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A generalization of the Funk—Radon transform to
circles passing through a fixed point

Michael Quellmalz*

The Funk-Radon transform assigns to a function on the two-sphere its mean values
along all great circles. We consider the following generalization: we replace the great
circles by the small circles being the intersection of the sphere with planes containing
a common point ¢ inside the sphere. If ¢ is the origin, this is just the classical Funk—
Radon transform. We find two mappings from the sphere to itself that enable us to
represent the generalized Radon transform in terms of the Funk—Radon transform. This
representation is utilized to characterize the nullspace and range as well as to prove an
inversion formula of the generalized Radon transform.
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1 Background

On the two-dimensional sphere S?, every circle can be described as the intersection of the sphere
with a plane,

€& x)={neS|(&n) =21},

where & € S? is the normal vector of the plane and x € [—1,1] is the signed distance of the plane
to the origin. For z = £1, the circle € (&, =) consists of only the singleton +£. The spherical mean
operator S: C(S?) — C(S? x [~1,1]) assigns to a continuous function f defined on S? its mean
values along all circles of the sphere, i.e.

Sf(E.x) = /g o Jmancn),

where 1 denotes the Lebesgue measure on the circle (€, x) normalized such that p(%€(€,x)) = 1.
The inversion of the spherical mean operator S is an overdetermined problem, e.g. Sf(&,1) = f(&)
for all £ € S?. However, in practical applications Sf is often known only on a two-dimensional
sub-manifolds of S? x [~1,1].

An important example of such restriction is the Funk—Radon transform F, namely the restriction
of § to x = 0. It computes the averages along all great circles € (&,0) of the sphere. Based on the
work of Minkowski [13], Funk [6] showed that every even, continuous function can be reconstructed
from its Funk—Radon transform. There are several reconstruction formulas, a famous one is due to
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Helgason [8, Sec. III.1.C]. The range of the Funk-Radon transform in terms of Sobolev spaces was
characterized by Strichartz [23].

A similar problem is the restriction of S to a fixed value x = zp € [—1, 1], which corresponds
to the family of circles with fixed diameter. Schneider [22] proved a so-called “freak theorem”,
which says that the set of values zo for which Sf(&,z0) = 0 for all £ € S? does not imply f = 0
is countable and dense in [—1,1]. These possible values of zy were further investigated by Rubin
[19]. Similar results were obtained for circles whose radius is one of two fixed values by Volchkov
and Volchkov [25].

Abouelaz and Daher [1] considered the restriction to the family of circles containing the north
pole. An inversion formula was found by Gindikin et al. [7]. Helgason [8, Sec. III.1.D] gave
this restriction the name spherical slice transform and showed that it is injective for continuously
differentiable functions vanishing at the north pole. Injectivity has also been shown to hold for
square-integrable functions vanishing in a neighborhood of the north pole [5], and for bounded
functions [20, Sec. 7].

Restricted to &3 = 0, which corresponds to the family of circles perpendicular to the equator, the
mean operator is injective for all functions f that are even with respect to the north—south direction,
ie. f(&1,82,83) = f(&1,&2,—E3). Different reconstruction schemes were proposed in [7, 26, 10].
More generally, it was shown in [3] (see also [2]) that the restriction of the mean operator to the
set A x [—1,1], where A is some subset of S?, is injective if and only if A is not contained in the
zero set of any harmonic polynomial.

In this article, we are going to look at circles that are the intersections of the sphere with planes
containing a fixed point (0,0,2)" located on the north-south axis inside the unit sphere, where
z € [0,1). The spherical transform

U.f(€) = Sf(& &), €€

computes the mean values of a continuous function f: S?> — C along all such circles. The spherical
transform U, was first investigated by Salman [21] in 2015. He proved the injectivity of the spherical
transform for smooth functions supported inside the spherical cap {£ € S? | &3 < z}. Furthermore,
he showed an inversion formula (see Proposition 6.1) using stereographic projection combined with
an inversion formula of a Radon-like transform in the plane, which integrates along all circles that
intersect the unit circle in two antipodal points.

The central result of this paper is Theorem 3.1, where we prove the factorization of the spherical
transform

uz :szMz,

into the Funk—Radon transform F and the two operators M, and N, which are defined in (3.1)
and (3.2), respectively. Both M, and N, consist of a dilation from the sphere to itself composed
with the multiplication of some weight.

Based on this factorization, we show in Theorem 4.4 that the nullspace of the spherical transform
U, consists of all functions that are, multiplied with some weight, odd with respect to the point
reflection of the sphere about the point (0,0,2)". Moreover, it turns out that the ranges of the
spherical transform and the Funk—Radon transform coincide, considered they are both defined on
square-integrable functions on the sphere, see Theorem 4.7. The relation with the Funk-Radon
transform also allows us to state an inversion formula of the spherical transform in Theorem 5.1.
We close the paper in Section 6 by reviewing the proof of Theorem 3.1 from a different perspective
that is connected with Salman’s approach.



2 Definitions

We denote with R and C the fields of real and complex numbers, respectively. We define the two-
dimensional sphere S? = {&€ € R3 | ||€]| = 1} as the set of unit vectors & = (£1,&2,&3) " € R? in the
three-dimensional Euclidean space R? equipped with the scalar product (€,1) = &m1 + Eamp + E3m3
and the norm ||| = (5,5}1/2. We make use of the sphere’s parametrization in terms of cylinder
coordinates,

-
E(p,t) = (cosgp 1—t2,sinpyv1 —t2,t> , p€[0,2m), t € [—1,1], (2.1)

where we assume that the longitude ¢ is 27-periodic. Let f: S?> — C be some measurable function.
With respect to cylinder coordinates, the surface measure d€ on the sphere reads

1 2w
Szf@)dﬁz/l/o F(E(p. 1)) dpdr.

The Hilbert space L?(S?) is defined as the space of all measurable functions f: S? — C, whose
norm | fll 22y = (f, £)Y? is finite, where

(o) = [, F€)ate) ae

is the usual L2-inner product. Furthermore, we denote with C(S?) the set of continuous, complex-
valued functions defined on the sphere.

Let v: [0,1] — S2, s — v(p(s),t(s)) be a regular path on the sphere parameterized in cylinder
coordinates. The line integral of a function f € C(S?) along the path ~ with respect to the
arc-length d¢ is given by

[rae= [ f<v<so<s>,t<s>>\/ 0o (B (Y s e

The spherical transform. Every circle on the sphere can be described as the intersection of the
sphere with a plane, i.e.

€& x)={neS|(&n) =2},

where ¢ € S? is the normal vector of the plane and = € [—1,1] is the signed distance of the plane to
the origin. We consider circles whose planes have a common point ¢ € R? located in the interior of
the unit ball, i.e. ||€]| < 1. We say that a circle passes through ¢ if its respective plane contains (.
By rotational symmetry, we can assume that the point ¢ lies on the positive &3 axis. For z € [0,1),
we set

¢.= (07 0, Z)T'

The circles passing through ¢, can be described by €(&, ) with & € S? and = (€,(,) = 2&3. For
a function f € C(S?), we define the spherical transform

U f(&) (m), €€ (2.3)

1 /
= f(n)de
21/ 1 — 2265 J&(¢,2¢9)

which computes the mean values of f along all circles passing through ¢,. Note that the denomi-
nator in (2.3) is equal to the circumference of the circle € (&, 2£3).



The Funk—Radon transform. Setting the parameter z = 0, the point ¢, = (0,0,0)7 is the center
of the sphere. Hence, the spherical transform Uy integrates along all great circles of the sphere.
This special case is the Funk—Radon transform

FHE) = Uof(€) = /<£ L Jma, ges (2.4)
M=

T om

which is also known by the terms Funk transform, Minkowski—Funk transform or spherical Radon
transform, where the latter term is occasionally also refers to means over spheres in R3, cf. [16].

3 Relation with the Funk—Radon transform

Let z € [0,1) and f € C(S?). We define the two transformations M., N : C(S?) — C(S?) by

— 2
Mopelo) =T r (6(vT)).  ed (3.1)
and
1 1—22 9
N:f(&(p,1) = \/ﬁf <§ <80at 1—22t2>> ; £es (3.2)

Theorem 3.1. Let z € [0,1). Then the factorization of the spherical transform
U, = N,FM, (3.3)
holds, where F is the Funk—Radon transform (2.4).

Proof. Let f € C(S?) and & € S%. By the definition of U, in (2.3), we have

amfi-2Gur©) = [ mat) (3.4)

(&,2€3)

where d/ is the arc-length. We are going to use cylinder coordinates n(t,u) € S?, see (2.1). Let

[0,1] = €(€,263) C S, s> m(W(s), uls))

be some parameterization of the circle €(&, z§3), which acts as domain of integration in (3.4). Then
we have by (2.2)

om/1 - e ©) = [ f<n<¢,u>>\/ ) () s s ()

We perform the substitution u(s) — v(s), where

v+ 2z
= . 3.5
v 14 2v ( )

By the chain rule,
du dudv

du dudv  1+zv—2z(z+wv)dv 1-2° dv
ds dvds (1+ zv)? ds (14 zv)2ds’




Thus, we have

—/lf " v+ 2z L4 2202 — 22 —0? (dy 2+ (1+ 2v)? (1—2%)2 (dv 2ds
o M1 (1+ zv)2 ds 1+ 2202 — 22 — 02 (1 + 2v)* \ds
! v+ 2z (1 —v2)(1—22) 1—22 dv?
= — ] d
/0f<n<¢’1+zv>> (1+ 2v)2 < > (1 —v2)(1+ 2v)? (ds) °
! V1= 22 2 1 [dv\?
—/ flm w,HZ : +——(52) ds. (3.6)
0 1+zv 1+ 2v 1—v? \ds
Plugging (3.2) into the last equation, we obtain by (2.2)

27T\/ 1- Z2‘§§ U (&) = M. f(n) dl(n), (3.7)

2:(8)

where
v+ z

2.6 = {n(w.0) €8%n (v, 22 ) e wie e

In the second part of the proof, we are going to show that

2.(E(p,1) =€ (s (so,t 11_‘2;> ,o) , (33)

which is a great circle on the sphere. The point 1(1),v) € S? lies in the set Z,(&(y,t)) if and only

(6,222 ety

By the definition of the cylinder coordinates (2.1), this equation can be rewritten as

2
(coswcos<p+sinzpsincp)\/1— <v+z> V1 —t2 4t vtz = 2zt
1+wvz

1+wvz

By the addition formula for the cosine, this is equivalent to

V1—0v2V/1—22 22
cos(p — 1) T o V1—t2+ oo =

Now we multiply the last equation with (1 + vz)(1 — 22)~1/2(1 — 22t2)_1/2 and obtain

T2 \/l—t2 V1—2z2
\/1— i V1 — 2242

2
_ ) 9 1— 22 [ 1—=2
—COS(QO—'Ip) 1—’0 1—tm+vt m,

which is exactly the equation of the great circle

1— 22
<g<g (W 1_Z2t2>,0>.

This shows (3.8). Combining (3.7) and (3.8), we obtain

1 1—22
3

0 = cos(p — 1)




Figure 3.1: The red arrows indicate the transformation h,: S? — S2, which was defined in (3.9)
and maps the equator (blue) to the circle of latitude z (green), for z = 0.33.

The proof of the decomposition of the spherical transform I, in Theorem 3.1 is based on the
substitution (3.5), which can be expressed as the transformation

hei 8 8% (el ) =€ (o1 1 ) 3.9)
where z € [0,1). Then M, f(§€) = foh,(€) V1 —22/(1+ 2&). By (3.6), the map h, is conformal,
i.e., it preserves angles. The transformation h, moves the points on the sphere northwards while
leaving the north and south pole unchanged. It maps the equator ¢t = 0 to the circle of latitude
t = z, see Figure 3.1. Moreover, h, maps all great circles to circles passing through ¢,. An
interpretation of h, in terms of the stereographic projection will be given in Section 6.

4 Properties of the spherical transform

4.1 The operators M, and N,

In the following two lemmas, we investigate the two transformations M, and N, from Theorem
3.1 as operators L?(S?) — L?(S?) and compute their inverses.

Lemma 4.1. The operator M, given in (3.1) can be extended to a unitary operator M, : L?(S?) —
L?(S?). Its inverse is given by

2, 4.1
T T’ &(p,u) €8 (4.1)

M lg(€(p,u) =g (6 <<p,
Proof. Let f € C(S?). In order to proof that M, is unitary, we are going to show first that
[M:fllr2(s2) = [Ifll12(s2), which implies that M. is an isometry on L?(S?) since the continuous
functions C(S?) are dense in L?(S?). In the integral

2
2m ol t+z 1—22

2 _
MM = [ V(6 (0 ins)) T

— 1— 22
YTE gt 7 du (4.2)
1—zu (1 — zu)?

dt de,

we substitute

t =



and obtain

o2 1 2 2 2 2
—z+2(1 = zu) (1 —=2°)(1 = zu) 1—=2
it [ Wl i252252)
IM:FlIZas2) o Jo1 F\elw 1—z2u+2z(u—=z) (1 —zu+ z(u— 2))* (1 — zu)? v
2w 1
= [ ] e dude = 11,
For the inversion formula (4.1), we apply the substitution (4.2) to (3.1) and obtain
u—z O
z 9y — = 9y Y Y Sg'
Mp (€ (020 )) S = fele). €l e
This equality implies that M, is surjective and hence unitary. |

Lemma 4.2. The operator N, given in (3.2) can be extended to a bijective and continuous operator
N, : L?(S?) — L?(S?) satisfying

£l zes2) < IVaF oy < (1= 227 1 fll 2 ey (4.3)

for all f € L*(S?). Its inverse is given by

N g€, w) = g (5 (% Vl_zgw» m (4.4)

Proof. Let f € C(S?). In the integral

N2 ool 1 1— 22
= B — th) —— dtd
we substitute
t= Y
V1— 22 +u222
with the derivative
2,2
dt V1—22 +u2z? — s ﬁizmﬂz? _ 1_ 52
du 1— 22 +u?2? (1 — 22 4+ u222)3/2"
Hence, we have
2l 2
1 1—2z
NIy — / / )2 dud
H ZfHLQ(S2) 0 . ’f (5 ((;D ))| 1— Z2 l_zzuju2z2 (1 _ 22 + U2Z2)3/2 ¥
2T 1 9 1
= , U dude. 4.5
| e n? e auas (4.5)

Since the weight (1 — 22 + u?2%)~1/2 in the integrand of (4.5) for u € [—1, 1] attains its maximum
value of (1—22)"%2 at v = 0 and its minimum 1 at u = 41, we can conclude (4.3). For the inversion
formula (4.4), we apply the substitution from the first part of the proof to (3.2) and obtain

2

\/ 222 N u
J&low) = 1= Ty e N/ <5 (*”’ m))



4.2 Nullspace
Lemma 4.3. Let z € [0,1). We define

o 2
R,: S? — S2, ﬁ(w,t)&—>§<go+7r,2z ¢ tz).

1— 2tz + 22

Then R, is the point reflection of the sphere across the point ¢, = (0,0,2) ", i.e., for every & € S?
the three points &, R ;€ and ¢, are located on one line.

Proof. We are going to show that R,£ can be written as an affine combination of £ and ¢,. We
assume that ¢ = 0, the general case then follows by rotation about the north—south axis. We have

£0,6)=(V1—-120,1)".
Setting

22 -1

= — <0,
@ 1— 2tz + 22

we obtain in 3D coordinates

22 -1 22 -1 y
al+(1—-a), = (\/l—tQ,O,(t—z)—l—z>

1 — 2tz + 22 1 — 2tz + 22

(1 — 2tz + 22)2 T 1— 2tz + 22
T

2 —t —t22\? 22—t —tz2
= 1—( ——— 0,— | =R.E£. |
\/ <1—2tz+22) T — 2tz + 22 4

The following theorem shows that the functions in the nullspace of the spherical transform U,
can be imagined as the set of functions that are odd with respect to the point reflection R, and
the multiplication with some weight.

-
B (\/1 (1—2tz+22)2 — (22 —-1)2(1 — t2) 0 tzQ—t—z3+22—2tz2—|—z3)

Theorem 4.4. Let z € [0,1). The nullspace of the spherical transform U, consists of all functions
f € L%(S?) for which M, f is odd. The latter is equivalent to the condition that for almost every
£cs?

1— 22
2263 — 1 — 227
Proof. Let f € L?(S?) with U, f = 0. By the factorization (3.3), we have N, F M., f = 0. Since N,
is injective by Lemma 4.2, we conclude that F M, f = 0. It is well-known that the nullspace of the

Funk-Radon transform F consists of the odd functions, cf. [6]. It follows that U, f = 0 if and only
if M. f is odd. That is, for almost every & € S?, we have

M. f(§) = —M.f(=§)

f(&) = F(R:(€)) (4.6)

and hence in cylinder coordinates

f(g( t+z>>m:_f<§<w+mi+z>>m. (47)

S071—}—252 14 2t tz 1— 2zt

By setting
zZ—u

uz — 1’



equation (4.7) becomes

f<£ (SO z—u—i—z(uz—l))) L (£ (wm —z—i—u—i—z(uz—l))) uz—1t2(z—u)

Tuz— 14 (z —u)z uz —1—2(z —u) uz —1—z(z —u)

which is equivalent to

f(é(so,u»:f(& (wn “‘2”“"2)) -2 .

"Quz —1— 22 Quz — 22 —1°

Remark 4.5. In our considerations, we have left out the case z = 1, in which the spherical
transform U; computes the mean values along all circles passing through the north pole (0,0, 1)T.
This case U is also known as the spherical slice transform. The spherical transform U, for z < 1
has a nonempty nullspace according to the previous theorem, whereas the spherical slice transform
is injective for all bounded functions, which was shown in [20].

4.3 Range

In order to obtain a description of the range of the spherical transform U,, we introduce Sobolev
spaces on the sphere. For more details on such Sobolev spaces, we refer the reader to [12]. We
start by defining the associated Legendre polynomials

k (‘Uk 2\k/2 drth
Pn (t) = (1 —t ) dtn+k

o -1)*  tel-1,1],

for all (n,k) € I, where
I={(nk)|neNy, k=-n,...,n}

and Ny denotes the set of non-negative integers. The spherical harmonics

V(1) = \/2”4: ! EZ — :i: PEt)e™,  g(p,t) €2,

form an orthonormal basis in the Hilbert space L%(S?). Accordingly, any function f € L*(S?) can
be expressed by its Fourier series

n=0k=—n

with the Fourier coefficients

fnk) = | F@YEE)de.

For s > 0, the Sobolev space H*(S?) is defined as the space of all functions f € L%(S?) with finite

Sobolev norm .
1l =D 3 (n+3)™

n=0k=—n

fn.k)

‘ 2

Obviously, H°(S?) = L?(S?). Furthermore, we set L2(S?) and HZ(S?) as the respective spaces
restricted to even functions.
Before we give the theorem about the range of U, we need the following technical lemma.

Lemma 4.6. Let z € [0,1). The restriction of N, which was defined in (3.2), to an operator
N, HY?(S?) — HY?(S?)

is continuous and bijective.



Proof. The structure of this proof is as follows. At first, we consider the Sobolev space H'!(S?),
where we compute the norms of f and N, f, from which we subsequently derive that N, is continuous
on the Sobolev space H!(S?). Afterwards, we see the continuity of the inverse N !. Hence,
N.: HY(S?) — HL(S?) is a continuous bijection. In the last part, we utilize interpolation theory to
transfer the obtained continuity to the space He /2 (S?).

The Sobolev norm in H!. Let f € C*°(S?). In order to show that N, is continuous on H'(S?), we
use a different characterization of the Sobolev norm (see [12, Theorems 4.12 and 6.12])

1
2 * pp2 2
£ g2y = IVE fllzasey + 5 1f12se) »
with the surface gradient
L ad
where e, = (—sin g, cos,0)" and e; = (—tcosp, —tsinp, /1 —2)T are the orthonormal tangent

vectors of the sphere with respect to the cylinder coordinates (¢,t). Let f € C°°(S?). Then we
have

v*

27 1 2 2
2 _ 1 2 1 |9f(&(p,t)) oy [0F(&(p,t)
= [ [ [4 FE ) + = [l | + ()| 2R arde
(4.8)
As in the proof of Lemma 4.2, we define
1—22
u=t 1 — 22¢2°
which implies
u
t= .
N

Hence,

Ou  V1-22  (1- 22 4 22u?)3/?

ot (1 —2212)3/2 1— 22 i
Furthermore, we set

Yy 1 1 =224 222
V1= 222 1—22

and we have

v 2%t ~ 22u(l - 22+ 2P?)

ot (1 — 22t2)3/2 o (1 — 22)3/2
Hence, we can write

N:f(&(p, 1) = vf(&(p, u)).

Thus, we have

2w 1 2 2

onr o2 v: | 0f(&(p,u))
v 01 (&(p,u) du |’
_ 2| 2 SN )T

10



By the above formulas for u and v as well as their derivatives, we obtain
HV*N fHQ _ /Zﬂ-/l 1—Z2+Z2U2 1-2 —|—Z2U2 8f(£(<,0,u))
R R R 1— 22 (1—22)(1 - u?) dp

1— 23 (1 —u?) | 22u(l — 22 + 22u?
* (1 - 22)3— zQuQ) ((1 — 22)3/2 )f(é(%u))

+ \/ﬁ (1— 22 + 22u2)3/2 Of (£(p, u))
1— 22 1—22 ou

2

2]
1— 22

' (1 — 22 + 2242)3/2 dude
and hence
. 21 VI—22+ 222 |8 2
VN = [ [ [ e [
(4.9)
1—u?| 22uf(E(p,u)) 1101 (€(p,w)) |
+ =22 |(1-22+4 22 u2)1/4 + (1 — 22+ 2%u?)? 4T ]dUdSO-

Boundedness on H'. By Lemma 4.2, we know that A is bounded in L?(S?). In order to prove the
boundedness N, of in H!(S?), we still have to show that |V*N, f | 2(s2y is bounded by a multiple
of || fll g1 (s2y- By (4.9) and the inequality |a + b> < 21al* +2|b|* for all a,b € C, we have the upper
bound

2

5 o 2:42(1 — ?) |[f(E(p,w) [ V1 =27+ 222 |Of (E(p,u))
IV Nf”Hl (82) / / [ 1— 224 22 uz(l—z2) + (1—z2)(1—u2) 0
201 = 22 + 22?21 —u?) | 0f (&, w) |
+ .2 ‘ S ] dude.

We denote the coefficients of f and its derivatives in the integrand of the last equation with
a,(u), 8.(u) and 7, (u), such that

2m 1
VNSl < [ [az<u> (&) + B ()

Of (&(p,w))

ou

2

af(&(p,u))
I

(4.10)
+ 72 (u)

2
] dudep.

Comparing (4.10) with (4.8), we obtain

VN < oo (e, (0= 02)8-0, 700 ) -

ue(—1,1

Thus, if the arguments of the maximum in the previous equation are bounded uniformly with
respect to u € (—1,1), it follows that the operator A, is bounded on H'(S?), since the space
C>(S?) is dense in H'(S?). Firstly, the term

8z4u?(1 — u?)

daz(u) = V1= 22+ 22u2(1 — 22)

11



is bounded since its numerator is a polynomial in v and its denominator

V2 —1)2+1>y1-22>0
is bounded away from zero. Furthermore, we see that both the terms

V19— 22 4 2292

1— 22

(1 u?)Ba(u) =

and

Yo(u)  2(1—22+ 22u2)3/2

1—u? 1—22
are square roots of polynomials in u and hence uniformly bounded.
Surjectivity on H'. Lemma 4.2 implies that /N, is injective. For proving that NV, : H'(S?) — H'(S?)
is surjective, it is sufficient to show that the inverse operator A, ! restricted to H'(S?) is continuous
on H(S?). Let g € C*°(S?), which is dense in H*(S?). With a computation that is similar to the
first part of the proof and therefore skipped, we can obtain

2 — 2 — 2 0 9
NPl = [ [ Lﬂl_w| o+ VIV et
i d9(£(,1)) 2
s (1= #0) g — (e, ) ]dtdw.

Analogously to the first part, this implies that the restriction of the operator A, ! to the space
H'(S?) — H'(S?) is continuous.

Interpolation to H'/2. Every function f in the Sobolev spaces H*(S?) can be identified with the
sequence of its Fourier coefficients f(n, k), (n, k) € I. Hence, the Sobolev space H*(S?) is isometri-
cally isomorphic to a weighted L?-space on the set I with the counting measure p and the weight
ws(n, k) = (n+ 3)%, ie

~ o o 2
HY(S%) 2 L3, (1) = § F € L2 113 g = D [F00R)] wiln, b)? < oo

(n,k)el

For 0 < s <t and 6 € [0,1], we can compute the interpolation space

(L2, (I ), L2, (I3 )]o = L2(I; ),

where

_ 1—-60)s+6
w(”? k) = ws(”a k)l ewt(na k)e = (77, + %)( Jotbt = w(1—0)8+9t(n7 k)a

see [24, Theorem 1.18.5]. So, for s = 0, t = 1 and § = 1/2, the space H'/2(S?) is an interpolation
space between HY(S?) and H'(S?). By Lemma 4.2 and the first part of this proof, the operator
N, is continuous on both H°(S?) — H°(S?) and H'(S?) — H'(S?). Hence, it is also continuous
H'Y2(S?) — H'/2(S?). The same holds for the inverse operator !

In order to obtain the claimed result on Ho/> (S?), it is left to show that A, is invariant for even
functions. This follows from the fact that an even function plugged into (3.2) and (4.4) for N, and
N1, respectively, yields again an even function. |

Theorem 4.7. Let z € [0,1). Define f}az(Sz) as the subspace of L*(S?) of functions satisfying

t— 2z +tz? 122
f(ﬁ(go,t))=f<£ <¢+7T’ 2tz—1—22>> 1+ 22 -2tz
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almost everywhere on S?. The spherical transform
U.: L2 (S%) — HY*(S%)
is linear, continuous and bijective.

Proof. This proof is based on the decomposition U, = szMz derived in Theorem 3.1. Analo-
gously to the proof of Theorem 4.4, we see that M7 1L2(S?) = Laz(Sz). Furthermore, the operator

M, igvz(sﬁ — L2(S?) is continuous and bijective by Lemma 4.1. It is well-known that the
Funk-Radon transform
F: LA(S?) — HM?(s?)

is bijective and continuous, cf. [23, Lemma 4.3]. In Lemma 4.6, we have seen that N : Hel/2(82) —

birh 2(82) is continuous and bijective. [ ]

5 An inversion formula

In the following theorem, we give an inversion formula for the spherical transform ¢,. This formula
is based on the work of Helgason [8, Section III.1.C], who proved that every even function f can
be reconstructed from its Funk-Radon transform Ff via

1
T on dU/ /gn 2=1—w? F1€)d4E) u? — w? dw

Theorem 5.1. Let z € [0,1) and f € EgZ(SQ). Then for n(y,v) € S?

Jn(,v) = 27r11_—zzv du/ / (v,w) = Jl(—%ﬁjfﬁ)) dﬁ('ﬁ(%t))UQCh—Uw2

,  mneSh (5.1)
u=1

)

u=1

where d¢ is the arc-length on the circle

(v, w) = {g e s?

(en(0275)) =V

v—1

Proof. We set ¢ = U, f. By the decomposition from Theorem 3.1 together with Lemma 4.1, we
have

fm,v)) = M7 FINg(n(v, v)) (5.2)
iy (a (s 222)).

By Helgason’s formula (5.1), we obtain

V1—22 _ dw
Fo) = o=y 1 /En e N O
u=1
Plugging (4.4) into the above equation, we conclude that
1— 22 W)) dw
de 1)) —— . n
Fo.) = = e | /zw) T o) s
u=1

13



The inversion of the Funk—Radon transform F is a well-studied problem. Instead of Helgason’s
formula we used for Theorem 5.1, other inversion schemes of F could also be applied to (5.2),
like the reconstruction formulas in [7, 18, 14, 4]. For the numerical inversion of the Funk-Radon
transform, Louis et al. [11] proposed the mollifier method, which was used with locally supported
mollifiers in [17]. The mollifier method was combined with the spherical Fourier transform leading
to fast algorithms in [9]. Variational splines were suggested by Pesenson [15].

6 Relation with the stereographic projection

In this section, we take a closer look at the inversion method of the spherical transform used by
Salman [21] and describe its connection with our approach. His prove relies on the stereographic
projection 7: S? — R2. In cylinder coordinates (2.1) on the sphere and polar coordinates

x(r, ) = (rcos¢,rsing)’ € R

in the plane R?, the stereographic projection is expressed by

n(&(o, 1) == (x/ ﬂso)

(2(r,0) = & (¢7 21) |

and conversely

Proposition 6.1. For z € [0, 1), define

1+2
= . 6.1
Oz 1—2 ( )

Let f € C*°(S?) be a smooth function supported strictly inside the spherical cap {¢ € S? | &5 < 2}.
Then f can be reconstructed from U, f via

2
(fom™) ==
14+4/1+4 |||

Ve afel? ((0-2) (14 /T alel?) +40+2) ol

8 <1 +4/14+4 ||ac||2>

)

/2 U, f(E(p,sinf)) log ‘ZL‘l Cos @ + Tosinp — %\/ 1— 22 tanﬁ‘ df dy
A
v /_w/o cosf
where A, = 6‘9—;2 + 68—122 is the Laplacian with respect to & = (z1,22)" € R2.
1 2

The inversion formula (6.2) was derived in [21] by considering the function f o w~! o a,, where
o.: R? = R? is the uniform scaling in the plane defined by o.x = o, with the scaling factor o,

given in (6.1). By the transformation
nloo,.: R? — S,

every circle in the plane that intersects the unit circle {x € R? | 2 + 22 = 1} in two antipodal
points of the unit circle is mapped to a circle on the sphere passing through ¢, and vice versa.

14



Afterwards, an inversion formula is applied to the function fomr~!oo, for the Radon-like transform

that integrates a function along the circles intersecting the unit circle in antipodal points.

In this light, we can look in a different way at proof of Theorem 3.1. There we have considered
foh,. The transformation h, from (3.9) can be written in terms of the stereographic projection
as

h,=n"'oo,om.

Indeed, we have for any &(p,t) € S?

oo on(g(et) = n ! (az (ﬁ / i’;ﬁ))

14214t b+ 2
1—z1-t
=& (907 1+j1+t+1> =¢ <¢’ 1+tz> = h:(&).

1—21-t

So, like Salman, we first perform the stereographic projection 7 followed by the scaling ;! in the
plane. But then, we use the inverse stereographic projection ! to come back to the sphere.
Both the stereographic projection 7 and the scaling o, map circles onto circles. Therefore, h,
also maps circles to circles. Furthermore, the stereographic projection maps great circles on the
sphere to circles that intersect the unit circle in two antipodal points. This way, we have found
another way to prove that the transformation h, maps great circles onto circles through ¢,.
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