Multifacility Minimax Location Problems via Multi-Composed Optimization

G. Wanka, O. Wilfer

Preprint 2016-6

Preprintreihe der Fakultät für Mathematik
ISSN 1614-8835
Multifacility Minimax Location Problems via Multi-Composed Optimization*

Gert Wanka† Oleg Wilfer‡

Abstract: We present a conjugate duality approach for multifacility minimax location problems with geometric constraints, where the underlying space is Fréchet and the distances are measured by gauges of closed convex sets. Besides assigning corresponding conjugate dual problems, we derive necessary and sufficient optimality conditions. Moreover, we introduce a further dual problem with less dual variables than the first formulated dual and deliver corresponding statements of strong duality and optimality conditions. To illustrate the results of the latter duality approach and to give a more detailed characterization of the relation between the location problem and its dual, we consider the situation in the Euclidean space.

Key words: Conjugate Duality, Composed Functions, Minimax Location Problems, Gauges, Optimality Conditions.

1 Introduction

Facility location problems are known for their numerous applications in areas like computer science, telecommunication, transportation and emergency facilities programming. In the framework of continuous optimization where the distances are measured by gauges, two kinds of location problems are particularly significant. The first one consists of the so-called minisum location problems and has the objective to determine a new point such that the sum of distances between the new and given points is minimal (see [2, 3, 4, 10, 14, 17]). The second class contains the so-called minimax location problems, where a new point is sought such that the maximum of distances between the new and given points will be minimized (see [5, 6, 9, 12, 13, 16, 18, 20]). The latter type of location problems was extensively studied in [23] in the context of conjugate duality.

The central concern of this article is the consideration of a more general and complex problem, namely the so-called multifacility minimax location problem (see [7, 19]), which has attracted less attention in the literature compared to the multifacility minisum location problems (see [8, 11, 15, 21]). The objective of the multifacility minimax location problems is to determine several new points such that either the maximum of distances between pairs of new points or the maximum of distances between new and existing points is minimal. In our analysis we will

*This work was supported by the DFG (the German Research Foundation) under Project WA922/8-1.
†Faculty of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany, email: gert.wanka@mathematik.tu-chemnitz.de
‡Faculty of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany, email: oleg.wilfer@mathematik.tu-chemnitz.de
use the results recently presented in [22] for multi-composed optimization problems to deliver a
detailed duality approach to this type of location problems. In concrete terms, this means that
we formulate an associated conjugate dual problem as well as derive necessary and sufficient
optimality conditions. Especially, we show that in the settings where the underlying space is
Fréchet and the distances are measured by gauges of closed convex sets strong duality can always
be guaranteed.
Further, we introduce another dual problem reducing the number of dual variables compared
to the first formulated dual problem. Continuing in this vein, we will also employ a duality
approach including statements of strong duality and optimality conditions.
As the most location problems are considered in Euclidean spaces, we particularize the latter
 case in this context and show that we have a full symmetry between the location problem,
its dual problem and the Lagrange dual problem of the dual problem, which means that the La-
grange dual is identical to the location problem. Finally, we close this paper with an example
showing on the one hand how an optimal solution of the location problem can be recovered from
an optimal solution of the associated conjugate dual problem and on the other hand how we can
geometrically interpret an optimal dual solution.
To this end, we start with recalling some preliminary notions and results from the convex analysis
needed for our approach.

2 Preliminaries

2.1 Elements of convex analysis

Let \(X \) be a Fréchet space and \(X^\ast \) its topological dual space endowed with the weak* topology
\(w(X^\ast, X) \). For \(x \in X \) and \(x^\ast \in X^\ast \), let \(\langle x^\ast, x \rangle := x^\ast(x) \) be the value of the linear continuous
functional \(x^\ast \) at \(x \). For a subset \(A \subseteq X \), its indicator function \(\delta_A : X \to \mathbb{R} = \mathbb{R} \cup \{\pm \infty\} \) is

\[
\delta_A(x) := \begin{cases}
0, & \text{if } x \in A, \\
+\infty, & \text{otherwise}.
\end{cases}
\]

For a given function \(f : X \to \mathbb{R} \) we consider its effective domain

\[
\text{dom } f := \{ x \in X : f(x) < +\infty \}
\]

and call \(f : X \to \mathbb{R} \) proper if \(\text{dom } f \neq \emptyset \) and \(f(x) > -\infty \) for all \(x \in X \). The conjugate function
of \(f \) with respect to the non-empty subset \(S \subseteq X \) is defined by

\[
f^S : X^\ast \to \mathbb{R}, \quad f^S(x^\ast) = (f + \delta_S)^\ast(x^\ast) = \sup_{x \in S} \{ \langle x^\ast, x \rangle - f(x) \}.
\]

In the case \(S = X \), it is clear that \(f^S \) turns into the classical Fenchel-Moreau conjugate function of \(f \) denoted by \(f^\ast \). Let us mention that it holds \(f^\ast(x^\ast) = \sup_{x \in \text{dom } f} \{ \langle x^\ast, x \rangle - f(x) \} \) as well as
\(f(x) + f(x^\ast) \geq \langle x^\ast, x \rangle \) for all \(x \in X, \ x^\ast \in X^\ast \), which is the so-called Young-Fenchel inequality.
Additionally, we consider a non-empty convex cone \(K \subseteq X \), which induces on \(X \) a partial
ordering relation “\(\leq_K \)”, defined by

\[
\leq_K := \{(x, y) \in X \times X : y - x \in K\},
\]

i.e. for \(x, y \in X \) it holds \(x \leq_K y \iff y - x \in K \). Note that we assume that all cones we consider
contain the origin. Further, we attach to \(X \) a greatest element with respect to “\(\leq_K \)”, denoted
by $+\infty K$, which does not belong to X and denote $\overline{X} = X \cup \{+\infty K\}$. Then it holds $x \leq_K +\infty K$ for all $x \in \overline{X}$. We also define $x \leq_K y$ if and only if $x \leq_K y$ and $x \neq y$. Further, we define $\leq_{\mathbb{R}} := \leq$ and $\leq_{\mathbb{R}} := <$.

On \overline{X} we consider the following operations and conventions: $x + (+\infty K) = (+\infty K) + x := +\infty K \ \forall x \in X \cup \{+\infty K\}$ and $\lambda \cdot (+\infty K) := +\infty K \ \forall \lambda \in [0, +\infty)$. Further, if $K^* := \{x^* \in X^* : \langle x^*, x \rangle \geq 0, \ \forall x \in K\}$ is the dual cone of K, then we define $(x^*, +\infty K) := +\infty$ for all $x^* \in K^*$. On the extended real space \mathbb{R} we add the following operations and conventions: $\lambda + (+\infty) = (+\infty) + \lambda := +\infty \ \forall \lambda \in (-\infty, +\infty]$, $\lambda + (-\infty) = (-\infty) + \lambda := -\infty \ \forall \lambda \in [-\infty, +\infty)$, $\lambda \cdot (+\infty) := +\infty \ \forall \lambda \in [0, +\infty]$, $\lambda \cdot (-\infty) := -\infty \ \forall \lambda \in [0, +\infty]$, $\lambda \cdot (-\infty) := +\infty \ \forall \lambda \in [-\infty, 0)$, $(+\infty) + (-\infty) := (-\infty) + (+\infty) := +\infty$ and $0(-\infty) := 0$.

Let Z be another Fréchet space ordered by the convex cone $Q \subseteq Z$, then for a vector function $F : X \to \overline{Z} = Z \cup \{+\infty Q\}$ the domain is the set $\text{dom} F := \{x \in X : F(x) \neq +\infty Q\}$. When $F(\lambda x + (1 - \lambda)y) \leq Q \lambda F(x) + (1 - \lambda)F(y)$ holds for all $x,y \in X$ and all $\lambda \in [0,1]$ the function F is said to be Q-convex. A function $f : X \to \mathbb{R}$ is called convex if $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$ for all $x,y \in X$ and all $\lambda \in [0,1]$.

Further, we consider the epigraph of a function f defined by $\text{epi} f := \{(x,r) \in X \times \mathbb{R} : f(x) \leq r\}$. The Q-epigraph of a vector function F is $\text{epi}_Q F := \{(x,z) \in X \times Z : F(x) \leq_Q z\}$ and we say that F is Q-epi closed if $\text{epi}_Q F$ is a closed set.

If $Q^* := \{x^* \in X^* : \langle x^*, x \rangle \geq 0, \ \forall x \in Q\}$ is the dual cone of Q, then we define $z^* \in Q^*$ the function $(z^*F) : X \to \mathbb{R}$ by $(z^*F)(x) := \langle z^*, F(x) \rangle$, where it is not hard to see that $\text{dom}(z^*F) = \text{dom} F$. Moreover, it is easy to see that if F is Q-convex, then (z^*F) is convex for all $z^* \in Q^*$.

A function $f : X \to \mathbb{R}$ is called lower semicontinuous at $x \in X$ if $\liminf_{x \to x^+} f(x) \geq f(x)$ and this function is lower semicontinuous at all $x \in X$, then we call it lower semicontinuous (l.s.c. for short). The vector function F is called star Q-lower semicontinuous at $x \in X$ if (z^*F) is lower semicontinuous at x for all $z^* \in Q^*$. The function F is called star Q-lower semicontinuous if it is star Q-lower semicontinuous at every $x \in X$. Note that if F is Q-lower semicontinuous, then it is also Q-epi closed, while the inverse statement is not true in general (see: Proposition 2.2.19 in [1]). Let us mention that in the case $Z = \mathbb{R}$ and $Q = \mathbb{R}_+$, the notion of Q-epi closedness falls into the classical notion of lower semicontinuity.

A function $f : X \to \mathbb{R}$ is called K-increasing, if from $x \leq_K y$ follows $f(x) \leq f(y)$ for all $x,y \in X$.

Definition 2.1. The vector function $F : X \to \overline{Z}$ is called K-Q-increasing, if from $x \leq_K y$ follows $F(x) \leq_Q F(y)$ for all $x,y \in X$.

For a set $S \subseteq X$ the conic hull is defined by $\text{cone}(S) := \{\lambda x : x \in S, \ \lambda \geq 0\}$ and sqri is used to denote the strong quasi relative interior, where in the case of having a convex set $S \subseteq X$ it holds

$$\text{sqri}(S) = \{x \in S : \text{cone}(S-x) \text{ is a closed linear subspace}\}.$$

In this paper we do not use the classical differentiability, but we use the notion of subdifferentiability to formulate optimality conditions. If we take an arbitrary $x \in X$ such that $f(x) \in \mathbb{R}$, then we call the set

$$\partial f(x) := \{x^* \in X^* : f(y) - f(x) \geq \langle x^*, y-x \rangle \ \forall y \in X\}$$

the (convex) subdifferential of f at x, where the elements are called the subgradients of f at x.

Moreover, if $\partial f(x) \neq \emptyset$, then we say that f is subdifferentiable at x and if $f(x) \notin \mathbb{R}$, then we
make the convention that $\partial f(x) := \emptyset$. Note, that the subgradients can be characterized by the conjugate function, especially this means
\[
x^* \in \partial f(x) \Leftrightarrow f(x) + f^*(x^*) = \langle x^*, x \rangle, \quad \forall x \in X, \; x^* \in X^*,
\]
i.e. the Young-Fenchel inequality is fulfilled with equality.

Let $C \subseteq X$. In conclusion of this section we collect some properties of the gauge function of the subset C, $\gamma_C : X \to \mathbb{R}$ defined by
\[
\gamma_C(x) := \begin{cases}
+\infty, & \text{if } \{ \lambda > 0 : x \in \lambda C \} = \emptyset, \\
\inf \{ \lambda > 0 : x \in \lambda C \}, & \text{otherwise}.
\end{cases}
\]

The following statements were proved in [23].

Theorem 2.1. Let $C \subseteq X$ be a convex and closed set with $0_X \in C$, then the gauge function γ_C is proper, convex and lower semicontinuous.

Lemma 2.1. Let $C \subseteq X$ be a convex and closed set with $0_X \in C$, then the conjugate of the gauge function γ is given by
\[
\gamma^*_C(x^*) := \begin{cases}
0, & \text{if } \sigma_C(x^*) \leq 1, \\
+\infty, & \text{otherwise},
\end{cases}
\]
where σ_C is the support function of the set C, i.e. $\sigma_C(x^*) = \sup_{x \in C} \langle x^*, x \rangle$.

Remark 2.1. Note that the gauge function γ_C is not only convex but also sublinear. Moreover, if $0_X \in \text{int } C$, then γ_C is well-defined, which means that $\text{dom } \gamma_C = X$.

Definition 2.2. Let $C \subseteq X$. The polar set of C is defined by
\[
C^0 := \left\{ x^* \in X^* : \sup_{x \in C} \langle x^*, x \rangle \leq 1 \right\} = \left\{ x^* \in X^* : \sigma_C(x^*) \leq 1 \right\}
\]
and by means of the polar set the dual gauge is defined by
\[
\gamma_{C^0}(x^*) := \sup_{x \in C} \langle x^*, x \rangle = \sigma_C(x^*).
\]

Remark 2.2. Note that C^0 is a convex and closed set containing the origin and by the definition of the dual gauge follows that the conjugate function of γ_C can equivalently be expressed by
\[
\gamma^*_{C^0}(x^*) := \begin{cases}
0, & \text{if } \gamma_{C^0}(x^*) \leq 1, \\
+\infty, & \text{otherwise}.
\end{cases}
\]
Furthermore, it holds the generalized Cauchy-Schwarz inequality
\[
\langle x^*, x \rangle \leq \gamma_{C^0}(x^*) \gamma_C(x) \quad \forall x^* \in X^*, \; x \in X.
\]
2.2 Lagrange duality approach for multi-composed optimization problems

The purpose of this section is to recall some important results from [22] by studying multi-composed optimization problems. Let us consider an optimization problem with geometric and cone constraints having as objective function the composition of \(n + 1 \) functions:

\[
(P^C) \quad \inf_{x \in \mathcal{A}} (f \circ F^1 \circ \ldots \circ F^n)(x),
\]

\[
\mathcal{A} = \{ x \in S : g(x) \in -Q \},
\]

where \(X_i \) is a Fréchet space partially ordered by the non-empty convex cone \(K_i \subseteq X_i \) for \(i = 0, \ldots, n - 1 \). Moreover,

- \(S \subseteq X_n \) is a non-empty convex set,
- \(f : X_0 \rightarrow \mathbb{R} \) is proper, convex and \(K_0 \)-increasing on \(F^1(\text{dom } F^1) + K_0 \subseteq \text{dom } f \),
- \(F^i : X_i \rightarrow \overline{X}_{i-1} = X_{i-1} \cup \{ +\infty_{K_{i-1}} \} \) is proper, \(K_{i-1} \)-convex and \(K_i \)-\(K_{i-1} \)-increasing on \(F^{i+1}(\text{dom } F^{i+1}) + K_i \subseteq \text{dom } F^i \) for \(i = 1, \ldots, n - 2 \),
- \(F^{n-1} : X_{n-1} \rightarrow \overline{X}_{n-2} = X_{n-2} \cup \{ +\infty_{K_{n-1}} \} \) is proper and \(K_{n-1} \)-\(K_{n-2} \)-increasing on \(F^n(\text{dom } F^n \cap \mathcal{A}) + K_{n-1} \subseteq \text{dom } F^{n-1} \),
- \(F^n : X_n \rightarrow \overline{X}_{n-1} = X_{n-1} \cup \{ +\infty_{K_{n-1}} \} \) is a proper and \(K_{n-1} \)-convex function and
- \(g : X_n \rightarrow \mathbb{Z} \) is a proper function fulfilling \(S \cap g^{-1}(-Q) \cap ((F^n)^{-1} \circ \ldots \circ (F^1)^{-1})(\text{dom } f) \neq \emptyset \).

Additionally, we make the convention that \(f(+\infty_{K_0}) = +\infty \) and \(F^i(+\infty_{K_i}) = +\infty_{K_{i-1}} \), i.e. \(f : \overline{X}_0 \rightarrow \mathbb{R} \) and \(F^i : \overline{X}_i \rightarrow \overline{X}_{i-1}, \ i = 1, \ldots, n - 1 \).

Remark 2.3. Let us point out that for the convexity of \(f \circ F^1 \circ \ldots \circ F^n \) we ask that the function \(f \) be convex and \(K_0 \)-increasing on \(F^1(\text{dom } F^1) + K_0 \) and the function \(F^i \) be \(K_{i-1} \)-convex and fulfills also the property of monotonicity for \(i = 1, \ldots, n - 1 \), while the function \(F^n \) need just be \(K_{n-1} \)-convex. This means that if \(F^n \) is an affine function, we do not need the monotonicity of \(F^{n-1} \), since the composition of an affine function and a function, which fulfills the property of convexity, fulfills also the property of convexity. In this context one can choose \(K_{n-1} = \{ 0_{X_{n-1}} \} \) (for more details see Remark 3.1 and 4.1 in [22]).

The corresponding conjugate dual problem to the problem \((P^C) \) looks like (see [22])

\[
(D^C) \quad \sup_{z^* \in Q^*, \; z^* \in K_i^*} \left\{ \inf_{z \in S} \left\{ \langle z^{(n-1)*}, F^n(x) \rangle + \langle z^{n*}, g(x) \rangle \right\} - f^*(z^{0*}) - \sum_{i=1}^{n-1} \langle z^{(i-1)*}, F^i \rangle^*(z^{i*}) \right\},
\]

where \(z^* := (z^{0*}, \ldots, z^{(n-1)*}, z^{n*}) \in \tilde{K}^* := K_0^* \times \ldots \times K_{n-1}^* \times Q^* \) are the dual variables.

We denote by \(v(P^C) \) and \(v(D^C) \) the optimal objective values of the optimization problems \((P^C) \) and \((D^C) \), respectively. To guarantee strong duality, i.e. the situation where \(v(P^C) = v(D^C) \) and the conjugate dual problem has an optimal solution, we consider the following generalized interior point regularity condition introduced in [22]:

\[\text{(GIP)}\]
Theorem 2.2. (strong duality) If the condition (RC) is fulfilled, then between (PC) and (DC) strong duality holds, i.e. \(v(\text{PC}) = v(\text{DC}) \) and the conjugate dual problem has an optimal solution.

Theorem 2.3. (optimality conditions) (a) Suppose that the regularity condition (RC) is fulfilled and let \(\bar{x} \in A \) be an optimal solution of the problem (PC). Then there exists \((\bar{z}^0, \ldots, \bar{z}^{(n-1)*}, \bar{z}^{n*}) \in K_0^* \times \ldots \times K_{n-1}^* \times Q^*\), an optimal solution to (DC), such that

(i) \[f((F^1 \circ \ldots \circ F^n)(\bar{x})) + f^*(\bar{z}^0) = (\bar{z}^0, (F^1 \circ \ldots \circ F^n)(\bar{x})), \]

(ii) \[(\bar{z}^{(i-1)*} F^i)((F^{i+1} \circ \ldots \circ F^n)(\bar{x})) + (\bar{z}^{(i-1)*} F^i)(\bar{x}^i) = (\bar{z}^{i*}, (F^{i+1} \circ \ldots \circ F^n)(\bar{x})), \quad i = 1, \ldots, n-1, \]

(iii) \[(\bar{z}^{(n-1)*} F^n)(\bar{x}) + (\bar{z}^{n*} g)(\bar{x}) + ((\bar{z}^{n-1}* F^n) + (\bar{z}^{n*} g))(0_{X^n}) = 0, \]

(iv) \[(\bar{z}^{i*}, g(\bar{x})) = 0, \]

(b) If there exists \(\bar{x} \in A \) such that for some \((\bar{z}^0, \ldots, \bar{z}^{(n-1)*}, \bar{z}^{n*}) \in K_0^* \times \ldots \times K_{n-1}^* \times Q^*\) the conditions (i)-(iv) are fulfilled, then \(\bar{x} \) is an optimal solution of (PC), \((\bar{z}^0, \ldots, \bar{z}^{n*})\) is an optimal solution for (DC) and \(v(\text{PC}) = v(\text{DC}) \).

Remark 2.4. If for some \(i \in \{1, \ldots, n\} \) the function \(F^i \) is star \(K_{i-1} \)-lower semicontinuous, then we can omit asking that \(K_{i-1} \) is closed, \(\text{int}(K_{i-1}) \neq \emptyset \) and \(F^i \) is \(K_{i-1} \)-epi closed in the regularity conditions (RC) (for more details see Remark 4.2 in \[22\]).

Theorem 2.4. Let \(a_i \in \mathbb{R}_+ \) be a given point and \(h_i : \mathbb{R} \to \mathbb{R} \) with \(h_i(x) \in \mathbb{R}_+ \), if \(x \in \mathbb{R}_+ \), and \(h_i(x) = +\infty \), otherwise, be a proper, lower semicontinuous and convex function, \(i = 1, \ldots, n \). Then the conjugate of the function \(g : \mathbb{R}^n \to \mathbb{R} \) defined by

\[
g(x_1, \ldots, x_n) := \begin{cases} \max \{h_1(x_1) + a_1, \ldots, h_n(x_n) + a_n\}, & \text{if } x_i \in \mathbb{R}_+, \ i = 1, \ldots, n, \\ +\infty, & \text{otherwise}, \end{cases}
\]

is given by \(g^* : \mathbb{R}^n \to \mathbb{R} \),

\[
g^*(x^1, \ldots, x^n) := \min \left\{ \sum_{i=1}^n [z_i^{0*} h_i(x_i^*)] : z_i^{0*} \geq 0, \ i = 1, \ldots, n \right\}.
\]

Lemma 2.2. Let \(a_i \in \mathbb{R}_+ \) be a given point and \(h_i : \mathbb{R} \to \mathbb{R} \) with \(h_i(x) \in \mathbb{R}_+ \), if \(x \in \mathbb{R}_+ \), and \(h_i(x) = +\infty \), otherwise, be a proper, lower semicontinuous and convex function, \(i = 1, \ldots, n \). Then the function \(g : \mathbb{R}^m \to \mathbb{R} \),

\[
g(x_1, \ldots, x_n) := \begin{cases} \max \{h_1(x_1) + a_1, \ldots, h_n(x_n) + a_n\}, & \text{if } x_i \in \mathbb{R}_+, \ i = 1, \ldots, n, \\ +\infty, & \text{otherwise}, \end{cases}
\]
can equivalently be expressed as
\[g(x_1, \ldots, x_n) = \sup_{\sum_{i=1}^n \sum_{i=1}^n z_{ij}^0 \leq 1, z_{ij}^0 \geq 0} \left\{ \sum_{i=1}^n z_{ij}^0 [h_i(x_i) + a_i] \right\}, \quad \forall x_i \geq 0, \ i = 1, \ldots, n. \]

For the associated proofs of the last two statements see [23].

3 Multifacility minimax location problems with mixed gauges

In this section we use the results of our previous approach to develop a conjugate dual problem of the multifacility minimax location problem with mixed gauges and geometric constraints. Furthermore, we will show the validity of strong duality and derive optimality conditions for the corresponding primal-dual pair. Let \(X \) be a Fréchet space, \(C_{jk} \subseteq X \) with \(0_X \in \text{int} C_{jk} \) for \(jk \in J := \{ jk : 1 \leq j \leq m, 1 \leq k \leq m, j \neq k \} \), and \(\bar{C}_{ji} \subseteq X \) with \(0_X \in \text{int} \bar{C}_{ji} \) for \(ji \in \bar{J} := \{ 1 \leq j \leq m, 1 \leq i \leq t \} \), be closed and convex as well as \(S \subseteq X^m \) non-empty, closed and convex. Moreover, let \(w_{jk} \geq 0, jk \in J, \bar{w}_{ji} \geq 0, ji \in \bar{J} \) as well as \(\gamma_{C_{jk}} : X \to \mathbb{R}, jk \in J, \gamma_{\bar{C}_{ji}} : X \to \mathbb{R}, ji \in \bar{J} \), be gauges. Obviously, these gauges are convex, lower semicontinuous and well-defined.

For given distinct points \(p_i \in X, 1 \leq i \leq t \), the multifacility minimax location problem minimizes the maximum of gauges between pairs of \(m \) new facilities \(x_1, \ldots, x_m \) and between pairs of \(m \) new and \(t \) existing facilities, concretely this means that
\[
(P^M) \quad \inf_{\{x_1, \ldots, x_m\} \in S} \max \left\{ w_{jk} \gamma_{C_{jk}}(x_j - x_k), jk \in J, \bar{w}_{ji} \gamma_{\bar{C}_{ji}}(x_j - p_i), ji \in \bar{J} \right\}.
\]

We introduce the index sets \(V := \{ jk \in J : w_{jk} > 0 \} \) and \(\bar{V} := \{ ji \in \bar{J} : \bar{w}_{ji} > 0 \} \), which allows us to write the problem \((P^M)\) as
\[
(P^M) \quad \inf_{\{x_1, \ldots, x_m\} \in S} \max \left\{ w_{jk} \gamma_{C_{jk}}(x_j - x_k), jk \in V, \bar{w}_{ji} \gamma_{\bar{C}_{ji}}(x_j - p_i), ji \in \bar{V} \right\}.
\]

Take note that \(|V| \leq m(m - 1)\) and \(|\bar{V}| \leq mt\). Now, we set \(X_0 = \mathbb{R}^{|V|} \times \mathbb{R}^{|\bar{V}|} \) ordered by \(K_0 = \mathbb{R}_+^{|V|} \times \mathbb{R}_+^{|\bar{V}|} \), \(X_1 = \mathbb{R}^{|V|} \times \mathbb{R}^{|\bar{V}|} \) ordered by the trivial cone \(K_1 = \{ 0_{X_1} \} \) and \(X_2 = \mathbb{R}^m \), where the corresponding dual spaces and dual variables are \((z^{0*}, z^{0*}_i) = (\{z^0_{jk}\}_{jk \in V}, \{z^0_{ji}\}_{ji \in \bar{V}}) \in \mathbb{R}^{|V|} \times \mathbb{R}^{|\bar{V}|} \) and \((z^{1*}, z^{1*}_i) = (\{z^1_{jk}\}_{jk \in V}, \{z^1_{ji}\}_{ji \in \bar{V}}) \in (X^*)^{|V|} \times (X^*)^{|\bar{V}|} \).

We continue with the decomposition of the objective function of the problem \((P^M)\) into the following functions:

- \(f : \mathbb{R}^{|V|} \times \mathbb{R}^{|\bar{V}|} \to \mathbb{R} \) defined by \(f(y^0, \bar{y}^0) = \max \left\{ w_{jk} y^0_{jk}, jk \in V, \bar{w}_{ji} \bar{y}^0_{ji}, ji \in \bar{V} \right\} \)
 if \(y^0 = (y^0_{jk})_{jk \in V} \in \mathbb{R}_+^{|V|} \) and \(\bar{y}^0 = (\bar{y}^0_{ji})_{ji \in \bar{V}} \in \mathbb{R}_+^{|\bar{V}|} \), otherwise \(f(y^0, \bar{y}^0) = +\infty \),

- \(F^1 : X^{|V|} \times X^{|\bar{V}|} \to \mathbb{R}^{|V|} \times \mathbb{R}^{|\bar{V}|} \) defined by \(F^1(y^1, \bar{y}^1) = \left((\gamma_{C_{jk}}(y^1_{jk}))_{jk \in V}, (\gamma_{\bar{C}_{ji}}(\bar{y}^1_{ji}))_{ji \in \bar{V}} \right) \),
 where \(y^1 = (y^1_{jk})_{jk \in V} \in X^{|V|} \) and \(\bar{y}^1 = (\bar{y}^1_{ji})_{ji \in \bar{V}} \in X^{|\bar{V}|} \).
\[\lambda \]

be defined by

\[F^2(x) = (A_{jk}x)_{j,k \in V} + p_i, \]

where

\[A_{jk} = (0, \ldots, 0, 1, 0, \ldots, 0, \ldots, -I, 0, \ldots, 0), \quad j,k \in V, \quad B_{ji} = (0, \ldots, 0, 1, 0, \ldots, 0), \quad j,i \in \tilde{V}, \quad 0 \]

is the zero mapping and \(I \) is the identity mapping, i.e. \(0x_i = 0_X \) and \(Ix_i = x_i \) \(\forall x_i \in X, \quad i = 1, \ldots, m \). In particular, \(A_{jk} : X^m \to X \) is defined as the mapping

\[x = (x_1, \ldots, x_m) \mapsto 0x_1 + \ldots + 0x_{j-1} + Ix_j + 0x_{j+1} + \ldots + 0x_{k-1} - Ix_k + 0x_{k+1} + \ldots + 0x_m, \]

i.e.

\[(x_1, \ldots, x_m) \mapsto x_j - x_k, \quad j,k \in V, \]

and \(B_{ji} : X^m \to X \) is defined as the mapping

\[(x_1, \ldots, x_m) \mapsto 0x_1 + \ldots + 0x_{j-1} + Ix_j + 0x_{j+1} + \ldots + 0x_m = x_j, \quad j,i \in \tilde{V}. \]

Thus, it is easy to see that the problem \((P^M)\) can be represented in the form

\[(P^M) \quad \inf_{x \in S} (f \circ F^1 \circ F^2)(x). \]

Like mentioned in Remark 2.3, we do not need the monotonicity assumption for the function \(F^1 \), because \(F^2 \) is an affine function. Furthermore, it is clear that \((P^M)\) is a convex optimization problem. Besides, it can easily be verified that \(f \) is proper, convex, \(\mathbb{R}_+^{\vert V \vert} \times \mathbb{R}_+^{\vert \tilde{V} \vert} \)-increasing on \(F^1(\text{dom } F^1) + K_0 = \text{dom } f = \mathbb{R}_+^{\vert V \vert} \times \mathbb{R}_+^{\vert \tilde{V} \vert} \) and lower semicontinuous and that \(F^1 \) is proper and \(\mathbb{R}_+^{\vert V \vert} \times \mathbb{R}_+^{\vert \tilde{V} \vert} \)-convex as well as \(\mathbb{R}_+^{\vert V \vert} \times \mathbb{R}_+^{\vert \tilde{V} \vert} \)-epi closed.

To use the formula from the previous section for the dual problem of \((P^M)\), we set \(Z = X^m \) ordered by the trivial cone \(Q = X^m \) and define the function \(g : X^m \to X^m \) by \(g(x_1, \ldots, x_m) := (x_1, \ldots, x_m) \). As \(Q^* = \{ 0, \infty \}^m \), which means that \(z^{2*} = 0, \infty \) \(m \), we derive for the dual problem

\[(D^M) \quad \sup_{z^{0*} \in \{ 0, \infty \}^{\vert V \vert} \times \mathbb{R}_+^{\vert \tilde{V} \vert}, \quad \forall (x_1, \ldots, x_m) \in (\mathbb{X}^{*})^{\vert V \vert} \times (\mathbb{X}^{*})^{\vert \tilde{V} \vert}} \left\{ \inf_{x \in S} \left\{ \sum_{j,k \in V} \langle z_{j,k}^1, A_{j,k}x \rangle + \sum_{j,i \in V} \langle z_{j,i}^1, B_{j,i}x - p_i \rangle \right\} - f^*(z^{0*}, z^{0*}) - \left((z^{0*}, z^{0*}) F^1 \right)^*(z^{1*}, z^{1*}) \right\}, \]

and hence, we need to calculate the conjugate functions \(f^* \) and \((z^{0*}, z^{0*}) F^1)^* \). Let \(h_i : \mathbb{R} \to \mathbb{R} \) be defined by

\[h_i(x_i) := \begin{cases} x_i, & \text{if } x_i \in \mathbb{R}_+, \\ +\infty, & \text{otherwise}, \end{cases} \]

then the conjugate function of \(\lambda_i h_i, \lambda_i \geq 0, \) is

\[(\lambda_i h_i)^*(x_i^*) = \begin{cases} 0, & \text{if } x_i^* \leq \lambda_i, \\ +\infty, & \text{otherwise}, \end{cases} \quad i = 1, \ldots, n. \]
and by Theorem 2.4 we get for f^*,

$$f^*(z_0^*, \tilde{z}^0) = \begin{cases} 0, & \text{if } 0_{j_k} \leq w_{j_k} \lambda_{j_k}, \quad z_{j_i}^0 \leq \tilde{w}_{j_i} \tilde{\lambda}_{j_i}, \quad \sum_{j_k \in V} \lambda_{j_k} + \sum_{j_i \in \overline{V}} \tilde{\lambda}_{j_i} \leq 1 \\
\infty, & \text{otherwise,}
\end{cases}$$

while for $((z^0, \tilde{z}^0) F^1)^*$ we obtain by using the definition of the conjugate function

$$((z^0, \tilde{z}^0) F^1)^*(z^{1*}, \tilde{z}^{1*}) = \sup_{y^1 \in X^{\overline{V}}} \left\{ \sum_{j_k \in V} \langle z_{j_k}^1, y_{j_k} \rangle + \sum_{j_i \in \overline{V}} \tilde{z}_{j_i}^1 \tilde{\gamma}_{j_i}^1 \right\}$$

$$= \sum_{j_k \in V} \left(\langle z_{j_k}^0, \tilde{y}_{j_k} \rangle + \sum_{j_i \in \overline{V}} \tilde{z}_{j_i}^0 \gamma_{j_i}^1 \tilde{y}_{j_i} \right) + \sum_{j_i \in \overline{V}} \sup_{\tilde{y}_{j_i} \in X^{\overline{V}}} \left\{ \langle \tilde{z}_{j_i}^1, \tilde{y}_{j_i} \rangle - \tilde{z}_{j_i}^0 \gamma_{j_i}^1 \tilde{y}_{j_i} \right\}$$

for all $(z^0, \tilde{z}^0) \in \mathbb{R}^{|V|}_+ \times \mathbb{R}^{|\overline{V}|}_+$ and $z^{1*} = (z_{j_k}^{1*})_{j_k \in V} \in X^{\overline{V}}$ and $\tilde{z}^{1*} = (\tilde{z}_{j_i}^{1*})_{j_i \in \overline{V}} \in X^{\overline{V}}$. Hence, the dual problem may be written as

$$(D^M) \quad \sup_{(z^0, \tilde{z}^0, z^{1*}, \tilde{z}^{1*})} \inf_{x \in S} \Phi(z^0, \tilde{z}^0, z^{1*}, \tilde{z}^{1*}),$$

where

$$\Phi(z^0, \tilde{z}^0, z^{1*}, \tilde{z}^{1*}) = \inf_{x \in S} \left\{ \sum_{j_k \in V} \langle z_{j_k}^1, A_{j_k} x \rangle + \sum_{j_i \in \overline{V}} \tilde{z}_{j_i}^1 B_{j_i} x - p_i \right\}$$

Let $I := \{j_k : z_{j_k}^{0*} > 0\}$ and $\tilde{I} := \{j_i : \tilde{z}_{j_i}^{0*} > 0\}$, then we separate in the objective function Φ the sum into the terms with $z_{j_k}^{0*}, \tilde{z}_{j_i}^{0*} > 0$ and the terms with $z_{j_k}^{0*}, \tilde{z}_{j_i}^{0*} = 0$:

$$\Phi(z^0, \tilde{z}^0, z^{1*}, \tilde{z}^{1*}) = \inf_{x \in S} \left\{ \sum_{j_k \in I} \langle z_{j_k}^1, A_{j_k} x \rangle + \sum_{j_i \in \tilde{I}} \tilde{z}_{j_i}^1 B_{j_i} x - p_i \right\}$$

$$- \sum_{j_k \in I} (z_{j_k}^{0*} \gamma_{j_k}^1)^* (z_{j_k}^{1*}) - \sum_{j_i \in \tilde{I}} (\tilde{z}_{j_i}^{0*} \gamma_{j_i}^1)^* (\tilde{z}_{j_i}^{1*})$$

$$- \sum_{j_k \notin I} (0 \cdot \gamma_{j_k}^1)^* (z_{j_k}^{1*}) - \sum_{j_i \notin \tilde{I}} (0 \cdot \gamma_{j_i}^1)^* (\tilde{z}_{j_i}^{1*}).$$
Now, it holds for $jk \in I$ that (see [1])

$$(z_{jk}^* \gamma C_{jk})^*(z_{jk}) = \begin{cases} 0, & \text{if } \gamma C_{jk}^0 (z_{jk}^*) \leq z_{jk}^0, \\
+\infty, & \text{otherwise,} \end{cases}$$

and analogously, it follows for $ji \in \tilde{I}$ that

$$(z_{ji}^* \gamma C_{ji})^*(z_{ji}) = \begin{cases} 0, & \text{if } \gamma C_{ji}^0 (z_{ji}^*) \leq z_{ji}^0, \\
+\infty, & \text{otherwise.} \end{cases}$$

For $jk \notin I$ it holds

$$(0 \cdot \gamma C_{jk})^*(z_{jk}^*) = \sup_{y_{jk} \in X} \{\langle z_{jk}^*, y_{jk} \rangle \} = \begin{cases} 0, & \text{if } z_{jk}^* = 0_{X^*}, \\
+\infty, & \text{otherwise,} \end{cases}$$

and analogously, we get for $ji \notin I$,

$$(0 \cdot \gamma C_{ji})^*(z_{ji}^*) = \begin{cases} 0, & \text{if } z_{ji}^* = 0_{X^*}, \\
+\infty, & \text{otherwise.} \end{cases},$$

which implies that if $jk \notin I$, then $z_{jk}^* = 0_{X^*}$ and if $ji \notin I$, then $z_{ji}^* = 0_{X^*}$. Therefore, we obtain for the dual problem of the location problem (P^*):

$$(D^*) \sup_{(z^{0*}, z^{0*}, e^* \gamma, z^{1*}) \in B \times S} \inf \left\{ \sum_{j \in I} \langle z_{jk}^*, A_{jk} x \rangle + \sum_{j \in I} \langle z_{ji}^*, B_{ji} x - p_i \rangle \right\},$$

where

$$B = \left\{ (z^{0*}, z^{0*}, z^{1*}, z^{1*}) \in \mathbb{R}^{|V|} \times \mathbb{R}^{|V|} \times (X^*)^{|V|} \times (X^*)^{|V|} : I \subseteq V, \tilde{I} \subseteq \tilde{V}, \\
z_{jk}^*>0, z_{jk}^* \in X^*, \gamma C_{jk}^0 (z_{jk}^*) \leq z_{jk}^0, jk \in I, z_{ji}^*>0, z_{ji}^* \in X^*, \gamma C_{ji}^0 (z_{ji}^*) \leq z_{ji}^0, ji \in \tilde{I}, \\
z_{0e}^* = 0, z_{ej}^* = 0_{X^*}, ef \notin I, z_{0e}^* = 0, z_{ei}^* \in 0_{X^*}, ed \notin \tilde{I}, \sum_{jk \in I} \frac{1}{w_{jk}} z_{0e}^* + \sum_{ji \in \tilde{I}} \frac{1}{w_{ji}} z_{0e}^* \leq 1 \right\}.$$

Since, the objective function of the conjugate dual problem (D^*) can also be written as

$$\inf_{x \in S} \left\{ \sum_{j \in I} \langle z_{jk}^*, A_{jk} x \rangle + \sum_{j \in I} \langle z_{ji}^*, B_{ji} x - p_i \rangle \right\}$$

$$= \inf_{x \in S} \left\{ \sum_{j \in I} A_{jk}^* z_{jk}^* + \sum_{j \in I} B_{ji}^* z_{ji}^* + x \right\} - \sum_{j \in I} \langle z_{ji}^*, p_i \rangle,$$

where

$$\langle A_{jk}^* z_{jk}^*, x \rangle = (\langle 0_{X^*}, \ldots, 0_{X^*}, \sum_{j \in I} j^*, 0_{X^*}, \ldots, 0_{X^*}, -w_{jk} z_{jk}^0, 0_{X^*}, \ldots, 0_{X^*}, \rangle, (x_1, \ldots, x_m)) = \langle z_{jk}^*, x_j - x_k \rangle.$$
and
\[\langle B_{ji}^* z_{ji}^1, x \rangle = \langle (0x^*, ..., 0x^*, \tilde{z}_{ji}^1, 0x^*, ..., 0x^*), (x_1, ..., x_m) \rangle = \langle \tilde{z}_{ji}^1, x_j \rangle, \]
we can express \((D^M)\) as
\[
(D^M) \sup_{(\tilde{z}^0, \tilde{z}^1) \in B} \left\{ -\sigma_S \left(-\sum_{j_k \in I} A_{j_k}^* z_{j_k}^1 - \sum_{j_i \in I} B_{ji}^* \tilde{z}_{ji}^1 \right) - \sum_{j_i \in I} \langle \tilde{z}_{ji}^1, p_i \rangle \right\}.
\]

Remark 3.1. Take note that the problem \((D^M)\) is equivalent to the following one
\[
(\hat{D}^M) \sup_{(\tilde{z}^0, \tilde{z}^1) \in B} \left\{ -\sigma_S \left(-\sum_{j_k \in V} A_{j_k}^* z_{j_k}^1 - \sum_{j_i \in V} B_{ji}^* \tilde{z}_{ji}^1 \right) - \sum_{j_i \in V} \langle \tilde{z}_{ji}^1, p_i \rangle \right\},
\]
where
\[
\hat{B} = \left\{ (\tilde{z}^0, \tilde{z}^1) \in \mathbb{R}^{V|V|} \times \mathbb{R}^{V|V|} \times (X^*)^{|V|} \times (X^*)^{|V|} : \gamma_{C_{jki}}^0 (\tilde{z}_{ji}^1) \leq z_{jk}^0, j_i \in V, \right. \\
\left. \gamma_{C_{jki}}^0 (\tilde{z}_{ji}^1) \leq z_{jk}^0, j_i \in \hat{V}, \sum_{j_k \in V} \frac{1}{w_{j_k}} z_{jk}^0 + \sum_{j_i \in V} \frac{1}{w_{j_i}} z_{jk}^0 \leq 1 \right\},
\]
which can be proven as follows.

Let \((\tilde{z}^0, \tilde{z}^1, \tilde{z}^1) \in \hat{B}\) be a feasible solution of \((\hat{D}^M)\), then it holds for \(j_k \in I\) and \(j_i \notin I\),
\[
0 \leq \gamma_{C_{jki}}^0 (\tilde{z}_{ji}^1) = \sup_{x \in C_{jki}} \langle z_{jk}^1, x \rangle = 0 \leftrightarrow \langle \tilde{z}_{ji}^1, x \rangle = 0 \forall x \in C_{jki} \Rightarrow \tilde{z}_{ji}^1 = 0x^*.
\]
as well as
\[
0 \leq \gamma_{C_{jki}}^0 (\tilde{z}_{ji}^1) = \sup_{x \in \tilde{C}_{jki}} \langle \tilde{z}_{ji}^1, x \rangle = 0 \leftrightarrow \langle z_{ji}^1, x \rangle = 0 \forall x \in \tilde{C}_{jki} \Rightarrow \tilde{z}_{ji}^1 = 0x^*.
\]
The latter implies that from \(j_k \notin I\), i.e. \(z_{jk}^0 = 0\), follows \(z_{jk}^1 = 0x^*\) and from \(j_i \notin \hat{I}\), i.e. \(\tilde{z}_{ji}^0 = 0\), \(\tilde{z}_{ji}^1 = 0x^*\). This relation means that \(\hat{B} = B\), i.e. that \((\tilde{z}^0, \tilde{z}^1, \tilde{z}^1)\) is also a feasible solution of \((D^M)\) and as
\[
\sigma_S \left(-\sum_{j_k \in V} A_{j_k}^* \tilde{z}_{j_k}^1 - \sum_{j_i \in V} B_{ji}^* \tilde{z}_{ji}^1 \right) + \sum_{j_i \in V} \langle \tilde{z}_{ji}^1, p_i \rangle
\]
\[
= \sigma_S \left(-\sum_{j_k \in I} A_{j_k}^* \tilde{z}_{j_k}^1 - \sum_{j_i \in I} B_{ji}^* \tilde{z}_{ji}^1 \right) + \sum_{j_i \in I} \langle \tilde{z}_{ji}^1, p_i \rangle,
\]
one has immediately that \(v(D^M) = v(\hat{D}^M)\).

Vice versa, if we take a feasible solution \((z^0, \tilde{z}^0, z^1, \tilde{z}^1)\) of the problem \((D^M)\), then it is obvious that we have then also a feasible solution of \((\hat{D}^M)\), which again implies that \(v(D^M) = v(\hat{D}^M)\).

From the theoretical aspect a dual problem of the form \((D^M)\) is very useful, as one has a more detailed characterization of the set of feasible solutions. But from the numerical viewpoint it is complicate to solve, as the index sets \(I\) and \(\hat{I}\) brings an undesirable discretization in the dual problem. For this reason it is preferable to use the dual problem \((\hat{D}^M)\) for numerical and \((D^M)\) for theoretical studies.
We know that the weak duality between the problem \((P^M)\) and its corresponding dual problem \((D^M)\) always holds. Now, we are interested to know whether we also can guarantee strong duality. For this purpose we use the results from Section 2.2. As \(Z = X^m\) ordered by the trivial cone \(Q = X^m\) and \(g : X^m \to X^m\) is defined by \(g(x_1, \ldots, x_m) = (x_1, \ldots, x_m)\), it is obvious that \(g\) is \(Q\)-epi closed and \(0_{X^m} \in \text{sqri}(g(x) + Q) = \text{sqri}(X^m + Q) = X^m\). More than that, recall that \(f\) is lower semicontinuous, \(K_0 = \mathbb{R}_+^{|V|} \times \mathbb{R}_+^{|\tilde{V}|}\) is closed, \(S\) is closed and \(F^1\) is \(\mathbb{R}_+^{|V|} \times \mathbb{R}_+^{|\tilde{V}|}\)-epi closed. As

\[
0_{\mathbb{R}_+^{|V|} \times \mathbb{R}_+^{|\tilde{V}|}} \in \text{sqri}(F^1(\text{dom } F^1) - \text{dom } f + K_0) \\
= \text{sqri}(F^1(\text{dom } F^1) - \mathbb{R}_+^{|V|} \times \mathbb{R}_+^{|\tilde{V}|}) \\
= \mathbb{R}_+^{|V|} \times \mathbb{R}_+^{|\tilde{V}|},
\]

\[
0_{X^{|V|} \times X^{|\tilde{V}|}} \in \text{sqri}(F^2(\text{dom } F^2) - \text{dom } F^1 + K_1) \\
= \text{sqri}(X^{|V|} \times X^{|\tilde{V}|} - \text{dom } F^1 + K_1) = X^{|V|} \times X^{|\tilde{V}|},
\]

and \(F^2\) is \(0_{X^{|V|} \times X^{|\tilde{V}|}}\)-epi closed, the generalized interior point regularity condition \((RC)\) is fulfilled, it follows by Theorem 2.2 the following statement (note that we denote by \(v(P^M)\) and \(v(D^M)\) the optimal objective values of the problems \((P^M)\) and \((D^M)\), respectively).

Theorem 3.1. (strong duality) Between \((P^M)\) and \((D^M)\) holds strong duality, i.e. \(v(P^M) = v(D^M)\) and the conjugate dual problem has an optimal solution.

The previous theorem implies the following necessary and sufficient optimality conditions for the primal-dual pair \((P^M)-(D^M)\).

Theorem 3.2. (optimality conditions) \((a)\) Let \(\pi \in S\) be an optimal solution of the problem \((P^M)\). Then there exist \((\pi^0, \tilde{\pi}^0, \pi^1, \tilde{\pi}^1) \in \mathbb{R}_+^{|V|} \times \mathbb{R}_+^{|\tilde{V}|} \times (X^*)^{|V|} \times (X^*)^{|\tilde{V}|}\) and index sets \(\mathcal{I}\) and \(\mathcal{I}^\perp\) an optimal solution to \((D^M)\), such that

\[
(i) \quad \max \left\{ w_x f_{\gamma_{e,j}}(\pi_e - \pi_j), \; e \in \mathcal{I}, \; \tilde{w}_{ed} \gamma_{c,ed}(\pi_e - p_d), \; ed \in \tilde{\mathcal{I}} \right\} \\
= \sum_{jk \in \mathcal{I}} \tilde{z}^0_{jk} \gamma_{c,jk}(\pi_j - \pi_k) + \sum_{ji \in \mathcal{I}^\perp} \tilde{z}^0_{ji} \gamma_{c,ji}(\pi_j - p_i),
\]

\[
(ii) \quad \left\{ \sum_{jk \in \mathcal{I}} A^*_j k^1_{jk} + \sum_{ji \in \mathcal{I}^\perp} B^*_j k^1_{ji}, \pi \right\} = \inf_{x \in \mathcal{S}} \left\{ \sum_{jk \in \mathcal{I}} A^*_j k^1_{jk} + \sum_{ji \in \mathcal{I}^\perp} B^*_j k^1_{ji}, x \right\},
\]

\[
(iii) \quad \sum_{jk \in \mathcal{I}} \frac{1}{w_{jk}} \tilde{z}^0_{jk} + \sum_{ji \in \mathcal{I}^\perp} \frac{1}{w_{ji}} \tilde{z}^0_{ji} = 1, \; \frac{1}{w_{jk}} > 0, \; \frac{1}{w_{ji}} > 0, \; jk \in \mathcal{I}, \; ji \in \mathcal{I}^\perp \text{ and } \tilde{z}^0_{ef} = 0, \; ef \notin \mathcal{I},
\]

\[
(iv) \quad \tilde{z}^0_{jk} \gamma_{c,jk}(\pi_j - \pi_k) = (\pi^1_{jk}, \pi_j - \pi_k), \; jk \in \mathcal{I},
\]

\[
(v) \quad \tilde{z}^0_{ji} \gamma_{c,ji}(\pi_j - p_i) = (\tilde{z}^1_{ji}, \pi_j - p_i), \; ji \in \mathcal{I}^\perp,
\]

12
(vi) \[\max \left\{ w_{ef} \gamma_{C,ef} (\bar{x}_e - \bar{x}_f), \; ef \in V, \; \bar{w}_{ed} \gamma_{C,ed} (\bar{x}_e - p_d), \; ed \in \tilde{V} \right\} = w_{jk} \gamma_{C,jk} (\bar{x}_j - \bar{x}_k), \; jk \in \tilde{T}, \]

(vii) \[\max \left\{ w_{ef} \gamma_{C,ef} (\bar{x}_e - \bar{x}_f), \; ef \in V, \; \bar{w}_{ed} \gamma_{C,ed} (\bar{x}_e - p_d), \; ed \in \tilde{V} \right\} = \bar{w}_{ji} \gamma_{C,ji} (\bar{x}_j - p_i), \; ji \in \tilde{T}, \]

(viii) \[\gamma_{C,jk} (\bar{z}^1_{jk}) = z^0_{jk}, \; \bar{z}^1_{jk} \in X^*, \; jk \in \tilde{T} \text{ and } \bar{z}^1_{ef} = 0 X^*, \; ef \notin \tilde{T}, \]

(ix) \[\gamma_{C,ji} (\bar{z}^1_{ji}) = \bar{z}^0_{ji}, \; \bar{z}^1_{ji} \in X^*, \; ji \in \tilde{T} \text{ and } \bar{z}^1_{ed} = 0 X^*, \; ed \notin \tilde{T}. \]

(b) If there exists \(\bar{x} \in S \) such that for some \((\bar{z}^0, \bar{z}^0, \bar{z}^1, \bar{z}^1, \tilde{T}, \tilde{T})\) the conditions (i)-(ix) are fulfilled, then \(\bar{x} \) is an optimal solution of \((P^C), (\bar{z}^0, \bar{z}^0, \bar{z}^1, \bar{z}^1, \tilde{T}, \tilde{T})\) is an optimal solution of \((D^M)\) and \(v(P^C) = v(D^M).\)

Proof. (a) From Theorem 2.3 one gets

(i) \[\max \left\{ w_{ef} \gamma_{C,ef} (\bar{x}_e - \bar{x}_f), \; ef \in V, \; \bar{w}_{ed} \gamma_{C,ed} (\bar{x}_e - p_d), \; ed \in \tilde{V} \right\} = \sum_{jk \in \tilde{T}} \bar{z}^0_{jk} \gamma_{C,jk} (\bar{x}_j - \bar{x}_k) + \sum_{ji \in \tilde{I}} \bar{z}^0_{ji} \gamma_{C,ji} (\bar{x}_j - p_i), \]

(ii) \[\sum_{jk \in \tilde{T}} \bar{z}^0_{jk} \gamma_{C,jk} (\bar{x}_j - \bar{x}_k) + \sum_{ji \in \tilde{I}} \bar{z}^0_{ji} \gamma_{C,ji} (\bar{x}_j - p_i) = \sum_{jk \in \tilde{T}} (\bar{x}^1_{jk} \bar{x}_j - \bar{x}_k) + \sum_{ji \in \tilde{I}} (\bar{x}^1_{ji} \bar{x}_j - p_i), \]

(iii) \[\left(\sum_{jk \in \tilde{T}} A^*_{jk} \bar{x}^1_{jk} + \sum_{ji \in \tilde{I}} B^*_{ji} \bar{x}^1_{ji}, \; \bar{x} \right) = -\sigma_S \left(-\sum_{jk \in \tilde{T}} A^*_{jk} \bar{x}^1_{jk} - \sum_{ji \in \tilde{I}} B^*_{ji} \bar{x}^1_{ji} \right), \]

(iv) \[\sum_{jk \in \tilde{T}} \bar{z}^0_{jk} \bar{A}^*_{jk} + \sum_{ji \in \tilde{I}} \bar{z}^0_{ji} \bar{B}^*_{ji} \leq 1, \; \bar{z}^0_{jk} > 0, \; jk \in \tilde{T}, \; \bar{z}^0_{ji} > 0, \; ji \in \tilde{I} \text{ and } \bar{z}^0_{ed} = 0, \; ef \notin \tilde{T}, \]

(v) \[\gamma_{C,jk} (\bar{z}^1_{jk}) \leq \bar{z}^0_{jk}, \; \bar{z}^1_{jk} \in X^*, \; jk \in \tilde{T} \text{ and } \bar{z}^1_{ef} = 0 X^*, \; ef \notin \tilde{T}, \]

(vi) \[\gamma_{C,ji} (\bar{z}^1_{ji}) \leq \bar{z}^0_{ji}, \; \bar{z}^1_{ji} \in X^*, \; ji \in \tilde{T} \text{ and } \bar{z}^1_{ed} = 0 X^*, \; ed \notin \tilde{T}. \]

Condition (ii) yields

\[\sum_{jk \in \tilde{T}} [\bar{z}^0_{jk} \gamma_{C,jk} (\bar{x}_j - \bar{x}_k) - (\bar{z}^1_{jk} \bar{x}_j - \bar{x}_k)] + \sum_{ji \in \tilde{I}} [\bar{z}^0_{ji} \gamma_{C,ji} (\bar{x}_j - p_i) - (\bar{z}^1_{ji} \bar{x}_j - p_i)] = 0 \] (5)

and by (3), (4) and the Young-Fenchel inequality it follows that the brackets in (5) are non-negative and must be equal to zero, i.e.

\[\bar{z}^0_{jk} \gamma_{C,jk} (\bar{x}_j - \bar{x}_k) = (\bar{z}^1_{jk} \bar{x}_j - \bar{x}_k), \; jk \in \tilde{T} \text{ and } \bar{z}^0_{ji} \gamma_{C,ji} (\bar{x}_j - p_i) = (\bar{z}^1_{ji} \bar{x}_j - p_i), \; ji \in \tilde{T}. \] (6)

Combining the condition (v) with (4) reveals by using the generalized Cauchy-Schwarz inequality (see 2) that

\[\bar{z}^0_{jk} \gamma_{C,jk} (\bar{x}_j - \bar{x}_k) \leq \gamma_{C,jk} (\bar{z}^1_{jk}) \gamma_{C,jk} (\bar{x}_j - \bar{x}_k) \leq \bar{z}^0_{jk} \gamma_{C,jk} (\bar{x}_j - \bar{x}_k), \; jk \in \tilde{T}, \]
which means that

$$
\gamma_{C_{jk}}(z_{jk}^{1*}) = z_{jk}^{0*}, \; jk \in I.
$$

(7)

In the same way we get

$$
\gamma_{C_{ji}}(z_{ji}^{1*}) = z_{ji}^{0*}, \; ji \in I.
$$

(8)

Moreover, by conditions (i) and (iv) we have

$$
\max_{\{ \sum z_{jk}^{0*} \}} = 0
$$

$$
\sum_{jk \in I} \frac{1}{w_{jk}} z_{jk}^{0*} \left(\gamma_{C_{jk}}(\pi_j - \pi_k) + \sum_{ji \in I} \frac{1}{w_{ji}} \tilde{z}_{ji}^{0*} \gamma_{C_{ji}}(\pi_j - p_i) \right)
$$

$$
\sum_{jk \in I} \frac{1}{w_{jk}} z_{jk}^{0*} \max \left\{ w_{ef} \gamma_{C_{ef}}(\pi_e - \pi_f), \; ef \in V, \; \tilde{w}_{ed} \gamma_{C_{ed}}(\pi_e - p_d), \; ed \in \tilde{V} \right\}
$$

$$
+ \sum_{ji \in I} \frac{1}{w_{ji}} \tilde{z}_{ji}^{0*} \max \left\{ w_{ef} \gamma_{C_{ef}}(\pi_e - \pi_f), \; ef \in V, \; \tilde{w}_{ed} \gamma_{C_{ed}}(\pi_e - p_d), \; ed \in \tilde{V} \right\}
$$

$$
\leq \max \left\{ w_{ef} \gamma_{C_{ef}}(\pi_e - \pi_f), \; ef \in V, \; \tilde{w}_{ed} \gamma_{C_{ed}}(\pi_e - p_d), \; ed \in \tilde{V} \right\},
$$

(10)

which implies that

$$
\sum_{jk \in I} \frac{1}{w_{jk}} z_{jk}^{0*} \left[\max \left\{ w_{ef} \gamma_{C_{ef}}(\pi_e - \pi_f), \; ef \in V, \; \tilde{w}_{ed} \gamma_{C_{ed}}(\pi_e - p_d), \; ed \in \tilde{V} \right\} - w_{jk} \gamma_{C_{jk}}(\pi_j - \pi_k) \right]
$$

$$
+ \sum_{ji \in I} \frac{1}{w_{ji}} \tilde{z}_{ji}^{0*} \left[\max \left\{ w_{ef} \gamma_{C_{ef}}(\pi_e - \pi_f), \; ef \in V, \; \tilde{w}_{ed} \gamma_{C_{ed}}(\pi_e - p_d), \; ed \in \tilde{V} \right\} - \tilde{w}_{ji} \gamma_{C_{ji}}(\pi_j - p_i) \right]
$$

$$
= 0
$$

and as \(w_{jk}, \; z_{jk}^{0*} > 0, \; jk \in I, \) and \(\tilde{w}_{ji}, \; \tilde{z}_{ji}^{0*} > 0, \; ji \in \tilde{I}, \) it follows that

$$
\max \left\{ w_{ef} \gamma_{C_{ef}}(\pi_e - \pi_f), \; ef \in V, \; \tilde{w}_{ed} \gamma_{C_{ed}}(\pi_e - p_d), \; ed \in \tilde{V} \right\} = w_{jk} \gamma_{C_{jk}}(\pi_j - \pi_k), \; ik \in I
$$

(11)

and

$$
\max \left\{ w_{ef} \gamma_{C_{ef}}(\pi_e - \pi_f), \; ef \in V, \; \tilde{w}_{ed} \gamma_{C_{ed}}(\pi_e - p_d), \; ed \in \tilde{V} \right\} = \tilde{w}_{ji} \gamma_{C_{ji}}(\pi_j - p_i), \; ji \in \tilde{I}.
$$

(12)

Furthermore, we get by ([10]) that

$$
\sum_{jk \in I} \frac{1}{w_{jk}} z_{jk}^{0*} \left\{ w_{ef} \gamma_{C_{ef}}(\pi_e - \pi_f), \; ef \in V, \; \tilde{w}_{ed} \gamma_{C_{ed}}(\pi_e - p_d), \; ed \in \tilde{V} \right\}
$$

$$
+ \sum_{ji \in I} \frac{1}{w_{ji}} \tilde{z}_{ji}^{0*} \left\{ w_{ef} \gamma_{C_{ef}}(\pi_e - \pi_f), \; ef \in V, \; \tilde{w}_{ed} \gamma_{C_{ed}}(\pi_e - p_d), \; ed \in \tilde{V} \right\}
$$

$$
= \max \left\{ w_{ef} \gamma_{C_{ef}}(\pi_e - \pi_f), \; ef \in V, \; \tilde{w}_{ed} \gamma_{C_{ed}}(\pi_e - p_d), \; ed \in \tilde{V} \right\},
$$
from which follows that
\[
\sum_{j_k \in T} \frac{1}{w_{j_k}} z_0^j + \sum_{j_i \in \tilde{T}} \frac{1}{w_{j_i}} \tilde{z}_0^{j_i} = 1. \quad (13)
\]
Combining now the conditions (i)-(vi) with (6), (7), (8), (11), (12) and (13) provides us the desired conclusion.
(b) The calculations made in (a) can also be done in the reverse direction, which completes the proof. □

Remark 3.2. We want to point out that the optimality condition (i) of the previous theorem can be expressed by means of the subdifferential. We have
\[
f(y^0, \tilde{y}^0) = \begin{cases}
\max \left\{ \sum_{j_k \in V} \frac{1}{w_{j_k}} x^{0|j_k}, \sum_{j_i \in \tilde{V}} \frac{1}{w_{j_i}} \tilde{x}^{0|j_i} \right\}, & \text{if } (y^0, \tilde{y}^0) \in \mathbb{R}^{|V|}_+ \times \mathbb{R}^{|\tilde{V}|}_+, \\
+\infty & \text{otherwise},
\end{cases}
\]
and
\[
f^*(z^{0*}, \tilde{z}^{0*}) = \begin{cases}
0, & \text{if } \sum_{j_k \in V} \frac{1}{w_{j_k}} x^{0*|j_k} + \sum_{j_i \in \tilde{V}} \frac{1}{w_{j_i}} \tilde{x}^{0*|j_i} \leq 1, \ z^{0*} \in \mathbb{R}^{|V|}_+, \ \tilde{z}^{0*} \in \mathbb{R}^{|\tilde{V}|}_+, \\
+\infty & \text{otherwise},
\end{cases}
\]
and by the optimality condition (i) of the previous theorem, it holds
\[
f \left((\gamma C_{ef}(x_e - \bar{f}))_{ef \in \mathcal{V}}, (\gamma C_{ed}(x_e - p_d))_{ed \in \mathcal{V}} \right) = \sum_{j_k \in V} \gamma_{C_{jk}}(x_{j_k} - \bar{f}) + \sum_{j_i \in \tilde{V}} \gamma_{C_{j_i}}(x_{j_i} - p_i),
\]
in other words, the optimality condition (i) can be rewritten as
\[
(i) \ (z^{0*}, \tilde{z}^{0*}) \in \partial f \left((\gamma C_{ef}(x_e - \bar{f}))_{ef \in \mathcal{V}}, (\gamma C_{ed}(x_e - p_d))_{ed \in \mathcal{V}} \right).
\]
More than that, for the optimality conditions (ii), (iv) and (v) one gets by analog considerations
\[
(ii) - \sum_{j_k \in \mathcal{T}} A^*_j z_j^{1*} - \sum_{j_i \in \tilde{T}} B^*_j z_{j_i}^{1*} \in \partial \mathcal{D}(\mathbf{x}) = N_S(\mathbf{x}),
\]
\[
(iv) \ z_j^{1*} \in \partial (z_{j_k}^{0*} C_{j_k})(x_j - \bar{f}) = \partial (z_{j_k}^{0*} C_{j_k})(A^*_j \bar{f}) \Leftrightarrow A^*_j z_j^{1*} \in A^*_j \partial ((z_{j_k}^{0*} C_{j_k}) \circ A_j)(x_j), j_k \in \mathcal{T},
\]
\[
(v) \ z_{j_i}^{1*} \in \partial (z_{j_i}^{0*} C_{j_i})(x_i - \bar{f}_i) = \partial (z_{j_i}^{0*} C_{j_i})(B^*_j \bar{f} - p_i) \\
\Leftrightarrow B^*_j z_{j_i}^{1*} \in B^*_j \partial ((z_{j_i}^{0*} C_{j_i}) \circ B_j)(- p_i)(x_j), j_i \in \tilde{T},
\]
where \(N_S(\mathbf{x}) := \{ x^* = (x_1^*, ..., x_m^*) \in X^* \times ... \times X^* : \langle x^*, y - \mathbf{x} \rangle = \sum_{i=1}^m \langle x_i^*, y_i - \mathbf{x}_i \rangle \leq 0, \forall y = (y_1, ..., y_m) \in S \} \) is the normal cone of the set \(S \) at \(\mathbf{x} \in X^m\). Taking (ii), (iv) and (v) together
implies that
\[
\sum_{jk \in I} A_{jk}^* z_{jk}^* + \sum_{ji \in \tilde{I}} B_{ji}^* \tilde{z}_{ji}^* \in
\left(\sum_{jk \in I} A_{jk}^* \partial((\tilde{z}_{jk}^0 \gamma_{C_{jk}}) \circ A_{jk})(\pi) + \sum_{ji \in \tilde{I}} B_{ji}^* \partial\left((\tilde{z}_{ji}^0 \gamma_{C_{ji}}) \circ B_{ji})(\cdot - p_i)\right)(\pi)\right) \cap (-N_S(\pi)).
\]

Finally, notice that the optimality conditions (iv), (v), (viii) and (ix) of the previous theorem give a detailed characterization of the subdifferentials of the associated gauges.

Now, we show that the dual problem \((\widetilde{D}^M)\) is equivalent to the problem
\[
(\widetilde{D}^M) \quad \sup_{(z^*, \tilde{z}^*) \in B} \left\{ -\sigma_S \left(-\sum_{jk \in I} A_{jk}^* z_{jk}^* - \sum_{ji \in \tilde{I}} B_{ji}^* \tilde{z}_{ji}^* \right) - \sum_{ji \in \tilde{I}} \langle \tilde{z}_{ji}^*, p_i \rangle \right\}, \tag{14}
\]
where \((z^*, \tilde{z}^*) = \left((z_{jk}^*, \tilde{z}_{ji}^*)_{jk \in V}, (\tilde{z}_{ji}^*)_{ji \in \tilde{V}} \right)\) and
\[
B = \left\{ \left((z_{jk}^*, \tilde{z}_{ji}^*)_{jk \in V}, (\tilde{z}_{ji}^*)_{ji \in \tilde{V}} \right) \in (X^*)^{|V|} \times (X^*)^{|\tilde{V}|} : I \subseteq V, \tilde{I} \subseteq \tilde{V}, \sum_{jk \in I} \frac{1}{w_{jk}} \gamma_{C^0_{jk}} (z_{jk}^*) + \sum_{ji \in \tilde{I}} \frac{1}{w_{ji}} \gamma_{C^0_{ji}} (\tilde{z}_{ji}^*) \leq 1, z_{jk}^* \in X^*, \ jk \in I, \tilde{z}_{ji}^* \in X^*, \ ji \in \tilde{I} \text{ and } z_{e_f}^* = 0_{X^*}, \ e_f \notin I, \tilde{z}_{e_d}^* = 0_{X^*}, \ ed \notin \tilde{I} \right\},
\]
in the sense of the next theorem, where \(v(\widetilde{D}^M)\) denotes the optimal objective value of the problem \((\widetilde{D}^M)\).

Theorem 3.3. It holds \(v(D^M) = v(\widetilde{D}^M)\).

Proof. Let \((z^*, \tilde{z}^*)\) be a feasible element to \((\widetilde{D}^M)\) and set
\[
z_{jk}^{1*} = z_{jk}^*, \ z_{jk}^{0*} = \gamma_{C^0_{jk}} (z_{jk}^*) \text{ for } jk \in I, \ z_{e_f}^{1*} = 0_{X^*}, \ z_{e_f}^{0*} = 0 \text{ for } ef \notin I,
\]
and
\[
\tilde{z}_{ji}^{1*} = \tilde{z}_{ji}^*, \ \tilde{z}_{ji}^{0*} = \gamma_{C^0_{ji}} (\tilde{z}_{ji}^*) \text{ for } ji \in \tilde{I}, \ \tilde{z}_{e_d}^{1*} = 0_{X^*}, \ \tilde{z}_{e_d}^{0*} = 0 \text{ for } ed \notin \tilde{I}.
\]
Then, it is clear that \((z^{0*}, \tilde{z}^{0*}, z^{1*}, \tilde{z}^{1*})\) is a feasible element to \((D^M)\). Furthermore, it holds
\[
-\sigma_S \left(-\sum_{jk \in I} A_{jk}^* z_{jk}^{1*} - \sum_{ji \in \tilde{I}} B_{ji}^* \tilde{z}_{ji}^{1*} \right) - \sum_{ji \in \tilde{I}} \langle \tilde{z}_{ji}^{1*}, p_i \rangle = -\sigma_S \left(-\sum_{jk \in I} A_{jk}^* z_{jk}^{1*} - \sum_{ji \in \tilde{I}} B_{ji}^* \tilde{z}_{ji}^{1*} \right) - \sum_{ji \in \tilde{I}} \langle \tilde{z}_{ji}^{1*}, p_i \rangle \leq v(D^M),
\]
for all \((z^*, \tilde{z}^*)\) feasible to \((\widetilde{D}^M)\), from which follows that \(v(\widetilde{D}^M) \leq v(D^M)\).

Now, let \((z^{0*}, \tilde{z}^{0*}, z^{1*}, \tilde{z}^{1*})\) be feasible element to \((D^M)\). By a careful look at the constraint set
We get by setting $z_{jk}^* = 1_{jk}$ for $jk \in I$, $z_{ji}^* = \tilde{z}_{ji}^*$ for $ji \in \tilde{I}$ and $z_{ef}^* = 0_X$, for $ef \notin \tilde{I}$, that

$$\sum_{jk \in I} \frac{1}{w_{jk}} \gamma_{C_{jk}}(z_{jk}^*) + \sum_{ji \in I} \frac{1}{w_{ji}} \gamma_{C_{ji}}(z_{ji}^*) \leq 1.$$

Therefore, (z^*, \tilde{z}^*) is feasible to (\tilde{D}^M) and we have

$$-\sigma_S \left(- \sum_{jk \in I} A_{jk}^* z_{jk}^* - \sum_{ji \in I} B_{ji}^* \tilde{z}_{ji}^* \right) = \sum_{ji \in I} (\tilde{z}_{ji}^*)^T \gamma_{C_{ji}}(\tilde{z}_{ji}^*) \leq v(\tilde{D}^M),$$

for all $(z^{0*}, \tilde{z}^{0*}, z^{1*}, \tilde{z}^{1*})$ feasible to (D^M), i.e. $v(D^M) \leq v(\tilde{D}^M)$, which completes the proof.

The next two theorems are direct consequences of Theorem 3.3.

Theorem 3.4. (Strong duality) Between (P^M) and (\tilde{D}^M) holds strong duality, i.e. $v(P^M) = v(\tilde{D}^M)$ and the dual problem has an optimal solution.

Theorem 3.5. (Optimality conditions) (a) Let $\pi \in S$ be an optimal solution of the problem (P^M). Then there exist $(\pi^*, \tilde{\pi}^*) \in (X^*)^{\mid V \mid} \times (X^*)^{\mid \tilde{V} \mid}$ and index sets \tilde{I} and \tilde{I} as an optimal solution to (\tilde{D}^M), such that

(i) $\max \left\{ w_{ef} \gamma_{C_{ef}}(\pi_e - \pi_f), \; \pi \in V, \tilde{\pi} \in \tilde{V} \right\} = \sum_{jk \in I} \gamma_{C_{jk}}(\pi_{jke}) \gamma_{C_{jk}}(\pi_{jke} - p_{jke}) + \sum_{ji \in I} \gamma_{C_{ji}}(\tilde{\pi}_{ji}) \gamma_{C_{ji}}(\pi_{ji} - p_{ji}),$

(ii) $\left(\sum_{jk \in I} A_{jk}^* \pi_{jk}^* + \sum_{ji \in I} B_{ji}^* \tilde{\pi}_{ji}^* \right) = -\sigma_S \left(\sum_{jk \in I} A_{jk}^* \pi_{jk}^* + \sum_{ji \in I} B_{ji}^* \tilde{\pi}_{ji}^* \right),$

(iii) $\gamma_{C_{jk}}(\pi_{jk}) \gamma_{C_{jk}}(\pi_{jk} - p_{jk}) = \langle \pi_{jk}, \pi_{jk} - p_{jk} \rangle,$ $jk \in \tilde{I},$

(iv) $\gamma_{C_{ji}}(\pi_{ji}) \gamma_{C_{ji}}(\pi_{ji} - p_{ji}) = \langle \pi_{ji}, \pi_{ji} - p_{ji} \rangle,$ $ji \in \tilde{I},$

(v) $\max \left\{ w_{ef} \gamma_{C_{ef}}(\pi_e - \pi_f), \; \pi \in V, \tilde{\pi} \in \tilde{V} \right\} = w_{jk} \gamma_{C_{jk}}(\pi_{jk} - \pi_{jk}),$ $jk \in \tilde{I},$

(vi) $\max \left\{ w_{ef} \gamma_{C_{ef}}(\pi_e - \pi_f), \; \pi \in V, \tilde{\pi} \in \tilde{V} \right\} = \tilde{w}_{ji} \gamma_{C_{ji}}(\pi_{ji} - p_{ji}),$ $ji \in \tilde{I},$

(vii) $\sum_{jk \in I} \frac{1}{w_{jk}} \gamma_{C_{jk}}(\pi_{jk}) + \sum_{ji \in I} \frac{1}{w_{ji}} \gamma_{C_{ji}}(\tilde{\pi}_{ji}) = 1,$ $\gamma_{C_{jk}}(\pi_{jk}^*) > 0,$ $jk \in \tilde{I},$ $\gamma_{C_{ji}}(\tilde{\pi}_{ji}^*) > 0,$ $ji \in \tilde{I},$ and

$$\pi_{ef}^* = 0_X, \quad \tilde{\pi}_{ed}^* = 0_X, \quad ed \notin \tilde{I}.$$

(b) If there exists $\pi \in S$ such that for some $(\pi^*, \tilde{\pi}^*, \tilde{I}, \tilde{I})$ the conditions (i)-(vii) are fulfilled, then π is an optimal solution of (P^M), $(\pi^*, \tilde{\pi}^*, \tilde{I}, \tilde{I})$ is an optimal solution for (\tilde{D}^M) and $v(P^M) = v(\tilde{D}^M)$.

17
Proof. (a) Theorem 3.4 implies for an optimal solution \(\pi \in S \) of \((P^M)\) the existence of \((\pi^*, \bar{\pi}^*) \in (X^*)^{|V|} \times (X^*)^{|V|}\) and index sets \(I\) and \(\bar{I}\), an optimal solution to \((\bar{D}^M)\), such that \(v(P^M) = v(D^M)\), i.e.

\[
\max \left\{ w_{ef} \gamma_{C_{ej}}(\pi_e - \pi_f), \; ef \in V, \; \tilde{w}_{ed} \gamma_{C_{ed}}(\pi_e - p_d), \; ed \in \tilde{V} \right\} = -\sigma_S \left(- \sum_{j \in I} A^*_{j} \bar{x}^{*}_{j} - \sum_{j \in \bar{I}} B^*_{j} \bar{x}^{*}_{j} \right) - \sum_{j \in I} (\bar{x}^{*}_{j}, p_i) \\
\Leftrightarrow \max \left\{ w_{ef} \gamma_{C_{ej}}(\pi_e - \pi_f), \; ef \in V, \; \tilde{w}_{ed} \gamma_{C_{ed}}(\pi_e - p_d), \; ed \in \tilde{V} \right\} + \sigma_S \left(- \sum_{j \in I} A^*_{j} \bar{x}^{*}_{j} - \sum_{j \in \bar{I}} B^*_{j} \bar{x}^{*}_{j} \right) + \sum_{j \in I} (\bar{x}^{*}_{j}, p_i) = 0 \\
\Leftrightarrow \max \left\{ w_{ef} \gamma_{C_{ej}}(\pi_e - \pi_f), \; ef \in V, \; \tilde{w}_{ed} \gamma_{C_{ed}}(\pi_e - p_d), \; ed \in \tilde{V} \right\} + \sigma_S \left(- \sum_{j \in I} A^*_{j} \bar{x}^{*}_{j} - \sum_{j \in \bar{I}} B^*_{j} \bar{x}^{*}_{j} \right) + \sum_{j \in I} (\bar{x}^{*}_{j}, p_i) \\
+ \sum_{j \in I} [\gamma_{C_{j}^0}(\bar{x}^{*}_{j}) \gamma_{C_{j}}(\pi_j - \pi_k) - (\bar{x}^{*}_{j}, \pi_j - \pi_k)] - \sum_{j \in \bar{I}} [\gamma_{C_{j}^0}(\bar{x}^{*}_{j}) \gamma_{C_{j}}(\pi_j - \pi_k) - (\bar{x}^{*}_{j}, \pi_j - \pi_k)] \\
- \sum_{j \in I} \gamma_{C_{j}^0}(\bar{x}^{*}_{j}) \gamma_{C_{j}}(\pi_j - \pi_k) - (\bar{x}^{*}_{j}, \pi_j - \pi_k)] = 0 \\
\Leftrightarrow \left\{ \begin{array}{l}
\max \left\{ (w_{ef} \gamma_{C_{ej}}(\pi_e - \pi_f))_{e,f \in V}, (\tilde{w}_{ed} \gamma_{C_{ed}}(\pi_e - p_d))_{e,d \in \tilde{V}} \right\} \\
- \sum_{j \in I} \gamma_{C_{j}^0}(\bar{x}^{*}_{j}) \gamma_{C_{j}}(\pi_j - \pi_k) - \sum_{j \in \bar{I}} \gamma_{C_{j}^0}(\bar{x}^{*}_{j}) \gamma_{C_{j}}(\pi_j - p_i) \\
+ \sum_{j \in I} \gamma_{C_{j}^0}(\bar{x}^{*}_{j}) \gamma_{C_{j}}(\pi_j - \pi_k) - (\bar{x}^{*}_{j}, \pi_j - \pi_k)] \\
+ \sum_{j \in \bar{I}} \gamma_{C_{j}^0}(\bar{x}^{*}_{j}) \gamma_{C_{j}}(\pi_j - \pi_k) - (\bar{x}^{*}_{j}, \pi_j - \pi_k)] \\
+ \sigma_S \left(- \sum_{j \in I} A^*_{j} \bar{x}^{*}_{j} - \sum_{j \in \bar{I}} B^*_{j} \bar{x}^{*}_{j} \right) + (\bar{x}^{*}_{j}, \pi_j - \pi_k) + (\bar{x}^{*}_{j}, \pi_j - \pi_k)] = 0
\end{array} \right.
\]
\[
\Leftrightarrow \left[\max \left\{ (w_{ef} \gamma_{C_{ef}}(\bar{x}_e - \bar{x}_f))_{ef \in V}, (\tilde{w}_{ed} \gamma_{\tilde{C}_{ed}}(\bar{x}_e - p_d))_{ed \in \tilde{V}} \right\} \\
- \sum_{j \in T} \frac{1}{w_{jk}} \gamma_{C_{jk}}(\bar{z}_{jk})w_{jk} \gamma_{C_{jk}}(\bar{x}_j - \bar{x}_k) - \sum_{j \in T} \frac{1}{w_{ji}} \gamma_{\tilde{C}_{ji}}(\bar{z}_{ji})\tilde{w}_{ji} \gamma_{\tilde{C}_{ji}}(\bar{x}_j - p_i) \\
+ \sum_{j \in T} [\gamma_{C_{jk}}(\bar{z}_{jk})\gamma_{C_{jk}}(\bar{x}_j - \bar{x}_k) - (\bar{z}_{jk}, \bar{x}_j - \bar{x}_k)] \\
+ \sum_{j \in T} [\gamma_{\tilde{C}_{ji}}(\bar{z}_{ji})\gamma_{\tilde{C}_{ji}}(\bar{x}_j - p_i) - (\bar{z}_{ji}, \bar{x}_j - p_i)] \\
+ \left[\sigma_S \left(- \sum_{j \in T} A^*_j \bar{z}_{jk} - \sum_{j \in T} B^*_j \tilde{z}_{ji} \right) + (A^*_j, \tilde{z}_{jk}) + (B^*_j, \tilde{z}_{ji}) \right] = 0.
\]

Lemma 2.2 implies that the first bracket is non-negative, from the generalized Cauchy-Schwarz inequality (see 2) follows that the brackets in the two sums are non-negative and from the Young-Fenchel inequality we get that the last bracket is also non-negative. Hence, the statements (i)-(iv) are proved. Now, we take a careful look at the first bracket

\[
\max \left\{ w_{ef} \gamma_{C_{ef}}(\bar{x}_e - \bar{x}_f), \; ef \in V, \; \tilde{w}_{ed} \gamma_{\tilde{C}_{ed}}(\bar{x}_e - p_d), \; ed \in \tilde{V} \right\} \\
= \sum_{j \in T} \frac{1}{w_{jk}} \gamma_{C_{jk}}(\bar{z}_{jk})w_{jk} \gamma_{C_{jk}}(\bar{x}_j - \bar{x}_k) + \sum_{j \in T} \frac{1}{w_{ji}} \gamma_{\tilde{C}_{ji}}(\bar{z}_{ji})\tilde{w}_{ji} \gamma_{\tilde{C}_{ji}}(\bar{x}_j - p_i) \\
\leq \sum_{j \in T} \frac{1}{w_{jk}} \gamma_{C_{jk}}(\bar{z}_{jk}) \max \left\{ w_{ef} \gamma_{C_{ef}}(\bar{x}_e - \bar{x}_f), \; ef \in V, \; \tilde{w}_{ed} \gamma_{\tilde{C}_{ed}}(\bar{x}_e - p_d), \; ed \in \tilde{V} \right\} \\
+ \sum_{j \in T} \frac{1}{w_{ji}} \gamma_{\tilde{C}_{ji}}(\bar{z}_{ji}) \max \left\{ w_{ef} \gamma_{C_{ef}}(\bar{x}_e - \bar{x}_f), \; ef \in V, \; \tilde{w}_{ed} \gamma_{\tilde{C}_{ed}}(\bar{x}_e - p_d), \; ed \in \tilde{V} \right\} \\
\leq \max \left\{ w_{ef} \gamma_{C_{ef}}(\bar{x}_e - \bar{x}_f), \; ef \in V, \; \tilde{w}_{ed} \gamma_{\tilde{C}_{ed}}(\bar{x}_e - p_d), \; ed \in \tilde{V} \right\},
\]

from which follows on the one hand that

\[
\sum_{j \in T} \frac{1}{w_{jk}} \gamma_{C_{jk}}(\bar{z}_{jk}) + \sum_{j \in T} \frac{1}{w_{ji}} \gamma_{\tilde{C}_{ji}}(\bar{z}_{ji}) = 1,
\]

19
i.e. condition \((vii)\), and on the other hand that
\[
\sum_{jk \in I} \frac{1}{w_{jk}} \gamma_{C_{jk}}(\gamma_{jk}) \max \left\{ w_{ef} \gamma_{C_{ef}}(\bar{x}_{e} - \bar{x}_{f}), \; e, f \in V, \; \bar{w}_{ed} \gamma_{C_{ed}}(\bar{x}_{e} - p_{d}), \; e, d \in \bar{V} \right\} \\
+ \sum_{ji \in \bar{I}} \frac{1}{\bar{w}_{ji}} \gamma_{C_{ji}}(\bar{\gamma}_{ji}) \max \left\{ w_{ef} \gamma_{C_{ef}}(\bar{x}_{e} - \bar{x}_{f}), \; e, f \in V, \; \bar{w}_{ed} \gamma_{C_{ed}}(\bar{x}_{e} - p_{d}), \; e, d \in \bar{V} \right\} \\
= \sum_{jk \in I} \frac{1}{w_{jk}} \gamma_{C_{jk}}(\gamma_{jk}) w_{jk} \gamma_{C_{jk}}(\bar{x}_{j} - \bar{x}_{k}) + \sum_{ji \in \bar{I}} \frac{1}{\bar{w}_{ji}} \gamma_{C_{ji}}(\bar{\gamma}_{ji}) \bar{w}_{ji} \gamma_{C_{ji}}(\bar{x}_{j} - p_{i}) \\
\Leftrightarrow \sum_{jk \in I} \frac{1}{w_{jk}} \gamma_{C_{jk}}(\gamma_{jk}) \left[\max \left\{ w_{ef} \gamma_{C_{ef}}(\bar{x}_{e} - \bar{x}_{f}), \; e, f \in V, \; \bar{w}_{ed} \gamma_{C_{ed}}(\bar{x}_{e} - p_{d}), \; e, d \in \bar{V} \right\} \\
- w_{jk} \gamma_{C_{jk}}(\bar{x}_{j} - \bar{x}_{k}) \right] \\
+ \sum_{ji \in \bar{I}} \frac{1}{\bar{w}_{ji}} \gamma_{C_{ji}}(\bar{\gamma}_{ji}) \left[\max \left\{ w_{ef} \gamma_{C_{ef}}(\bar{x}_{e} - \bar{x}_{f}), \; e, f \in V, \; \bar{w}_{ed} \gamma_{C_{ed}}(\bar{x}_{e} - p_{d}), \; e, d \in \bar{V} \right\} \\
- \bar{w}_{ji} \gamma_{C_{ji}}(\bar{x}_{j} - p_{i}) \right] = 0.
\]

As \(w_{jk}, \gamma_{C_{jk}}(\gamma_{jk}) > 0, \; jk \in I\), as well as \(\bar{w}_{ji}, \gamma_{C_{ji}}(\bar{\gamma}_{ji}) > 0, \; ji \in \bar{I}\), we obtain that the brackets are non-negative and must therefore be equal to zero, which finally yields the conditions \((v)\) and \((vi)\).

(b) All calculation done within part (a) can also be made in the reverse direction. \(\square\)

4 Unconstrained multifacility minimax location problem in the Euclidean space

In this section we are interested in a detailed analysis of the situation when \(S = X^{m}\) and \(X = \mathbb{R}^{d}\) and the gauges are defined by the Euclidean norm. In addition, we set \(w_{jk} = 0\) for \(1 \leq k \leq j \leq m\) such that the index set \(V\) can be represented as \(V = \{ jk : 1 \leq j < k \leq m, \; w_{jk} > 0 \}\), i.e. \(|V| \leq (m/2)(m - 1)\). In other words, we will explore in the following the location problem

\[
(P_{N}^{\mathcal{M}}) \inf_{x_{i} \in \mathbb{R}^{d}, \; i = 1, \ldots, m} \max \left\{ w_{jk} \|x_{j} - x_{k}\|, \; jk \in V, \; \bar{w}_{ji} \|x_{j} - p_{i}\|, \; ji \in \bar{V} \right\}.
\]

For the dual of the location problem \((P_{N}^{\mathcal{M}})\) we get by \([14]\)

\[
(\tilde{D}_{N}^{\mathcal{M}}) \sup_{(z^{*}, \bar{z}^{*}) \in \mathcal{B}_{N}} \left\{ - \sum_{ji \in \bar{I}} \langle \bar{z}_{ji}^{*}, p_{i} \rangle \right\},
\]

\(20\)
The next theorems are direct consequences of the results of the previous section.

Theorem 4.1. (strong duality) Between \((P^*_N)\) and \((\tilde{D}_N^M)\), strong duality holds, i.e. \(v(P^*_N) = v(\tilde{D}_N^M)\) and the dual problem has an optimal solution.

Theorem 4.2. (optimality conditions) (a) Let \((\tilde{x}_1, ..., \tilde{x}_m)\) be an optimal solution of the problem \((P^*_N)\). Then there exist \((\tilde{z}^*, \tilde{z}^*)\) and index sets \(\tilde{I}\) and \(\tilde{I}\) as an optimal solution to \((\tilde{D}_N^M)\), such that

(i) \[
\max \left\{ w_{ef} \|x_e - \tilde{x}_f\|, \; e, f \in V, \tilde{w}_{ef}\|x_e - p_d\|, \; \tilde{e}d \in \tilde{V} \right\} = \sum_{jk \in \tilde{I}} \|\tilde{z}^*_{jk}\|\|\tilde{x}_j - \tilde{x}_k\| + \sum_{ji \in \tilde{I}} \|\tilde{z}^*_{ji}\|\|\tilde{x}_j - p_i\|,
\]

(ii) \[
\sum_{jk \in \tilde{I}} A^*_{jk} \tilde{z}^*_{jk} + \sum_{ji \in \tilde{I}} B^*_{ji} \tilde{z}^*_{ji} = 0_{R^d \times \times R^d},
\]

(iii) \[
\|\tilde{z}^*_{jk}\|\|\tilde{x}_j - \tilde{x}_k\| = \left\langle \tilde{z}^*_{jk}, \tilde{x}_j - \tilde{x}_k \right\rangle, \; jk \in \tilde{I},
\]

(iv) \[
\|\tilde{z}^*_{ji}\|\|\tilde{x}_j - p_i\| = \left\langle \tilde{z}^*_{ji}, \tilde{x}_j - p_i \right\rangle, \; ji \in \tilde{I},
\]

(v) \[
\max \left\{ w_{ef} \|x_e - \tilde{x}_f\|, \; e, f \in V, \tilde{w}_{ef}\|x_e - p_d\|, \; \tilde{e}d \in \tilde{V} \right\} = w_{jk}\|x_j - \tilde{x}_k\|, \; jk \in \tilde{I},
\]

(vi) \[
\max \left\{ w_{ef} \|x_e - \tilde{x}_f\|, \; e, f \in V, \tilde{w}_{ef}\|x_e - p_d\|, \; \tilde{e}d \in \tilde{V} \right\} = \tilde{w}_{ji}\|x_j - p_i\|, \; ji \in \tilde{I},
\]

(vii) \[
\sum_{jk \in \tilde{I}} \frac{1}{w_{jk}} \|\tilde{z}^*_{jk}\| + \sum_{ji \in \tilde{I}} \frac{1}{w_{ji}} \|\tilde{z}^*_{ji}\| = 1, \; \tilde{z}^*_{jk} \in \tilde{R}^d \setminus \{0_{R^d}\} \text{ for } jk \in \tilde{I}, \; \tilde{z}^*_{ji} \in \tilde{R}^d \setminus \{0_{R^d}\} \text{ for } ji \in \tilde{I}
\]

and \(\tilde{z}^*_jk = 0_{R^d}\) for \(jk \notin \tilde{I}\), \(\tilde{z}^*_ji = 0_{R^d}\) for \(ji \notin \tilde{I}\).

(b) If there exists \((\tilde{x}_1, ..., \tilde{x}_m)\) such that for some \((\tilde{z}^*, \tilde{z}^*), \tilde{I}, \tilde{I})\) the conditions (i)-(vii) are fulfilled, then \(\tilde{x}\) is an optimal solution of \((P^*_N)\), \((\tilde{x}^*, \tilde{z}^*), \tilde{I}, \tilde{I})\) is an optimal solution for \((\tilde{D}_N^M)\) and \(v(P^*_N) = v(\tilde{D}_N^M)\).

Remark 4.1. The dual problem \((\tilde{D}_N^M)\) can equivalently be written in the form (see Remark 3.1)

\[
(\tilde{D}_N^M) \sup_{(z^*, \tilde{z}^*) \in \tilde{B}} \left\{ - \sum_{ji \in \tilde{V}} \langle \tilde{z}^*_{ji}, p_i \rangle \right\},
\]
where
\[\tilde{B}_N = \left\{ (z^*, \bar{z}^*) \in (\mathbb{R}^d)^{|V|} \times (\mathbb{R}^d)^{|\tilde{V}|} : \right. \]
\[\sum_{jk \in V} \frac{1}{w_{jk}} \| z^*_{jk} \| + \sum_{ji \in \tilde{V}} \frac{1}{\bar{w}_{ji}} \| \bar{z}^*_{ji} \| \leq 1, \quad \sum_{jk \in V} A^*_j z^*_{jk} + \sum_{ji \in \tilde{V}} B^*_j \bar{z}^*_{ji} = 0 \text{ for } m - \text{times} \} \]

For its corresponding Lagrange dual problem we obtain
\[(\tilde{D\tilde{D}}_N^M) \inf_{x=(x_1, ..., x_m) \in \mathbb{R}^d \times \cdots \times \mathbb{R}^d} \sup_{(z^*, \bar{z}^*) \in \tilde{B}_N} \left\{ - \sum_{ji \in \tilde{V}} \langle \bar{z}^*_{ji}, p_i \rangle + \left\langle x, \sum_{jk \in V} A^T_{jk} z^*_{jk} + \sum_{ji \in \tilde{V}} B^T_{ji} \bar{z}^*_{ji} \right\rangle - \lambda \left(\sum_{jk \in V} \frac{1}{w_{jk}} \| z^*_{jk} \| + \sum_{ji \in \tilde{V}} \frac{1}{\bar{w}_{ji}} \| \bar{z}^*_{ji} \| - 1 \right) \right\} \]
\[= \inf_{x \in \mathbb{R}^d, i=1, ..., m} \left\{ \lambda + \sup_{(z^*, \bar{z}^*) \in \tilde{B}_N} \left\{ - \sum_{ji \in \tilde{V}} \langle \bar{z}^*_{ji}, p_i \rangle + \sum_{jk \in V} \langle x, A^T_{jk} z^*_{jk} \rangle - \sum_{ji \in \tilde{V}} \frac{\lambda}{w_{jk}} \| z^*_{jk} \| - \sum_{ji \in \tilde{V}} \frac{\lambda}{\bar{w}_{ji}} \| \bar{z}^*_{ji} \| \right\} \right\} \]
\[= \inf_{x \in \mathbb{R}^d, i=1, ..., m} \left\{ \lambda + \sum_{jk \in V} \sup_{z^*_{jk} \in \mathbb{R}^d} \left\{ \langle x, A^T_{jk} z^*_{jk} \rangle - \frac{\lambda}{w_{jk}} \| z^*_{jk} \| \right\} \right\} \]
\[+ \sum_{ji \in \tilde{V}} \sup_{\bar{z}^*_{ji} \in \mathbb{R}^d} \left\{ \langle x - x_j, z^*_{jk} \rangle - \frac{\lambda}{w_{jk}} \| z^*_{jk} \| \right\} \]

The case \(\lambda = 0 \) leads to \(x_j - p_i = 0, ji \in \tilde{V}, \) and \(x_j - x_k = 0, jk \in V, \) which contradicts our assumption that the given points \(p_i, i = 1, ..., n, \) are distinct, such that we can assume \(\lambda > 0. \)

For this reason we can write for the Lagrange dual problem, or rather, the bidual of the location problem \((P_N^M), \)
\[(\tilde{D\tilde{D}}_N^M) \inf_{(x_1, ..., x_m) \in \mathbb{R}^d \times \cdots \times \mathbb{R}^d} \left\{ \lambda + \sum_{jk \in V} \frac{\lambda}{w_{jk}} \sup_{z^*_{jk} \in \mathbb{R}^d} \left\{ \langle \frac{w_{jk}}{\lambda} (x_j - x_k), z^*_{jk} \rangle - \| z^*_{jk} \| \right\} \right\} \]
\[+ \sum_{ji \in \tilde{V}} \frac{\lambda}{\bar{w}_{ji}} \sup_{\bar{z}^*_{ji} \in \mathbb{R}^d} \left\{ \langle \frac{\bar{w}_{ji}}{\lambda} (x_j - p_i), \bar{z}^*_{ji} \rangle - \| \bar{z}^*_{ji} \| \right\} \]
\[= \inf_{(x_1, ..., x_m) \in \mathbb{R}^d \times \cdots \times \mathbb{R}^d} \left\{ \lambda \sup_{w_{jk}, \bar{w}_{ji} \in \mathbb{R}^d} \left\{ \frac{w_{jk}}{\lambda} \| x_j - x_k \|, \frac{\bar{w}_{ji}}{\lambda} \| x_j - p_i \|, \right\} \right\} \]
By using the Lagrange dual concept we transformed the dual problem \((\tilde{D}_N^M)\) back into the multifacility minmax location problem \((P_N^M)\), showing that one has a full symmetry between the location problem \((P_N^M)\), its dual problem \((\tilde{D}_N^M)\) and the Lagrange dual problem \((D_N^M)\). In addition, we see that the Lagrange multiplier associated to the equality constraint can be identified as the optimal solution of the multifacility minmax location problem \((P_N^M)\) and the Lagrange multiplier associated to the inequality constraint as the optimal objective value. A similar fact was stated in [15] for the case of a multifacility minimum location problem.

The next corollary gives an estimation of the length of the vectors \(z_{jk}, jk \in V\), and \(\tilde{z}_{ji}, ji \in \tilde{V}\), feasible to the dual problem \((\tilde{D}_N^M)\).

Corollary 4.1. Let \(\overline{w}_s := \max\{ (w_{jk})_{jk \in V}, (w_{ji})_{ji \in \tilde{V}} \} \), then for any feasible solution \((z^*, \tilde{z}^*)\) of the problem \((\tilde{D}_N^M)\) it holds

\[
\|z_{jk}^*\| \leq \frac{\overline{w}_s w_{jk}}{\overline{w}_s + w_{jk}} \quad \text{for} \quad jk \in V \quad \text{and} \quad \|\tilde{z}_{ji}^*\| \leq \frac{\overline{w}_s w_{ji}}{\overline{w}_s + w_{ji}} \quad \text{for} \quad ji \in \tilde{V}.
\]

Proof. As \((z^*, \tilde{z}^*)\) is a feasible solution of \((\tilde{D}_N^M)\), it holds

\[
\sum_{jk \in V} A_{jk}^* z_{jk}^* + \sum_{ji \in V} B_{ji}^* \tilde{z}_{ji}^* = 0_{\mathbb{R}^d \times \ldots \times \mathbb{R}^d} \iff -A_{uv}^* z_{uv}^* = \sum_{jk \in V, jk \notin uv} A_{jk}^* z_{jk}^* + \sum_{ji \in V, ji \notin uv} B_{ji}^* \tilde{z}_{ji}^*
\]

\[
\Rightarrow \|A_{uv}^* z_{uv}^*\| = \|\sum_{jk \in V, jk \notin uv} A_{jk}^* z_{jk}^* + \sum_{ji \in V, ji \notin uv} B_{ji}^* \tilde{z}_{ji}^*\| \Rightarrow \|A_{uv}^* z_{uv}^*\| \leq \sum_{jk \in V, jk \notin uv} \|A_{jk}^* z_{jk}^*\| + \sum_{ji \in V, ji \notin uv} \|B_{ji}^* \tilde{z}_{ji}^*\|
\]

\[
\iff \sqrt{2}\|z_{uv}^*\| \leq \sum_{jk \in V, jk \notin uv} \sqrt{2}\|z_{jk}^*\| + \sum_{ji \in V, ji \notin uv} \|\tilde{z}_{ji}^*\| \iff \|z_{uv}^*\| \leq \sum_{jk \in V, jk \notin uv} \|z_{jk}^*\| + \sum_{ji \in V, ji \notin uv} \|\tilde{z}_{ji}^*\|
\]

and more than that, it holds

\[
1 \geq \sum_{jk \in V} \frac{1}{w_{jk}} \|z_{jk}^*\| + \sum_{ji \in V} \frac{1}{w_{ji}} \|\tilde{z}_{ji}^*\| = \frac{1}{w_{uv}} \|z_{uv}^*\| + \sum_{jk \in V, jk \notin uv} \frac{1}{w_{jk}} \|z_{jk}^*\| + \sum_{ji \in V, ji \notin uv} \frac{1}{w_{ji}} \|\tilde{z}_{ji}^*\|
\]

\[
\geq \frac{1}{w_{uv}} \|z_{uv}^*\| + \frac{1}{\overline{w}_s} \left(\sum_{jk \in V, jk \notin uv} \|z_{jk}^*\| + \sum_{ji \in V, ji \notin uv} \|\tilde{z}_{ji}^*\| \right) \geq \frac{1}{w_{uv}} \|z_{uv}^*\| + \frac{1}{\overline{w}_s} \|z_{uv}^*\|
\]

\[
= \frac{\overline{w}_s + w_{uv}}{\overline{w}_s w_{uv}} \|z_{uv}^*\|
\]

which means that

\[
\|z_{jk}^*\| \leq \frac{\overline{w}_s w_{jk}}{\overline{w}_s + w_{jk}}, \quad jk \in V.
\]

In the same way, we get

\[
\|\tilde{z}_{ji}^*\| \leq \frac{\overline{w}_s w_{ji}}{\overline{w}_s + w_{ji}}, \quad ji \in \tilde{V}.
\]
Example 4.1. For the existing facilities $p_1 = (0,0)^T$, $p_2 = (-2,3)^T$ and $p_3 = (5,8)^T$ ($t=3$) we want to locate two new facilities ($m=2$) in the plane ($d=2$). The weights are given by $w_{12} = \tilde{w}_{11} = \tilde{w}_{13} = \tilde{w}_{21} = \tilde{w}_{22} = 1$ and $\tilde{w}_{12} = \tilde{w}_{23} = 0$ and define the following multifacility \textit{minimax location problem}

\[
(P_N^M) \quad \inf_{(x_1,x_2)\in \mathbb{R^2} \times \mathbb{R^2}} \max \{||x_1 - x_2||, ||x_1 - p_1||, ||x_1 - p_3||, ||x_2 - p_1||, ||x_2 - p_2||\},
\]

i.e. $V = \{12\}$, $|V| = 1$, $\tilde{V} = \{11,13,21,22\}$ and $|\tilde{V}| = 4$. From the Matlab Optimization Toolbox we obtained the following solution $\bar{x}_1 = (2.5,4)$ and $\bar{x}_2 = (0,0)^T$. The corresponding objective value was $v(P_N^M) = 4.72$.

The dual problem (see Remark 3.1)

\[
(\tilde{D}_N^M) \quad \max_{(z_{12},\tilde{z}_{11},\tilde{z}_{13},\tilde{z}_{21},\tilde{z}_{22})\in \tilde{B}_N} \{(\tilde{z}_{11}^* + \tilde{z}_{21}^* p_1) + (\tilde{z}_{22}^* p_2) + (\tilde{z}_{13}^* p_3)\},
\]

where

\[
\tilde{B}_N = \{(z_{12}^*, \tilde{z}_{11}^*, \tilde{z}_{13}^*, \tilde{z}_{21}^*, \tilde{z}_{22}^*) \in \mathbb{R^2} \times \mathbb{R^2} \times \mathbb{R^2} \times \mathbb{R^2} : z_{12}^* + \tilde{z}_{11}^* + \tilde{z}_{13}^* = 0_{\mathbb{R^2}}, \tilde{z}_{21}^* + \tilde{z}_{22}^* = 0_{\mathbb{R^2}}, ||z_{12}|| + ||\tilde{z}_{11}|| + ||\tilde{z}_{21}|| + ||\tilde{z}_{22}|| + ||\tilde{z}_{13}|| \leq 1\},
\]

was also solved by the Matlab Optimization Toolbox. The following solution was obtained

$\bar{x}_{12} = \bar{x}_{11} = (0.13,0.21)^T$, $\bar{z}_{13} = (-0.26,-0.42)^T$, $\bar{z}_{21} = \bar{z}_{22} = (0,0)^T$,

with the corresponding objective value $v(\tilde{D}_N^M) = 4.72 = v(P_N^M)$, i.e. $\tilde{T} = \{12\} \subseteq V$ and $\tilde{T} = \{11,13\} \subseteq \tilde{V}$.

In the situation when we have only the solution of the dual problem one can reconstruct the optimal solution of the primal problem in a recursive way by using the necessary and sufficient optimality conditions given in Theorem 4.2. By condition (iv) we know that there exists $\tilde{\alpha}_{11} > 0$ such that

\[
\tilde{z}_{11}^* = \tilde{\alpha}_{11}(\bar{x}_1 - p_1), \quad \text{i.e.} \quad ||\tilde{z}_{11}^*|| = \tilde{\alpha}_{11}||\bar{x}_1 - p_1||, \quad \text{(17)}
\]

and as, by condition (vi) it holds

\[
v(\tilde{D}_N^M) = v(P_N^M) = ||\bar{x}_1 - p_1|| = \frac{||\tilde{z}_{11}^*||}{\tilde{\alpha}_{11}}, \quad \text{(18)}
\]

we get by combining (17) and (18) that

\[
\bar{x}_{11} = \frac{||\tilde{z}_{11}^*||}{v(\tilde{D}_N^M)} (\bar{x}_1 - p_1) \Leftrightarrow \bar{x}_1 = \frac{v(\tilde{D}_N^M)}{||\tilde{z}_{11}^*||} \bar{x}_{11}^* + p_1 = \frac{4.72}{0.25} (0.13,0.21)^T = (2.5,4)^T.
\]

More than that, by condition (iii) there exists $\alpha_{12} > 0$ such that

\[
\bar{z}_{12} = \alpha_{12}(\bar{x}_1 - \bar{x}_2), \quad \text{i.e.} \quad ||\bar{z}_{12}|| = \alpha_{12}||\bar{x}_1 - \bar{x}_2||, \quad \text{(19)}
\]

and therefore, we derive from condition (v) that

\[
v(\tilde{D}_N^M) = v(P_N^M) = ||\bar{x}_1 - \bar{x}_2|| = \frac{||\bar{z}_{12}||}{\alpha_{12}}. \quad \text{(20)}
\]

Finally, taking (19) and (20) together yields

\[
\bar{z}_{12} = \frac{||\bar{z}_{12}||}{v(\tilde{D}_N^M)} (\bar{x}_1 - \bar{x}_2) \Leftrightarrow \bar{x}_2 = \bar{x}_1 - \frac{v(\tilde{D}_N^M)}{||\bar{z}_{12}||} \bar{z}_{12} = (2.5,4)^T - \frac{4.72}{0.25} (0.13,0.21)^T = (0,0)^T.
\]

For a geometrical illustration see Figure 7.
Geometrical interpretation.

In the following we provide a geometrical characterization of the set of optimal solutions of the dual problem by Theorem 4.2. By the conditions (iii) and (iv) it is clear that for $jk \in \overline{I}$ and $ji \in \overline{I}$ the vectors \overline{z}_{jk} and \overline{z}_{ji} are parallel to the vectors $\overline{x}_j - \overline{x}_k$ and $\overline{x}_j - p_i$ directed to \overline{x}_j, respectively. In addition, if we take into account the conditions (v), (vi) and (vii), then it is also evident that $jk \in \overline{I}$ and $ji \in \overline{I}$, i.e. $\overline{z}_{jk} \neq 0_{\mathbb{R}^d}$ and $\overline{z}_{ji} \neq 0_{\mathbb{R}^d}$, if the points \overline{x}_k and p_i are lying on the border of the minimum covering ball with radius $v(P_{\mathcal{N}})$ centered in \overline{x}_j, respectively. Vice versa, if $jk \notin \overline{I}$ and $ji \notin \overline{I}$, then $\overline{z}_{jk} = 0_{\mathbb{R}^d}$ and $\overline{z}_{ji} = 0_{\mathbb{R}^d}$, which is exactly the case when the corresponding weights are zero or the points \overline{x}_k and p_i are lying inside the minimum covering ball centered in \overline{x}_j, respectively. Therefore, analogously to the geometrical interpretation presented in [23] for single minimax location problems, one can identify the vectors \overline{z}_{jk}, $jk \in \overline{I}$, and \overline{z}_{ji}, $ji \in \overline{I}$, as force vectors, which pull the points lying on the borders of the minimum covering balls inside the balls in direction to the their corresponding centers, the gravity points \overline{x}_j (see Figure 1).
References

