than or equal to

C N 2
∫

0≤s≤s′≤t

∫ s

0
|DN (s − u, t)|

× E
[⏐⏐⏐ ∫ s′

u
Y1,N (s, u)DN (s ′

− v, t)
∫ v

u
DN (s ′

− v′, t)Du(
√

ν(v′))dW (v′)

×

√
ν(v)dW (v)

⏐⏐⏐2] 1
2
dudsds ′

≤ C N 2
∫

0≤s≤s′≤t

∫ s

0
|DN (s − u, t)|E

[∫ s′

u
Y 2

1,N (s, u)D2
N (s ′

− v, t)

×

(∫ v

u
DN (s ′

− v′, t)Du(
√

ν(v′))dW (v′)
)2

ν(v)dv
]

1
2 dudsds ′

≤ C N 2
∫

0≤s≤s′≤t

∫ s

0
|DN (s − u, t)|

[∫ s′

0
E[Y 8

1,N (s, u)]
1
2 D4

N (s ′
− v, t)dv

] 1
4



3232 I.V. Curato / Stochastic Processes and their Applications 129 (2019) 3207–3238

×

[∫ s′

0

(∫ v

0
D2

N (s ′
− v′, t)dv′

)2
dv

] 1
4
dudsds ′

≤ C N 2
∫

0≤s≤s′≤t

∫ s

0
|DN (s − u, t)|

1

N
1
2

[∫ t

0
D4

N (s ′
− v, t)dv

] 1
4

×

[(∫ t

0
D2

N (s ′
− v′, t)dv′

)2] 1
4
dudsds ′

≤
C

N
4−3p

4p

,

choosing p ∈ (1, 4/3) the above term goes to zero.
Concerning the third summand of (52), we have that

4N 2
∫

0≤s≤s′≤t
G3

N (s, s ′)dsds ′

≤ C N 2
∫

0≤s≤s′≤t

∫ s

0
E[Z2

N (s ′)]
1
2 E[Y 4

1,N (s, u)]
1
4 |DN (s − u, t)|dudsds ′

≤ C N 2
∫

0≤s≤s′≤t

∫ s

0
|DN (s − u, t)|E[Z2

N (s ′)]
1
2

1

N
1
2

dudsds ′

≤
C

N
2−p
2p

because of the following estimation

E[Z2
N (s ′)]

1
2 = E

[(∫ s′

0
Y1,N (s ′, u)DN (s ′

− u, t)
√

ν(u)dW (u)
)2] 1

2

≤ C
[∫ s′

0
E[Y 4

1,N (s ′
− u)]

1
2 D2

N (s ′
− u, t)du

] 1
2

≤
C
N

.

Therefore, choosing p ∈ (1, 2) the third summand goes to zero in L2-norm and we conclude.

5. Simulation analysis

In this section, we test the finite sample properties of the Fourier estimator as function of the
cutting frequencies M and N . These parameters correspond to the highest frequency coefficients
(13), (14) which have to be included in the estimator η̂n,M,N and selected with respect to an
optimality criterion in the finite sample. We choose to minimize the real mean squared error
of the estimate (MSE in what follows) and to call optimal the cutting frequencies for which
the minimum is reached. We then perform a sensitivity study on the MSE as function of the
parameters M and N , a study on the behavior of the asymptotic statistic determined in Theorem 3
and we use the optimal selection rule to estimate the leverage effect in data affected by additive
microstructure noise contaminations.

Let us start by describing the data sets used in the simulation analysis. The estimation
procedure developed in the paper is not sensitive to the type of grid, equidistant or non-
equidistant, on which the data are recorded, see Remark 6. Thus, we define the time grid
Sn := {0 = t0 ≤ t1 ≤ · · · ≤ tn = T } as generated by a Beta distribution B(a, b) with parameters
a = 2 and b = 5 that models the trade duration between subsequent transactions. Our time grid
shall resemble the times corresponding to the trade of a liquid stock – see [22, Chapter 3.3] – in
a day corresponding to T = 6 hours. Referring to the notations of Section 3, for simplicity, we
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assume kn = n and ti,n = ti for i = 1, . . . , n. We construct two different time grids on a day:
the first one is generated by a Beta distribution rescaled to the interval [0, 10.8] seconds where
a trade occurs on average every 3.8 s and the second one by a Beta distribution rescaled to the
interval [0, 3.09] seconds where a trade occurs on average every 0.88 s. We then obtain time
grids with n = 6962 and n = 24 405 time points, respectively. We simulate 250 returns and
volatility paths drawn from the Heston [23] and the Generalized Heston model [34] on these two
time grids. The Heston model used in the simulation is{

dp(t) =

√
ν(t)dW1(t)

dν(t) = κ(β − ν(t))dt + χ
√

ν(t)dW2(t),
(55)

where W1 and W2 are correlated Brownian motions. The parameter values are κ = 0.01, β =

1.0, χ = 0.05 and the correlation parameter is chosen as ρ = −0.2.
Regarding the Generalized Heston model framework, which introduces stochastic correlation

by adding a further source of randomness in the Heston model, we assume that⎧⎪⎨⎪⎩
dp(t) =

√
ν(t)d X (t)

d X (t) = ρ(t)dW1(t) +

√
1 − ρ2(t)dW2(t)

dν(t) = κ(β − ν(t))dt + χ
√

ν(t)dW1(t),
(56)

where ρ(t) satisfies the stochastic differential equation

dρ(t) = ((2ξ − ι) − ιρ(t))dt + θ
√

(1 + ρ(t))(1 − ρ(t))dW0,

ι, ξ and θ are positive constants and W0 is a Brownian motion. The processes W0(t), W1(t)
and W2(t) are assumed to be independent. The parameter values used in the simulation are
κ = 0.01, β = 1.0, χ = 0.05 and ξ = 0.2, ι = 0.5, θ = 0.5, where the last three parameters
are chosen in the range prescribed in [34] such that ρ(t) ∈ [−1, 1]. The initial values used are
ν(0) = 1, p(0) = log(100) and ρ(0) = 0.04.

We compute on each time grid and path η̂n,M,N where M ∈ {1, . . . , 3480} and N ∈

{1, . . . , 20}, for the data sets with n = 6962, and M ∈ {1, . . . , 12 202} and N ∈ {1, . . . , 20}

for the ones with n = 24 405. The upper bound of the parameter M is consistent with the
Nyquist frequency, i.e. the ratio M

n =
1
2 . This is a typical bound used in the Fourier framework

to avoid aliasing effect. Moreover, we respect this bound also due to the asymptotic properties of
the Fourier coefficients of the volatility process, as addressed in [28, Remark 3.2]. For the same
selection of frequencies M and N we compute

BIAS = E[η̂n,M,N − η̂], and MSE = E[(η̂n,M,N − η̂)2],

where η̂ is the real value of the integrated leverage effect as defined in (3). In the set-up described
in this section, the value of η̂ can be computed by using Riemann sums. We can then estimate
an average of the real integrated leverage over the 250 replications in our data sets. We call it η.
The optimal couple (M∗, N ∗) is then defined as

(M∗, N ∗) = argmin MSE(M, N ).

The results of the optimization are presented in Table 1. It is important to emphasize that whereas
the integrated leverage effect is always negative in the Heston model framework, in the case of
the Generalized Heston model it can be either positive or negative for different trajectories. The
optimal cutting frequency M∗ selected in the case of the Heston model is always lower than
the Generalized Heston model scenarios, whereas the contrary happens for the selection of the
cutting frequency N ∗. Moreover, M∗ is always bigger than (N ∗)3 in line with the assumptions
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Table 1
Selected cutting frequencies M∗ and N∗ with respect to the MSE (computed over 250 replications of the return and
volatility paths) for the Heston and Generalized Heston model data sets. η represents the average real integrated leverage
for each data set.

η n M∗ N∗ MSE BIAS

Heston model

−2.499e − 03 6962 1840 3 5.87e − 06 2.37e − 03
−2.504e − 03 244 05 5923 6 5.77e − 06 2.28e − 04

G-Heston model

−1.075e − 03 6962 1940 3 4.02e − 06 1.10e − 03
−1.082e − 03 24 405 9128 5 3.40e − 06 9.35e − 04

Fig. 1. Real MSE and BIAS of η̂n,M,M averaged on the whole data set (lower panels) and their sections relative to the
optimal selected cutting frequencies N∗

= 5 (middle panels) and M∗
= 9128 (upper panels).

of Theorem 3. Overall, across the scenarios, when n, M∗, N ∗ increase the performances of the
Fourier estimator improve. In particular the BIAS decreases even though the estimator has a
positive BIAS on average.

We now study in detail the Generalized Heston model data set with n = 24 405. The
sensitivity analysis in the case of the Heston model is similar although the minimum of the MSE
is reached for another selection of parameters. In Fig. 1, we plot the MSE, the BIAS and their
sections relative to the optimal cutting frequencies (M∗

= 9128, N ∗
= 5). Once N ∗ has been

selected, the MSE is quite robust to the choice of the cutting frequency M for M ≥ M∗ whereas
the BIAS has a minimum point that does not correspond to M∗. On the contrary, when M∗ is
selected, there is just one possible N that minimizes either the MSE or the BIAS. Thus, (M∗, N ∗)
do not correspond to a minimum of the BIAS. This means that to improve the performances of
the estimator a bias correction has to be made. This problem is tackled in [20].
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Table 2
Selection of the cutting frequencies (M, N ). Generalized Heston model
data sets with n = 24 405.

M N

(a) 9 128 5
(b) 10 953 6
(c) 11 866 7
(d) 12 202 7

The presence of a positive BIAS is also evident if we focus on the behavior of the statistic
√

N
(η̂n,M,N − ηreal)√∫ 2π

0 ϕ(s) ds
, (57)

where ϕ is the asymptotic conditional variance defined in (25), that converges in distribution to
a Standard Normal random variable due to Theorem 3 for n, M, N that goes to infinity. We here
estimate the true integrated asymptotic variance by means of Riemann sums. Given n = 24 405,
we select the frequencies N and M as in Table 2 such that in (a), (b) and (c) they correspond
to ⌈k N ∗

⌉ and ⌊k M∗
⌋ for k = 1.2, 1.3 and in (d) to the choice of ⌊n/2⌋ for the parameter M

and of ⌈N ∗
⌊n/2⌋/M∗

⌉ for the parameter N . The (a) selection corresponds to (M∗, N ∗) and the
selection (d) is the biggest possible in the considered scenario, i.e. the cutting frequency M is
the biggest integer such that M/n ≤ 1/2, the Nyquist frequency. The QQ-plots relative to the
statistic (57) are shown in Fig. 2. The cutting frequency N that we are allowed to use is not greater
than 7 and evidently a BIAS is present in the estimates due to the finite sample. Nevertheless,
the statistic (57) gives a good guide to the behavior of the error distribution as the sensitivity
analysis does in Fig. 1. The QQ-plot in the upper left panel has the best coverage between the
four selection of cutting frequencies in Table 2.

Finally, even if the results presented in this paper do not take into account the microstructure
noise contamination effects, we apply the Fourier methodology to data affected by additive noise.
We add microstructure noise contamination to the efficient logarithmic price in equilibrium, p(t),
defined in (55) and (56). Thus, the logarithm of the observed price is

p̃(ti,n) = p(ti,n) + ζ (ti,n) (58)

where ζ (t) is the microstructure noise. The random shocks ζ are considered i.i.d. Gaussian and
independent of p. This is typical of the bid–ask bounce effects in the case of exchange rates and,
to a lesser extent, in the case of equities. We consider noise-to-signal ratio λ = std(ζ )/std(r ) =

3, where r is the series of the discrete simulated return ri = δi,n(p) for i = 0, . . . , n − 1, not
affected by noise, and ζ the series of the random shocks on the same time grid. The results of
the optimization for the selection of the cutting frequencies (M∗, N ∗) are presented in Table 3
for the Heston and the Generalized Heston model data sets. The performances of the estimator
in the presence of noise are similar to the ones in Table 1 as well as the presence of a BIAS
that, however, it is positive just in the case of the Generalized Heston model. We notice that the
selected (M∗, N ∗) are smaller than those in the no-noise case. This is a typical behavior observed
in the class of the Fourier estimators in the presence of microstructure noise contamination
effects, see [28, Chapter 5] for a review.

To conclude, a note on the practical use of the estimator. The underlying model (1), can
be suitable to describe tick data. In fact, the presence of jumps in the dynamics of ultra high-
frequency data (millisecond precision) is questionable, see [14] for an empirical study on this
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Fig. 2. Quantile–quantile plot of the sample quantiles of the standardized estimation errors versus the theoretical
quantiles of a standardized normal distribution for the Generalized Heston model data set (250 replications of the return
and volatility paths) for the selected frequencies in Table 2: (a) upper left, (b) upper right, (c) lower left and (d) lower
right panel.

Table 3
Selected cutting frequencies M∗ and N∗ with respect to the MSE (com-
puted over 250 replications of the return and volatility paths) for the He-
ston and Generalized Heston model data sets with n = 24 405 in the case
of microstructure noise contamination. The noise to signal ratio λ = 3.
η represents the average real integrated leverage for each data set.

η M∗ N∗ MSE BIAS

Heston model

−2.504e − 03 3014 2 6.03e − 06 −9.86e − 05

G-Heston model

−1.082e − 03 3497 1 3.58e − 06 1.05e − 04

issue. However, for tick data the microstructure contamination effects are not negligible. It is
then worth developing directly a feasible selection rule for the optimal couple (M∗, N ∗) under
the model specification (58). This issue is addressed in [20]. The methodology here developed
has similarities with the feasible selection rules defined for the estimator of the quarticity [29]
and the volatility of volatility [32] in the presence of noise.
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6. Conclusion

In a continuous semimartingale set up, the asymptotic normality of the Fourier estimator
of the integrated leverage effect defined in [19] is attained in the presence of non-equidistant
observations of the logarithmic price process. The proof is conducted using Malliavin calculus
and is a stable limit result. The asymptotic rate of the central limit theorem as well as the finite
sample performances of the estimator depends on the parameters M and N , respectively, the
number of the Fourier coefficients of the return and the volatility process to include in the
estimation procedure. In the finite sample, a mean squared error based optimal selection rule
for the parameters M and N is addressed for Monte Carlo data. Moreover, the asymptotic theory
and the finite sample performances of the Fourier estimator constitute the foundation for the
definition of spot and multivariate estimators that aim to analyze the asymmetry in the dynamics
of the logarithmic prices and their volatilities.
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