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1 Introduction

In the Information Age high dimensional data plays an ever increasing role in our soci-
ety and economy. We are trying to understand more and more complex relationships or,
mathematically speaking, functions. In general, working with high dimensional functions,
e.g. with quadrature, results in reaching limitations of standard methods due to the curse
of dimensionality - an expression that was first introduced by the mathematician Richard
Bellman. Simply speaking, this translates to the amount of required data growing expo-
nentially with the dimension. Working around this issue, e.g. with sparsity assumptions,
is a central field in approximation theory. Besides approximating functions we are also
interested in finding the important dimensions and dimension interactions of a function
which is particularly important for applications where a lot of data is collected.
This thesis touches a specific problem in the wide area of approximation of high dimen-

sional functions. We consider periodic functions on the manifold of the d-variate torus.
The basis of our approach builds the well-known analysis of variance (ANOVA) decompo-
sition [13, 3, 4, 17]. Analysis of variance is best known for its use in statistics to investigate
relationships between groups through the one-way ANOVA, two-way ANOVA or N-way
ANOVA. We start by studying the properties of the ANOVA decomposition on the torus
and relating it to the Fourier analysis of periodic functions in Section 3. We find represen-
tations for the involved projections and ANOVA terms in the frequency domain in Lemma
3.2 and Corollary 3.6. Furthermore, we use the notion of inheritance of smoothness from
the function to its ANOVA terms proposed in [3] and prove this for Sobolev type spaces,
see Theorem 3.19, and the weighted Wiener algebra, see Theorem 3.22.
The ANOVA decomposition also offers tools to identify the important dimension in-

teractions with regard to the variance of the function. The described notion of effective
dimensions leads to a certain type of sparsity, i.e., we assume that a large part of the
variance of a function can be explained by considering only low-dimensional interactions
of the variables. This leads us to an approximate model, see Definition 3.27, where the
number of ANOVA terms grows polynomial with the dimension. We prove error bounds
for approximation with this model in L2 for Sobolev type spaces, see Theorem 3.32, and
L∞ for the weighted Wiener algebra, see Theorem 3.35.
Subsequently, we consider two scenarios for function approximation. In Section 4 we

assume to have a function with black-box-access, i.e., we can evaluate the function at any
point. This can be a probable scenario in applications where evaluations are cheap. We use
the previously introduced approximate model to detect important dimension interactions
and use the information we gained from this to calculate an approximation. Here, we apply
the well-known theory surrounding rank-1 lattices as sampling schemes [7, 18, Chapter 8]
and the high-dimensional FFT. Combining results from Section 3 and [18, Chapter 8], we
prove an L∞ error bound for this method, see Theorem 4.7
In Section 5 we are working with given scattered data. In applications this can be related

to the fact that function evaluations are expensive or that data stems only from a certain
range or time. The basis of the approach stays similar to the previous scenario, we use
the approximate model to detect the important dimension interactions. This is done by
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1 Introduction

solving a least-squares problem with the help of the Nonequispaced Fast Fourier Transform
(NFFT) [10]. Again, we take this information to find an approximation for the function.
In Sections 4 and 5 we present numerical examples for a 9-dimensional test function.

The results show that the proposed methods work well in both scenarios for the considered
test function.
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2 Fundamentals

In this section we introduce the important fundamentals for the considerations in this
thesis. We start with Fourier series together with Lebesgue spaces and move on to Sobolev
spaces where we characterize the smoothness of functions by the decay of Fourier coefficients
as considered in [11]. The section is based on the book by Folland [1].
Furthermore, we consider rank-1 lattices as sampling schemes to reconstruct high di-

mensional functions as proposed in [18]. Specifically, we discuss the fast evaluation of
trigonometric polynomials and the efficient reconstruction of Fourier coefficients.

2.1 Fourier Series, Lebesgue Spaces and Sobolev Spaces

In this thesis we are working exclusively with 1-periodic functions

f : Td → C

on the manifold of the d-dimensional torus Td. Depending on the context, we identify
T ∼= [0, 1) or T ∼= [−1/2, 1/2). First, we define the Lebesgue function spaces over the
torus.

Definition 2.1 The space

Lp(Td) :=
{
f : Td → C : ‖f‖Lp(Td) <∞

}
equipped with the norm

‖f‖Lp(Td) =

{(∫
Td |f(x)|p dx

) 1
p : 1 ≤ p <∞

ess sup |f(x)| : p =∞

is called Lebesgue function space (over the torus) with parameter 1 ≤ p ≤ ∞. �
Theorem 2.2 For the Lebesgue function spaces we have the following embeddings

Lp(Td) ⊂ Lq(Td)

for 1 ≤ q ≤ p ≤ ∞.

Proof. Let f ∈ Lp(Td). We prove this statement for 1 ≤ q ≤ p < ∞ using Hölder’s
inequality

‖f‖q
Lq(Td)

=

∫
Td

|f(x)|q dx ≤
(∫

Td

|f(x)|p dx

) q
p
(∫

Td

1 dx

)1− q
p

<∞.

For the case p =∞ we have

‖f‖q
Lq(Td)

=

∫
Td

|f(x)|q dx ≤ C · ess sup |f(x)|q <∞.

�
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2 Fundamentals

If the function f is integrable over Td it can be expressed as a Fourier series.

Definition 2.3 If f : Td → C is integrable, i.e., f ∈ L1(Td), we call

f(x) =
∑
k∈Zd

f̂k e2πik·x (2.1)

the Fourier series of f with Fourier coefficients

f̂k =

∫
Td

f(x)e−2πik·x dx.

�

Furthermore, we will mainly focus on L2(Td) where
(
e−2πik·x)

k∈Zd is a complete orthonor-
mal system, see [1, Theorem 3.5]. This property leads to the following results.

Lemma 2.4 If f ∈ L2(Td) then the series in (2.1) converges in the L2-norm.

Proof. see [1, Theorem 3.4] �

Theorem 2.5 Let f, g ∈ L2(Td). Then f and g are equal if and only if

f̂k = ĝk ∀k ∈ Zd.

Proof. see [1, Corollary 2.2] �

Theorem 2.6 (Parseval’s identity) For a function f ∈ L2(Td) with Fourier coefficients
f̂k,k ∈ Zd, we have Parseval’s identity

‖f‖2
L2(Td) =

∑
k∈Zd

∣∣∣f̂k∣∣∣2 . (2.2)

Proof. see [1, Theorem 3.4] �

In the following we consider the smoothness of functions on the torus and classify them
by the decay of their Fourier coefficients. To this end, we first define the p-Norm and
subsequently the Sobolev spaces and weights as proposed in [11].

Definition 2.7 The p-Norm of a vector x ∈ Rd is defined as

‖x‖p =


(∑d

i=1 |xi|
p
) 1

p
: p > 0

maxi=1,2,...,d |xi| : p =∞
|{i : xi 6= 0}| : p = 0

.

While it is a norm for 1 ≤ p ≤ ∞, it is only a quasi-norm for 0 < p < 1. �
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2.1 Fourier Series, Lebesgue Spaces and Sobolev Spaces

Definition 2.8 The Sobolev type spaces are defined as

Hw(Td) = {f ∈ L2(Td) : ‖f‖Hw(Td) <∞}

with the norm

‖f‖Hw(Td) =

(∑
k∈Zd

w2(k)
∣∣∣f̂k∣∣∣2)

1
2

.

for the weight sequence w = (w(k))k∈Zd with a weight function w : Zd → [1,∞). �

Definition 2.9 The classical isotropic Sobolev spaces Hs,p(Td) are a special case of
the Sobolev type spaces Hw(Td) from Definition 2.8 where we choose the weight functions

ws,p(k) = (1 + ‖k‖pp)
s
p , p ∈ (0,∞)

ws,p(k) = max(1, |k1| , . . . , |kd|), p =∞

for s > 0. Furthermore, we define Hs(Td) := Hs,2(Td). �

Definition 2.10 The Sobolev spaces of dominating mixed smoothness Hs
mix(Td)

are a second special case of the Sobolev type spaces Hw(Td) from Definition 2.8 where we
choose the weight function

ws(k) =
d∏
i=1

(1 + |ki|2)s.

�

Subsequently, we consider the weighted Wiener algebra of functions and its embeddings
into other function spaces.

Definition 2.11 The weighted Wiener algebra is defined as

Aw(Td) = {f ∈ L1(Td) : ‖f‖Aw
<∞}

with the norm
‖f‖Aw

=
∑
k∈Zd

w(k)
∣∣∣f̂k∣∣∣ .

Here, w : Zd → [1,∞) is a weight function. Furthermore, we define

A1(Td) =: A(Td),

where 1 is the function w with w(k) = 1 for all k ∈ Zd. �

Theorem 2.12 For the Wiener algebra and the continuous functions we have the embed-
dings

Aw(Td) ⊂ A(Td) ⊂ C(Td).

Proof. see [18, Lemma 8.2] �
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2 Fundamentals

2.2 Rank-1 Lattice as Sampling Schemes

Now, we consider rank-1 lattices as sampling schemes to reconstruct high-dimensional
functions. This section is based on [18, Chapter 8] and we restrict ourselves to a basic
overview and mention results that are especially relevant to our later work.
In general, a function f ∈ L1(Td) has an infinite number of Fourier coefficients f̂k. In

this section, we consider approximations using Fourier partial sums

(SIf)(x) :=
∑
k∈I

f̂k e2πik·x (2.3)

with a finite index set I ⊂ Zd. The Fourier partial sum SIf is a trigonometric polynomial.
This gives rise to the following considerations.
Given a trigonometric polynomial p(x) =

∑
k∈I p̂k e2πik·x and a sampling set X ⊂ Td

with |X| ∈ N sampling nodes, we consider the two questions:

1. For given Fourier coefficients p̂k how to compute the values p(x), x ∈ X, efficiently?

2. How can we efficiently compute the Fourier coefficients p̂k, given the evaluations p(x),
x ∈ X?

Let us consider the Fourier matrix

F =
(
e2πik·x)

x∈X,k∈I ∈ C|X|,|I|.

Then we formulate the first question as how to compute the matrix vector product

p = F p̂ (2.4)

efficiently and the second question as how to solve this system for p̂ = (p̂k)k∈I . Here,
p = (p(x))x∈X is the vector of evaluations. We consider the questions for the special case
that the sampling set X is a rank-1 lattice in the following.

Definition 2.13 For a vector z ∈ Zd and a positive integer M ∈ N, we define the rank-1
lattice

Λ(z,M) =

{
xj =

1

M
(jz mod M1) ∈ [0, 1)d : j = 0, 1, . . . ,M − 1

}
with 1 = (1)di=1 and jz mod M1 = (jzi mod M)di=1. We call z the generating vector
and M the lattice size. �

Rank-1 lattice have the following property with regard to dimension reduction. This is
particularly important to the considerations in Section 4.
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2.2 Rank-1 Lattice as Sampling Schemes

Lemma 2.14 Let Λ(z,M) be a rank-1 lattice with generating vector z ∈ Zd and lattice
size M ∈ N. Furthermore, let

xj =
1

M
(jzu mod M1) ∈ Λ(zu,M) and yj =

1

M
(jz mod M1) ∈ Λ(z,M)

with ∅ 6= u ⊂ {1, 2, . . . , d} and zu = (zi)i∈u. Then

xj = (yj)u = ((yj)i)i∈u.

Proof. The statement follows from the following simple consideration

xj =
1

M
(jzu mod M1) =

1

M
(jz mod M1)u =

(
yj
)
u
.

�

If X = Λ(z,M) we can use the LFFT or Lattice FFT, Algorithm 2.1, to compute the
matrix-vector product F p̂ efficiently and the adjoint LFFT, Algorithm 2.2, to do the same
for the adjoint matrix-vector product FHp. For a detailed explanation we refer to [18,
Chapter 8.2.2].

Algorithm 2.1 LFFT

Input: M ∈ N lattice size of rank-1 lattice Λ(z,M)
z ∈ Zd generating vector of Λ(z,M)
I ⊂ Zd finite frequency index set
p̂ = (p̂k)k∈I Fourier coefficients of p

1: ĝ ← (0)M−1
l=0

2: for k ∈ I do
3: ĝk·z mod M ← ĝk·z mod M + p̂k
4: end for
5: p← F−1

M ĝ C one-dim. FFT of length M
6: p←Mp

Output: p = F p̂ values of trigonometric polynomial p
Arithmetic cost: M logM + d |I|

Now, we consider the second question from above. The system belonging to (2.4) has
only an unique solution if |X| ≥ |I| and the Fourier matrix F has full rank. From [18,
Lemma 8.7] we know

(
FHF

)
k∈I,h∈I =

{
M : k · z = h · z mod M

0 : otherwise,
(2.5)

which leads to the following definition and subsequent theorem.

7



2 Fundamentals

Algorithm 2.2 adjoint LFFT

Input: M ∈ N lattice size of rank-1 lattice Λ(z,M)
z ∈ Zd generating vector of Λ(z,M)
I ⊂ Zd finite frequency index set
p = (p( j

M
z))M−1

j=0 values of trigonometric polynomial p

1: ĝ ← FMp C one-dim. FFT of length M
2: for k ∈ I do
3: âk ← ĝk·z mod M

4: end for
Output: â = FHp

Arithmetic cost: M logM + d |I|

Definition 2.15 We call a rank-1 lattice Λ(z,M) reconstructing rank-1 lattice for the
finite index set I ⊂ Zd and denote it with Λ(z,M, I) if

k · z 6≡ h · z mod M ∀h 6= k

with h,k ∈ I. �

Theorem 2.16 Let Λ(z,M, I) be a reconstructing rank-1 lattice with respect to the finite
index set I ⊂ Zd. Then

FHF = M I

for the Fourier matrix F = (e2πik·x)x∈Λ(z,M,I),k∈I .

Proof. see [18, Lemma 8.7] �

The previous considerations allow us to write the solution to the second question, i.e.,
solving (2.4) for p̂, as

p̂ = (FHF )−1FHp = (MI)−1FHp =
1

M
FHp

which can be computed efficiently using an adjoint LFFT. When approximating a function
f ∈ L1(Td) by a Fourier partial sum (SIf)(x) as described in [18, Chapter 8.3], we have
the aliasing formula

˜̂
fk = f̂k +

∑
h∈Λ⊥(z,M)\{0}

f̂k+h. (2.6)

Here, ˜̂
fk are the reconstructed Fourier coefficients and

Λ⊥(z,M) := {k ∈ Zd : k · z ≡ 0 mod M}

is the integer dual lattice.
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3 The ANOVA Decomposition

The analysis of variance (ANOVA) decomposition [13, 3, 4, 17] is an important model
in the analysis of dimension interactions of multivariate functions. Besides being a tool
in understanding certain quadrature algorithms such as the quasi-Monte Carlo method
[16, 20] or the Multivariate Decomposition Method to approximate infinite-variate integrals
[12, 2], the ANOVA model was recently used as a basis for learning highdimensional sparse
additive models from point queries [21]. Furthermore, Analysis of Variance is well-known
in statistics as a tool to study dimension relations.
We start by introducing the classical ANOVA decomposition in Section 3.1 where we

also translate the established terms to a Fourier context. We then go on to the properties
of the model in Section 3.2 where we focus on sensitivity analysis to determine dimension
interactions. Those considerations lead to an approximate ANOVA model in Section 3.3
which will be especially relevant for approximation.

3.1 The Classical ANOVA Decomposition

We consider multivariate periodic functions

f : Td → R,x 7→ f(x) (3.1)

with dimension d ∈ N and the smooth manifold of the Torus T which we identify with
(−1/2, 1/2]. Here, the right and left interval limits are identified with each other. We
want to restrict ourselves to the square-integrable functions in f ∈ L2(Td) which can be
represented as Fourier series

f(x) =
∑
k∈Zd

f̂k e2πik·x, (3.2)

see Section 2.
Now, let D = {1, 2, . . . , d} denote the set of coordinate indices of x = (x1, x2, . . . , xd) ∈

Td. Note that we will often say that variables are in a subset u ⊂ D although technical this
refers to the coordinate indices of the variables. The first important tool for the ANOVA
model are projections on subspaces. We use the notation xu = (xi)i∈u for u ⊂ D.

Definition 3.1 Let u ⊂ D and f ∈ L2(Td) as in (3.1). We define a projection operator

Pu : L2(Td)→ L2(T|u|), f 7→
∫
Td−|u|

f(x) dxD\u. (3.3)

�

Note that Puf only depends on the variables xu, i.e., (Puf) (x) = (Puf) (xu). For the
special case u = ∅ we have

P∅ =

∫
Td

f(x) dx =: If

9



3 The ANOVA Decomposition

which does not depend on any variable. Clearly, Pu is well-defined and maps into L2(T|u|)
since∫

T|u|

∣∣∣∣∫
Td−|u|

f(x) dxD\u

∣∣∣∣2 dxu ≤
∫
T|u|

∫
Td−|u|

|f(x)|2 dxD\u dxu = ‖f‖2
L2(Td) . (3.4)

In order to translate the projections to a Fourier context, we need the index set

P(d)
u := {k ∈ Zd : kD\u = 0} (3.5)

which is isomorphic to Z|u| with the identification k↔ ku since always kD\u = 0. We use
the convention Z0 = {0}. Now, we prove some properties of the projections Pu. Note that
we understand ku = (ki)i∈u in the same manner as xu.

Lemma 3.2 Let Pu be the projection operator (3.3) and f̂k,k ∈ Zd, the Fourier coefficients
of f in (3.2). Pu has the following properties:

(i) Pu is idempotent, i.e., P 2
u = Pu,

(ii) if u = D then Pu = idL2(Td),

(iii) (Puf) (x) =
∑
k∈P(d)

u
f̂k e2πik·x with P(d)

u from (3.5),

(iv) (Puf) (x) =
∑
`∈Z|u| p̂`,u e2πi`·xu with p̂`,u = f̂k for ku = ` and kD\u = 0.

Proof. We prove property (i) by

Pu (Puf) =

∫
Td−|u|

∫
Td−|u|

f(x) dxD\u dxD\u = Puf

∫
Td−|u|

dxD\u = Puf

since Puf does not depend on variables in D \ u. One can also directly see property (ii)
since we are not integrating over any variables in this case which just leaves us with the
function f itself.
In order to prove property (iii) we start with the simple case of P∅f = If and get

If =

∫
Td

f(x) dx =

∫
Td

∑
k∈Zd

f̂k e2πik·x dx =
∑
k∈Zd

f̂k

∫
Td

e2πik·x dx = f̂0.

by Fubini’s Theorem. Since P(d)
∅ = {0}, property (iii) holds for u = ∅. For the case

u = D, we have Pu = idL2(Td) and P(d)
u = Zd and therefore arrive again at the Fourier series

representation (3.2). For a general u ⊂ D, we can again interchange sum and integral

Puf(x) =

∫
Td−|u|

f(x) dxD\u

=
∑
k∈Zd

f̂ke2πiku·xu
∫
Td−|u|

e2πikD\u·xD\u dxD\u

10



3.1 The Classical ANOVA Decomposition

=
∑
k∈Zd

f̂ke2πik·xδkD\u,0.

=
∑
k∈P(d)

u

f̂k e2πik·x.

Here, δa,b, the Kronecker delta, is one if a = b and zero otherwise. So, property (iii) holds.
For property (iv), we just need to identify P(d)

u with Z|u| as done above. We omit the
zeros from k, i.e., take ku, and do the same for the entries of x that are not represented
in u, i.e., use xu. �

We especially emphasize that the difference of (iii) and (iv) lies only in the dimension
of the indices within the different index sets. We will use both variants to represent Puf
based on the context.
Given the projections Puf , we define the ANOVA term

fu(x) := (Puf) (x)−
∑
v(u

fv(x). (3.6)

Similar to the projections, the ANOVA term fu only depends on the variables xu, i.e.,
fu(x) = fu(xu).

Lemma 3.3 Let f ∈ L2(Td). Then

fu ∈ L2(T|u|)

for each u ⊂ D.
Proof. The projection Puf as well as the ANOVA terms of lower order fv are (by adding
independent variables) in L2(T|u|) = Im(Pu). Therefore, fu is a sum of L2(T|u|) functions
and as a consequence in L2(T|u|) itself. �

Now, we want to find a Fourier series representation for the ANOVA terms fu. As for
the projections, we need a special index set

F(d)
u := {k ∈ Zd : ku 6= 0,kD\u = 0}. (3.7)

This can be identified with (Z \ {0})|u| through k↔ ` with ` = ku and kD\u = 0. We use
the convention that (Z \ {0})0 = {0}. In order to prove the alternate representation, we
need the following two lemmas.

Lemma 3.4 Let d ∈ N and u ⊂ D. Then⋃
v(u

F(d)
v = {k ∈ Zd : ∃i ∈ u : ki = 0,kD\u = 0}

and as a direct consequence
F(d)
u = P(d)

u \
⋃
v(u

F(d)
v .

11



3 The ANOVA Decomposition

Proof. ’⊂’: If k is in the set on the left-hand side then we can find v ( u such that kv 6= 0
and kD\v = 0. If we choose w = u \ v then kw = 0 and k is in the set on the right-hand
side.
’⊃’: If k is in the set on the right-hand side then we can find w = {i} ⊂ u such that

kw = 0. We can now either find a maximal set v ⊂ u such that kv 6= 0 or k = 0. In both
cases, k is in the set on the left-hand side. �

Lemma 3.5 Let d ∈ N and u,v ⊂ D. Then

F(d)
u ∩ F(d)

v = ∅
for u 6= v and ⋃

u⊂D
F(d)
u = Zd.

is a disjoint union.

Proof. We prove the first statement by contradiction. Let u,v ⊆ D, u 6= v, and w.l.o.g.
|u| ≥ |v|. We assume there exists a k̃ ∈ F(d)

u ∩ F(d)
v and first consider the case u ∩ v = ∅.

Since k̃ ∈ F(d)
u we have k̃D\u = 0 and therefore k̃v = 0. This contradicts k̃ ∈ F(d)

v . In the
case of u ∩ v 6= ∅ there exists a j ∈ (D \ v) ∩ u. Then k̃ ∈ F(d)

v implies that k̃j = 0 which
contradicts k̃ ∈ F(d)

u .
For the second statement we consider the two inclusions. The inclusion

⋃
u⊂D F

(d)
u ⊂ Zd

is clear since F(d)
u ⊂ Zd ∀u ⊂ D. For the other inclusion we take a k ∈ Zd. Then we can

find the maximal set v ⊂ D such that kv 6= 0. Note that v = ∅ is possible. In this case it
holds that k ∈ F(d)

v . �

Corollary 3.6 Let u ⊂ D and f ∈ L2(Td). The ANOVA term fu has the Fourier series
representations

fu(x) =
∑
k∈F(d)

u

f̂k e2πik·x (3.8)

and
fu(x) =

∑
`∈(Z\{0})|u|

f̂`,u e2πi`·xu

with f̂`,u = f̂k for ` ∈ F(d)
u with ku = ` and kD\u = 0.

Proof. We use structural induction over the cardinality of |u|. The statement (3.8) is
trivial for u = ∅ since

f∅ = If = f̂0

and F(d)
∅ = {0}. Now, let (3.8) be true for |v| = 0, 1, . . . , n − 1 and choose u ⊂ D

with |u| = n. Using the recursive formula (3.6) for the ANOVA terms and the Fourier
representation of Puf from Lemma 3.2, we have

fu(x) =
∑
k∈P(d)

u

f̂k e2πik·x −
∑
v(u

∑
k∈F(d)

v

f̂k e2πik·x

12



3.1 The Classical ANOVA Decomposition

Lemma 3.5
=

∑
k∈P(d)

u \
⋃
v(u F(d)

v

f̂k e2πik·x

Lemma 3.4
=

∑
k∈F(d)

u

f̂k e2πik·x.

�

We can use the Fourier series representation (3.8) in order to prove two important prop-
erties of the ANOVA terms.

Lemma 3.7 Let u,v ⊂ D with u 6= v. Then

〈fu, fv〉L2(Td) = 0.

Proof. We take the scalar product and replace the ANOVA terms by their Fourier series
(3.8)

〈fu, fv〉 = 〈
∑
k∈F(d)

u

f̂k e2πik·x,
∑
`∈F(d)

v

f̂` e2πi`·x〉

=
∑
k∈F(d)

u

∑
`∈F(d)

v

f̂kf̂` 〈e2πik·x, e2πi`·x〉︸ ︷︷ ︸
=δk,`

=
∑
k∈F(d)

u

∑
`∈F(d)

v

f̂kf̂`δk,`

= 0

The last step follows by Lemma 3.5, i.e., the fact that the two index sets F(d)
u and F(d)

v are
disjoint. �

Lemma 3.8 Let u ⊂ D with u 6= ∅. Then

Ifu =

∫
T|u|

fu(xu) dxu = 0.

Proof. This follows directly from Corollary 3.6 since 0 /∈ F(d)
u . �

We now use the ANOVA terms to decompose a function f in a unique way through the
ANOVA decomposition.

Theorem 3.9 (ANOVA decomposition) Let f ∈ L2(Td) and fu as in (3.6). Then we can
decompose f uniquely as

f(x) = f∅ +
d∑
i=1

f{i}(x) +
d∑

i,j=1
i<j

f{i,j}(x) + · · ·+ f{1,2,...,d}(x)

13



3 The ANOVA Decomposition

and call this analysis of variance (ANOVA) decomposition. We will also use the
more compact notation

f(x) =
∑
u⊂D

fu(x).

with at most 2d terms.

Proof. First, we write the ANOVA decomposition with Fourier series of the ANOVA terms∑
u⊂D

fu(x) =
∑
u⊂D

∑
k∈F(d)

u

f̂k e2πik·x.

Since we know that
⋃
u⊂D F

(d)
u = Zd is a disjoint union by Lemma 3.5, we rewrite this as∑

u⊂D
fu(x) =

∑
k∈⋃u⊂D F(d)

u

f̂ke2πik·x =
∑
k∈Zd

f̂k e2πik·x = f(x).

and arrive at our function f .
This decomposition is unique because we split the index set Zd in disjoint subsets. Since

we sum over all elements within the power set, we have at most |P(D)| = 2d terms as some
of them might be 0. �

Remark 3.10 The ANOVA decomposition as proposed in Theorem 3.9 depends strongly
on the projection operator Pu from Definition 3.3. The ANOVA decomposition with this
projection operator is sometimes referred to as the classical ANOVA decomposition.
There are certain conditions as stated in [13] to a general projection operator under which
we still have a generalization of the ANOVA decomposition or general decomposition for-
mula. One special example is the anchored ANOVA decomposition with the projection
operator

Puf(x) = f((x, c)u)

with an anchor point c ∈ Td. Here, (x, c)u ∈ Td such that

((x, c)u)i =

{
xi : i ∈ u
ci : i /∈ u .

Figure 3.1 shows how the ANOVA decomposition is working on the subset [−8, 8]d of the
index set Zd for d = 3. It breaks the cube into the disjoint subsets F(3)

u for u ⊂ {1, 2, 3}.
Figure 3.2 shows the projection index sets Pu in [−8, 8]d. We can clearly see that the sets
are not disjoint.

14
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Figure 3.1: The ANOVA decomposition working on the hypercube [−8, 8]3 as a part of the
3-dimensional index set Z3.
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Figure 3.2: The projection index sets P(d)
u with 1 ≤ |u| ≤ 2 in the hypercube [−8, 8]3 as a

part of the 3-dimensional index set Z3.
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3.1 The Classical ANOVA Decomposition

Furthermore, it is possible to find a direct representation for the ANOVA terms using
only projections which will be useful later on. A proof of this alternate expression in
Theorem 3.12 is given in [13] using a property of projection operators. Here, we give a
proof through counting arguments using the following lemma.

Lemma 3.11 Let a ∈ N0 and b ∈ N with b > a. Then

b−1∑
n=a

(−1)n−a+1

(
b− a
n− a

)
= (−1)b−a.

Proof. We prove an equivalent form obtained through multiplication with (−1)a and an
index shift

b−a−1∑
n=0

(−1)n+a+1

(
b− a
n

)
= (−1)b.

Splitting the sum and applying the Binomial theorem yields

b−a−1∑
n=0

(−1)n+a+1

(
b− a
n

)
=

b−a∑
n=0

(−1)n+a+1

(
b− a
n

)
− (−1)b+1

= (−1)a+1

b−a∑
n=0

(−1)n
(
b− a
n

)
︸ ︷︷ ︸

=(−1+1)b−a=0

+(−1)b

= (−1)b.

�

Theorem 3.12 Let u ⊂ D. Then

fu(x) =
∑
v⊂u

(−1)|u|−|v| (Pvf) (x) (3.9)

is an equivalent expression for the ANOVA terms (3.6).

Proof. We prove this statement through structural induction over the cardinality of u. For
|u| = 0, i.e., u = ∅, we have

(−1)0−0 (P∅) (x) = (P∅) (x) = (P∅) (x)−
∑
v(∅

fv(x).

Now, let (3.9) be true for v ⊂ D, |v| = 0, 1, . . . , n − 1 and take a subset u ⊂ D with
|u| = n. We start from the recursive expression in (3.6)

fu(x) = (Puf) (x)−
∑
v(u

fv(x)

17



3 The ANOVA Decomposition

= (Puf) (x)−
∑
v(u

∑
w⊂v

(−1)|v|−|w| (Pwf) (x)

= (Puf) (x)−
∑
v(u

∑
w(u

(−1)|v|−|w| (Pwf) (x)δw⊂v

= (Puf) (x)−
∑
w(u

(Pwf) (x)
∑
v(u

(−1)|v|−|w|δw⊂v

= (Puf) (x)−
∑
w(u

(Pwf) (x)

|u|−1∑
n=|w|

∑
v⊂u
|v|=n

(−1)|v|−|w|δw⊂v

= (Puf) (x)−
∑
w(u

(Pwf) (x)

|u|−1∑
n=|w|

(−1)n−|w|
∑
v⊂u
|v|=n

δw⊂v

= (Puf) (x) +
∑
w(u

(Pwf) (x)

|u|−1∑
n=|w|

(−1)n−|w|+1

(|u| − |w|
n− |w|

)
︸ ︷︷ ︸

Lemma 3.11
= (−1)|u|−|w|

=
∑
w⊂u

(−1)|u|−|w| (Pwf) (x)

with

δw⊂v =

{
1 : w ⊂ v
0 : otherwise.

�

To conclude this section, we discuss some examples for ANOVA decompositions of func-
tions.

Example 3.13 We consider the function

f(x1, x2) = sin
(x1π

3

)
+ cos

(x2π

3

)
+ sin

(x1π

3

)
cos
(x2π

3

)
which is clearly an element of L2(T2). First, we calculate the projections

P∅f(x1, x2) =

∫
T2

f(x1, x2) d(x1, x2) =
3

π

P{1}f(x1, x2) =

∫
T
f(x1, x2) dx2 = sin

(x1π

3

)[
1 +

3

π

]
+

3

π

P{2}f(x1, x2) =

∫
T
f(x1, x2) dx1 = cos

(x2π

3

)
P{1,2}f(x1, x2) = f(x1, x2).

18



3.1 The Classical ANOVA Decomposition

Now, we use the direct formula (3.9) in order to compute the ANOVA terms

f∅(x1, x2) = (−1)0−0P∅f(x1, x2) =
3

π
f{1}(x1, x2) = (−1)1−0P∅f(x1, x2) + (−1)1−1P{1}f(x1, x2)

= sin
(x1π

3

)[
1 +

3

π

]
f{2}(x1, x2) = (−1)1−0P∅f(x1, x2) + (−1)1−1P{2}f(x1, x2)

= cos
(x2π

3

)
− 3

π
f{1,2}(x1, x2) = (−1)2−0P∅f(x1, x2) + (−1)2−1P{1}f(x1, x2)

+ (−1)2−1P{2}f(x1, x2) + (−1)2−2P{1,2}f(x1, x2)

= sin
(x1π

3

)
cos
(x2π

3

)
− 3

π
sin
(x1π

3

)
.

We can see that the ANOVA terms add up to f , i.e., f =
∑
u⊂D fu. It is also important

to observe that the ANOVA term fu does not necessarily coincide with the summand in
f that depends on xu if f is already given in an additive form. For our particular f , we
have

f{1}(x1, x2) 6= sin
(x1π

3

)
and f{2}(x1, x2) 6= cos

(x2π

3

)
.

�

Example 3.14 As a second example, we consider

f(x1, x2, x3) = x1 + x2 + x3 + x1x2x3 ∈ L2(T2).

Calculating the projections yields

P∅f(x1, x2, x3) =

∫
T3

f(x1, x2, x3) d(x1, x2, x3) = 0,

P{i}f(x1, x2, x3) =

∫
T2

f(x1, x2, x3) dx{1,2,3}\{i} = xi, i = 1, 2, 3,

P{i,j}f(x1, x2, x3) =

∫
T
f(x1, x2, x3) dx{1,2,3}\{i,j} = xi + xj, i = 2, 3, j = 1, 2, j < i,

P{1,2,3}f(x1, x2, x3) = f(x1, x2, x3).

Applying the direct formula (3.9) again, we obtain the ANOVA terms

f∅(x1, x2, x3) = (−1)0−0P∅f(x1, x2, x3) = 0

f{i}(x1, x2, x3) = (−1)1−1P{i}f(x1, x2, x3) = xi, i = 1, 2, 3,

f{i,j}(x1, x2, x3) = (−1)2−0P∅f(x1, x2, x3)−
3∑
i=1

P{i}f(x1, x2, x3) = 0
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3 The ANOVA Decomposition

f{1,2,3}(x1, x2, x3) = f(x1, x2, x3)−
∑
i=2,3
j=1,2
j<i

P{i,j}f(x1, x2, x3) +
3∑
i=1

P{i}f(x1, x2, x3)

= x1x2x3

We observe that contrary to Example 3.13, the summands in f coincide with the ANOVA
terms, i.e., f was already given in ANOVA decomposition. �

Example 3.15 In order to visualize the effect of the ANOVA decomposition, we take

f(x1, x2) = ex1+x2 .

If we define c :=
∫
T e

x dx = e1/2 − e−1/2 then

P∅f = c2, P{i}f(xi) = cexi and P{1,2}f(x1, x2) = f(x1, x2)

and therefore the ANOVA terms are

f∅ = c2, f{i}(xi) = cexi − c2 and f{1,2}(x1, x2) = ex1+x2 − c(ex1 + ex2) + c2

with i = 1, 2. Figure 3.3 shows our function f with all its ANOVA terms.
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3.1 The Classical ANOVA Decomposition

−0.4−0.2 0 0.2 0.4 −0.5

0

0.5
1

2

3

(a) f

−0.4−0.2 0 0.2 0.4 −0.5

0

0.5−0.2
0

0.2

0.4

(b) f{1,2}

0.25 0.5−0.25−0.5

0.5

−0.4
(c) f{1} and f{2}

0.25 0.5−0.25−0.5

0.4

0.3

0.2

0.1

(d) f∅

Figure 3.3: The function f(x1, x2) = ex1+x2 and its ANOVA terms.
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3 The ANOVA Decomposition

3.2 Smoothness and Variance

We start this section by discussing the inheritance of affiliation to a function space from
f to its ANOVA terms fu. This translates to the inheritance of smoothness from the
function f to the ANOVA terms fu if one considers subspaces that are defined through
the smoothness of the function.
At first we consider the classical Sobolev spaces

Hs(Td) =
{
f ∈ L2(Td) : Dαf ∈ L2(Td) for α ∈ Nd

0, ‖α‖1 ≤ s
}
. (3.10)

They are a special case of the Sobolev classes considered in [3] and we start by following
the general path established therein. Since our context is L2(Td) we use a different proof
based on the equivalence of Fourier coefficients. We then generalize results of inheritance
of smoothness to Sobolev type spaces, see [11], and the weighted Wiener algebra.

Corollary 3.16 Let u ⊂ D and f ∈ Hs(Td) with s > 0. Then∥∥DβPuf
∥∥

L2(T|u|) <∞ ∀β ∈ Nd
0,βD\u = 0, ‖β‖1 ≤ s

and therefore Puf ∈ Hs(T|u|).

Proof. This is a consequence of the well-known Leibniz Theorem or Leibniz rule as∫
T|u|

∣∣∣∣Dβ

∫
Td−|u|

f(x) dxD\u

∣∣∣∣2 dxu =

∫
T|u|

∣∣∣∣∫
Td−|u|

Dβf(x) dxD\u

∣∣∣∣2 dxu

≤
∫
T|u|

∫
Td−|u|

∣∣Dβf(x)
∣∣2 dxD\u dxu

=
∥∥Dβf

∥∥2

L2(Td)
<∞.

�

Theorem 3.17 (Extended Leibniz Theorem) Let u ⊂ D and f ∈ Hs(Td) with order s > 0.
Then

Dβ (Puf) (x) =
(
Pu
(
Dβf

))
(x)

with β ∈ Nd
0, ‖β‖1 ≤ s and βD\u = 0.

Proof. It is sufficient to prove that both DβPuf and PuDβf have the same Fourier coef-
ficients by Theorem 2.5. Using the differentiation property of the Fourier coefficients and
Lemma 3.2, we derive

Dβ (Puf) (x) = Dβ
∑
k∈P(d)

u

f̂k e2πik·x =
∑
k∈P(d)

u

(2πik)βf̂ke2πik·x.

If we set g(x) = Dβf(x) then

g(x) =
∑
k∈Zd

ĝk e2πik·x with ĝk = (2πik)βf̂k.
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3.2 Smoothness and Variance

Applying the projection operator Pu yields

(Pug) (x) =
∑
k∈P(d)

u

ĝk e2πik·x =
∑
k∈P(d)

u

(2πik)βf̂ke2πik·x,

see Lemma 3.2, and therefore the Fourier coefficients are identical. �

Using Theorem 3.17 and Corollary 3.16 we show that f indeed inherits its smoothness
to the ANOVA terms.

Theorem 3.18 (Inheritance of Smoothness) Let u ⊂ D and f ∈ Hs(Td) with s > 0. Then∥∥Dβfu
∥∥

L2(T|u|) <∞ ∀β ∈ Nd
0,βD\u = 0, ‖β‖1 ≤ s

and therefore fu ∈ Hs(T|u|).

Proof. We prove this theorem by estimating the norm

∥∥Dβfu
∥∥2

L2(T|u|) =

∫
T|u|

∣∣Dβfu(xu)
∣∣2 dxu

(3.9)
=

∫
T|u|

∣∣∣∣∣Dβ
∑
v⊂u

(−1)|u|−|v| (Pvf) (x)

∣∣∣∣∣
2

dxu

≤
∑
v⊂u

∫
T|u|

∣∣Dβ (Pvf) (x)
∣∣2 dxu ≤

∑
v⊂u

∥∥∥Dγ(v)

Pvf
∥∥∥

L2(T|v|)
<∞

with γ(v) ∈ Nd, γ(v)
v = βv and γ(v)

D\v = 0. �

The previous results can be generalized to a much broader class of function spaces over
the torus characterized by the decay of the Fourier coefficients. The first class we consider
are the Sobolev type spaces Hw(Td) from Definition 2.8.

Theorem 3.19 (Inheritance of Smoothness for Sobolev Type Spaces) Let f ∈ Hw(Td) and
w : Zd → [1,∞) the function that generates the weight sequence w. Then

fu ∈ Hw(T|u|) ∀u ⊂ D
for w = (w(`))`∈(Z\{0})|u| and w(`) = w(k) if k ∈ Zd is chosen such that ku = ` and
kD\u = 0.

Proof. We use the identification from Corollary 3.6 and estimate the sum

‖fu‖2
Hw(T|u|) =

∑
`∈(Z\{0})|u|

w2(`)
∣∣∣f̂`,u∣∣∣2 =

∑
k∈F(d)

u

w2(ku)
∣∣∣f̂k∣∣∣2

=
∑
k∈F(d)

u

w2(k)
∣∣∣f̂k∣∣∣2

≤
∑
k∈Zd

w2(k)
∣∣∣f̂k∣∣∣2 = ‖f‖2

Hw(Td) <∞.

�

23



3 The ANOVA Decomposition

With Theorem 3.19, the inheritance of smoothness follows immediately for the well-
known special cases of Sobolev type spaces.

Corollary 3.20 Let f ∈ Hs,p(Td) for s > 0 and p > 0. Then

fu ∈ Hs,p(T|u|).

Proof. The space Hs,p(Td) with the weight function

ws,p(k) =

{
(1 + ‖k‖pp)

s
p : p <∞

max(1, |k1| , . . . , |kd|) : p =∞

from Definition 2.9 is a Sobolev type space. Therefore, the statement follows directly from
Theorem 3.19. �

Corollary 3.21 Let f ∈ Hs
mix(Td) for s > 0. Then

fu ∈ Hs
mix(T|u|).

Proof. The space Hs
mix(Td) is equipped with the weight function

ws(k) =
d∏
i=1

(1 + |ki|2)s

from Definition 2.10. Therefore, it is a Sobolev type space and we use Theorem 3.19. �

Finally, we consider the Wiener algebra Aw(Td), see Definition 2.11, with weight function
w : Zd → [1,∞). Here, the inheritance of smoothness also holds.

Theorem 3.22 (Inheritance of Smoothness for the Wiener Algebra) Let f ∈ Aw(Td) with
weight function w : Zd → [1,∞). Then

fu ∈ Aw(T|u|) ∀u ⊂ D

with w : Z|u| → [1,∞) given by w(`) = w(k) for k ∈ Zd, ku = ` and kD\u = 0.

Proof. We have to show that the norm

‖fu‖Aw(T|u|) =
∑
`∈Z|u|

w(`)
∣∣∣f̂`,u∣∣∣

is finite. Using the same trick as before we estimate∑
`∈Z|u|

w(`)
∣∣∣f̂`,u∣∣∣ =

∑
k∈Fd

u

w(k)
∣∣∣f̂k∣∣∣ ≤∑

k∈Zd

w(k)
∣∣∣f̂k∣∣∣ = ‖f‖Aw(Td) <∞.

�
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3.2 Smoothness and Variance

The second part of this section is about the importance of a specific ANOVA term fu in
relation to the entire function. This is especially important in our overarching context of
learning sparse additive models. Identifying terms of importance is one of the main ideas
of the approximation approach in Sections 4 and 5. We start by defining the variance of
the function f ∈ L2(Td)

σ2(f) :=

∫
Td

(f(x)− If)2 dx. (3.11)

We can relate this to the L2(Td)-norm through the following lemma.

Lemma 3.23 Let f : Td → R as before and f ∈ L2(Td). Then we can express (3.11) as

σ2(f) = ‖f‖2
L2(Td) − (If)2.

In a Fourier context, this translates to

σ2(f) = ‖f‖2
L2(Td) − f̂ 2

0 =
∑

k∈Zd\{0}

∣∣∣f̂k∣∣∣2 . (3.12)

Proof. Starting from (3.11), we derive∫
Td

(f(x)− If)2 dx =

∫
Td

[
f 2(x)− 2f(If) + (If)2

]
dx

=

∫
Td

f 2(x) dx− 2(If)

∫
Td

f(x) dx︸ ︷︷ ︸
=If

+(If)2

= ‖f‖2
L2(Td) − (If)2.

The second equation (3.12) follows directly from Parseval’s identity (2.2). �

For the variance of the ANOVA terms fu, we can apply Lemma 3.8 and get

σ2(fu) = ‖fu‖2
L2(T|u|) − (Ifu)2︸ ︷︷ ︸

=0

= ‖fu‖2
L2(T|u|)

for u 6= ∅. Together with Parseval’s identity and Corollary 3.6 we can rewrite this as the
sum

σ2(fu) =
∑
k∈F(d)

u

∣∣∣f̂k∣∣∣2 =
∑

`∈(Z\{0})|u|

∣∣∣f̂`,u∣∣∣2 . (3.13)

With the following Theorem, we are able to relate the variance of ANOVA terms to the
variance of the corresponding function.

Theorem 3.24 Let f ∈ L2(Td) with Im(f) ⊂ R. Then we can express the variance of f
as the sum of the variances of its ANOVA terms

σ2(f) =
∑
u⊂D
u 6=∅

σ2(fu). (3.14)
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3 The ANOVA Decomposition

Proof. We start from the right-hand side in (3.14) and use (3.13)∑
u⊂D
u6=∅

σ2(fu) =
∑
u⊂D
u 6=∅

∑
k∈F(d)

u

∣∣∣f̂k∣∣∣2 .
Using the fact that F(d)

u ∩ F(d)
v = ∅ for u 6= v from Lemma 3.5 and

⋃
u⊂D F

(d)
u = Zd as a

consequence of Corollary 3.6 and Theorem 3.9, we arrive at∑
u⊂D
u6=∅

∑
k∈F(d)

u

∣∣∣f̂k∣∣∣2 =
∑

k∈⋃u⊂D
u 6=∅

F(d)
u

∣∣∣f̂k∣∣∣2 =
∑

k∈Zd\{0}

∣∣∣f̂k∣∣∣2 .
Since this is equal to (3.12), we have proven the statement. �

In order to measure the importance of a particular ANOVA term fu we consider the
global sensitivity indices as proposed in [15, 14]

%(u; f) :=
σ2(fu)

σ2(f)
∈ [0, 1]. (3.15)

Using (3.14) it directly follows that ∑
u⊂D
u 6=∅

%(u; f) = 1

and
%(u; f) = 1−

∑
v⊂D
v 6=u
v 6=∅

%(v; f).

Now, we take another look at the Example 3.15 from before.

Example 3.25 We again consider the function f(x1, x2) = ex1+x2 . In order to calculate
the global sensitivity indices, we start with the variances

σ2(f) =

∫
T2

(ex1+x2 − c2)2 dx =

(
e

2
− 1

2e

)2

− c4 ≈ 0.201352

σ2(f{i}) =

∫
T

(
cexi − c2

)2
dxi = c2

[
e

2
− 1

2e

]
− c4 ≈ 0.0967117, i = 1, 2,

σ2(f{1,2}) =

∫
T2

(
ex1+x2 − c (ex1 + ex2) + c2

)2
dx ≈ 0.00792811.

where c is given in Example 3.15. Clearly, σ2(f1) + σ2(f2) + σ2(f1,2) = σ2(f) and for the
global sensitivity indices we have

%({1}; f) = %({2}; f) ≈ 0.480313 and %({1, 2}; f) = 0.0393745.

This means that the two one-dimensional terms explain together about 96% of σ2(f) while
the two-dimensional term contributes only about 4%. �
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3.2 Smoothness and Variance

Remark 3.26 One could get the impression from Example 3.25 that lower order terms do
contribute more to the function in general. However, this does not need to be the case as
we can create a counterexample by defining a function where low order ANOVA terms are
zero.
Nevertheless, we make the observation that e.g. in the classical isotropic Sobolev spaces

Hw(Td), the weights ws,p(k) with s > 0 and 1 ≤ p <∞ are larger if more entries of k are
nonzero which forces the Fourier coefficients to decay faster in those directions. �
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3 The ANOVA Decomposition

3.3 Effective Dimensions

Now, we want to introduce the so called effective dimensions, see [4, Chapter 2.1.1].
Given a proportion α ∈ (0, 1], we have two notions of an effective dimension. The first one
is called truncation dimension dt ∈ {1, 2, . . . , d} with respect to the function f . It is
defined as the smallest value dt such that∑

u⊂{1,2,...,dt}
u 6=∅

σ2(fu) ≥ ασ2(f).

Practically speaking, this reduces the dimension of the function f in a way that still allows
us to explain a determined portion α of it. Note that arbitrary interactions of the remaining
dimensions are still allowed. This provides the means to identify the number of important
variables of the function f .
The second notion is the superposition dimension ds ∈ {0, 1, 2, . . . , d − 1}. This is

the smallest value ds such that ∑
u⊂{1,2,...,d}

0<|u|≤ds

σ2(fu) ≥ ασ2(f).

Here, we do not limit the variables itself but the number of variables that can interact with
each other. The superposition dimension ds is therefore also the highest order of allowed
interactions. In some further considerations, we omit the specification of an α and instead
directly choose ds. In this case, we have

α :=

∑
u⊂{1,2,...,d}

0<|u|≤ds
σ2(fu)

σ2(f)
.

While both effective dimensions can be useful in different context, in this thesis we will
only consider the superposition dimension and build a corresponding model. The reason
for using this as a basis for our approximation approach will become clear in Sections 4
and 5. A certain variant of this idea (in a different context) was proposed in [4, Chapter
3.2.4].

Definition 3.27 For a given superposition dimension ds, we define the truncation operator

Tds : L2(Td)→ L2(Td), f 7→
∑
u⊂D
|u|≤ds

fu.

For a fixed function f : Td → R, we call the image of the truncation operator

Tdsf :=
∑
u⊂D
|u|≤ds

fu (3.16)

the approximate ANOVA model with respect to ds. �
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3.3 Effective Dimensions

Clearly, the operator Tds is well-defined since each f ∈ L2(Td) has a unique ANOVA
decomposition by Theorem 3.9 and fu ∈ L2(T|u|) for each u ⊂ D by Lemma 3.3.

Remark 3.28 For a fixed superposition dimension ds the number of terms has polynomial
growth in d as we can estimate

ds∑
i=0

(
d

i

)
≤ (1 + d)ds

by applying the Binomial Theorem. �

First, we want to propose a direct formula with the projections Puf using the following
theorem.

Theorem 3.29 Let ds ∈ {1, 2, . . . , d− 1}. Then we can express the approximate ANOVA
model directly by

Tdsf =
∑
u⊂D
|u|≤ds

c(|u| , d, ds)Puf (3.17)

with coefficients

c(|u| , d, ds) =
ds∑

n=|u|

(
d− |u|
n− |u|

)
(−1)n−|u|. (3.18)

Proof. Here, a similar technique as in Theorem 3.12 can be applied. We start with (3.16)
and use (3.9) ∑

u⊂D
|u|≤ds

fu =
∑
u⊂D
|u|≤ds

∑
v⊂u

(−1)|u|−|v|Pvf

=
ds∑
n=0

∑
u⊂D
|u|=n

∑
v⊂D
|v|≤ds

(−1)n−|v|Pvfδv⊂u

=
ds∑
n=0

∑
v⊂D
|v|≤ds

(−1)n−|v|Pvf
∑
u⊂D
|u|=n

δv⊂u

=
ds∑
n=0

∑
v⊂D
|v|≤ds

(−1)n−|v|Pvf

(
d− |v|
n− |v|

)

=
∑
u⊂D
|u|≤ds

 ds∑
n=|u|

(
d− |u|
n− |u|

)
(−1)n−|u|

Puf.
�
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3 The ANOVA Decomposition

Now, we consider the Fourier coefficients of the approximate model Tdsf .

Corollary 3.30 For a given k ∈ Zd, we have

ck(Tdsf) =

{
f̂k : ‖k‖0 ≤ ds

0 : otherwise
(3.19)

with ck(Tdsf) being the Fourier coefficient of Tdsf for the frequency k and ‖k‖0 the number
of entries in k that are non-zero. Furthermore, the coefficients ck(Tdsf) can be expressed
via the Fourier coefficients of the projections as follows

ck(Tdsf) =


∑

u⊂D
|u|≤ds

c(|u| , d, ds)p̂ku,u δkD\u,0 : ‖k‖0 ≤ ds

0 : otherwise
. (3.20)

Here, c(|u| , d, ds) is from (3.18) and p̂ku,u is the ku-th Fourier coefficient of Puf .

Proof. Clearly, the formula (3.19) holds since the operator Tds simply cuts all ANOVA
terms of order larger than ds and therefore the corresponding Fourier coefficients.
In order to prove (3.20), we use Theorem 3.29 and calculate the integral

ck(Tdsf) =

∫
Td

∑
u⊂D
|u|≤ds

fu(x)

 e−2πikx dx

Theorem 3.29
=

∫
Td

∑
u⊂D
|u|≤ds

c(|u| , d, ds)(Puf)(x)

 e−2πikx dx

=
∑
u⊂D
|u|≤ds

c(|u| , d, ds)
∫
T|u|

(Puf)(xu)e−2πikuxu dxu δkD\u,0

=
∑
u⊂D
|u|≤ds

c(|u| , d, ds)δkD\u,0 p̂ku,u.

�

With regard to the approximation of functions, we are interested in the error if we
approximate f by Tdsf . Here, we can look at the same function spaces as in Section 3.2
and derive the following results.

Lemma 3.31 Let f ∈ Hw(Td) with generating weight function w : Zd → [1,∞). Then∑
u⊂D
‖fu‖2

Hwu (T|u|) = ‖f‖2
Hw(Td)
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3.3 Effective Dimensions

with wu = (wu(l))l∈(Z\{0})|u| and the weight functions wu : Z|u| → [1,∞) under the condi-
tion that

wu(ku) = w(k)∀u ⊂ D : ∀k ∈ Zd : kD\u = 0. (3.21)

Proof. Using the definition of the norm and Lemma 3.5 we have∑
u⊂D
‖fu‖2

Hw(Td) =
∑
u⊂D

∑
`∈(Z\{0})|u|

w2
u(`)

∣∣∣f̂`,u∣∣∣2 =
∑
u⊂D

∑
k∈F(d)

u

w2(k)
∣∣∣f̂k∣∣∣2

=
∑

k∈⋃u⊂D F(d)
u

w2(k)
∣∣∣f̂k∣∣∣2 = ‖f‖2

Hw(Td) .

�

Theorem 3.32 Let ds ∈ {1, 2, . . . , d−1} be the superposition dimension of an approximate
ANOVA model Tdsf and f ∈ Hw(Td) with weight function w : Zd → [1,∞). Furthermore,
let Hwu for u ⊂ D be generated by a weight function such that (3.21) holds. Then we
estimate the error as

‖f − Tdsf‖L2(Td) ≤
1

infk∈⋃u⊂D,|u|>ds
Fd
u
w(k)

‖f‖Hw(Td) .

Proof. We start by using the orthogonality of the ANOVA terms (Lemma 3.7) and get

‖f − Tdsf‖2
L2(Td) =

∥∥∥∥∥∥∥∥
∑
u⊂D
|u|>ds

fu

∥∥∥∥∥∥∥∥
2

L2(Td)

=
∑
u⊂D
|u|>ds

‖fu‖2
L2(Td) =

∑
u⊂D
|u|>ds

‖fu‖2
L2(T|u|) .

We apply Parseval’s identity (2.2) and Lemma 3.31 to estimate∑
u⊂D
|u|>ds

‖fu‖2
L2(T|u|) =

∑
u⊂D
|u|>ds

∑
`∈(Z\{0})|u|

∣∣∣f̂`,u∣∣∣2

=
∑
u⊂D
|u|>ds

∑
`∈(Z\{0})|u|

w2
u(`)

w2
u(`)

∣∣∣f̂`,u∣∣∣2
≤ 1

minu⊂D,|u|>ds inf`∈(Z\{0})|u| w2
u(`)

∑
u⊂D
|u|>ds

∑
`∈(Z\{0})|u|

w2
u(`)

∣∣∣f̂`,u∣∣∣2
≤ 1

minu⊂D,|u|>ds inf`∈(Z\{0})|u| w2
u(`)

‖f‖2
Hw(Td)

=
1

infk∈⋃u⊂D,|u|>ds
Fd
u
w2(k)

‖f‖2
Hw(Td) .

�
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3 The ANOVA Decomposition

This theorem can be directly applied to the special Sobolev type spaces we considered
earlier, see Definitions 2.9 and 2.10.

Corollary 3.33 Let f ∈ Hs,p(Td) for s > 0 and 0 < p <∞. Then

‖f − Tdsf‖L2(Td) ≤ (2 + ds)
− s

p ‖f‖Hs,p(Td) .

Proof. For the weight functions we know that

inf
`∈(Z\{0})|u|

(1 + ‖`‖pp)
s
p = (1 + |u|) s

p

and moreover
min

u⊂D,|u|>ds
(1 + |u|) s

p = (2 + ds)
s
p .

Now the estimate follows directly from Theorem 3.32. �

Corollary 3.34 Let f ∈ Hs
mix(Td) for s > 0. Then

‖f − Tdsf‖L2(Td) ≤ 2−s(ds+1) ‖f‖Hs
mix(Td) .

Proof. We start again by the minimization problem

inf
`∈(Z\{0})|u|

d∏
i=1

(1 + |li|2)s = 2s|u|

and then
min

u⊂D,|u|>ds
2s|u| = 2s(ds+1).

The estimate follows again directly from Theorem 3.32. �

As before we also consider subsets of the weighted Wiener algebra Aw(Td) where we find
that a similar estimate holds.

Theorem 3.35 Let ds ∈ {1, 2, . . . , d−1} be the superposition dimension of an approximate
ANOVA model Tdsf and f ∈ Aw(Td) with Aw(Td) as in Theorem 3.22. Then we estimate
the error as

‖f − Tdsf‖L∞(Td) ≤
1

infk∈⋃u⊂D,|u|>ds
Fd
u
w(k)

‖f‖Aw(Td) .

Proof. Using that Aw(Td) ⊂ C(Td) by Theorem 2.12 and the Fourier series representation
of fu from Corollary 3.6, we deduce

‖f − Tdsf‖L∞(Td) = sup
x∈Td

|f(x)− Tdsf(x)| = sup
x∈Td

∣∣∣∣∣∣∣∣
∑
u⊂D
|u|>ds

fu(x)

∣∣∣∣∣∣∣∣ ≤
∑
u⊂D
|u|>ds

∑
k∈F(d)

u

∣∣∣f̂k∣∣∣ .
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3.3 Effective Dimensions

With the same arguments as in the proof of Theorem 3.32, we estimate∑
u⊂D
|u|>ds

∑
k∈F(d)

u

∣∣∣f̂k∣∣∣ ≤ 1

infk∈⋃u⊂D,|u|>ds
Fd
u
w(k)

‖f‖Aw(Td) .

�

Now, we directly apply the result for mixed and isotropic smoothness spaces.

Corollary 3.36 Let f ∈ Aw(Td) with

w(k) = ws,p(k) := (1 + ‖k‖pp)s/p.

Then
‖f − Tdsf‖L∞(Td) ≤ (2 + ds)

− s
p ‖f‖Aw(Td) .

Proof. The result follows immediately from the arguments in the proof of Corollary 3.33
and Theorem 3.35. �

Corollary 3.37 Let f ∈ Aw(Td) with

w(k) =
d∏
i=1

(1 + |ki|2)s.

Then
‖f − Tdsf‖L∞(Td) ≤ 2−s(ds+1) ‖f‖Aw(Td) .

Proof. We discussed the solution to the minimization problem in the statement of Theorem
3.35 in the proof of Corollary 3.34 and can therefore apply the theorem. �
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4 Approximation with Black-Box-Access

In this section we consider the following fundamental problem.

Problem 4.1 Let f : Td → R be a function in C(Td) ⊂ L2(Td) with d ∈ N. We
assume to have black-box-access, i.e., the ability to evaluate f at any point x ∈ Td.
Furthermore, a superposition dimension ds ∈ N with ds ≤ d is given.
We want to find an approximation for f based on the approximate ANOVA model
Tdsf . Furthermore, we are looking for important dimension interactions, i.e., the
ANOVA terms that contribute significantly to f , in other words, sets u ⊂ D with
|u| ≤ ds whose global sensitivity index %(u; f) is large.

The general problem of finding an approximation for f with black-box-access has already
been considered a number of times with a multitude of approaches, e.g. in [21, 8, 9] to name
a select few. We specifically emphasize that we choose our approach with regard to the
secondary problem of finding the important dimension interactions. Using the approximate
ANOVA model as a foundation will allow us to do that.
Furthermore, we choose rank-1 lattice, see Section 2.2, as sampling schemes and make

use of the already existing theory surrounding function approximation using those lattice,
see [7, 18]. While this approximation approach has yielded considerable success, to our
knowledge, there haven’t been significant advancements in the area of detecting important
dimension interactions from these results.
We bring both concepts, the ANOVA decomposition and function reconstruction with

rank-1 lattice, together to solve the combined problem of finding an approximation while
simultaneously being able to understand the dimension interactions of the function.

4.1 Active Set Construction and Error Bounds

The Problem 4.1 can be approached from different directions. We always have the chosen
superposition dimension ds and therefore the approximate ANOVA model Tdsf , see Defini-
tion 3.27, as a foundation. The first goal is to determine an approximation for the function
Tdsf that allows us to find the important dimension interactions.
We start by considering an initial index set I ⊂ Zd and the corresponding Fourier

partial sum. With regard to the interpretability of the results, the index set cannot be
chosen arbitrary since ANOVA terms fu, see (3.6), of the same order should be supported
on isomorphic low-dimensional index sets. Otherwise, one cannot expect to find good
approximate values for the global sensitivity indices %(u; f).
This means that we do not choose I directly, but rather index sets I1 ⊂ Z \ {0}, I2 ⊂

(Z \ {0})2, . . . , Ids ⊂ (Z \ {0})ds for every order of the ANOVA terms in our approximate
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4 Approximation with Black-Box-Access

model. We collect all frequency indices as

I =
⋃
u⊂D
|u|≤ds

I(d)
u (4.1)

where I(d)
u = {k ∈ Zd : ku ∈ I|u|,kD\u = 0}. This union is disjoint by Lemma 3.5. Now,

we consider the cutoff-error for the index set I.

Lemma 4.2 Let f ∈ Aw(Td) with weight function w : Zd → [1,∞), Ii = {k ∈ (Z \
{0})i : w(k) ≤ Ni} for Ni ∈ N, i = 1, 2, . . . , ds and I the union (4.1). Then

‖Tdsf − SITdsf‖L∞(Td) ≤
1

mini=1,2,...,ds Ni

‖f‖Aw(Td) .

Here, SI is the Fourier partial sum operator, see (2.3).

Proof. By Parseval’s identity (2.2) and the disjointness of the index sets, we get

‖Tdsf − SITdsf‖L∞(Td) = sup
x∈Td

|Tdsf(x)− SITdsf(x)|

≤
∑
u⊂D
|u|≤ds

∑
`∈(Z\{0})|u|\I|u|

∣∣∣f̂`,u∣∣∣
=
∑
u⊂D
|u|≤ds

∑
`∈(Z\{0})|u|\I|u|

wu(`)

wu(`)

∣∣∣f̂`,u∣∣∣
≤
∑
u⊂D
|u|≤ds

1

N|u|

∑
`∈(Z\{0})|u|\I|u|

wu(`)
∣∣∣f̂`,u∣∣∣

≤ 1

mini=1,2,...,ds Ni

‖f‖Aw(Td) .

�

We use Lemma 4.2 to get an upper bound on the error if we approximate f with SITdsf ,
i.e., the approximate ANOVA model supported on I.

Theorem 4.3 Let f ∈ Aw(Td) with weight function w : Zd → [1,∞), Ii = {k ∈ (Z \
{0})i : w(k) ≤ Ni} for Ni ∈ N, i = 1, 2, . . . , ds and I as in (4.1). Then

‖f − SITdsf‖L∞(Td) ≤
(

1

infk∈⋃u⊂D,|u|>ds
Fd
u
w(k)

+
1

mini=1,2,...,ds Ni

)
‖f‖Aw(Td) .

Proof. We start with the triangle inequality in L∞(Td)

‖f − SITdsf‖L∞(Td) ≤ ‖f − Tdsf‖L∞(Td) + ‖Tdsf − SITdsf‖L∞(Td) .
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For the first summand on the right-hand-side, we use Theorem 3.35 and for the second,
Lemma 4.2. We get

‖f − SITdsf‖L∞(Td) ≤
1

infk∈⋃u⊂D,|u|>ds
Fd
u
w(k)

‖f‖Aw(Td) +
1

mini=1,2,...,ds Ni

‖f‖Aw(Td)

=

(
1

infk∈⋃u⊂D,|u|>ds
Fd
u
w(k)

+
1

mini=1,2,...,ds Ni

)
‖f‖Aw(Td) .

�

Now we proceed with reconstructing the Fourier coefficients of the ANOVA terms on the
index set I. We approximate f by the Fourier partial sum w.r.t. I of Tdsf

f(x) ≈ SITdsf(x) =
∑
u⊂D
|u|≤ds

∑
`∈I|u|

f̂`,ue2πi`·xu . (4.2)

Given a rank-1 lattice Λ(z,M) with z ∈ Zd and M ∈ N, see Definition 2.13, we rewrite
the approximation of (4.2) as a system of linear equations

f =
∑
u⊂D
|u|≤ds

F uf̂u (4.3)

= (F u1 F u2 · · · F un)


f̂u1

f̂u2...
f̂un


= F f̂ . (4.4)

Note that uj for j = 1, 2, . . . , n with

n =
ds∑
i=0

(
d

i

)
is an ordering for the ANOVA terms that can be arbitrary but has to be consistent.
Moreover, we have f = (f(x))x∈Λ(z,M), f̂u = (f̂`,u)`∈I|u| and the Fourier matrices

F u =
(
e2πi`·x)

x∈Λ(zu,M),`∈I|u|
. (4.5)

We can use the dimension-reduced lattice Λ(zu,M) in the matrices F u because of Lemma
2.14. Furthermore, we have the Fourier block matrix F := (F u1 F u2 · · · F un) and the
vector

f̂ :=


f̂u1

f̂u2...
f̂un

 .
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4 Approximation with Black-Box-Access

Finding an approximation for SITdsf , i.e., its Fourier coefficients, requires us to solve
the least squares problem that belongs to (4.4) for f̂ . This is only uniquely solvable if the
Fourier matrix F has full rank. A condition for this is delivered by the following lemma.

Lemma 4.4 Let F ∈ CM,|I| be the Fourier matrix generated by the rank-1 lattice Λ(z,M)
with blocks as in (4.5) and I the finite index set (4.1) with M ≥ |I|. Then

rankF = |I|

if Λ(zu,M, I|u|) is a reconstructing rank-1 lattice for each u ⊂ D with |u| ≤ ds and

` · zu 6≡ h · zv (modM) (4.6)

for u,v ⊂ D, |u| , |v| ≤ ds and u 6= v with ` ∈ I|u| and h ∈ I|v|. Moreover, in this case

FHF = MI|I|. (4.7)

Proof. First, we consider the structure of FHF

FHF =


FH
u1

FH
u2...

FH
un

 (F u1 F u2 · · · F un)

=


FH
u1
F u1 FH

u1
F u2 · · · FH

u1
F un

FH
u2
F u1

. . . ...
... . . . ...

FH
un
F u1 · · · · · · FH

un
F un

 .

Theorem 2.16 tells us that FH
ui
F ui

= MI. Furthermore, we know by (2.5) that(
FH
ui
F uj

)
`∈I|ui|,h∈I|uj|

= M · δ`·zu≡h·zv (modM)

for i 6= j. In this case, the condition (4.6) ensures that each entry is 0. Therefore our
matrix has full rank and is of the form

FHF =


MI|I|u1|| 0 · · · 0

0 MI|I|u2||
...

... . . . 0
0 · · · · · · MI|I|un||

 = MI|I|.

�
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4.1 Active Set Construction and Error Bounds

The solution to the least squares problem (4.4) is given by theMoore-Penrose-Inverse
which reads as follows if we apply Lemma 4.4

F † = (FHF )−1FH Lemma 4.4
= (MI|I|)

−1FH =
1

M
FH .

Moreover, multiplication with FH is reduced to multiplication with the blocks since the
solution to (4.4) now reads as

1

M
FHf =


1
M
FH
u1
f

1
M
FH
u2
f

...
1
M
FH
un
f

 =


˜̂
fu1

˜̂
fu2

...
˜̂
fun

 =: ˜̂
f .

with ˜̂
fu being approximate Fourier coefficients for the ANOVA term fu in (4.2). This

means that we have to perform one matrix-vector-multiplication per ANOVA term. Those
multiplications can be done efficiently using the adjoint LFFT algorithm 2.2.
The previous considerations give rise to Algorithm 4.1.

Algorithm 4.1 Function reconstruction over special rank-1 lattice

Input: d ∈ N spatial dimension of f : Td → R
ds ∈ N superposition dimension with ds < d
Ii ∈ (Z \ {0})i, i = 1, 2, . . . , ds finite frequency index sets
z ∈ Zd generating vector satisfying the conditions

in Lemma 4.4
M ∈ N lattice size
f black box function

1: f ←
(
f( 1

M
(jz mod M))

)M−1

j=0

2: for u ⊂ D with |u| ≤ ds do
3:

˜̂
fu ← 1

M
FH
u f C |u|-variate adjoint LFFT, see Algorithm 2.2

4: end for
Output: ˜̂

fu ∈ C|I|u||,u ⊂ D, |u| ≤ ds approximate Fourier coefficients of
ANOVA terms fu, u ⊂ D, u ≤ ds

Arithmetic cost: nM logM +
∑ds

i=1

(
d
i

)
· i |Ii|+ (M eval. of black box function)

Remark 4.5 The matrix-vector products in line 3 of Algorithm 4.1 are independent of
each other and can therefore be computed simultaneously using multi-core parallelization.
Furthermore, the first step of the adjoint LFFT is an FFT, see Algorithm 2.2. Since this
FFT is always the same, it can be computed outside of the loop which would improve the
first term in the arithmetic cost from nM logM to M logM .
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4 Approximation with Black-Box-Access

We keep the nomenclature in [18, Chapter 8] and define the approximate Fourier
sum (

SΛ
I Tdsf

)
(x) :=

∑
u⊂D
|u|≤ds

∑
`∈I|u|

˜̂
f`,ue2πi`·xu , (4.8)

where ˜̂
f`,u are the Fourier coefficients calculated by Algorithm 4.1. Subsequently we con-

sider the error for approximating f by SΛ
I Tdsf .

Lemma 4.6 Let f ∈ Aw(Td) with weight function w : Zd → [1,∞), Ii = {k ∈ (Z \
{0})i : w(k) ≤ Ni} for Ni ∈ N, i = 1, 2, . . . , ds and I the union (4.1). Moreover, let
Λ(z,M, I) be a reconstructing rank-1 lattice for I. Then∥∥SITdsf − SΛ

I Tdsf
∥∥

L∞(Td)
≤ 1

mini=1,2,...,ds Ni

‖f‖Aw(Td) .

Proof. Similar to the proof of Lemma 4.2, we estimate∥∥SITdsf − SΛ
I Tdsf

∥∥
L∞(Td)

= sup
x∈Td

∣∣SITdsf(x)− SΛ
I Tdsf(x)

∣∣
≤
∑
u⊂D
|u|≤ds

∣∣∣∣∣∣
∑
`∈I|u|

(
f̂`,u − ˜̂

f`,u

)
e2πik·x

∣∣∣∣∣∣ .
Employing (2.6) and then [18, Lemma 8.13], i.e., {`+h : ` ∈ I|u|,h ∈ Λ⊥(zu,M) \ {0}} ⊂
(Z \ {0})|u| \ I|u|, yields∥∥SITdsf − SΛ

I Tdsf
∥∥

L∞(Td)
≤
∑
u⊂D
|u|≤ds

∑
`∈I|u|

∑
h∈Λ⊥(zu,M)\{0}

∣∣∣f̂`+h,u∣∣∣
≤
∑
u⊂D
|u|≤ds

∑
`∈(Z\{0})|u|\I|u|

∣∣∣f̂`,u∣∣∣
=
∑
u⊂D
|u|≤ds

∑
`∈(Z\{0})|u|\I|u|

wu(`)

wu(`)

∣∣∣f̂`,u∣∣∣
≤ 1

mini=1,2,...,ds Ni

∑
u⊂D
|u|≤ds

∑
`∈(Z\{0})|u|\I|u|

wu(`)
∣∣∣f̂`,u∣∣∣

≤ 1

mini=1,2,...,ds Ni

‖f‖Aw(Td) .

�

40



4.1 Active Set Construction and Error Bounds

Theorem 4.7 Let f ∈ Aw(Td) with weight function w : Zd → [1,∞), Ii = {k ∈ (Z \
{0})i : w(k) ≤ Ni} for Ni ∈ N, i = 1, 2, . . . , ds and I the union (4.1). Moreover, let
Λ(z,M, I) be a reconstructing rank-1 lattice for I. Then∥∥f − SΛ

I Tdsf
∥∥

L∞(Td)
≤
(

1

infk∈⋃u⊂D,|u|>ds
Fd
u
w(k)

+
2

mini=1,2,...,ds Ni

)
‖f‖Aw(Td) .

Proof. We apply the triangle inequality and get∥∥f − SΛ
I Tdsf

∥∥
L∞(Td)

≤ ‖f − SITdsf‖L∞(Td) +
∥∥SITdsf − SΛ

I Tdsf
∥∥

L∞(Td)

The statement now follows immediately from Theorem 4.3 and Lemma 4.6. �

Now, we use Algorithm 4.1 to obtain a first approximation of a function f . However, the
number of terms we have to consider is n =

∑ds
i=0

(
d
i

)
which has polynomial growth in d for

fixed ds, but is still large in general. This forces us to decrease the size of the index sets
Ii, i = 1, 2, . . . , ds and therefore the quality of the approximation if we want the algorithm
to finish in a reasonable amount of time. However, we only use this first approximation to
obtain an active set.
Given small index sets Ii, i = 1, 2, . . . , ds and the resulting set I as in (4.1), we use

Algorithm 4.1 to compute an approximation

f̃1 := SΛ
I Tdsf, (4.9)

see (4.8).

Remark 4.8 We deliberately do not clearly specify any exact proportion of the small index
sets Ii mentioned before. The goal is to find this first approximation in a comparably short
time, i.e., the component-by-component search Algorithm 4.2, presented in Section 4.2, has
to find a generating vector z fast. This depends on the dimension d of the function, the
structure of the index set and the chosen superposition dimension ds.

Now, we calculate approximations to the global sensitivity indices %(u; f), see (3.15), by
using the first approximation f̃1. For this purpose we consider the global sensitivity indices
of f̃1

%(u; f̃1) =

∥∥∥˜̂
fu

∥∥∥2

2∥∥∥˜̂
f
∥∥∥2

2
− ˜̂
f 2
0

and assume them to be a good approximation to the global sensitivity indices of f , i.e.,
%(u; f̃1) ≈ %(u; f). This can of course only be true for sets u ⊂ D with |u| ≤ ds since
%(u; f̃1) = 0 otherwise.
In order to identify the important sets we introduce a threshold vector θ ∈ (0, 1)ds

and the active set

U(θ; f̃1) := {u ⊂ D : 1 ≤ |u| ≤ ds, %(u; f̃1) > θ|u|} ∪ {∅}. (4.10)

The active set U(θ; f̃1) contains the sets u such that the terms fu contribute most to the
variance σ2(f̃1) with respect to the threshold vector θ.
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4 Approximation with Black-Box-Access

4.2 Lattice Construction

In the previous section we worked with the assumption of having a rank-1 lattice Λ(z,M)
that satisfies two conditions for a given ds < d

(a) Λ(zu,M, I|u|) is a reconstructing rank-1 lattice for each u ⊂ D with |u| ≤ ds

(b) ` · zu 6= h · zv mod M for u,v ⊂ D, |u| , |v| ≤ ds and u 6= v with ` ∈ I|u| and
h ∈ I|v|,

see Lemma 4.4. Now, we develop an algorithm to find such a rank-1 lattice. First, we can
prove that the property to be a reconstructing rank-1 lattice for an index set I as in (4.1)
is equivalent to the conditions (a) and (b).

Lemma 4.9 Let I be an index set as in (4.1) and ds < d the superposition dimension.
Then Λ(z,M, I) is a reconstructing rank-1 lattice if and only if it satisfies the conditions
(a) and (b).

Proof. The result follows directly from Lemma 4.4 and specifically equation (4.7). �

The existence of such a reconstructing rank-1 lattice has been discussed in [5, 6] and [18,
Chapter 8.4], see especially Theorem 8.16. The component-by-component algorithm pro-
posed therein can be used for construction. This covers the existence of a lattice satisfying
both conditions. In the following we use the special structure of the index set I to propose
a new version of the component-by-component algorithm that is specifically tuned for our
problem and setting.
Algorithm 4.2 computes a vector z satisfying the conditions a) and b) from above by

checking them for each component. There are some improvements to increase performance
in comparison to a naive check of the conditions which we explain in the following.
The first important observation is that we only need to check the conditions for subsets

that involve the component we are currently updating. This means that for each component
of z with index i ∈ {2, 3, . . . , d}, we have to check the sets u ⊂ {1, 2, . . . , i} with i ∈ u
and |u| ≤ ds. Note that the condition (b) has to be checked against all other sets u ⊂
{1, 2, . . . , i}. Here, the implementation of the algorithm can be accelerated if one avoids
symmetries, i.e., checking the condition for two sets u ⊂ {1, 2, . . . , i} with i ∈ u and
v ⊂ {1, 2, . . . , i} with i ∈ v twice. This can of course only happen for sets that contain
the current index i.
There are multiple reasons why using the ANOVA variant of the component by compo-

nent search 4.2 is better in our context. First, it is unnecessary to ever construct and save
the entire index set I. Since I has such a special structure here, it is completely sufficient
to construct and save the smaller index sets Ii, i = 1, 2, . . . , ds.
One could get the idea that increasing the dimension d of the function therefore plays no

role if we don’t construct the index set which is not the case since we have to check more
sets u for each component in return. However, the influence of this effect can be lowered
since one can immediately stop to check the conditions as soon as we detect that it is not
satisfied for one set.
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4.2 Lattice Construction

Algorithm 4.2 ANOVA component-by-component lattice search

Input: d ∈ N spatial dimension of f : Td → R
ds ∈ N superposition dimension with ds < d
Ii ∈ (Z \ {0})i, i = 1, 2, . . . , ds finite frequency index sets
M ∈ N lattice size

1: z ← 0
2: z1 ← 1
3: for i = 2, 3, . . . , d do
4: for q = 1, 2, . . . ,M − 1 do
5: zi ← q
6: for u ⊂ {1, 2, . . . , i} with i ∈ u and |u| ≤ ds do
7: if Λ(zu,M, I|u|) is not a reconstructing rank-1 lattice then
8: skip to next q
9: end if

10: for v ⊂ {1, 2, . . . , i} do
11: if ` · zu ≡ h · zv mod M for any ` ∈ I|u| and h ∈ I|v| then
12: skip to next q
13: end if
14: end for
15: end for
16: end for
17: end for
Output: z ∈ Nd generating vector for rank-1 lattice Λ(z,M) satisfying

conditions (a) and (b)

Note that it is possible to increase the performance of an implementation even further
by storing vectors (k · zu)k∈I|u| mod M if the components of zu have already been deter-
mined and therefore won’t change in further iterations. The vector can be stored using an
integer datatype that is able to hold values in {1, 2, . . . ,M − 1}. The downside of this is
of course the additional memory needed.

Remark 4.10 For the choice of the lattice size M ∈ N we refer to [18, Lemma 8.16], i.e.,
choosing M larger than |I|2 − |I|+ 1 yields a generating vector z. Note that this result is
for general index sets. In special cases it can suffice to choose M much smaller than this
bound.
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4 Approximation with Black-Box-Access

4.3 Approximation with Active Set

In Section 4.1 we obtained an approximation f̃1 and defined the active set U(θ; f̃1). Now,
we choose a threshold vector θ and use the resulting set to construct a new approximation.
For this purpose we modify the Algorithms 4.2 and 4.1 to work with a given active set of
terms.

Algorithm 4.3 ANOVA component-by-component lattice search with active set

Input: d ∈ N spatial dimension of f : Td → R
ds ∈ N superposition dimension with ds < d
U ⊂ P(D) active set (4.10)
Ji ∈ (Z \ {0})i, i = 1, 2, . . . , ds finite frequency index sets
M ∈ N lattice size

1: z1 ← 1
2: for i = 2, 3, . . . , d do
3: for q = 1, 2, . . . ,M − 1 do
4: zi ← q
5: for u ∈ U with u ⊂ {1, 2, . . . , i} and i ∈ u do
6: if Λ(zu,M, J|u|) is not a reconstructing rank-1 lattice then
7: skip to next q
8: end if
9: for u ∈ U with u ⊂ {1, 2, . . . , i} do

10: if ` · zu ≡ h · zv mod M for any ` ∈ J|u| and h ∈ J|v| then
11: skip to next q
12: end if
13: end for
14: end for
15: end for
16: end for
Output: z ∈ Nd gen. vector for rank-1 lattice Λ(z,M) satisfying a) and b)

We choose new index sets Ji ∈ (Z \ {0})i, i = 1, 2, . . . , ds, that can be significantly
larger than before because the number of elements in U(θ; f̃1) will be a lot smaller than
considering all terms of order up to ds. A generating vector z can be found using Algorithm
4.3 and the second approximation is given by

f̃2(x) :=
∑

u∈U(θ;f̃1)

∑
`∈J|u|

˜̂
f`,u e2πi`·xu (4.11)

with J =
⋃
u∈U J

(d)
|u| , see (4.1), using Algorithm 4.4.

Remark 4.11 It is possible to reduce the lattice size M by taking the resulting vector z and
checking for each number from |J | to M − 1 if the two conditions (a) and (b) are satisfied.
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4.3 Approximation with Active Set

Algorithm 4.4 Function reconstruction over special rank-1 lattice with active set

Input: d ∈ N spatial dimension of f : Td → R
ds ∈ N superposition dimension with ds < d
U ⊂ P(D) active set (4.10)
Ji ∈ (Z \ {0})i, i = 1, 2, . . . , ds finite frequency index sets
z ∈ Zd generating vector satisfying the conditions

in Lemma 4.4
M ∈ N lattice size
f black box function

1: f ←
(
f( 1

M
(jz mod M))

)M−1

j=0

2: for u ∈ U do
3:

˜̂
fu ← 1

M
FH
u f C |u|-variate adjoint LFFT, see Algorithm 2.2

4: end for

Output: ˜̂
fu ∈ C|J|u||,u ∈ U approximate Fourier coefficients of ANOVA term fu

Arithmetic cost: |U |M logM +
∑
u∈U |u|

∣∣J|u|∣∣+M eval. of black box function

This reduces the function evaluations in return. One has to weigh if the lattice reduction
makes sense since it is costly in arithmetic operations and doing more evaluations might
be cheaper.

Remark 4.12 Algorithms 4.3 and 4.4 are generalized versions of the Algorithms 4.2 and
4.1 respectively. Choosing U = {u ⊂ {1, 2, . . . , d} : |u| ≤ ds} in the former algorithms
yields the same behavior as the latter ones. Furthermore, the first term in the arithmetic
cost can be proved from |U |M logM toM logM analogously to the way described in Remark
4.5
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4 Approximation with Black-Box-Access

4.4 Numerical Results

We now apply the previously presented algorithms to an example function of a class that
has already been considered in [19]. It is a sum of products of univariate functions

Br : T→ R, x 7→ Br(x) := Cr
∑
k∈Z

sinc
(π
r
k
)r

cos(πk)e2πikx. (4.12)

Br is a shifted, scaled and dilated B-spline of order r and Cr > 0 such that ‖Br‖L2(T) = 1.
We denote the Fourier-coefficients of Br with

b̂
(r)
k = Cr sinc

(π
r
k
)r

cos(πk).

In the following, we consider the specific 9-dimensional example

f(x) =
∏

i∈{1,3,8}
B2(xi) +

∏
i∈{2,5,6}

B4(xi) +
∏

i∈{4,7,9}
B6(xi) (4.13)

with Fourier coefficients

f̂k = δkD\{1,3,8},0
∏

i∈{1,3,8}
b̂

(2)
ki

+ δkD\{2,5,6},0
∏

i∈{2,5,6}
b̂

(4)
ki

+ δkD\{4,7,9},0
∏

i∈{4,7,9}
b̂

(6)
ki
. (4.14)

Furthermore, for the norm of f we get

‖f‖2
L2(T9) = 3 +

2∑
i=1

3∑
j=i+1

2(b̂
(2i)
0 )3(b̂

(2j)
0 )3.

From (4.14) it immediately follows that f̂k is 0 for ‖k‖0 > 3 which is why we choose
ds = 3. For the three finite index sets I1, I2 and I3 we use

Ii =
{
k ∈ (Z \ {0})i : w

(i)
s,mix(k) ≤ Ni

}
, i = 1, 2, 3,

with a vector N ∈ N3 and the weight functions w(i)
s,mix(k) =

∏i
j=1(1 + |kj|2)s. Since

f ∈ H
3/2−ε
mix (Td), ε > 0, we take s = 3

2
. Figure 4.1 shows examples of the two- and three-

dimensional index sets I2 and I3 for our chosen weight function w(i)
3/2,mix(k).
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4.4 Numerical Results
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Figure 4.1: The index sets I3 and I2 with weight function w(i)
3/2,mix(k).

All calculations are performed on a computer with 4 Intel Xeon E5-4640 2.40GHz 8-core.
We used 30 parallel workers for multi-core parallelization of the component-by-component
algorithm and the calculation of the Fourier coefficients.

Active Set Construction

We proceed by choosing an N ∈ N3 as cutoff vector to generate the index sets I1, I2 and
I3. Applying Algorithm 4.2 with an M yields the generating vector z. Using Algorithm
4.1 we construct the first approximation f̃1, see (4.9), and consider the errors

εL2 =

∥∥∥f − f̃1

∥∥∥
L2(T9)

‖f‖L2(T9)

and ε2 =

∥∥∥f − f̃ 1

∥∥∥
2

‖f‖2

with f̃ 1 = (f̃1(x))x∈Λ(z,M). Note that our goal in this step is to identify the important
ANOVA terms. In the case of the specific function f from (4.13) that means all sets
u ⊂ D such that u ⊂ {1, 3, 8}, u ⊂ {2, 5, 6} or u ⊂ {4, 7, 9} give a corresponding ANOVA
term, i.e., 22 terms in total. This follows immediately from the formula for the Fourier
coefficients (4.14) and the definition of the sets F(d)

u in (3.7).
In Table 4.1 we present the results of the active set construction step for a variety

of vectors N with fixed M = 106 + 3. The last column contains one threshold vector
θ ∈ (0, 1)3 for everyN that allowed us to identify the active ANOVA terms. Furthermore,
tcbc is the runtime for Algorithm 4.2 and tapprox is the runtime of Algorithm 4.1.
For each example vector N except the smallest [10, 10, 10] we were able to find a θ that

allowed us to identify the ANOVA terms of f that are nonzero. Even for the small index
sets generated by [102, 102, 102], we achieve this goal. In Figure 4.2 we have displayed the
errors and runtimes for the examples 1–5 from Table 4.1.
Now, we calculate the global sensitivity indices %(u; f̃1) and use them and the vector

θ from Table 4.1 to threshold the sets u. Figure 4.3 shows the behavior of the global
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4 Approximation with Black-Box-Access

ex. N tcbc tapprox ε2 εL2 θ

1 [10, 10, 10] 0.32s 7.59s 0.32 0.34 [0.04, 0.02,∼]
2 [102, 102, 102] 4.71s 7.83s 8.46 · 10−2 8.84 · 10−2 [0.04, 0.01, 0.006]
3 [103, 103, 103] 44.55s 8.2s 2.28 · 10−2 2.35 · 10−2 [0.04, 0.01, 0.006]
4 [104, 104, 103] 137.60s 8.72s 2.15 · 10−2 2.15 · 10−2 [0.04, 0.01, 0.006]
5 [105, 104, 103] 151.88s 7.71s 2.10 · 10−2 2.20 · 10−2 [0.04, 0.01, 0.006]

Table 4.1: Active set construction step for examples (ex.) 1–5 with different cutoff vectors
N . Each runtime is the mean of three runs.
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Figure 4.2: Errors εL2 and ε2 with runtimes for Algorithms 4.2 and 4.1 for examples from
Table 4.1.

sensitivity indices %(u; f̃1). The gap between the 21 relevant terms and the other terms
is crucial for the choice of θ. We observe that the gap widens with increasing size of the
index sets and the %(u; f̃1) are smaller for the irrelevant terms.

Approximation with Active Set

We proceed by choosing new index sets

Ji =
{
k ∈ (Z \ {0})i : w

(i)
s,mix(k) ≤ Ni

}
, i = 1, 2, 3,

with a larger cutoff vector N . We then use the modified algorithms from Section 4.3 with
an active set to obtain the next approximation f̃2, see (4.11). Table 4.2 contains the results
for different cutoff vectors N and fixed M = 107 while Figure 4.4 displays the times and
errors. Observe that we are able to reach an approximation error of about 2.9 · 10−4 in
reasonable time. Furthermore, both errors are behaving similarly and are always close for
the same vector N .
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Figure 4.3: Behavior of the global sensitivity indices %(u; f̃1) for the examples 2 and 5 from
Table 4.1.
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Figure 4.4: Errors εL2 and ε2 with runtimes for Algorithms 4.2 and 4.1 for examples from
Table 4.2.

Summarizing, we were able to reach the goal of detecting the significant dimension
interactions, i.e., the ANOVA terms, for the example function f from (4.13) in a short
amount of time with relatively small index sets. Using these results, we improved the
approximation by only taking these terms into account which allowed us to find a good
quality approximation.
A similar function to f from (4.13) was considered in [19, Section 3.3]. While a direct

comparison is not possible because the function there is 10-dimensional, there is a noticeable
large difference in the number of required function evaluations. We achieved a relative l2-
error of about 2.9 · 10−4 with 107 samples (without lattice size decreasing) in comparison
to the best approach in [19] with l2-errors of 5.1 ·10−4 with 20968000 samples and 1.8 ·10−4

with 73500131 samples.
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4 Approximation with Black-Box-Access

ex. N tcbc tapprox ε2 εL2

1 [102, 102, 102] 0.40s 96.87s 8.44 · 10−2 8.86 · 10−2

2 [103, 103, 103] 1.88s 92.32s 2.22 · 10−2 2.40 · 10−2

3 [104, 104, 103] 5.49s 92.16s 2.12 · 10−2 2.18 · 10−2

4 [105, 104, 103] 6.62s 93.27s 2.12 · 10−2 2.17 · 10−2

5 [104, 104, 104] 20.67s 88.34s 2.88 · 10−3 2.97 · 10−3

6 [105, 104, 104] 20.71s 88.88s 2.64 · 10−3 2.71 · 10−3

7 [105, 105, 105] 205.98s 92.92s 8.91 · 10−4 9.17 · 10−4

8 [106, 106, 105] 610.30s 85.58s 5.23 · 10−4 5.26 · 10−4

9 [106, 106, 106] 2753.41s 93.03s 2.90 · 10−4 2.93 · 10−4

Table 4.2: Obtaining the approximation f̃2, see (4.11), for different cutoff vectorsN . Each
time is the mean of three runs.
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5 Approximation with Scattered Data

In this section we consider a modified version of the problem from Section 4.

Problem 5.1 Let f : Td → R be a function in C(Td) ⊂ L2(Td) with d ∈ N. We
have a set of sampling nodes X ⊂ Td with |X| = M , M ∈ N, and samples of f at
those points y = (f(x))x∈X . Furthermore, a superposition dimension ds ∈ N with
ds ≤ d is given.
We want to find an approximation for f based on the approximate ANOVA model
Tdsf . Furthermore, we are looking for important dimension interactions, i.e., the
ANOVA terms that contribute significantly to f , in other words, sets u ⊂ D with
|u| ≤ ds whose global sensitivity index %(u; f) is large.

Problem 5.1 is of great significance in practical applications. While we were able to
achieve good results for Problem 4.1, the ability to evaluate a function at any point in
Td is not present in many applications. This might be the case because evaluations are
expensive or because the way that the data is obtained provides us only with a certain
range of data.
As mentioned before, this is a very significant and active topic, in research and appli-

cation alike. While state-of-the-art deep learning approaches provide us with a powerful
tool to tackle such problems, a large part of the mathematical background has yet to be
explored.
The approach presented in the following section rests on the ANOVA decomposition on

the torus and the NFFT algorithm [10]. The basic idea is to solve a least-squares system,
similar to the one for Problem 4.1.

5.1 Approximation Scheme

We approach Problem 5.1 as before by first choosing a superposition dimension ds and using
the approximate ANOVA model Tdsf . This will be used to identify important ANOVA
terms.

I. Active Set Construction

First, we consider a finite index I ⊂ Zd and the Fourier partial sum SITdsf , respectively.
We want to find approximations for the global sensitivity indices %(u; f). To this end, the
ANOVA terms fu of the same order have to be supported on isomorphic low-dimensional
index sets as before, meaning we choose index sets I1 ⊂ Z, I2 ⊂ Z2, . . . , Ids ⊂ Zds . Then
we have a disjoint union

I =
⋃
u⊂D
|u|≤ds

I(d)
u (5.1)
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5 Approximation with Scattered Data

with I
(d)
u = {k ∈ Zd : ku ∈ I|u|,kD\u = 0}. Instead of choosing the index sets with an

arbitrary weight function, we use specific index sets

Ii = {k ∈ Zi : −Ni/2 ≤ kj ≤ Ni/2− 1, j = 1, 2, . . . , i}, i = 1, 2, . . . , ds,

i.e., full grids with cutoff vector N ∈ Nds .
Using Lemma 4.2 we have

‖f − SITdsf‖L∞(Td) ≤
1

mini=1,2,...,ds(Ni/2− 1)
‖f‖Aw(Td)

as an estimation for the cutoff error.
Contrary to Section 4, we use equation (3.17), i.e.,

Tdsf =
∑
u⊂D
|u|≤ds

c(|u| , d, ds)Puf,

as a basis for our approach. This means that we are working with the projections Puf and
therefore index sets including zeros. We approximate the projections Puf by a trigono-
metric polynomial supported on I|u| yielding

f(x) ≈ SITdsf(x) =
∑
u⊂D
|u|≤ds

c(|u| , d, ds)
∑
`∈I|u|

p̂`,u e2πi`·xu .

Taking the given function evaluations y ∈ RM , see Problem 5.1, we use matrix-vector
products to obtain

y =
∑
u⊂D
|u|≤ds

c(|u| , d, ds)P up̂u (5.2)

with Fourier matrices
P u =

(
e2πi`·xu)

x∈X,`∈I|u|

and coefficient vectors p̂u = (p̂`,u)`∈I|u| . Now, we write (5.2) as a block matrix times a
vector

y =
(
c|u1|P u1 c|u2|P u2 · · · c|un|P un

)

p̂u1

p̂u2

...
p̂un

 =: P p̂ (5.3)

with c|u| := c(|u| , d, ds). Here, uj for j = 1, 2, . . . , n with

n =
ds∑
i=0

(
d

i

)
has to be an ordering for the ANOVA terms.
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5.1 Approximation Scheme

We find an approximate solution for the Fourier coefficients p̂ as a solution of the least-
squares problem

˜̂p = arg min

p̂∈C1+
∑ds

i=1
Ni
i(d

i)
‖y − P p̂‖2

2 . (5.4)

We solve the problem using a matrix-free variant of any iterative least-squares solve which
requires us to be able to multiply with P and PH efficiently. This can be achieved using
the NFFT as denoted in Algorithm 5.1 for the product and Algorithm 5.2 for the product
with the adjoint matrix.

Algorithm 5.1 Multiplication of a vector p̂ with block matrix P , see (5.3)

Input: d ∈ N spatial dimension of f : Td → R
ds ∈ N superposition dimension with ds < d
Ii ∈ (Z \ {0})i, i = 1, 2, . . . , ds finite frequency index sets
X ⊂ Td sampling node set with |X| = M ∈ N
p̂ ∈ C1+

∑ds
i=1N

i
i(

d
i) coefficient vector, see (5.3)

1: p← [0, 0, . . . , 0]
2: for u ⊂ D with |u| ≤ ds do
3: p← p+ c|u|P up̂u C |u|-variate NFFT, see [18, Algorithm 7.1]
4: end for
Output: p ∈ CM result of multiplication p = P p̂

Arithmetic cost:
∑ds

i=1

(
d
i

)
(N i

i logNi + const. ·M)

Algorithm 5.2 Multiplication of a vector p with adjoint block matrix PH

Input: d ∈ N spatial dimension of f : Td → R
ds ∈ N superposition dimension with ds < d
Ii ∈ (Z \ {0})i, i = 1, 2, . . . , ds finite frequency index sets
X ⊂ Td sampling node set with |X| = M ∈ N
p ∈ CM vector to be multiplied with

1: for u ⊂ D with |u| ≤ ds do
2: p̂u ← c|u|P

H
u p C |u|-variate adjoint NFFT, see [18, Algorithm 7.3]

3: end for
4: p̂← [p̂u1

, p̂u2
, . . . , p̂un

]

Output: p̂ ∈ C1+
∑ds

i=1N
i
i(

d
i) result of multiplication p̂ = PHp

Arithmetic cost:
∑ds

i=1

(
d
i

)
(N i

i logNi + const. ·M)

Remark 5.2 The least-squares problem in (5.4) only has a unique solution if the matrix
P has full rank. A necessary condition is therefore that we have more sampling nodes than
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5 Approximation with Scattered Data

Fourier coefficients, i.e., M > 1 +
∑ds

i=1Ni. Using an oversampling factor σ > 1 we write

M = σ

(
1 +

ds∑
i=1

(
d

i

)
(Ni)

i

)
.

The grid, i.e., the Ni, has to be chosen such that σ is large enough and we may assume
the matrix P to have full rank.
We use the solution in (5.4) as an approximation for f and define

f̃1(x) := SXI Tdsf(x) :=
∑
u⊂D
|u|≤ds

c(|u| , d, ds)
∑
`∈I|u|

˜̂p`,u e2πi`·xu . (5.5)

Now, we calculate approximations to the global sensitivity indices %(u; f), see (3.15), using
the global sensitivity indices %(u; f̃1) of f̃1. We assume that they are a good approximation,
i.e., %(u; f̃1) ≈ %(u; f) for the sets u ⊂ D with |u| ≤ ds since %(u; f̃1) = 0 otherwise.
As in Section 4 we use a threshold vector θ ∈ (0, 1)ds and the active set

U(θ; f̃1) = {u ⊂ D : 1 ≤ |u| ≤ ds, %(u; f̃1) > θ|u|} ∪ {∅}.
The active set U(θ; f̃1) contains the sets u such that the terms fu contribute most to
the variance σ2(f̃1) with respect to the threshold vector θ. Since we are working with
projections, the condition

u ∈ U(θ; f̃1),v ⊂ u =⇒ v ∈ U(θ; f̃1)

has to be satisfied in order to be able to determine the approximation of fu.

II. Approximation with Active Set

In order to obtain a better approximation, we choose larger index sets than before, i.e.,
Ji = {k ∈ Zi : −Ni/2 ≤ kj ≤ Ni/2− 1, j = 1, 2, . . . , i}, i = 1, 2, . . . , ds, with a larger cutoff
vector N = [N1, N2, . . . , Nds ] ∈ Nds . The full index set J is formed as I in (5.1).
Using the active set U(θ; f̃1) we consider the new least-squares problem

˜̂p = arg min

p̂∈C1+
∑
u∈U(θ;f̃1)\{∅}

N
|u|
|u|

∥∥∥y − P̃ p̂∥∥∥2

2
(5.6)

with the Fourier block matrix

P̃ =
(
c|u1|P̃ u1 c|u2|P̃ u2 · · · c|um|P̃ um

)
.

and the sets uj ∈ U , j = 1, 2, . . . ,m with m := |U |. The matrices are defined as

P̃ u =
(
e2πi`·xu)

x∈X,`∈J|u|
.

Again, we use a matrix-free variant of an iterative least-squares solver and slightly modify
Algorithms 5.1 and 5.2 by adjusting the for-loop to just go over the sets in U . We obtain
a new approximation

f̃2(x) :=
∑

u∈U(θ;f̃1)

c(|u| , d, ds)
∑
`∈J|u|

˜̂p`,u e2πi`·xu . (5.7)
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5.2 Numerical Results

5.2 Numerical Results

Now, we apply the approximation scheme from Section 5.1 to a test function. Let Br be the
univariate, shifted, scaled and dilated B-spline from (4.12). We consider the 9-dimensional
function

f(x) =
∏

i∈{1,3,8}
B2(xi) +

∏
i∈{2,5,6}

B4(xi) +
∏

i∈{4,7,9}
B6(xi)

as in Section 4.4. Since we are working with scattered data, we assume to have a set
X ⊂ Td of |X| = M = 5 · 106 sampling nodes and access to the corresponding evaluations
of f .
The nonzero ANOVA terms of f are those terms fu with u ⊂ {1, 3, 8},u ⊂ {2, 5, 6}

or u ⊂ {4, 7, 9} - a total of 22 terms. This implies that ds = 3 is a good choice for the
superposition dimension.
All calculations were performed on the Bull HPC-Cluster Taurus at the ZIH of the TU

Dresden utilizing 25 cores in parallel.

Active Set Construction

We have the given vector of function evaluations y = (f(x))x∈X and choose the cutoff
vector N ∈ N3 for the full grids I1, I2 and I3. We then solve the least-squares problem
(5.4) to obtain a coefficient vector ˜̂p and the approximation f̃1, see (5.5), and consider the
error on the sampling nodes

ε2 =

∥∥∥f − f̃ 1

∥∥∥
2

‖f‖2

.

Furthermore, we take the L2 error

εL2 =

∥∥∥f − f̃1

∥∥∥
L2(T9)

‖f‖L2(T9)

as a representation of the generalization error. Note that one has to calculate the Fourier
coefficients of f̃1, see (5.5), according to (3.20).

ex. N tapprox ε2 εL2 θ

1 [512, 16, 16] 16832.04s 1.43 · 10−2 1.56 · 10−2 [0.04, 0.01, 0.006]
2 [2048, 32, 16] 17102.29s 5.24 · 10−2 5.71 · 10−2 [0.04, 0.01, 0.005]
3 [4096, 32, 32] 19168.53s 8.05 · 10−2 0.13 [0.04, 0.01, 0.003]

Table 5.1: Construction of the active set for different cutoff vectors N with corresponding
runtime, errors and one possible threshold vector θ. Each runtime is the mean
of three runs.
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5 Approximation with Scattered Data

Table 5.1 contains the results for the active set construction step with tapprox being the
time to solve the least squares problem (5.4). We used the LSQR solver from the Julia
package IterativeSolvers with an iteration limit of 20 iterations and 20 parallel workers.
Note that it is possible for each example to find a threshold vector θ such that the active
set U(θ; f̃1) coincides with the nonzero terms of the test function. Table 5.1 contains
one example for θ while Figure 5.1 shows the global sensitivity indices %(ui; f̃1) of the
129 ANOVA terms. The gap between the important terms, i.e., the terms which are
actually nonzero for the test function, and the other terms is shrinking with increasing
cardinality of the index sets. This behavior can be explained by the fact that we have
an increasing number of Fourier coefficients for the same number M of samples, i.e., the
oversampling parameter σ gets smaller. The gap itself represents the interval of choice
for the threshold parameter (with regard to the dimension of the corresponding ANOVA
term). It is therefore sufficient to work with very small index sets in order to obtain a good
active set in this case. Contrary to the observations in Section 4, we notice that the global
sensitivity indices are almost constant for a large number of the insignificant terms.
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ANOVA term i
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f̃ 1
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example 1 example 3

Figure 5.1: Behavior of the global sensitivity indices %(u; f̃1) for the examples 1 and 3 from
Table 5.1.

Approximation

Since we identified an active set we now increase the size of the low-dimensional index
sets

Ji = {k ∈ (Z \ {0})i : w
(i)
s,mix(k) ≤ Ni}, i = 1, 2, 3,

with a larger cutoff vector N . One should keep Remark 5.2 in mind when doing this since
the oversampling parameter σ has an influence on the quality of the error. Solving the
least squares problem (5.6) with the active set U(θ; f̃1) now yields the approximation f̃2

as in (5.7).
Table 5.2 contains the results for different cutoff vectors N and Figure 5.2 displays the

errors ε2 and εL2 . Note that the error decreases from the first to the second example and
then increases again. This behavior can be explained by the fact that the oversampling

56



5.2 Numerical Results

parameter σ decreases since the number of Fourier coefficients increases while the test
function is smooth and the Fourier coefficients itself decrease rapidly anyway.

ex. N tapprox ε2 εL2

1 [512, 16, 16] 3038.86s 5.05 · 10−3 5.06 · 10−3

2 [2048, 32, 16] 3090.33s 2.75 · 10−3 2.77 · 10−3

3 [2048, 32, 32] 3511.59s 4.83 · 10−3 4.98 · 10−3

4 [4096, 64, 32] 3549.58s 1.35 · 10−2 1.40 · 10−2

5 [4096, 64, 64] 3569.92s 3.19 · 10−2 4.02 · 10−2

Table 5.2: Errors and runtimes for obtaining the approximation (5.5) with different cutoff
vectors N . Each time is the mean of three runs.

1 2 3 4 5

0.0027
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0.013
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example 1–5

ε

ε2 εL2

Figure 5.2: Errors εL2 and ε2 for examples 1–5 from Table 5.2.

The results show that with as little as 5 million samples we are able to find an approxi-
mation where the error on the samples as well as the generalization error behave similarly
with a best error of εL2 ≈ 2.7·10−3. Furthermore, it is possible with this method to identify
ANOVA terms that contribute most to the variance of the function which corresponds to
finding the important dimension interactions.
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6 Conclusion

In this thesis we studied the ANOVA decomposition

f(x) = f∅ +
d∑
i=1

f{i}(x) +
d∑

i,j=1
i<j

f{i,j}(x) + · · ·+ f{1,2,...,d}(x),

its properties and relations to Fourier analysis on the d-variate torus Td. We found means
to describe the projections Puf , see Definition 3.3, and the ANOVA terms fu with index
sets P(d)

u , see (3.5), and F(d)
u , see (3.7), and how they decompose the frequency domain.

Furthermore, we considered the notion of inheritance of smoothness from [3], i.e., how
the smoothness of a function f is inherited by its ANOVA terms fu, and translated results
to the torus while also generalizing them in this context to Sobolev type spaces Hw(Td),
see Theorem 3.19, and the weighted Wiener algebra Aw(Td), see Theorem 3.22. We subse-
quently considered the variance of a function σ2(f) and its ANOVA terms σ2(fu), e.g. as
in [4, Chapter 2.1], as well as the global sensitivity indices %(u; f) and related those terms
to our previous findings in connection with Fourier analysis.
These considerations lead to the approximate ANOVA model

Tdsf :=
∑
u⊂D
|u|≤ds

fu

as a special case of a proposed model in [4, Chapter 3.2]. For a fixed superposition dimen-
sion ds, we have polynomial as opposed to exponential growth in the number of ANOVA
terms. We subsequently found a formula to express the model Tdsf through the projections
Puf , see Theorem 3.29, as well as a formula for the Fourier coefficients. Furthermore, we
proved error bounds for approximation with Tdsf in L2(Td) for Sobolev spaces, see Theorem
3.32, and L∞(Td) for the Wiener algebra, see Theorem 3.35.
The goal was to use the approximate model to detect the important dimensions and

dimension interactions of a function f : Td → R and use this information to obtain an
approximation for the function. We started by assuming to have a function with black-
box-access and used rank-1 lattice as sampling schemes. We developed an ANOVA version
of the component-by-component algorithm to generate a reconstructing rank-1 lattice, see
Algorithm 4.2, as well as an algorithm for the approximation, see Algorithm 4.1. In a first
step we were using a Fourier partial sum with a small index set to obtain an approxima-
tion f̃1 that allowed us to calculate approximate global sensitivity indices %(u; f̃1). With
those sensitivity indices we constructed an active set of important ANOVA terms U(θ; f̃1).
Taking into account only the terms contained in U(θ; f̃1), we arrived at a better approxi-
mation f̃2. Numerical tests with a sum of products of B-splines, see (4.13), showed that the
method works well. We were able to exactly detect the actual active set of a 9-dimensional
test function and furthermore construct a good approximation from these results with a
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6 Conclusion

best error of ∥∥∥f − f̃2

∥∥∥
L2(T9)

‖f‖L2(T9)

≈ 2.9 · 10−4.

Subsequently, we considered a scenario where only scattered data of the function is given.
We adjusted the previously used strategy to obtain the approximation f̃1 with the use of
projections. This allowed us to solve a large least-squares system efficiently with the use
of the NFFT. Following the same ideas as before, we calculated the approximate global
sensitivity indices and constructed an active set U(θ; f̃1). We proceeded to use the active
set to obtain the approximation f̃2. Utilizing the same test function as before, we were
again able to detect the actual active set using only 5 million samples. The best error of
the subsequently calculated approximation f̃2 achieved∥∥∥f − f̃2

∥∥∥
L2(T9)

‖f‖L2(T9)

≈ 2.7 · 10−3

Summarizing, one can say that the method developed in this thesis achieved success for a
known benchmark function. Yet, for scattered data problems in applications working with
the torus bears the disadvantage of having an induced periodicity. To counter this effect
we are interested in translating the results to the unit cube [0, 1]d using the Chebyshev
polynomials as an orthonormal basis instead of the Fourier basis.
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