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1 Introduction

In today’s world, vast amounts of data are collected and stored everywhere. Infor-
mation have become one of the most valuable things of our time. However, if we
do not know how to interpret them correctly, they are worthless for us. Usually,
real world data has huge dimensions and can impossibly be evaluated by a human.
This would take years and before having finished, the data would be out of date and
useless. Thus, we need computers to automatically recognise patterns in data. Here,
by patterns, we understand any relations or structure in some given source of data.
The point of detecting significant patterns in data is to be able to make predictions
about new data from the same source later. Frequently, one feature of the data is
isolated and is intended to be predicted as a function of the other feature values.
Then, the system is trained with the given data, so that it learns something about
the source, which generated the data. That way, the system acquires generalisation
power and is enabled to predict class affiliations [1]. In this thesis, we deal with
binary classification problems.

We start with a chapter on two classical learning methods. This theoretical intro-
duction provides the background for all further chapters. We learn that efficiently
detecting linear patterns often succeeds with well-known procedures. Usually, real
world problems require non-linear methods though. At this point, kernel functions
come into play, since they enable us to represent non-linear patterns through linear
relations. The underlying theory is covered by Chapter 3. In Chapter 4, we illustrate
first results. For that, the prediction quality is examined for exemplary data sets.
Both learning methods are performed and the classification rate is compared for
several settings. However, the computational complexity of performing the learning
methods from Chapter 2 scales bad for high-dimensional data sets. Chapter 5 is
devoted to design a solution to this problem.
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2 Learning Methods

In this chapter we give an introduction to learning methods that utilise positive defi-
nite kernels [1, 2]. As described above, we aim to detect dependencies to successfully
predict class affiliations. The underlying theory of machine learning is well developed
for the linear case indeed [1]. Our problem requires typically non-linear methods
though. By applying the so-called kernel trick, this difficulty can be overcome. It
is common practice to embed the data into a high-dimensional feature space, where
the patterns can be represented through linear relations. This is done by replacing
dot products by a kernel evaluation and allows us to utilise linear methods in this
space without ever explicitly having to compute in it (cf. [1, 2, 3]).

We are given a data or design matrix

X =


x1

T

...
xN

T

 ∈ RN×n, (2.1)

whose rows are represented by feature vectors xi ∈ Rn. N ∈ N denotes the number
of data points and n ∈ N the number of features. In the case of binary pattern
recognition, each of those vectors possesses an assigned label yi ∈ {−1, 1}. This
yields pairs (xi, yi). Usually, the amount of labelled input data is limited. Our aim
is to predict corresponding labels for data points, which have not been labelled yet.
Generalising to unlabelled data is the heart of learning. It can be achieved using
the classifications for given labelled data [2].

Remark 2.1. Usually, different entries in the feature vectors xi ∈ Rn do not have
the same magnitude. Therefore, it is extremely important to scale the data before
starting the learning process. Otherwise, features are weighted differently from the
beginning, what leads to distorted results. Of course, different features of xi ∈ Rn

are differently related to the corresponding label yi. But determining this is the
purpose of the learning method and has nothing to do with the magnitude of the
features per se.
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2. Learning Methods

2.1 Kernel Ridge Regression

Kernel Ridge Regression is a fundamental method for detecting dependencies be-
tween features of given data and responses [4]. It combines ridge regression with
kernel methods and has two phases: the training and the prediction process. The
training phase builds and solves a least-squares problem from a subset of given data,
while the prediction phase uses this model to predict the label of a new data point.
Therefore, it stands to reason to divide the set of labelled data points into training
data and test data. By doing this, the training data can be used for the training
process and the test data helps us determining the prediction quality.

2.1.1 Linear Regression and Ridge Regression

Implementing the simple linear regression

ŵ = argmin
w∈Rn

‖f −Xw‖2
2 + λ‖w‖2

2, (2.2)

yields weights ŵ ∈ Rn, with f ∈ RN being a given response vector incorporating
the labels yi and λ > 0 balancing the importance of ‖w‖2

2. For λ = 0 these weights
obviously minimise

N∑
i=1

r2
i =

N∑
i=1

(
fi − xi

Tw
)2

=
N∑
i=1

(
yi − xi

Tw
)2
,

(2.3)

i. e. the sum of the squared residuals ri. This process is called training. Having
computed ŵ, the linear model

F (xnew) = xnew
T ŵ (2.4)

yields the predicted response for a new point xnew ∈ Rn.

Suppose N ≥ n, i. e. the number of training data is bigger or equal the dimen-
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2.1. Kernel Ridge Regression

sion of the feature vectors, and rank (X) = n. Then we have

ŵ = argmin
w∈Rn

N∑
i=1

r2
i

= argmin
w∈Rn

N∑
i=1

(
yi − xi

Tw
)2

= argmin
w∈Rn

N∑
i=1

(
yi −

n∑
j=1

xjiwj

)2

= argmin
w∈Rn

‖f −Xw‖2
2︸ ︷︷ ︸

r(w)

,

(2.5)

with
r (w) = (f −Xw)T (f −Xw)

= wTXTXw − wTXTf − fTXw + fTf

= wTXTXw − 2wTXTf + fTf.

(2.6)

Setting the differentiation of r (w) zero

∇w r (w) = 2XTXw − 2XTf
!

= 0 (2.7)

gives

ŵ =
(
XTX

)−1
XTf. (2.8)

Obviously, this result for ŵ just makes sense if the inverse of XTX ∈ Rn×n actually
exists. By assumption, rank (X) = n so that X ∈ RN×n has full rank. Hence,

n = rank (X) = rank
(
XT
)

= rank
(
XTX

)
, (2.9)

i. e. XTX has full rank and is invertible. We see that ŵ in (2.8) is well-defined for
N ≥ n.

Next, let us assume N < n. This time

rank (X) = rank
(
XT
)

= rank
(
XTX

)
≤ N < n, (2.10)

such that XTX has no full rank and is therefore not invertible. Clearly, using
Definition (2.8) is no option now. Let us require ‖f −Xw‖2 and ‖w‖2 to be small.
Glancing at (2.2) we define the linear regression problem

ŵ = argmin
w∈Rn

‖f −Xw‖2
2 + λ‖w‖2

2. (2.11)

5



2. Learning Methods

In data science this process is called ridge regression with λ the ridge parameter.
Since the function in (2.11) does not look easy to use yet, we try to simplify it:

‖f −Xw‖2
2 + λ‖w‖2

2 =

∥∥∥∥∥
[
f −Xw√

λw

]∥∥∥∥∥
2

2

=

∥∥∥∥∥
[
f

0

]
−

[
X

−
√
λIn

]
w

∥∥∥∥∥
2

2

=
∥∥∥f̂ − X̂w∥∥∥2

2
,

(2.12)

with f̂ =

[
f

0

]
∈ RN+n, X̂ =

[
X

−
√
λIn

]
∈ R(N+n)×n and rank

(
X̂
)

= n. Comparing

(2.12) with (2.5) reveals that Definition (2.8) for ŵ can be applied to f̂ and X̂ now.
X̂ having full rank makes X̂T X̂ invertible. This leads to

ŵ =
(
X̂T X̂

)−1

X̂T f̂

=
(
XTX + λIn

)−1
XTf.

(2.13)

By the Sherman-Morrison-Woodbury formula [3], (2.13) can be rewritten as

ŵ =
(
XTX + λIn

)−1
XTf

= XT
(
XXT + λIN

)−1
f︸ ︷︷ ︸

α

. (2.14)

Clearly, these calculations work either way, for N < n but also for N ≥ n. Hence,
from now on (2.14) is considered a general method for training [3]. The matrix(
XXT + λIN

)
is symmetric and positive definite for λ > 0. Hence, we can use

the conjugate gradient method to determine α. This is what we will deal with in
Section 5.2.
As mentioned previously, we aim to compute the predicted response for a new data
point xnew ∈ Rn. Bringing (2.14) and (2.4) together yields

F (xnew) = xnew
T ŵ

= ŵTxnew

=
(
XTα

)T
xnew

= αTXxnew

=
N∑
i=1

αixi
Txnew.

(2.15)
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2.1. Kernel Ridge Regression

2.1.2 Kernel Evaluation

Most real world data analysis problems cannot be described by a linear model. They
therefore possess poor prediction quality. In data science, it is common practice to
map data to a high-dimensional space and learn the model there as the data is easier
to separate. This is done by replacing dot products by a non-linear kernel function,
which describes the similarity of data in the high-dimensional space. This procedure
is called the kernel trick [4].

Looking closely at (2.15), we recognise the inner product xi
Txnew in the last line.

Replacing it by a kernel evaluation

κ
(
xi,xj

)
= xi

Txj (2.16)

yields

F (xnew) =
N∑
i=1

αixi
Txnew

=
N∑
i=1

αiκ (xi,xnew) .

(2.17)

Moreover, we remember the definition of the dual variable

α =
(
XXT + λIN

)−1
f (2.18)

from (2.14). Since all entries of

XXT =


x1

T

...
xN

T

[x1 . . . xN

]
=


x1

Tx1 x1
Tx2 . . . x1

TxN
...

...
xN

Tx1 xN
Tx2 . . . xN

TxN

 (2.19)

are inner products, XXT is a so-called Gram matrix. Applying the kernel trick
again, we obtain the kernel matrix

K = XXT =


x1

Tx1 . . . x1
TxN

...
...

xN
Tx1 . . . xN

TxN

 =


κ (x1,x1) . . . κ (x1,xN)

...
...

κ (xN ,x1) . . . κ (xN ,xN)

 , (2.20)

with Kij = κ
(
xi,xj

)
, and the kernelised α

α = (K + λIN)−1f. (2.21)

In summary, we need to solve the linear system

(K + λIN)α = f, (2.22)
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2. Learning Methods

so that we can use (2.17) to get the predicted response F (xnew) for a new unlabelled
data point xnew. This process is known as kernel ridge regression. The complexity
for solving (2.22) directly is O (N3). Therefore, we usually do not solve it that way,
especially not in high-dimensional cases [3].

Remark 2.2. Above, we introduced the kernel function κ as the inner prod-
uct (2.16). Later, we are going to define more general kernels. But designing an
appropriate kernel function is not easily done. Kernels are supposed to reflect prior
knowledge about the problem and its solution and hugely influence the quality of
prediction [5]. We are going to realise that a universal kernel function does not
exist. It always depends on the properties of the system and needs to be chosen for
each problem individually to perform the learning methods optimally. In Chapter 3
we address the design of kernel functions in detail. Thereupon, we demonstrate the
importance of that choice in Chapter 4.

2.2 Spectral Clustering

Spectral clustering is a clustering technique that divides data points into groups
of similar behaviour [6]. Therefore, we define measures wij of similarity for all
combinations of the data points xi,xj ∈ Rn. For convenience this type of clustering
is based on viewing the data represented in a similarity graph. The vertices in this
graph correspond to the data points. Two nodes xi and xj are connected via an edge
if wij > 0. In our case this means that we aim to find a partitioning of the graph
into two clusters such that the weight of the edges across the clusters is minimal
and the weight of the edges within a cluster is maximal. This corresponds to the
expectation that data points which are similar to each other are associated with the
same cluster.

2.2.1 The Graph Laplacian

Transforming a set of data points with pairwise distances into a graph can be done
in several ways. The procedure we present here is based on von Luxburg [6]. We
assume the similarity graph to be an undirected, fully connected, weighted graph,
i. e. each edge between a pair of nodes xi and xj carries a weight wij ≥ 0. We require
wij = wji and wii = 0 for all i = 1, . . . , N , since data points are not connected to
themselves. This yields the dense adjacency matrix W = (wij)i,j=1,...,N . It is defined
in the same manner as the kernel matrix K occurring in the kernel ridge regression,
i. e. wij = Kij = κ

(
xi,xj

)
for all i, j = 1, . . . , N , i 6= j. Again, for details concerning

8



2.2. Spectral Clustering

the design of the kernel function κ, we refer to Chapter 3. Moreover, we define the
degree of a vertex corresponding to a data point xi as

di =
N∑
j=1

wij, (2.23)

such that we can create the diagonal degree matrix

D =


d1

d2

. . .

dN

 . (2.24)

Now, we are ready to construct the so-called unnormalised graph Laplacian

L = D −W ∈ RN×N . (2.25)

This matrix has the following property which is going to be proved to be of great
use.

Lemma 2.3. The following equation holds for every vector u ∈ RN :

uTLu =
1

2

N∑
i,j=1

wij (ui − uj)2 . (2.26)

Proof. By (2.23) and (2.25) we have

uTLu = uTDu− uTWu

=
N∑
i=1

diu
2
i −

N∑
i,j=1

wijuiuj

=
1

2

(
N∑
i=1

diu
2
i − 2

N∑
i,j=1

wijuiuj +
N∑
j=1

dju
2
j

)

=
1

2

(
N∑

i,j=1

wiju
2
i − 2

N∑
i,j=1

wijuiuj +
N∑

i,j=1

wiju
2
j

)

=
1

2

(
N∑

i,j=1

wij
(
u2
i − 2uiuj + u2

j

))

=
1

2

N∑
i,j=1

wij (ui − uj)2 .

(2.27)
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2. Learning Methods

After having introduced the unnormalised graph Laplacian we define the normalised
graph Laplacian now as

Lsym = D−
1
2LD−

1
2 = IN −D−

1
2WD−

1
2 ∈ RN×N

Lrw = D−1L = IN −D−1W ∈ RN×N .
(2.28)

The first matrix is denoted by Lsym as it is symmetric. The second one is closely
related to a random walk, which is why we denote it by Lrw [6]. Both matrices are
referred to as normalised graph Laplacians in the literature. From now on we are
going to limit our studies to the matrix Lsym. The following lemma is an analogue
to Lemma 2.3.

Lemma 2.4. The following equation holds for every vector u ∈ RN :

uTLsymu =
1

2

N∑
i,j=1

wij

(
ui√
di
− uj√

dj

)2

. (2.29)

Proof. This lemma can be proved analogously to Lemma 2.3.

By construction, the normalised graph Laplacian Lsym is a symmetric matrix. Fur-
thermore, it would really suit us if Lsym was positive semi-definite. This is proven
by the following lemma [6].

Lemma 2.5. The normalised graph Laplacian Lsym is symmetric and positive semi-
definite.

Proof. Since the matrices W , D and IN are all symmetric, the symmetry of Lsym

follows by Definition (2.28). However, its positive definiteness consequences directly
from Lemma 2.4. By definition, wij ≥ 0 holds for all i, j = 1, . . . , N , i 6= j. This
makes the right side of equation (2.29) bigger or equal zero and verifies uTLsymu ≥ 0

for all u ∈ RN .

2.2.2 Semi-Supervised Learning

Similar to the linear regression (2.2) we can define the problem

û = argmin
u∈RN

1
2
‖u− f‖2

2 + λ
2
uTLsymu︸ ︷︷ ︸

=l(u)

, (2.30)

with f ∈ RN incorporating the known labels yi for a small number of the data
points xi ∈ Rn and being zero everywhere else [7]. λ > 0 is conceived as a regu-
larisation parameter. Since only parts of the information are used or known, this

10



2.2. Spectral Clustering

process is called semi-supervised learning. Obviously, the first summand makes sure
that the deviation between the solution and the given labels is as small as possible.
Lemma 2.4 clarifies the relevance of the second summand. It ensures that two similar
nodes are assigned to the same cluster and vice versa. This proves the convenience
of problem (2.30).

For solving it, we rewrite

l (u) = 1
2
‖u− f‖2

2 + λ
2
uTLsymu

= 1
2

(u− f)T (u− f) + λ
2
uTLsymu

= 1
2

(
uTu− 2uTf + fTf

)
+ λ

2
uTLsymu.

(2.31)

Setting the differentiation of l(u) zero

∇u l (u) = 1
2

(2u− 2f) + λ
2

(2Lsymu)

= u− f + λLsymu

!
= 0

(2.32)

gives

(IN + λLsym)u = f. (2.33)

Taking the sign of the optimal solution û := sign (u) ∈ RN yields the predicted labels
for all data points xi ∈ Rn. To construct Lsym in accordance with (2.28), it remains
to define the similarity function characterising the adjacency matrix W . We make
use of kernel functions here, regarding that wii = 0 for all i = 1, . . . , N . As already
mentioned in Section 2.1.2, the right choice for this function is not obvious. This is
what we examine in the next chapter.
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3 Kernel Functions

We learned in Chapter 2 that kernel functions come into play whenever an in-
ner product occurs and the similarity between data points needs to be measured.
Thereby, the data is embedded into a new feature space such that non-linear rela-
tions between features can be modelled in a linear way as illustrated in Figure 3.1 [1].
This makes computations more efficient.

x1

x1

x1

x1

x1

x1

x2

x2 x2

x2

x2

x2

φ

φ (x1)

φ (x1)

φ (x1)

φ (x1)

φ (x1)

φ (x1)

φ (x2)

φ (x2)

φ (x2)
φ (x2)

φ (x2)

φ (x2)

Figure 3.1: Embedding data into a feature space by applying an embedding map φ

But the right choice of a kernel is by no means trivial. In this chapter we present
several kernel functions [1]. Our aim is to work out their differences. The best
choice for a given set of data points is determined in the following chapters. For
that, the computational efficiency, the dimension of the input and the quality of the
prediction are taken into account.
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3. Kernel Functions

3.1 Basics

Following Definition (2.1), our data are represented by feature vectors xi ∈ Rn.
After introducing an embedding map

φ : x ∈ Rn 7−→ φ (x) ∈ Rn′ , (3.1)

with n < n′, we recode our pairs of data points from (xi, yi) to (φ (xi) , yi). This
enables us to transform non-linear relations to linear ones. Remembering now the
two learning methods explained in Chapter 2, we substitute the inner products xiTxj
between two feature vectors xi,xj ∈ RN by a kernel function κ with

κ
(
xi,xj

)
= 〈φ (xi) , φ

(
xj
)
〉. (3.2)

One of the most basic kernels is the derived polynomial kernel

κpol
p

(
xi,xj

)
= p

(
κ
(
xi,xj

))
(3.3)

for a kernel κ as in (3.2), with p (.) being any polynomial with positive coefficients.
From there we can define the special case

κpol
d

(
xi,xj

)
=
(
〈xi,xj〉+R

)d
, (3.4)

where R and d are chosen parameters. By the binomial theorem, the polynomial
kernel κpol

d can be expanded to

κpol
d

(
xi,xj

)
=

d∑
s=0

(
d

s

)
Rd−s〈xi,xj〉s. (3.5)

With αs =
(
d
s

)
Rd−s and κ̂pol

s

(
xi,xj

)
= 〈xi,xj〉s, this can be rewritten as

κpol
d

(
xi,xj

)
=

d∑
s=0

αsκ̂
pol
s

(
xi,xj

)
. (3.6)

Obviously, the features of the kernel κpol
d are formed from the features of all com-

ponents in the sum. Here, αs serves as a reweighting of the polynomial kernels
κ̂pol
s

(
xi,xj

)
= 〈xi,xj〉s for s = 0 . . . , d. Since αs is smaller for large values of s, the

weight of the higher-order polynomials κ̂pol
s

(
xi,xj

)
decreases with increasing R.

Next, we consider the feature map

φA (xi) =
∏
l∈A

xli, (3.7)
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3.2. The Gaussian Kernel

which multiplies the input features for all elements of the subset A ⊆ {1, . . . , n}.
This yields the embedding

φ : x 7−→ (φA (x))A⊆{1,...,n} , (3.8)

with 2n possible subsets A ⊆ {1, . . . , n} and the so-called all-subsets kernel
κ⊆
(
xi,xj

)
= 〈φ (xi) , φ

(
xj
)
〉. Applying the distributive law, we can write

κ⊆
(
xi,xj

)
= 〈φ (xi) , φ

(
xj
)
〉

=
∑

A⊆{1,...,n}

φA (xi)φA
(
xj
)

=
∑

A⊆{1,...,n}

∏
l∈A

xlix
l
j

=
n∏
l=1

(
1 + xlix

l
j

)
(3.9)

Example 3.1. We are given two feature vectors xi = (x1
i ,x

2
i ) and xj =

(
x1
j ,x

2
j

)
.

For the subset A ⊆ {1, 2} we clearly have A ∈ {{∅}, {1}, {2}, {1, 2}}, so that

κ⊆
(
xi,xj

)
=

∑
A⊆{1,...,n}

∏
l∈A

xlix
l
j

= 1 + x1
ix

1
j + x2

ix
2
j + x1

ix
1
jx

2
ix

2
j

=
(
1 + x1

ix
1
j

) (
1 + x2

ix
2
j

)
=

2∏
l=1

(
1 + xlix

l
j

)
.

(3.10)

This general introduction to the theory of kernels should be enough for the purpose
of this thesis. In the following sections we go into more detail for some selected
kernel functions [1].

3.2 The Gaussian Kernel

The Gaussian kernel [1] is the most widely used kernel function. It is defined as

κ
(
xi,xj

)
= exp

(
−
‖xi − xj‖2

2

σ2

)
, (3.11)

where ‖xi − xj‖2 is the squared Euclidean distance between the feature vectors.
σ > 0 is a scaling parameter that is often tailored to the task by hand. It acts
similar as the degree d in (3.4).
It is not immediately obvious, how the Gaussian kernel (3.11) fits into the basic
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3. Kernel Functions

definitions from the previous section. Actually, the exponential function is a limit
of kernels, since it can be approximated by polynomials with positive coefficients.
Therefore, the exponential of a kernel yields a kernel by Definition (3.3). Then, we
obtain the Gaussian kernel (3.11) by normalising the kernel

κ
(
xi,xj

)
= exp

(
〈
√

2
σ
xi,
√

2
σ
xj〉
)

= exp

(〈xi,xj〉
1
2
σ2

)
, (3.12)

where φ (x) =
√

2
σ
x. We refer to Proposition 3.24 in Shawe-Taylor et al. [1] for a

great explanation of the details.

3.3 The ANOVA Kernel

In the previous section we defined the Gaussian kernel. We will see in Chapter 4
that it is a good choice for low-dimensional applications. However, it is very expen-
sive for large dimensions. This is due to the complexity O (N3) for solving (2.22)
directly. We are in need of a kernel, which is designed in such a way that the linear
system can be solved more efficiently. At the same time the prediction quality shall
not be (drastically) reduced. Moreover, we wish for more freedom regarding the
inclusion of the monomials compared to previous kernels. A remedy is to work with
the so-called ANOVA kernel [1]. In this chapter we analyse this kernel closely and
check in the further course whether it meets our expectations.

In Section 3.1 we defined two of the most basic kernel functions: the polynomial
kernel and the all-subsets kernel. It is possible to compute them recursively indeed.
But we are limited regarding the choice of the considered features and the weighting.
The polynomial kernel (3.4) is restricted to using all monomials of degree d. Since
a weighting scheme can just depend on the parameter R, the best we achieve are all
monomials of degree up to d. Whereas the all-subsets kernel (3.9) uses literally all
monomials corresponding to all subsets of the n features in the input space. The
ANOVA kernel is defined quite similar to this with the difference that the consid-
ered subsets are restricted to a given cardinality d [1], the degree of the ANOVA
kernel. It thereby provides more freedom in determining the set of monomials. In
comparison to the polynomial kernel, repeated coordinates are excluded. This yields
the embedding

φd : x 7−→ (φA (x))|A|=d (3.13)
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3.3. The ANOVA Kernel

of the ANOVA kernel of degree d, with

φA (xi) =
∏
l∈A

xli (3.14)

and results in the inner product

κd
(
xi,xj

)
= 〈φd (xi) , φd

(
xj
)
〉

=
∑
|A|=d

φA (xi)φA
(
xj
)

=
∑

1≤l1<l2<···<ld≤n

(
xl1i x

l1
j

) (
xl2i x

l2
j

)
. . .
(
xldi x

ld
j

)
=

∑
1≤l1<l2<···<ld≤n

d∏
t=1

xlti x
lt
j .

(3.15)

It obviously consists of a sum of
(
n
d

)
products, since this is the number of possible

d-order subsets of {1, . . . , n}. Hence, computing this explicitly requires O
(
d
(
n
d

))
operations. As motivated before, we wish to evaluate this kernel faster by considering
a recursive method of computation. Using the notation x1:m

i = (x1
i , . . . ,x

m
i ), m ≥ 1,

we introduce the ANOVA kernel of degree s ≥ 0 (|A| = s) with inputs restricted to
the first m coordinates

κms
(
xi,xj

)
= κs

(
x1:m
i ,x1:m

j

)
, (3.16)

where κs follows (3.15). This can be written recursively as

κms
(
xi,xj

)
=
(
xmi x

m
j

)
κm−1
s−1

(
xi,xj

)
+ κm−1

s

(
xi,xj

)
. (3.17)

The idea is to divide the considered subsets of features into two groups: those
features that contain xmi and those that do not. The first group includes all subsets
of size s− 1 restricted to x1:m−1

i . It represents all s-order subsets that contain xmi .
The second one contains all subsets of size s which are restricted to x1:m−1

i . Those
obviously do not contain xmi . For m < s it is impossible to find a subset of size s.
Therefore, κms

(
xi,xj

)
= 0 if m < s. For s = 0 the only valid subset is the empty

set, so that κm0
(
xi,xj

)
= 1. Altogether this yields the naive ANOVA recursion

κm0
(
xi,xj

)
= 1, ifm ≥ 0,

κms
(
xi,xj

)
= 0, ifm < s,

κms
(
xi,xj

)
=
(
xmi x

m
j

)
κm−1
s−1

(
xi,xj

)
+ κm−1

s

(
xi,xj

)
.

(3.18)

Implementing the Recursion (3.18) seems useful in theory. But it is very inefficient.
Let the function T (m, s) denote the cost of calculating κms

(
xi,xj

)
using the naive
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3. Kernel Functions

ANOVA recursion (3.18). Then we can estimate the number of operations as follows:

T (m, s) = T (m− 1, s) + T (m− 1, s− 1) + 3

> T (m− 1, s) + T (m− 1, s− 1) .
(3.19)

We have T (m, s) = 1 for m < s and T (m, 0) = 1. For both of these special cases
the inequality

T (m, s) ≥
(
m

s

)
(3.20)

holds true. Using this induction hypothesis and applying (3.19) yields

T (m, s) > T (m− 1, s) + T (m− 1, s− 1)

≥
(
m− 1

s

)
+

(
m− 1

s− 1

)
=

(
m

s

)
.

(3.21)

Therefore, computing the kernel κd
(
xi,xj

)
requires at least O

((
n
d

))
operations,

which is still not really satisfying and far away from best-case complexity. This is
due to the fact that many of the same computations are repeated again and again.
Thus, saving the values of κms

(
xi,xj

)
as they are computed is the key to success

in drastically reducing the overall computational complexity. This process is called
dynamic programming. It can be realised using a dynamic programming table:

DP m = 1 2 . . . n

s = 0 1 1 . . . 1

1 x1
ix

1
j x1

ix
1
j + x2

ix
2
j . . .

∑n
l=1 x

l
ix
l
j

2 0 κ2
2

(
xi,xj

)
. . . κn2

(
xi,xj

)
...

...
... . . . ...

d 0 0 . . . κnd
(
xi,xj

)
Table 3.1: Dynamic Programming Evaluation

Using the ANOVA recursion we take each row in turn from left to right. By (3.18)
one particular entry depends on two other entries. Both of them are already available
in our table: the one diagonally above to its left and the one immediately to its left.
The bottom rightmost entry corresponds to our Definition (3.15) of the ANOVA
kernel of degree d. Moreover, the sum of all entries in the final column yields the
all-subsets kernel

κ⊆
(
xi,xj

)
= κ≤n

(
xi,xj

)
=

n∑
s=0

κs
(
xi,xj

)
. (3.22)
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3.3. The ANOVA Kernel

In comparison with formula (3.9), this method is much less efficient though.

As mentioned earlier, we wish for more freedom concerning the choice of the con-
sidered monomials. For this purpose we introduce a weighting factor ai ≥ 0, which
enables us to downplay or emphasise certain features. In addition, the components
xlix

l
j occurring in both the all-subsets and the ANOVA kernel can be extended to a

base kernel

κbase
l

(
xi,xj

)
= xlix

l
j. (3.23)

Applying the reweighting scheme to this yields

κbase
l

(
xi,xj

)
= alx

l
ix
l
j. (3.24)

Here, the l-th base kernel is only dependent on the l-th feature. But we do not
need to restrict ourselves to that. That kernel might also depend on some other
coordinate, on a window of several features or even on all of them. More generally,
this yields base kernels κbase

1

(
xi,xj

)
, . . . , κbase

n

(
xi,xj

)
and

κd
(
xi,xj

)
=

∑
1≤l1<l2<···<ld≤n

d∏
t=1

κbase
lt

(
xi,xj

)
(3.25)

as a generalised version of the ANOVA kernel [1]. In the following subsections, we
discuss several ideas for choosing these base kernels. Speculating why certain choices
might not work well, we construct remedies which promise to perform better in
theory. We compare their performance in Chapter 4. Actually, we restrict ourselves
to using the Gaussian kernel for all the base kernels. Our object of investigation
is the choice of coordinates, the base kernels depend on, and its influence on the
overall performance in prediction.

3.3.1 Simple Base Kernels

We start investigating the ANOVA kernel using base kernels, which only depend on
one coordinate, such that

κ
(
xi,xj

)
=

n∑
l=1

exp

(
−
‖xli − xlj‖2

2

σ2

)d

. (3.26)

This kernel describes a very special case of (3.25) and is called the simple Gaussian
ANOVA kernel from now on [8]. The corresponding kernel matrix

K =


κ (x1,x1) . . . κ (x1,xN)

...
...

κ (xN ,x1) . . . κ (xN ,xN)

 (3.27)
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3. Kernel Functions

is built using the kernel function (3.26), what requires all features of both data points
xi and xj. We will later see, why this leads to a high computational complexity.
Since (3.26) sums the exponential up over all features, we can divide the kernel
function into n summands, such that

κ
(
xi,xj

)
= κ1

(
x1
i ,x

1
j

)
+ · · ·+ κn

(
xni ,x

n
j

)
(3.28)

with

κl
(
xli,x

l
j

)
= exp

(
−
‖xli − xlj‖2

2

σ2

)d

(3.29)

and

K = K1 + · · ·+Kn (3.30)

with

Kl =


κl
(
xl1,x

l
1

)
. . . κl

(
xl1,x

l
N

)
...

...
κl
(
xlN ,x

l
1

)
. . . κl

(
xlN ,x

l
N

)
 (3.31)

for l = 1, . . . , n. Representing the kernel matrix K as a sum of n matrices Kl is
a nice way to examine relations between the features and their influence on the
label. It seems reasonable to take into account all features since incorporating all
information can impossibly be detrimental. This can prove to be a logical fallacy
for designated data sets. They might possess features, which do not interact at
all with the last feature - the label, we aim to predict. If these features are being
involved in the learning process though, relations might be detected, which do not
exist in reality. This worsens the precision in prediction. Instead, examining the
influence of each feature separately might be a good idea. Now, we do not consider
the combination of all features as in (3.28), but their individual influence. This
yields n 1-dimensional simple Gaussian ANOVA kernels

κ
(
xi,xj

)
= κl

(
xli,x

l
j

)
= exp

(
−
‖xli − xlj‖2

2

σ2

)d

(3.32)

for l = 1, . . . , n. Since these kernels restrict themselves to investigating the relation
between one feature and the label, we do not expect a high precision in prediction.
We can identify features which perform markedly bad though and take them as
irrelevant for predicting the labels.
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3.3. The ANOVA Kernel

3.3.2 Windowed Base Kernels

So far it is not clear if the kernel functions we formulated in the previous subsection
can produce satisfying results. Taking into account all features might fail due to
attributing more influence to some features than they actually have. And examin-
ing each feature’s importance separately neglects relevant relations between them.
Instead, selecting some coordinates and analysing their combined influence sounds
more promising. We implement this by selecting 3 coordinates, which embody the
input for the kernel function. This results in

(
n
3

)
possibilities for choosing the so-

called window of 3 features. The motive for using 3-dimensional inputs is down
to the Nonequispaced Fast Fourier Transform, see Section 5.3. This method runs
our computations very efficiently as long as the input dimension is smaller than 4.
Since we aim to examine the combined relation of as many coordinates as possi-
ble, we choose our windows to be 3-dimensional and define the windowed Gaussian
ANOVA kernel

κ
(
xi,xj

)
= κ

(
xwindow
i ,xwindow

j

)
= exp

(
−
‖xwindow

i − xwindow
j ‖2

2

σ2

)d

, (3.33)

with
(
n
3

)
possibilities for defining xwindow

i =
[
xw1
i xw2

i xw3
i

]T
and

xwindow
j =

[
xw1
j xw2

j xw3
j

]T
each. Analogously to what we did in (3.28), we can

combine these kernels by summarising over several choices of (3.33). For the sake
of convenience we demonstrate this for kernel functions with consecutive windows.
We distinguish two different cases. In the first case the windows of consecutive
coordinates do not overlap each other. Provided that 3 is a factor of n this yields a
sum of n

3
matrices

Kl =


κ
(
xwindowl

1 ,xwindowl
1

)
. . . κ

(
xwindowl

1 ,xwindowl
N

)
...

...

κ
(
xwindowl
N ,xwindowl

1

)
. . . κ

(
xwindowl
N ,xwindowl

N

)
 (3.34)

with κ as defined in (3.33) and the appropriate window

xwindowl
i =

[
x3 l−2
i x3 l−1

i x3 l
i

]T
.

Example 3.2. Let a data set with N data points xi ∈ R6 be given. Then, the
kernel matrix can be represented by a sum of 6

3
= 2 matrices

K = K1 +K2, (3.35)
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3. Kernel Functions

where

K1 =


κ
(
xwindow1

1 ,xwindow1
1

)
. . . κ

(
xwindow1

1 ,xwindow1
N

)
...

...
κ
(
xwindow1
N ,xwindow1

1

)
. . . κ

(
xwindow1
N ,xwindow1

N

)
 ,

K2 =


κ
(
xwindow2

1 ,xwindow2
1

)
. . . κ

(
xwindow2

1 ,xwindow2
N

)
...

...
κ
(
xwindow2
N ,xwindow2

1

)
. . . κ

(
xwindow2
N ,xwindow2

N

)
 ,

(3.36)

with xwindow1
i =

[
x1
i x2

i x3
i

]T
and xwindow2

i =
[
x4
i x5

i x6
i

]T
for all i = 1, . . . , N .

It suggests itself that the windows of consecutive coordinates do overlap each other
in the second case. This time the kernel matrix K results from a sum of n − 2

matrices Kl. Their definition follows (3.34) with varying windows

xwindowl
i =

[
xli xl+1

i xl+2
i

]T
though.

Example 3.3. Let a data set with N data points xi ∈ R6 be given. Then, the
kernel matrix can be represented by a sum of 6− 2 = 4 matrices

K = K1 +K2 +K3 +K4, (3.37)

where

K1 =


κ
(
xwindow1

1 ,xwindow1
1

)
. . . κ

(
xwindow1

1 ,xwindow1
N

)
...

...
κ
(
xwindow1
N ,xwindow1

1

)
. . . κ

(
xwindow1
N ,xwindow1

N

)
 ,

...

K4 =


κ
(
xwindow4

1 ,xwindow4
1

)
. . . κ

(
xwindow4

1 ,xwindow4
N

)
...

...
κ
(
xwindow4
N ,xwindow4

1

)
. . . κ

(
xwindow4
N ,xwindow4

N

)
 ,

(3.38)

with xwindow1
i =

[
x1
i x2

i x3
i

]T
, xwindow2

i =
[
x2
i x3

i x4
i

]T
,

xwindow3
i =

[
x3
i x4

i x5
i

]T
and xwindow4

i =
[
x4
i x5

i x6
i

]T
for all i = 1, . . . , N .

Comparing the last two cases we realise that they are basically identical. They only
differ in the window of considered coordinates. Up to now we restricted ourselves to
consecutive ones for convenience. But recognising that the kernel function will be
the same however the index set for the window is chosen, enables us to define the
generalised Gaussian ANOVA kernel

κ
(
xi,xj

)
= κ

(
xIi ,x

I
j

)
= exp

(
−
‖xIi − xIj‖2

2

σ2

)d

(3.39)
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3.3. The ANOVA Kernel

for an index set I = {w1, w2, w3} ∈ {1, . . . , n}3, with corresponding

xIi =
[
xw1
i xw2

i xw3
i

]T
and xIj =

[
xw1
j xw2

j xw3
j

]T
. Again several choices for these

kernels can be combined by summing up kernel matrices

Kl =


κ
(
xIl1 ,x

Il
1

)
. . . κ

(
xIl1 ,x

Il
N

)
...

...

κ
(
xIlN ,x

Il
1

)
. . . κ

(
xIlN ,x

Il
N

)
 , (3.40)

where xIli =
[
x
w1l
i x

w2l
i x

w3l
i

]T
for all i = 1, . . . , N .

Example 3.4. Let a data set with N data points xi ∈ R6 and index sets
I1 = {1, 4, 5} and I2 = {2, 3, 6} be given. Then, the kernel matrix can be represented
by a sum of 2 matrices

K = K1 +K2, (3.41)

where

K1 =


κ
(
xI11 ,x

I1
1

)
. . . κ

(
xI11 ,x

I1
N

)
...

...
κ
(
xI1N ,x

I1
1

)
. . . κ

(
xI1N ,x

I1
N

)
 ,

K2 =


κ
(
xI21 ,x

I2
1

)
. . . κ

(
xI21 ,x

I2
N

)
...

...
κ
(
xI2N ,x

I2
1

)
. . . κ

(
xI2N ,x

I2
N

)
 ,

(3.42)

with xI1i =
[
x1
i x4

i x5
i

]T
and xI2i =

[
x2
i x3

i x6
i

]T
for all i = 1, . . . , N .

3.3.3 Tuning the Parameters

Recapitulating the kernel functions we defined in the previous sections, we notice
that all of them had one attribute in common: the scaling parameter σ. Aside from
σ > 0 we do not know anything about it so far. This subsection shall bring light
into the darkness. It serves as an instruction for choosing σ and all other occurring
parameters.
We aim to set σ equal to the value, which minimises the prediction error. However,
varying choices for this scaling parameter can lead to significantly different results.
Hence, failing in identifying the optimal parameter can tremendously decrease the
generalisation performance and needs to be prevented. This so-called model selec-
tion problem can among others be solved using the cross-validation based method.
It combines a thorough grid search over the parameter space with cross-validation

23



3. Kernel Functions

on each candidate parameter [9, 10].
In detail, k-fold cross-validation describes a method, which randomly divides the
data D into k mutually exclusive subsets D1, . . . ,Dk - the folds. They are of ap-
proximately same size. For each fold t ∈ {1, . . . , k} our model is performed on
D \ Dt and validated on Dt, what yields k rounds of execution [11, 12]. Especially
for classification problems using several parameters, this method is computationally
expensive though. Performing grid search with a 20 × 20 mesh of parameter com-
binations for instance requires 400 trials of cross-validation [10]. We remember the
previous section, where all representations of the ANOVA kernel include the degree
d. This parameter needs to be chosen in addition to σ. Moreover, we recall λ from
Chapter 2, which occurs for both learning methods in the definition of the predicted
response. Thus, a combination of 3 parameters has to be chosen in total. This being
the case, the model selection method described above seems slightly too complex
and expensive for now.
In Subsection 3.3.2 we defined the generalised Gaussian ANOVA kernel (3.39),
through which all previous ANOVA kernels can be represented. Looking just at
the basic structure we have

κ
(
xi,xj

)
=

(
exp

(
−‖.‖

2
2

σ2

))d
= e

(
− ‖.‖

2
2

σ2

)d
= e

(
− ‖.‖

2
2

σ2

)
d

= exp

(
− d

σ2
‖.‖2

2

)
(3.43)

by the exponential rules. Obviously, the parameter d does nothing more than scaling
σ. Without loss of generality we therefore set d = 1 and restrict ourselves to tuning
σ. Having given a kernel function κ, we perform our learning model several times
with changing values of σ. For the sake of convenience we build a loop over the
powers of ten and save the one which yields the smallest prediction error. At this
point we set λ to some value, which works well for all choices of σ. For several
kernel functions the optimal scaling parameters differ significantly. Therefore, this
process is trivial by no means. To the contrary it is crucial. Now only λ remains to
be selected appropriately. Having determined the optimal scaling parameter σ we
find a good choice for λ by simply trial and error. For sure this is not the best we
can do. But it is sufficient enough at this point.
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4 The Prediction Quality in Com-
parison

After having introduced the theory in the previous chapters, we want to demonstrate
some results now. As part of this thesis, we created a Python code that implements
both learning methods from Chapter 2. Applying it to exemplary data, we illustrate
both learning processes and emphasise the importance of crucial steps, such as
scaling the data or tuning the parameters.
For the kernel matrix K and the weight matrix W occurring in the kernel ridge
regression and the semi-supervised learning, respectively, we determine the following
definition:

Kij =

exp
(
−‖x

I
i−xIj‖22
σ2

)
i 6= j,

1 i = j,

wij =

exp
(
−‖x

I
i−xIj‖22
σ2

)
i 6= j,

0 i = j,

(4.1)

for all i, j = 1, . . . , N , where I is the index set for the chosen window of 3 features.
Obviously, all non-diagonal entries are defined as the generalised Gaussian ANOVA
kernel (3.39).

Remark 4.1. In Chapter 2 we foreshadowed, that we usually solve none of the
linear systems

(K + λIN)α = f

(IN + λLsym)u = f
(4.2)

directly. This is due to its computational complexity of O (N3), what scales bad
for large N ∈ N. In this chapter, we want to illustrate first results for small data
sets. Therefore, the computational complexity is of little relevance yet. Hence,
the linear systems (4.2) are solved as usual within our Python codes. However,
the numpy.linalg.solve function does not offer itself to be used, because it requires
matrices to have full rank. Since we cannot guarantee that for our matrices K + λIN

25



4. The Prediction Quality in Comparison

and IN + λLsym, we need an alternative and use the scipy.sparse.linalg.cg function
instead. For details concerning the CG-method, we refer to Section 5.2.

We start analysing the Cryotherapy Data Set, which “contains information about
wart treatment results of 90 patients using cryotherapy” [13]. Each of those 90

patients are assigned 7 attributes, which are represented by a feature vector xi ∈ R6

and the corresponding label yi ∈ {−1, 1}. Figure 4.1 shows the first 10 rows, i. e. the
first 10 patients of the Cryotherapy Data Set, with “NoW” denoting the number of
warts and “Result” indicating if the therapy was successful for the particular patient.

Table 4.1: First 10 patients in the Cryotherapy Data Set

We aim at predicting the success of treating new patients with the Cryotherapy.
Due to this, we perform a learning method on the Cryotherapy Data Set, which
represents empirical values.

We start with the kernel ridge regression. Without having tuned any parameters, we
choose σ = 1, λ = 1 and have a first look at the performance. The classification rate
indicates the amount of test data, which has been correctly classified and is crucial
for judging the quality of prediction. Figure 4.1 illustrates the classification rate
for different choices of training data and 4 distinct index sets I for the kernel (4.1).
Here, the number of training data being 10 means that the information on the first
10 patients serve as training data and the rest as test data.
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Figure 4.1: Cryotherapy Data Set - Classification rate for different choices of con-
secutive training data, with σ = 1 and λ = 1

Figure 4.1 answers our expectation that the classification rate hugely depends on
the number of training data. The first value for the number of training data, we ex-
amined, is 5. When raising this value to 10, the classification rate goes distinctly up
for 3 out of 4 index sets I. Presumably, analysing the information on the first 5 pa-
tients is insufficient for reliable predictions. But if having reached a certain number
of training data, raising it further does not improve the performance much anymore.
Moreover, it can be guessed that certain kernel functions perform better than oth-
ers. However, we cannot draw general conclusions by Figure 4.1 yet. To raise the
significance, we need to tune the parameter σ now. As described in Subsection 3.3.3,
we do so by performing our learning model several times for different values of σ.
When looking closely at Table 4.1, we notice that 9 out of the 10 first patients in
the data set are of the same sex. Therefore, choosing consecutive training data is
inappropriate, since the data seems to be sorted. A remedy is the train_test_split
function from the sklearn.model_selection module, which splits data into random
training and test subsets. From now on, we use this tool to select training data. We
start with a proportion of 0.25 of the data set to be included in the train split. This
yields Figure 4.2, where the stars highlight the respective maximum.
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4. The Prediction Quality in Comparison

Figure 4.2: Cryotherapy Data Set - Classification rate for different values of σ, with
λ = 1

Unambiguously, Figure 4.2 reveals the huge importance of tuning the parame-
ters within the kernel ridge regression. All index set’s performance is influenced
tremendously by the choice of σ. This is particularly recognisable by the index set
I = {1, 2, 3}. For σ = 0.001, the classification rate comes to 0.537, i. e. labels are
misclassified in every second case. This performance is absolutely unsatisfying. We
might just as well guess. Especially for medical applications, using the mentioned
setting is reckless. As opposed to this, the classification rate for σ = 0.1 is 0.868.
Considering that our learning method was performed on the basis of only 3 em-
pirical features of 22 patients, this is a great result. Combining the kernel for this
index set with other kernel matrices in the fashion of Example 3.4, gives hope for
promising results. At this point, we refrain from ascertaining the combination of
kernel matrices, which yields the best classification rate for the Cryotherapy Data
Set. This can be caught up on with the attached Python code anytime. In doing
so, we need to keep in mind that there exist

(
6
3

)
= 120 possibilities for windows of

3 features. Just for the sake of convenience, we restricted our evaluations above on
the windows of consecutive features.
We remember that we did not gain much general knowledge by Figure 4.1. Af-
ter having experienced the huge impact of tuning σ by Figure 4.2, we are inter-
ested in how Figure 4.1 looks like if we do not fix σ for all windows and all num-
bers of training data, but use the optimal σ each. Here, optimal σ denotes the
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σ ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}, with which the best classification rate is ob-
tained. This yields Figure 4.3, where the dotted lines correspond with those from
Figure 4.1 and the drawn through ones illustrate the classification rate using the
optimal σ for the number of consecutive training data and the current window.

Figure 4.3: Cryotherapy Data Set - Classification rate for σ = 1 (dotted lines) and
optimal σ (drawn through lines), with λ = 1

We perceive that each dotted line lies either underneath or on the corresponding
drawn through line. I. e. tuning σ universally improves the performance.
Recalling Remark 2.1, we want to examine the importance of scaling the data. We
expect our learning model to perform better if the Cryotherapy Data Set is scaled
previously. To check whether this is a misjudgement, we perform the kernel ridge
regression both on unscaled and scaled data. Figure 4.4 highlights the resulting
classification rate, where the optimal σ was used each. Again, the training data has
a proportion of 0.25 of the data set and is chosen randomly.
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4. The Prediction Quality in Comparison

Figure 4.4: Cryotherapy Data Set - Classification rate for unscaled and scaled data,
with optimal σ and λ = 1

Figure 4.4 perfectly demonstrates the relevance of scaling. Without scaling the
data set first, weightings are assigned just on the basis of the feature’s magnitude.
Needless to say, this weighting criterion is by no means scientifically justified. This
distorts the learning process, what limits our success. In three quarters of all cases,
omitting scaling results in a decreasing classification rate.
Moreover, this causes misinterpretations, which can possibly have tremendous con-
sequences. The first red bar in Figure 4.4 makes us believe that the last 3 features,
i. e. the number of warts, the type and the area, do not have a high impact on the
prospects of success for the Cryotherapy. Without the second red bar, which reveals
the real impact, we would underestimate the relevance of the last 3 features and
draw wrong conclusions. Especially for medical applications, this absolutely needs
to be avoided. Consequently, scaling the data is a crucial step, which is definitely
necessary to obtain unambiguous results.
Last but not least, we want to compare the classification rate of the windows of
consecutive features with the results for the single features. Moreover, we are inter-
ested in how the Gaussian kernel (3.11) performs against. Figure 4.5 illustrates this
comparison, where the optimal σ was used each and the number of training data
constitutes 25 per cent of the data set.
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Figure 4.5: Cryotherapy Data Set - Classification rate for distinct index sets I, with
optimal σ and λ = 1

In Subsection 3.3.2, we ventured the guess that kernels, which are based on a win-
dow of 3 features perform better than the ones based on only one feature. We
suppose, this is due to the relations between the features, which are highly relevant
and are neglected if just one feature is taken into account. This can just partly be
substantiated by Figure 4.5. On the one hand, three quarters of all window-based
kernels yield better results than all but one kernel, which are based on a single
feature. On the other hand, one window-based kernel performs worse than half of
the kernels, which are based on a single feature. Furthermore, certain individual
features perform anything but bad. Especially using the kernel based on the third
feature, we obtain a remarkable classification rate, which even trumps the results of
all window-based kernels. Comparing Definitions (3.11) and (3.39), we realise that
choosing a window of all features, i. e. I = {1, 2, 3, 4, 5, 6} for the Cryotherapy Data
Set, the generalised Gaussian ANOVA kernel embodies the Gaussian kernel. Hence,
the yellow bar in Figure 4.5 illustrates the performance of the Gaussian kernel. In
Chapter 3, we based the necessity of the ANOVA kernel on the fact that the input
dimension has to be smaller than 4, so that we can perform the learning methods
fast and efficiently. Now, we realise that searching for alternatives for the Gaussian
kernel was a good idea regarding the performance as well. Its classification rate
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clearly lies below most other kernel’s results.

Next, we perform the semi-supervised learning. For that, we introduce the vari-
able ntrain ∈ N, which indicates how many feature vectors of the labelled data set
are taken per class as training data. Let ntrain = 3 for instance. Then, information
on 6 patients serve as training data, where 3 are randomly picked for each label
yi ∈ {−1, 1}. Hence, sorted data sets do not pose any problem. But we need to
keep in mind that the results differ for every new computation, since the training
data is determined each time anew. Figure 4.6 illustrates the average classification
rate for different values of ntrain and optimal σ after 5 computations each.

Figure 4.6: Cryotherapy Data Set - Average classification rate for different values of
ntrain, with optimal σ and λ = 1, after 5 computations each

One thing is clearly recognisable: the more training data per class, the higher the
classification rate. This agrees with our expectation. It stands to reason that pre-
dicting whether a treatment works is more likely to be successful if we are given more
empirical information about previous successful and failed treatments. Figure 4.3
could not unequivocally confirm the same. Presumably, this is due to the fact that
the training data neither was determined randomly nor contained the same amount
of information per class. The perception that the kernel, which is based on the index
set I = {4, 5, 6}, performs worse than the other window-based kernels, is confirmed
by all previous figures.
Analogously to Figure 4.5, we want to examine the performance of the window-
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based kernels in comparison to the kernels, which are based on only one feature and
the Gaussian kernel, now. Figure 4.7 compares the performance of the kernel ridge
regression and the semi-supervised learning, where the information on 22 randomly
picked patients serve as training data for the former and ntrain = 11, where the exact
same training data is used for all index sets within the semi-supervised learning.

Figure 4.7: Cryotherapy Data Set - Classification rate for distinct index sets I using
the kernel ridge regression and the semi-supervised learning, with optimal σ and
λ = 1

Figure 4.7 reveals that the semi-supervised learning almost always yields better
results than the kernel ridge regression. Even though we picked the training data
for the kernel ridge regression randomly, so that the performance is not distorted
in case of a sorted data set, the deviations are occasionally tremendous. Especially
kernels, which are based on a single feature mostly report marked differences. The
results for the window-based kernels are predominantly more balanced. Predicting
class affiliations seemingly is more successful when using the same number of training
data per class. This makes sense.
Obviously, we could go on examining the classification rate for a variety of settings
forever. This would go beyond the constraints of this thesis. Since we turned our
back on the parameter λ up to now, tuning λ is the last aspect to be considered in this
chapter. After having demonstrated the huge importance of tuning σ in Figure 4.3,
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we wonder how different values of λ affect the classification rate. Investigating this
requires a multi-staged process. First, we set λ = 1. After having tuned σ, we
fix the optimal σ and tune λ subsequently in the same fashion. Figure 4.8 shows
the results for different values of ntrain, where the drawn through lines represent the
results for randomly picked training data with optimal parameters σ and λ. By
way of comparison, the dotted lines show the corresponding classification rate for
optimal σ and λ = 1, where the exact same training data is used.

Figure 4.8: Cryotherapy Data Set - Classification rate for different values of ntrain,
with optimal σ and λ (drawn through lines) and optimal σ and λ = 1 (dotted lines)

Looking at Figure 4.8, we notice that the dotted lines lie close to the corresponding
drawn through lines. It seems that tuning λ does not highly affect the classification
rate.

Finally, we want to confirm the knowledge gained above by performing the learning
processes again on an arbitrary other data set. For that, we choose to analyse the
Titanic Data Set and create a predictive model that detects, “what sorts of people
were more likely to survive” the Titanic shipwreck [14]. This is done using passenger
data such as name, age, gender and socio-economic class. But not all data included
in the Titanic Data Set is relevant for the learning process. Therefore, features such
as PassengerID, Name and Cabin are excluded. Moreover, samples with missing
values are sorted out and categorical attributes are transformed to numerical val-
ues. Table 4.2 shows the features, which are included in the learning process for the
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first 10 passengers. Overall, our data set contains 712 samples, having assigned 5

features and a class label (yi = −1 for deceased, yi = 1 for survived), each.

Table 4.2: First 10 passengers in the Titanic Data Set

Once more, we start with examining the performance of the kernel ridge regres-
sion. Above, we already illustrated that the number of train data highly impacts
the prediction quality, until a certain level is reached, see Figure 4.3. Moreover, we
emphasised by Figures 4.2 and 4.3 that scaling the parameter σ is a crucial step.
These findings make perfectly sense and answered our expectations, so that we do
not demonstrate them again. However, we want to re-examine how the design of
the kernel influences the prediction quality.
For choosing the train and test samples, we use the train_test_split function with
train_size = 0.25, again. This yields Figure 4.9, where the classification rates are
given for several kernels and for unscaled and scaled samples. We are not surprised
that scaling does not highly affect kernels, which are based on a single feature.
In these cases, the input data consists of only 1 column of values of same magni-
tude. Then, scaling is not as crucial as for window-based kernels. However, it is
confirmed that scaling makes an appreciable difference, when using kernels which
are based on several features. We recognise that the Gaussian kernel yields clearly
worse results in comparison to specific window-based kernels, anew. Additionally,
Figure 4.9 nicely shows, that the design of the kernel is crucial. We analyse that the
kernel which is based on the second feature yields by far the best classification rate
among the kernels based on a single feature. This results in the window-based ker-
nels containing the second feature performing considerably better than the others.
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Figure 4.9 excellently reveals these relations.

Figure 4.9: Titanic Data Set - Classification rate for unscaled and scaled data and
distinct index sets I, with optimal σ and λ = 1

Next, we generate the analogue to Figure 4.7 for the Titanic Data Set. For this,
we illustrate the results for scaled samples from Figure 4.9 in comparison with the
corresponding classification rates obtained by the semi-supervised learning. For
the kernel ridge regression, we use train_size = 0.25. Since 712 · 0.25 = 178,
we choose ntrain = 89 for the semi-supervised learning. This gives Figure 4.10,
which reinforces the takeaway from Figure 4.7 that class affiliations are more likely
to be predicted correctly by the semi-supervised learning. This pertains for all
considered kernels without exception. The deviations range between 0.048 and 0.172.
Clearly, 17.2 per cent make a big difference. Accordingly, whether the prediction
is classified as successful can even depend on the learning method chosen. Among
others, this is due to the fact that the train and test data are chosen differently. For
both learning methods, the model selection is randomly done. However, the semi-
supervised learning is performed on train data with the same number of samples per
class. This is not guaranteed by the train_test_split function, which is our method
of choice for the kernel ridge regression.
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Figure 4.10: Titanic Data Set - Classification rate for distinct index sets I using the
kernel ridge regression and the semi-supervised learning, with optimal σ and λ = 1

By the Titanic Data Set, we could confirm our intuitions and expectations con-
cerning the results, anew. Our findings for this data set match the ones for the
Cryotherapy Data Set.
For the Cryotherapy Data Set, the execution time for performing both learning meth-
ods is neglectable. All results are available immediately. However, N is only 90.
That is different for the Titanic Data Set, with N = 712. Here, execution times
of several seconds occur. This shows, what we already announced previously. The
computational complexity for solving the linear systems (4.2) scales bad for large
N . Developing a strategy for performing learning methods on high-dimensional data
fast, is subject of the next chapter.
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5 Fast Matrix-Vector Multiplication

In Chapter 2 we elaborated on two different learning methods. Both of them work
well for teaching programs how to recognise binary patterns, provided that we do
not fail in two steps. The first one refers to determining a kernel function with a
good generalisation performance. This is what we dealt with in Chapters 3 and 4.
The second crucial step relates to the linear systems, which need to be solved no
matter which of both learning methods we pick. In the previous chapter we used
small data sets for examining the prediction quality for several kernel functions.
Solving a linear system is certainly not a big deal for such data sets. But in reality
we mostly come across large data sets. This turns solving a linear system into a
huge challenge concerning computational complexity. We therefore seek for a way
of performing these matrix-vector multiplications particularly for high-dimensional
data fast and efficiently. It is the last aspect which is left to be considered in this
thesis.

5.1 The Cholesky Decomposition

For reasons of complexity linear systems as (2.22) from Subsection 2.1.2 are usually
not solved directly. Compared to other direct methods of solving linear systems the
so-called Cholesky decomposition [15] provides a huge improvement in computational
complexity though. It is the factorisation of choice for symmetric, positive definite
matrices. The Cholesky decomposition is based on the following theorem presented
in Bornemann [15].

Theorem 5.1. Every symmetric, positive definite matrix A ∈ RN×N can be written
as

A = LLT , (5.1)

where L is a lower triangular matrix and has a positive diagonal. This representation
of A is unique.
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5. Fast Matrix-Vector Multiplication

Proof. The approach of constructing the decomposition (5.1) is to build up the
factors row-wise for the principal submatrices

Ai = LiL
T
i (5.2)

with

Ai =

(
Ai−1 ai

aTi αi

)
, Li =

(
Li−1

lTi λi

)
, LTi =

(
LTi−1 li

λi

)
. (5.3)

In each step a new row of L is attached, what can easily be seen above. Hence, it
is reasonable to prove inductively that this partitioning works. The equations from
(5.3) yield

Ai−1 = Li−1L
T
i−1,

lTi L
T
i−1 = aTi ,

Li−1li = ai,

lTi li + λ2
i = αi.

(5.4)

The first equation shows the factorisation of the previous step, i. e. the induction
hypothesis. The second one is the transposed of the third one. It therefore is
equivalent and redundant. This leaves us with the last two equations. The third
one can be solved by

li = L−1
i−1ai. (5.5)

By the previous step, Li−1 is known and ai can be read from the matrix A. If L−1
i−1 is

defined, we accept this so-called forward substitution. Since Li−1 is uniquely defined
as a lower triangular matrix and has a positive diagonal by the induction hypothesis,
the inverse L−1

i−1 exists. The last equation from (5.4) yields

λi =
√
αi − lTi li, (5.6)

what is slightly trickier to validate. So far there is no evidence that a positive square
root as above can be calculated. We must verify that αi − lTi li > 0. Let us suppose
that zi is the solution to LTi−1zi = −li. Then,

0 <

(
zi

1

)T

Ai

(
zi

1

)

=
(
zTi 1

)( Li−1L
T
i−1 Li−1li

lTi L
T
i−1 αi

)(
zi

1

)
= zTi Li−1L

T
i−1zi︸ ︷︷ ︸

=lTi li

+ zTi Li−1li︸ ︷︷ ︸
=−lTi li

+ lTi L
T
i−1zi︸ ︷︷ ︸

=−lTi li

+αi

= αi − lTi li

(5.7)
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5.1. The Cholesky Decomposition

can be derived from the fact that Ai is positive definite. This completes the proof.

After having discussed the theory, we apply the Cholesky decomposition to our
problems. When performing kernel ridge regression according to Section 2.1 we aim
to solve the linear system

(K + λIN)α = f. (5.8)

To identify the method from linear algebra which is best suited, we need to take
a closer look at the matrix K + λIN . We know that kernels typically satisfy the
properties

κ
(
xi,xj

)
= κ

(
xj,xi

)
(5.9)

and

κ
(
xi,xj

)
≥ 0 (5.10)

for all xi, xj ∈ Rn [1]. Hence, we have

K + λIN =


κ (x1,x1) + λ κ (x1,x2) . . . κ (x1,xN)

κ (x2,x1) κ (x2,x2) + λ . . . κ (x2,xN)
...

... . . . ...
κ (xN ,x1) κ (xN ,x2) . . . κ (xN ,xN) + λ



=


κ (x1,x1) + λ κ (x1,x2) . . . κ (x1,xN)

κ (x1,x2) κ (x2,x2) + λ . . . κ (x2,xN)
...

... . . . ...
κ (x1,xN) κ (x2,xN) . . . κ (xN ,xN) + λ

 ,
(5.11)

i. e.K+λIN is symmetric and positive definite for λ > 0. This enables us to compute
the Cholesky decomposition, i. e. to rewrite K + λIN as

K + λIN = LLT , (5.12)

where L is a lower triangular matrix. Having calculated L, we solve

Lc = f (5.13)

for c by forward substitution and

LTα = c (5.14)
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5. Fast Matrix-Vector Multiplication

for α by back substitution. Then,

f = Lc = L
(
LTα

)
= LLTα = (K + λIN)α (5.15)

yields (5.8).
This works analogously for the linear system (2.33) occurring in the spectral clus-
tering learning method from Section 2.2. The symmetry and positive definiteness
of IN + λLsym are guaranteed by Lemma 2.5.
Even though the Cholesky decomposition performs better than other direct meth-
ods, such as the LU decomposition, for solving linear systems, its complexity is still
cubic. We abstain from the proof here and refer to the literature. As a result, we
now consider an iterative solver.

5.2 The Conjugate Gradient Method

The conjugate gradient method [16, 17] or CG-method for short is an iterative method
for solving a system of linear equations

Az = b, (5.16)

where A ∈ RN×N and b ∈ RN are given and z ∈ RN is unknown. It is applied to
systems that are too large to be solved by direct methods as the Cholesky method
from the previous section. A needs to be symmetric and positive definite.
It is known that given a symmetric and positive definite matrix A, the solution ẑ of
a linear system (5.16) is equal to the argument that minimises the quadratic form

g (z) = 1
2
zTAz − bT z + c, (5.17)

where c is a scalar constant. Setting the derivation of (5.17) to zero

∇z g (z) = Az − b !
= 0 (5.18)

provides the explanation. This implies that we can solve system (5.16) by solving
the optimisation problem corresponding to (5.17). The CG-method is derived from
the method of steepest descent. Its idea is to start with an initial guess z0 for the
solution ẑ of (5.18). From there several steps along the steepest descent are taken
until a good estimate of the solution ẑ is obtained. New estimates of ẑ are always
closer to the solution than the previous one. The direction taken at each step is the
one in which g decreases most rapidly, so that the negative gradient at this point is
chosen. The difference

ri = b− Azi (5.19)
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is called the residual of zi as an estimate of ẑ. It is computed at each step i.
Recapitulating what we just said about the directions at each step, we realise that
ri = −g′ (zi). From now on, we think of the residual as the direction of steepest
descent. The method of steepest descent is designed in such a way that successive
directions are obliged to be orthogonal to each other. This yields a zigzag path along
which we converge towards the solution. However, it implies that our path runs
towards wrong directions in the meantime. Moreover, steps are taken in directions
which were already pursued before. It is easy to imagine that the resulting path is
often far from the optimal path towards the solution, what leads to an increase in
the number of required steps.
This problem is addressed by the CG-method. Here, a set of orthogonal search
directions, the so-called conjugate directions pi, is chosen. Now, exactly one step is
taken in each direction. This implies that after this one step, we need to be lined up
evenly with the solution ẑ. It may happen that rounding-off errors are encountered
and the residual rN after N steps is still too large. In this case it might help to
continue the iteration. Doing so can yield better estimates of ẑ. However, we should
not go too far beyond zN . A remedy is to start all over again with taking the last
estimate as the new initial guess, as to reduce the effects of rounding-off errors. This
can actually be done at every single step, what provides great flexibility, when using
this method.
The following algorithm describes the conjugate gradient method.

Algorithm 5.2. First, z0 is set to an initial estimate for the solution. Alternatively,
it can be set to 0. Then, we perform the first step

r0 = b− Az0

p0 = r0

i = 0

(5.20)

and repeat for all subsequent steps i

αi =
rTi ri
pTi Api

zi+1 = zi + αipi

ri+1 = ri − αiApi

βi =
rTi+1ri+1

rTi ri

pi+1 = ri+1 + βipi

i = i+ 1

(5.21)
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until we obtain an estimate zj with rj = b−Azj ≈ b−Aẑ = 0, i. e. ẑ ≈ zj and rj is
sufficiently small [16].

At this point, we do not go into further detail. Missing details regarding the math-
ematical theory can be consulted in [16] and [17].
Due to the matrix-vector multiplications, performing the CG-method requiresO (N2)

operations. Even though that is a huge improvement in comparison to cubic com-
plexities, it still does not scale well to large N .

5.3 The Nonequispaced Fast Fourier Transform

In many applications coordinate transformations can make our lives a lot easier.
Expressions can be simplified and get amenable for computations. The so-called
Fourier transform [18] describes a concept, where the orthogonal basis of the coor-
dinate system for equations is represented by sine and cosine functions of increasing
frequency. This works analogously to regular vector spaces except there are infinitely
many directions. We are going to use this to approximate expressions quickly with
minimal error.
First, we introduce the Hermitian inner product for functions f (z) and g (z), which
are defined for z ∈ [a, b], as

〈f (z) , g (z)〉 =

∫ b

a

f (z) g (z) dz, (5.22)

with g denoting the complex conjugate. When discretising these functions into data

vectors f =
[
f1 f2 . . . fn

]T
and g =

[
g1 g2 . . . gn

]T
, the resulting normalised

inner product

b−a
n−1
〈f, g〉 = b−a

n−1
gTf = b−a

n−1

∑n
k=1 fkgk = b−a

n−1

∑n
k=1 f (zk) g (zk) (5.23)

is the Riemann approximation to the inner product of the continuous function.
Taking the limit of n → ∞ with b−a

n−1
→ 0, (5.23) converges to (5.22). Let f (z) be

L-periodic on [0, L) and piecewise smooth now. Then, it can be written by means
of the Fourier series [18]

f (z) =
a0

2
+
∞∑
k=1

(
ak cos

(
2πkz

L

)
+ bk sin

(
2πkz

L

))
. (5.24)

The coefficients ak and bk are given by

ak =
2

L

∫ L

0

f (z) cos

(
2πkz

L

)
dz

bk =
2

L

∫ L

0

f (z) sin

(
2πkz

L

)
dz.

(5.25)
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We remember that our coordinate system has the orthogonal basis
{cos

(
2πkz
L

)
, sin

(
2πkz
L

)
}∞k=0. Analogously to the change of basis in finite-dimensional

vector spaces, the inner product is used to project a function onto the orthogonal
basis of the new coordinate system here. This becomes visible when rewriting (5.25)
as

ak =
1

‖ cos
(

2πkz
L

)
‖2
〈f (z) , cos

(
2πkz
L

)
〉

bk =
1

‖ sin
(

2πkz
L

)
‖2
〈f (z) , sin

(
2πkz
L

)
〉.

(5.26)

Example 5.3. Let ~f be a vector in the ( ~u1, ~v1) coordinate system. Then, ~f can be
written using the projections onto the orthogonal bases ~u1 and ~v1, i. e.

~f = 〈~f, ~u1〉
~u1

‖ ~u1‖2
+ 〈~f, ~v1〉

~v1

‖~v1‖2
. (5.27)

This way, a change of basis as in Figure 5.1 by Brunton et al. [18] can be performed
easily by

~f = 〈~f, ~u2〉
~u2

‖ ~u2‖2
+ 〈~f, ~v2〉

~v2

‖~v2‖2
. (5.28)

~u1

~v1

~f

~v2

~u2

Figure 5.1: Change of coordinates of a vector in two dimensions

Above, the Fourier series for L-periodic functions on [0, L) is defined in such a way
that the function repeats itself forever outside the domain. This representation is
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not always reasonable. Thus, the Fourier transform is introduced. Let us consider
a function f (z) on a domain z ∈ [−L,L) now. For convenience, this function is
2L-periodic. By (5.24) and Euler’s formula eikz = cos (kz) + i sin (kz) its Fourier
series is

f (z) =
a0

2
+
∞∑
k=1

(
ak cos

(
kπz

L

)
+ bk sin

(
kπz

L

))
=

∞∑
k=−∞

cke
ikπz/L

(5.29)

with coefficients

ck =
1

2L
〈f (z) , eikπz/L〉 =

1

2L

∫ L

−L
f (z) e−ikπz/Ldz. (5.30)

Apparently, the sine and cosine basis functions have a discrete set of frequencies
{ωk = kπ/L}∞k=−∞. For details concerning the remodelling (5.29) of the Fourier
series into the complex form, we refer to [18]. As mentioned above, we aim to find
a valid representation of generic non-periodic functions on (−∞,∞). Therefore, we
take the limit as L→∞ and ∆ω = π/L→ 0, so that the length of the domain runs
towards infinity and discrete frequencies turn into a continuous range of frequencies.
This yields

f (z) = lim
∆ω→0

∞∑
k=−∞

∆ω

2π

∫ π/∆ω

−π/∆ω
f (ξ) e−ik∆ωξdξ︸ ︷︷ ︸
〈f(ξ),eik∆ωξ〉

eik∆ωz, (5.31)

where taking the limit of the expression 〈f (ξ) , eik∆ωξ〉 leads to the Fourier transform
f̂ (ω) , F (f (z)) of f (z). Altogether, this results in the Fourier transform pair

f (z) = F−1
(
f̂ (ω)

)
=

1

2π

∫ ∞
−∞

f̂ (ω) eiωzdω

f̂ (ω) = F (f (z)) =

∫ ∞
−∞

f (z) e−iωzdz.

(5.32)

These transformations are extremely useful and widely applied in practice. We refer
to Brunton and Kutz [18] for some nice examples. This great applicability is due to
the following powerful properties, which are stated without proof.

Theorem 5.4. Let f̂ = F (f) and ĝ = F (g) be the Fourier transforms of functions
f and g and α and β be scalars. Then the following properties hold.

1. Derivatives of functions:

F
(
d

dz
f (z)

)
= iωF (f (z)) (5.33)
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2. Linearity of Fourier transforms:

F (αf (z) + βg (z)) = αF (f) + βF (g)

F−1
(
αf̂ (ω) + βĝ (ω)

)
= αF−1

(
f̂
)

+ βF−1 (ĝ)
(5.34)

3. Parseval’s theorem: ∫ ∞
−∞
|f̂ (ω) |2dω = 2π

∫ ∞
−∞
|f (z) |2dz (5.35)

4. Convolution:

(f ∗ g) (z) :=

∫ ∞
−∞

f (z − ξ) g (ξ) dξ

= F−1
(
f̂ ĝ
)

(z)

= (g ∗ f) (z)

(5.36)

The Fourier transform is a linear operator, that allows us to compute derivatives
and convolutions easily. Moreover, it preserves the L2-norm except for a constant.
Consequently, several challenging calculations in the spatial domain are very sim-
ple to implement in the Fourier domain. This makes the Fourier transform such a
powerful tool not only in mathematics but in all sciences.
Above, we restricted our considerations to continuous functions f (z). When ap-
plying this theory to real world problems, performing the Fourier transform on
discrete data is crucial though. This is done approximately. So let vectors of data

f =
[
f1 f2 . . . fn

]T
be given such that f (z) is discretised at a regular spacing

∆z. Then, the discrete Fourier transform (DFT) [18] denotes the discretised version
of the Fourier series. It is given by

f̂k =
n−1∑
j=0

fje
−2πijk/n, (5.37)

whereas

fk =
1

n

n−1∑
j=0

f̂je
2πijk/n (5.38)

is referred to as the inverse discrete Fourier transform. According to this, the data in
f is mapped to f̂ in the frequency domain. Therefore, the discrete Fourier transform
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can be seen as a linear operator, such that

f̂1

f̂2

f̂3

...
f̂n


︸ ︷︷ ︸

f̂

=



1 1 1 . . . 1

1 wn w2
n . . . wn−1

n

1 w2
n w4

n . . . w
2(n−1)
n

...
...

... . . . ...

1 wn−1
n w

2(n−1)
n . . . w

(n−1)2

n


︸ ︷︷ ︸

Fn



f1

f2

f3

...
fn


︸ ︷︷ ︸

f

, (5.39)

where wn = e−2πi/n is the fundamental frequency and the matrix Fn is a Vander-
monde matrix.

Remark 5.5. The values (5.37) and (5.38) can be computed for all k ∈ Z. Due to

e−2πij(k+n)/n = wj(k+n)
n = wjkn · 1 = wjkn = e−2πijk/n, (5.40)

k ∈ Z, the sequence (f̂k)k∈Z is n-periodic. In the same fashion, the periodicity of
(fk)k∈Z with period n can be shown.
Let n be even. Then, we can form the DFT of length n of (fj)j∈Z by any of its
n-dimensional subvectors [19]. So let us assume to choose (fj)

n/2−1
j=−n/2. Since (fj)j∈Z

is n-periodic,
n/2−1∑
j=−n/2

fjw
jk
n =

n/2∑
j=1

fn−jw
(n−j)k
n +

n/2−1∑
j=0

fjw
jk
n

=
n−1∑
j=0

fjw
jk
n

= f̂k,

(5.41)

k ∈ Z. Consequently, the values f̂k are independent of the chosen subvector, indeed.

Remark 5.6. By taking a closer look at wn ∈ C, we observe that wnn = 1 and
wkn 6= 1 for k = 1, . . . , n− 1. Hence, wn is a primitive n-th root of unity. Moreover,
wkn is a n-th root of unity for all k = 0, . . . , n− 1, because(

wkn
)n

=
(
e−2πik/n

)n
= e−2πik = 1. (5.42)

Due to these properties, the Fourier matrix Fn can be rewritten as

Fn =


1 1 . . . 1

1 wn . . . wn−1
n

...
...

...
1 wn−1

n . . . wn

 . (5.43)

Obviously, Fn is symmetric and has only n distinct entries [19].
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The matrix-vector multiplication (5.39) obviously requires O (n2) operations, what
scales poorly for large n. The so-called fast Fourier transform (FFT) [18] was
developed to overcome this difficulty. Its approach is to rather solve multiple DFT
computations of smaller dimensions instead of an n-dimensional one. For that, we
require the number n of data in f to be a power of 2, so that (5.39) can be rewritten
as

f̂ = Fnf =

[
In/2 Dn/2

In/2 −Dn/2

][
Fn/2 0

0 Fn/2

][
fodd

feven

]
, (5.44)

where fodd are all elements of f with odd index, feven with even index respectively,
In/2 is the (n/2)× (n/2) identity matrix and

Dn/2 =



1 0 0 . . . 0

0 wn 0 . . . 0

0 0 w2
n . . . 0

...
...

... . . . ...
0 0 0 . . . w

n/2−1
n


. (5.45)

(5.44) is derived by reorganising (5.39) and (5.37). This process is repeated again
and again, such that Fn/2 is expressed by Fn/4, which is expressed by Fn/8 and
so on. This leaves us performing several 2 × 2 DFT computations, which is a
lot less complex than implementing the original n-dimensional one. In doing so,
the algorithm scales as O (n log (n)), what nearly meets a linear scaling. Actually,
there is no linear algorithm that can evaluate the DFT of length n with a smaller
computational cost [19].
Even if n is no power of 2, this process can be applied. In this case, the number
of data points in f is made a power of 2 by padding with zeros. The fast Fourier
transform is so efficient, that this is still cheaper than performing an n-dimensional
DFT computation [18]. Above, we gave a rough overview of the main idea of the
FFT. However, since there are different representations of the DFT, there exist
different possibilities to describe the FFT. We refer to Plonka et al. [19] for the
details.
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Example 5.7. Let f =
[
f1 . . . f6

]T
be a data vector. Then, its discrete Fourier

transform f̂ = F6f can be rewritten as

f̂ =



1 1 1 1 1 1

1 w6 w2
6 w3

6 w4
6 w5

6

1 w2
6 w4

6 w6
6 w8

6 w10
6

1 w3
6 w6

6 w9
6 w12

6 w15
6

1 w4
6 w8

6 w12
6 w16

6 w20
6

1 w5
6 w10

6 w15
6 w20

6 w25
6


︸ ︷︷ ︸

F6

f

=



1 1 1 1 1 1

1 w6 w2
6 w3

6 w4
6 w5

6

1 w2
6 w4

6 w6
6 w8

6 w10
6

1 −1 1 −1 1 −1

1 −w6 w2
6 −w3

6 w4
6 −w5

6

1 −w2
6 w4

6 −w6
6 w8

6 −w10
6


f

=



1 1 1 1 1 1

1 w3 w2
3 w6 w3w6 w2

3w6

1 w2
3 w4

3 w2
6 w2

3w
2
6 w4

3w
2
6

1 1 1 −1 −1 −1

1 w3 w2
3 −w6 −w3w6 −w2

3w6

1 w2
3 w4

3 −w2
6 −w2

3w
2
6 −w4

3w
2
6





f1

f3

f5

f2

f4

f6



=



1 0 0 1 0 0

0 1 0 0 w6 0

0 0 1 0 0 w2
6

1 0 0 −1 0 0

0 1 0 0 −w6 0

0 0 1 0 0 −w2
6





1 1 1 0 0 0

1 w3 w2
3 0 0 0

1 w2
3 w4

3 0 0 0

0 0 0 1 1 1

0 0 0 1 w3 w2
3

0 0 0 1 w2
3 w4

3





f1

f3

f5

f2

f4

f6



(5.46)

by rearranging columns and applying wn = e−2πi/n, e−2πi = 1 and e−πi = −1. This
shows the validity of (5.44).

FFT computations require the input data to be equispaced. However, this condition
is a significant drawback concerning the width of applications. Thus, we are in need
of the nonequispaced fast Fourier transform (NFFT) [19]. Let
In = {k ∈ Z : −n

2
≤ k < n

2
} be an index set for large n ∈ N.

First, we introduce the NFFT for nonequispaced nodes xj ∈ [−π, π), j ∈ Im, in the
space domain and given equispaced data f̂k ∈ C, k ∈ In, in the frequency domain.
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5.3. The Nonequispaced Fast Fourier Transform

We desire the fast evaluation of the 2π-periodic trigonometric polynomial

f (x) :=
∑
k∈In

f̂k e
ikx (5.47)

at arbitrary nodes xj, j ∈ Im, for given arbitrary coefficients f̂k ∈ C, k ∈ In. I. e.
we need an efficient algorithm for computing the values

fj := f (xj) =
∑
k∈In

f̂k e
ikxj , (5.48)

j ∈ Im. The approach is to approximate f by a linear combination s1 of translates
of a 2π-periodic window function ϕ̃ and to compute this approximation at the nodes
xj, j ∈ Im.
Let ϕ ∈ L1 (R) ∩ L2 (R) be a convenient window function. Then, we define

ϕ̃ (x) :=
∑
r∈Z

ϕ (x+ 2πrx) , (5.49)

which is 2π-periodic and has the uniformly convergent Fourier series

ϕ̃ (x) :=
∑
k∈Z

ck (ϕ̃) eikx (5.50)

with Fourier coefficients

ck (ϕ̃) :=
1

2π

∫ π

−π
ϕ̃ (x) e−ikxdx

=
1

2π

∫
R
ϕ (x) e−ikxdx

=
1

2π
ϕ̂ (k) ,

(5.51)

k ∈ Z.

Remark 5.8. Popular choices for window functions ϕ are for instance a Gaussian
function, the Bessel window or the centered cardinal B-spline. We refer to Plonka
et al. [19] for a thorough consideration of approximation errors for these window
functions.

We pick an oversampling factor δ ≥ 1 such that δn ∈ N is even. Remembering that
s1 shall approximate the trigonometric polynomial f , we determine the coefficients
gl, l ∈ Iδn, such that

s1 (x) :=
∑
l∈Iδn

glϕ̃

(
x− 2πl

δn

)
, (5.52)
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next. (5.52) is a discrete convolution. The subsequent calculations show, that the
respective Fourier coefficients are multiplied by each other in that case.
Computing the Fourier series of s1 yields

s1 (x) =
∑
k∈Z

ck (s1) eikx

=
∑
k∈Z

ĝkck (ϕ̃) eikx,
(5.53)

where

ĝk :=
∑
l∈Iδn

gle
−ik2πl/(δn) (5.54)

are the discrete Fourier coefficients as introduced above, since

ck (s1) =
1

2π

∫ π

−π
s1 (x) e−ikxdx

=
1

2π

∫ π

−π

∑
l∈Iδn

glϕ̃

(
x− 2πl

δn

)
e−ikxdx

=
1

2π

∑
l∈Iδn

gl

∫ π

−π
ϕ̃

(
x− 2πl

δn

)
e−ikxdx︸ ︷︷ ︸

=
∫ π
−π ϕ̃(y)e−ikydy·e−ik2πl/(δn)

=
∑
l∈Iδn

glck (ϕ̃) e−ik2πl/(δn).

(5.55)

By assumption, ϕ is a convenient window function, i. e. ϕ is well-localised in the
space domain and ϕ̃ in the frequency domain. Thus, these functions have a very
small support in the respective domain, so that they do not have many translates.
Hence, (5.53) can be rewritten as

s1 (x) =
∑
k∈Iδn

ĝkck (ϕ̃) eikx +
∑

r∈R\{0}

∑
k∈Iδn

ĝkck+δnr (ϕ̃) ei(k+δnr)x. (5.56)

Suppose ck (ϕ̃) 6= 0 for all k ∈ In and |ck (ϕ̃)| � 1 for |k| ≥ δn− n
2
. Then, comparing

(5.47) with (5.56) yields

ĝk =

f̂k/ck (ϕ̃) k ∈ In,

0 k ∈ Iδn \ In,
(5.57)

what enables us to compute the coefficients gl in (5.52). Following the inverse
discrete Fourier transform (5.38), we obtain

gl =
1

δn

∑
k∈Iδn

ĝke
2πikl/(δn), (5.58)
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l ∈ Iδn. Moreover, ϕ can be approximated by its truncation on Q := [−2πmT
δn

, 2πmT
δn

]

ψ (x) :=

ϕ (x) x ∈ Q,

0 x ∈ R \Q,
(5.59)

where 2mT � δn and mT ∈ N. Analogously to (5.49), we define

ψ̃ (x) :=
∑
r∈Z

ψ (x+ 2πrx) ∈ L2 ([−π, π)) . (5.60)

Then,

s (x) :=
∑
l∈Iδn

glψ̃

(
x− 2πl

δn

)
=

∑
l∈Iδn,mT (x)

glψ̃

(
x− 2πl

δn

)
(5.61)

is an approximation of s1, where

Iδn,mT (x) := {l ∈ Iδn :
δn

2π
x−mT ≤ l ≤ δn

2π
x+mT}. (5.62)

Consequently, (5.61) contains at most 2mT + 1 nonzero terms for each fixed
xj ∈ [−π, π). Altogether, we achieved

f (xj) ≈ s1 (xj) ≈ s (xj) , (5.63)

by truncating first in the frequency domain and then in the space domain. This
enables us to approximately evaluate the trigonometric polynomial f for all
xj ∈ [−π, π), j ∈ Im. The so-called NFFT of type I [19] requires
O (n log n+mTm) operations, what is much faster than computing the
values (5.48) directly in O (nm) operations. Summarised, the NFFT of type I con-
sists of 3 steps. First, the discrete Fourier coefficients ĝk need to be calculated
according to (5.57). Thereupon, we perform the inverse FFT to obtain gl from
(5.58). Finally, (5.61) is evaluated at the given nodes xj, j ∈ Im. Just a few terms
of the sums in (5.61) are non-zero. This is due to the well-localisation of the window
function.

Next, we introduce the NFFT for arbitrary, nonequispaced nodes xj ∈ [−π, π),
j ∈ Im, in the frequency domain and given equispaced data fj ∈ C, j ∈ Im in the
space domain. We want to evaluate the values

h (k) :=
∑
j∈Im

fje
ikxj , (5.64)
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k ∈ In, now. We begin by introducing the 2π-periodic function

g̃ (x) :=
∑
j∈Im

fjϕ̃ (x+ xj) , (5.65)

where ϕ̃ follows Definition (5.49). Then by (5.51) and (5.64),

ck (g̃) =
1

2π

∫ π

−π
g̃ (x) e−ikxdx

=
1

2π

∫ π

−π

∑
j∈Im

fjϕ̃ (x+ xj) e
−ikxdx

=
∑
j∈Im

fje
ikxjck (ϕ̃)

= h (k) ck (ϕ̃) ,

(5.66)

k ∈ Z, holds for the Fourier coefficients of g̃. Accordingly, we can compute the
values h (k), k ∈ In, if the Fourier coefficients ck (ϕ̃) and ck (g̃) are available for all
k ∈ In. Applying the trapezoidal rule, we can approximate

ck (g̃) ≈ 1

δn

∑
l∈Iδn

∑
j∈Im

fjϕ̃

(
xj −

2πl

δn

)
e2πikl/(δn). (5.67)

Again, ϕ is well-localised in the space domain, such that its truncation ψ, see (5.59),
is a good approximation. Thus, ϕ̃ can be approximated by ψ̃. The method de-
scribed above is called NFFT of type II [19] and has a computational cost of
O (n log n+mTm) operations. It is also known as the adjoint NFFT. Understanding
the sums (5.48) and (5.64) as matrix-vector products, we introduce the vectors

f̂ :=
(
f̂k

)
k∈In
∈ Rn,

f := (fj)j∈Im ∈ Rm
(5.68)

and the nonequispaced Fourier matrix

A :=
(
eikxj

)
j∈Im,k∈In

∈ Rm×n. (5.69)

Then, calculating (5.48) for j ∈ Im corresponds to the computation of the matrix-
vector product Af̂ . Moreover, the values h (k) in (5.64) are computed by the matrix-
vector multiplication

(h (k))k∈In = AT (fj)j∈Im , (5.70)

where AT is the transposed matrix of A. Hence, the NFFT of type I and the NFFT
of type II are closely related. In principle, they proceed in reverse order.
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Remark 5.9. Different from the FFT, both the NFFT of type I and the NFFT
of type II are approximate algorithms. Therefore, we need to keep in mind that
approximation errors occur. In this thesis, we refrain from addressing this in greater
detail and refer to Plonka et al. [19]. Furthermore, in contrast to the FFT the NFFT
is not easy to invert. If only because the matrix is usually not square.

5.4 Performing Matrix-Vector Multiplications Fast

After having introduced several promising methods in the previous sections, we want
to develop a strategy for a fast and efficient computation of the two linear systems

(K + λIN)α = f (5.71)

and

(IN + λLsym)u = f (5.72)

now. The Cholesky decomposition possesses a cubic computational complexity,
whereas the CG-method requires O (N2) operations. Both methods can be applied
to both linear systems. Therefore, we orientate ourselves by the computational
complexity and exclude the use of the Cholesky decomposition. Still, O (N2) does
not scale well to large N ∈ N. When taking a closer look at Algorithm 5.2, com-
puting the matrix-vector product Api is by far the most expensive step within the
CG-method. Thus, not solving this multiplication directly but replacing it by an
efficient method will reduce the computational complexity tremendously. To this
end, the NFFT is applied.
We introduced the NFFT as a method for evaluating the discrete Fourier transform
for nonequispaced data fast. The connection to performing matrix-vector multipli-
cations is not immediately clear. Actually, this NFFT approach is by no means
reasonable for general matrices. Here, we benefit from the specific structure of our
matrices K + λIN and IN + λLsym. Just like the Fourier matrix FN , both matrices
are formed on the basis of the exponential function. This enables us to perform our
matrix-vector products fast based on the NFFT. It is important to keep in mind that
this technique is limited to a very small number of kernel functions. In fact, we are
restricted to the kernel functions that can be well approximated by a trigonometric
polynomial. For details on the so-called NFFT-based fast summation method, we
refer to Alfke et al. [3].
It has been experienced, that the NFFT runs computations very efficiently as long as
the input dimension is smaller than 4. Recalling our thoughts from Subsection 3.3.2,
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we aim to examine the combined relation of as many coordinates as possible. There-
fore, we are in need of the 3-variate NFFT. For dimensions larger than 1, the NFFT
is based on a tensor product approach. Then, for instance, the window function is
simply a product of univariate window functions for the particular dimensions. For
details concerning the multivariate nonequispaced fast Fourier transform, we refer
to Plonka et al. [19].
Alfke et al. [3] originated a “Python extension to compute fast approximate mul-
tiplications with Gaussian adjacency matrices” [20]. We apply this NFFT -based
package for solving the linear systems (5.71) and (5.72) fast and efficiently. As mo-
tivated above, this is achieved by solving all matrix-vector products Api within the
CG-method no longer directly but by means of the so-called FastAdjacency package
[20]. The approximation error ranges around 10−5, so that it does not have a per-
ceptible impact on the prediction quality. This software is targeted at the case of
very large N and small n, which is why we decided to consider windows of 3 features.

After having found a theoretical approach for performing matrix-vector multiplica-
tions for the ANOVA kernel fast and efficiently, we want to analyse its practicality.
First, we install the FastAdjacency package following the instructions in [20]. Then,
we import the fastadj module in the header of our code and are ready to start. Now,
instead of computing Api within the CG-algorithm as a dot product, we approxi-
mate the kernel matrices by the function call fastadj.AdjacencyMatrix and compute
the approximate results of the product with a vector using apply. For the kernel
ridge regression,

Api = (K + λIN)αi

= Kαi + λαi,
(5.73)

where K might represent a sum of several kernel matrices, see Chapter 3. Hence, we
apply the NFFT-based fast summation method to perform the matrix-vector product
Kαi fast without ever forming the whole matrix K. As part of this thesis, we
created a Python code, which uses the NFFT-based fast summation to perform the
kernel ridge regression fast and efficiently. Comparing the problem set description
in [20] with our setting, we stick to Definition (4.1) for the kernel matrix K. As
in Chapter 4, we illustrate our results by the Cryotherapy Data Set. Again, we
use the train_test_split function to randomly select the training data and choose
train_size = 0.25.
First, we want to check if the results of both Python codes, the one using the
ordinary CG-method and the one combining the CG-method with the NFFT-based
fast summation, are consistent with each other. Figure 5.2 compares the results for
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the windows of consecutive features. Now, including the kernels, which are based on
a single feature or the Gaussian kernel does not make sense, since our NFFT-based
approach requires the input to be 3-dimensional. Still, we have

(
n
3

)
=
(

6
3

)
= 120

possibilities for choosing such a window. Moreover, we can combine several kernels
as described in Chapter 3.

Figure 5.2: Cryotherapy Data Set - Classification rate for distinct index sets I
using the ordinary kernel ridge regression with scipy.sparse.linalg.cg, the kernel ridge
regression with a self-built CG-method and the kernel ridge regression with NFFT
approach, with optimal σ and λ = 1

For our self-built CG-method, we chose the tolerance for convergence to be 10−5, so
that the algorithm stops if ‖ri‖2 = 〈ri, ri〉 < 10−5. It was applied for the respective
second and third bar. Figure 5.2 shows, that the scipy.sparse.linalg.cg function has
another default value for that tolerance. Indeed, this algorithm’s stopping crite-
rion is slightly different, namely ‖ri‖ ≤ 10−5 · ‖f‖. This explains the deviations
between the respective first bars and the other two. Evidently, the NFFT-based
fast summation yields hyper-accurate approximations in such a way that applying
the NFFT approach does not affect the classification rate at all. The respective
prediction qualities match exactly. For the index set I = {3, 4, 5}, the classification
rate coincides for all 3 computation methods. By contrast, the results deviate by
0.04 for I = {4, 5, 6} and by 0.03 for the other two windows. These deviations keep
within limits. Besides, they only come into existence, because the stopping criterion
for the CG-methods do not agree. The main takeaway from Figure 5.2 is that our
NFFT approach approximates matrix-vector products excellently per se.
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Next, we want to examine the number of required iterations by the self-built CG-
method with and without the NFFT-based fast summation and compare the residual
norms. This yields Table 5.1.

Index set CG iteration i |‖rCG
i ‖2

2 − ‖rNFFT
i ‖2

2|

I = {1, 2, 3}

1 6.220286707048217e− 06

2 4.839732689276843e− 06

3 6.425458556609358e− 11

4 1.1459281152267947e− 13

I = {2, 3, 4}

1 9.53729475838827e− 07

2 5.426287970067278e− 07

3 2.5469859246237607e− 08

4 2.957958648893702e− 14

I = {3, 4, 5}

1 3.1825768348370254e− 05

2 6.17600354206084e− 07

3 3.6416455621491217e− 09

4 6.88424171531731e− 11

I = {4, 5, 6}

1 2.4157464520023098e− 02

2 1.198812684528261e− 03

3 2.292740398947002e− 04

4 5.368536653147307e− 05

5 1.5825118318456505e− 06

6 3.59507655486551e− 07

7 1.802773232507821e− 08

Table 5.1: Cryotherapy Data Set - Deviation of the residual norms for the self-built
CG-method with and without the NFFT-based fast summation, with optimal σ and
λ = 1

We ascertain, that the number of iterations required by the self-built CG-method
equals the number of taken iterations, when applying the NFFT approach. The
deviation of the residual norms is small from the beginning and decreases with every
iteration. The kernel, which is based on the index set I = {4, 5, 6}, consistently
produces the worst results. Moreover, it requires the most iterations within the CG-
method by far. I. e. for this kernel, the CG-method converges clearly slower than for
the others.
We have already observed, that applying our NFFT approach does not perceptibly
affect the CG-method. The number of iterations is equal and the residual norms
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are nothing but subtly different, so that the CG-method converges equally fast.
Furthermore, we obtain the exact same classification rates. All that remains to
show is the improvement in computational complexity. That would confirm the
success of our approach.
Therefore, we measure the execution time for all 3 computation methods. Figure 5.3
illustrates the results for distinct index sets I.

Figure 5.3: Cryotherapy Data Set - Execution time for distinct index sets I using
the ordinary kernel ridge regression with scipy.sparse.linalg.cg, the kernel ridge re-
gression with a self-built CG-method and the kernel ridge regression with NFFT
approach, with optimal σ and λ = 1

We must find that using the FastAdjacency package for approximating the kernel
matrix K and products with vectors does not reduce the execution time in our
setting. To the contrary, this procedure takes up to twenty times as long as the
other two. We wonder, what slows this process down so heavily. Therefore, we
measure the time needed to compute or approximate the kernel matrix K, now.
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Figure 5.4: Cryotherapy Data Set - Execution time for computing or approximating
the kernel matrix K for distinct index sets I

Figure 5.4 illustrates that the approximation of K using the FastAdjacency pack-
age is not solely responsible for the huge deviations in execution time. Actually,
performing the approximation of K takes maximally twice as long as computing it,
where both procedures run fairly quickly.
According to the problem set description in [20], the FastAdjacency package is tar-
geted at the case of large N . For the Cryotherapy Data Set, N = 90. This is by far
no large dimension. Hence, we cannot play to the strengths of the NFFT-based fast
summation. Moreover, the curse of dimensionality does not arise when computing
K. Because of that, our expectations regarding improved execution times with the
NFFT approach are not satisfied for the Cryotherapy Data Set.

To finally ascertaining the qualities of our NFFT approach, we analyse the Skin
Segmentation Data Set with N = 245057 samples and n = 3 features, now. It fits
perfectly in the target group of the FastAdjacency software. The data set “is col-
lected by randomly sampling B, G, R values from face images of various age groups
(young, middle and old), race groups (white, black and asian), and genders” [21].
The class labels yi ∈ {−1, 1} indicate, if an entry corresponds to a skin (yi = 1) or
a non-skin sample (yi = −1). Table 5.2 illustrates the first and the last 5 samples.
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Table 5.2: First and last 5 entries in the Skin Segmentation Data Set

As mentioned above, the total learning sample size is 245057, consisting of 50859

skin samples and 194198 non-skin samples. Performing the kernel ridge regres-
sion for such giant data sets requires powerful computers. For convenience, we
reduce the number of samples before analysing it, with maintaining the proportion
of skin samples to non-skin samples and selecting the samples randomly using the
train_test_split function with train_size = 0.25, once again. Since the Skin Seg-
mentation Data Set possesses 3 features, the kernel matrix is based on the index set
I = {1, 2, 3}. For details on the design of the downsized data sets Si, we refer to
Table 5.3.
We already demonstrated in Figure 5.2 and Table 5.1, that the NFFT-based fast
summation yields extremely accurate approximations. This is confirmed by Fig-
ure 5.5. Again, the kernel ridge regression with self-built CG-method and the kernel
ridge regression with NFFT approach yield exactly the same classification rate for
all data sets Si. Furthermore, we achieve an excellent prediction quality, even though
we have not even tuned any parameter. The maximal classification rate is obtained
at 0.97 for the data set S6, where N6 = 5000. I. e. our system predicts class affil-
iations correctly in 97 per cent of all cases. This performance is highly satisfying,
considering that we might even have the potential to improve this result by tuning
the parameters.
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Figure 5.5: Skin Segmentation Data Set - Classification rate for distinct dowscaled
data sets Si using the kernel ridge regression with a self-built CG-method and the
kernel ridge regression with NFFT approach, with σ = 1 and λ = 1

Next, we measure the execution time, when performing the kernel ridge regression
with self-built CG-method and with the NFFT-based fast summation for differently
downscaled data sets. The results are illustrated in Table 5.3 and Figure 5.6.

Data set
Number of samples Execution time in seconds
Skin Non-skin CG NFFT

S1 25 100 0.0772240161895752 0.5077226161956787

S2 50 200 0.29552197456359863 0.7269303798675537

S3 100 400 1.1209490299224854 1.4271478652954102

S4 250 1000 6.874807119369507 6.042292833328247

S5 500 2000 27.057647705078125 21.784718990325928

S6 1000 4000 106.40446710586548 84.62689971923828

S7 1500 6000 238.30217266082764 189.48373556137085

Table 5.3: Skin Segmentation Data Set - Execution time for distinct downscaled
data sets Si using the kernel ridge regression with a self-built CG-method and the
kernel ridge regression with NFFT approach, with σ = 1 and λ = 1
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Figure 5.6: Skin Segmentation Data Set - Execution time for distinct downscaled
data sets Si using the kernel ridge regression with a self-built CG-method and the
kernel ridge regression with NFFT approach, with σ = 1 and λ = 1

Table 5.3 and Figure 5.6 verify our explanation from above. The results in Figure 5.3
were only different than expected, because the FastAdjacency package targets data
sets with a large number of samples. Thus, the Cryotherapy Data Set with N = 90

is just not suitable for this application.
By Figure 5.5, we can confirm yet again that the NFFT-based fast summation yields
hyper-accurate approximations. Table 5.3 and Figure 5.6 clarify, that the NFFT ap-
proach gathers strength with increasing numbers of samples, whereas the curse of
dimensionality arises with the ordinary CG-method.

So far, we applied the NFFT-based fast summation only on the kernel ridge regres-
sion. Realising this approach on the semi-supervised learning will be the subject of
future research.
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6 Conclusion

In this thesis, we have successfully reduced the computational complexity of per-
forming learning methods on high-dimensional data. This was possible due to the
computational power of NFFT-based fast summation. Applying the FastAdjacency
package, we compute hyper-accurate approximations of the matrix-vector products
Kαi, without ever setting up the full matrix. In doing so, we nearly meet a linear
scaling, while the ordinary procedure requires O (N2) computations.
Basis for this approach is a favourably designed kernel matrix K, though. Thus, we
deeply delved into the theory of kernels and defined a suitable kernel function.
In our numerical experiments, we compared the classification results yielded by the
ordinary kernel ridge regression and the semi-supervised learning. We found that the
semi-supervised learning predominantly achieves better prediction qualities. More-
over, we demonstrated the necessity of crucial steps, such as scaling the data and
tuning the parameters. However, to these ordinary procedures are set limits. With
increasing number of samples, the curse of dimensionality arises, what motivates
the demand for speeding up the learning processes for large data. We developed
a kernel ridge regression method, which follows the NFFT approach. It yields ex-
act same classification results as the ordinary kernel ridge regression. Its execution
time is unconvincing for small data sets, though. In this case, the ordinary kernel
ridge regression clearly is the method of choice. But the NFFT approach gathers
strength with increasing number of data. Accordingly, this method is only targeted
at high-dimensional cases.
During originating this thesis, new research questions arose again and again. We
could not include all of them in this thesis. For instance, we did not examine the
classification results for combining several kernel matrices. Moreover, we did not
apply the NFFT-based fast summation on the semi-supervised learning either. Ad-
dressing these questions will be subject of future research.
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