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ABSTRACT. We present new scale-free quantitative unique continuation
principles for Schrédinger operators. They apply to linear combinations
of eigenfunctions corresponding to eigenvalues below a prescribed en-
ergy, and can be formulated as an uncertainty principle for spectral
projectors. This extends recent results of Rojas-Molina & Veseli¢ [12],
and Klein [9]. We apply the scale-free unique continuation principle to
obtain a Wegner estimate for a random Schrodinger operator of breather
type. It holds for arbitrarily high energies. Schrodinger operators with
random breather potentials have a non-linear dependence on random
variables. We explain the challenges arising from this non-linear depen-
dence.

RESUME. Nous présentons de nouveaux principes de continuation unique
indépendants de 1’échelle pour des opérateurs de Schrodinger. Nos ré-
sultats concernent des combinaisons linéaires de fonctions propres corre-
spondantes aux valeurs propres au-dessous d’une énergie prescrite et ils
peuvent étre formulés en forme de principes d’incertitude pour des pro-
jecteurs spectraux. Ceci géneralise des résultats récents de Rojas-Molina
& Veselié [12], et Klein [9]. Nous utilisons des estimées de continua-
tion unique indépendantes de 1’échelle et obtenons ainsi une estimée de
Wegner pour un opérateur de Schrodinger aléatoire de type “breather”.
De tels opérateurs dépendent des variables aléatoires d’une fagon non-
linéaire et nous expliquons les difficultés liées a cette non-linéarité.

1. INTRODUCTION

A Wegner estimate is an upper bound on the expected number of eigenval-
ues in a prescribed energy interval of a finite box Schrédinger operator. The
expectation here refers to the potential which is random. The most stud-
ied example in this situation is the so-called alloy-type potential, sometimes
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also called continuum Anderson model, cf. Remark 2.6 below. A particular
feature of this model is that randomness enters the model via a countable
number of random variables, and these random variables influence the po-
tential in a linear way. In the random breather model we study here, this
dependence is no longer linear but becomes non-linear. What remains is the
monotone dependence of the potential on the random variables. The topic
of the present note is to explain how to effectively use this monotonicity in
order to derive a Wegner estimate. This only works if it is possible to cast
the monotonicity in a quantitative form.

In order to achieve this, we prove a scale-free uncertainty relation or unique
continuation principle for spectral projectors of Schrodinger operators. Our
Theorem 2.1 answers positively a question raised in [12|. A partial answer
(for short energy intervals) was shortly after given in [9]. Previously, there
has been in the literature on random operators a plethora of related results,
applicable in specialised situations, see e.g. [12] for a discussion. However,
the lack of a result like Theorem 2.1 was a bottleneck for further progress.

Estimates as in Theorem 2.1 have been developed and applied in a different
area of mathematics, namely control theory for partial differential equations,
starting with the seminal paper [10]. In this context they are called spectral
inequalities. In fact, our proof of Theorem 2.1 highlights how ideas from
the theory of random Schrédinger operators and control theory complement
each other in an efficient way.

2. REsSuULTS

Let d € N, § >0, L € Nand V:R? - R measurable. Denote by
Ap = (—L/2,L/2)% a cube in R?, by

Sps=ALN ( U B(zj,cS))
JEZ2

the union of J-balls centered at the points z; and contained in the corre-
sponding unit cubes Aj + j, and by Hy, one of the self-adjoint restrictions of
the Schrodinger operator —A + V to Ay, with either Dirichlet, Neumann, or
periodic boundary conditions.

We formulate a scale-free quantitative unique continuation property for
the operator Hy,.

Theorem 2.1. Let 6 € (0,1/2), Ky > 0 and E € R. Then there is a
constant Cspye = Cstuc (0, Ky, E) € (0,00), such that for all measurable po-
tentials V: R? — [~ Ky, Ky, all scales L € N with L > 18ev/d, all sequences
(2j)jeza C RY such that Vj € Z : B(zj,0) C Ay + j and all linear combina-
tions of eigenfunctions

= Z ann

neN: B, <FE
(where 1, € W22(A1;R) satisfies Hpip = Ent)yn and (o )nen is a sequence

in C) we have
/ |?l}|2 > Csfuc/ |'¢|2
Sr.s Ar
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Moreover, there is a constant Ky depending only on the dimension d such
2/3
that Csuc (6, Ky, E) > §Ko(+Ky +EIY?)

We can reformulate this statement as an uncertainty principle. For this
purpose, denote by x7(Hy) the spectral projector of Hy onto an interval I
and by Wy, s the characteristic function of the set S, 5.

Corollary. Under the same assumptions as in the above Theorem we have

2/3 1/2
(1) X(—oom)(HL) WL s X(—oop(Hy) = §50WHETHER D b (HL).
Inequality (1) is to be understood in the sense of quadratic forms.

Remark 2.2. For our purposes, the explicit quantitative dependence of the
constant Cype (9, Ky, F) is essential. In particular, Cspye does not depend on
the scale L € N. It depends on the radius ¢ in a polynomial way, and on
Ky and |E| in an exponential way. Note also that the constant is unaffected
by a translation of a ball B(z;,0) as long as it stays in the corresponding
unit cube. The bound is uniform in the ensemble of potentials {V: R? —
[~ Ky, Ky] measurable}. This is important, because we want to apply the
theorem to random Schrodinger operators. There the constant must not
depend on the particular configuration of randomness. Since the operator is
lower bounded, we have x(_oo g](HL) = X[-K\ 5] (HL)-

We apply Theorem 2.1 to random breather models, a class of random
Schrédinger operators where the randomness enters the potential in a non-
linear way. Consider a sequence w = (wj);cza of (almost surely) positive,
bounded, independent and identically distributed random variables with dis-
tribution measure pu, as well as a compactly supported, measurable function
u: RY — R. The random breather potential is the function

Vo(x) := u(x —J ),
= 2 (

while the family (Hy), with H, := —A+V,, is called random breather model.

Random breather potentials have been introduced in [3|, and studied in [4]
and [8]. However, all these papers assumed unnatural regularity conditions,
excluding the most basic and standard type of single site potential, where
u equals the characteristic function of a ball or a cube. This was not a
coincidence but a consequence of the linearization method used in the proofs.
Our proof does not rely on linearization, but merely on monotonicity. While
we have results for a broad class of random breather models, we restrict
ourselves in this note for the purpose of clarity to the two mentioned cases,
ie.

(2a) U= XB,, thus Vo(x) = Z XB., (x — ),
jezd

(2b) U= XAz> thus V() = Z XAz, (z—7)
jezd

In fact, since our proofs are based on the analysis of level sets of random
potentials, they work also for other types of stochastic fields with non-linear,
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monotone randomness, not just for random breather potentials. Specifically,
the function w; — (¢, V,,¢) merely needs to be polynomially increasing.

Note also that the random potential is uniformly bounded and non-negative,
and thus the operator H,, is self-adjoint.

Theorem 2.3 (Wegner estimate for the random breather model). Let H,,
be as in (2). Assume that p has a bounded density v supported in [w_,w,]
with 0 < w_ < wy < 1/2. Fiz Ey € R. Then there are C = C(d, Ey) and
€max = €max(d, Fo,wy) € (0,00) such that for all € € (0, €max] and E > 0
with [E — €, E + €] C (—o0, Ey], we have

E [Tt [X(p-c g (Hot)]] < Clly[lagel 0@ 15117
The constant emax can be chosen as

B 1 <1/2 _ w+>KO(2+E0+11/2)

' IIne® L2,

€max = Z 2

where Kq is the constant from Theorem 2.1.

)

Here E denotes the expectation w.r.t. the random variables w;,j € VA
and H, 1 the restriction of H, to the cube A; with Dirichlet boundary
conditions. Theorem 2.3 implies local Holder continuity of the integrated
density of states (IDS) and is sufficient for the multiscale-analysis proof of
spectral localization. This will be elaborated in detail elsewhere.

Remark 2.4. The proof of Theorem 2.1 relies on Carleman estimates with and
without boundary term, see e.g. [10] and [5, 1], on interpolation inequalities
and an auxiliary Cauchy problem in d+ 1 dimensions as discussed in [10, 11,
7], and finally on geometric covering arguments developed in the theory of
random Schrodinger operators, e.g. [12].

The proof of Theorem 2.3 relies on the method outlined in [6] and [12].
It can be traced back to Wegner’s original work [14|. Additional steps are
necessary, since the breather model has a non-linear dependence on the ran-
dom variables, unlike the well-studied Anderson model. We also do not have
the differentiability of the map w; — (¢, H,¢) in the usual sense. Thus, for
instance the proofs of [2, 9] do not apply. However, the strategy of [6, 12] is
quite versatile and can be adapted to our setting. The key idea is not to rely
on differentiability of quadratic forms but rather directly on the Courant-
Hilbert variational principle for eigenvalues.

In particular, the following lemma is crucial for the proof of Theorem 2.3.
It relies on the quantitative version of the uncertainty principle from The-
orem 2.1. Denote the eigenvalues of H, ; by {En(w)},cy, enumerated
increasingly and counting multiplicities. For § € R we define w + § by
(w+0); ==w;+d forall je 7.

Lemma 2.5. Let H,, 1 be as above and assume that w € [w,,er]Zd, 0 <
1/2 —wy. Then, for alln € N with E,(w) € (—o0, Ep] we have

5> [0 (241 +11172)]

En(w+0) > En(w) + <

9

2

where Ky is the constant from Theorem 2.1.



SCALE-FREE UNCERTAINTY PRINCIPLES 5

®

(a) Support of V45 — V., (Support de (b) Choice of B(z;,d/2) (Choix
Vw+§ - Vw) des B(Zj7 5/2))

&

© 600 ®
®

L0

O o 06’

@ B(::6/2)

Vw+6 - Vw

°|© © @)

F1cURrE 1. Illustration of the increments V15 — V., and the
choice of the balls B(zj,d/2) (Illustration des incréments
Viots — Vi et du choix des boules B(zj,0/2))

Thus, we obtain a lifting estimate on the eigenvalues which is independent
on the length scale. Details of the proof of Theorem 2.3 can be found in [13].

Remark 2.6 (Challenges due to non-linearity). The challenges are best un-
derstood by comparing the breather model with the alloy-type potential
Vo(z) = >2jezawju(z — j) (for simplicity consider u = xp(). The lat-
ter depends in a linear way on the random coupling constants constituting
the configuration w = (w;);. In particular, the derivatives of eigenvalues
E,,(w) (of finite box restrictions on —A 4 V,,) w.r.t. each w; are easily calcu-
lated via the Hellman-Feynman formula. In contrast, for the breather model
the derivatives %En(w) are only defined in distributional sense. Thus,
one is lead to implement eigenvalue perturbation theory using increments
Vi+s — Vi, with positive 4. Note that in the case of the alloy-type model, for
any fixed 4, the increment Vs — V,, is independent of the configuration w
and a Z%periodic function. Therefore, it is not needed to know the explicit
dependence of Cgp,e on 6. For the breather model this is not the case. In
particular, V15—V, is a non-periodic function and its support depends both
on § and w. Specifically, it is a union of annuli of width ¢ and w-dependent
radii, cf. Fig. 1(a). Technically, one has to estimate the mass of the square
of an eigenfunction in this support set as a function of w and §. For the
application of Theorem 2.1 one has to chose balls B(z;,d/2) lying inside the
annuli, see Fig. 1(b). To obtain Hoélder continuity of the IDS one has to
control the behaviour of Cgg,e as § N\ 0.
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