A new eigenvalue bound for independent sets

J. Harant 1, S. Richter 2

1 Ilmenau University of Technology, Department of Mathematics, Germany
2 Chemnitz University of Technology, Department of Mathematics, Germany
email: jochen.harant@tu-ilmenau.de, sebastian.richter@mathematik.tu-chemnitz.de

Abstract. Let G be a simple, undirected, and connected graph on n vertices with eigenvalues $\lambda_1 \leq ... \leq \lambda_n$. Moreover, let m, δ, and α denote the size, the minimum degree, and the independence number of G, respectively. W.H. Haemers proved $\alpha \leq \frac{-\lambda_1 \lambda_n}{\delta - \lambda_1 \lambda_n} n$ and, if η is the largest Laplacian eigenvalue of G, then $\alpha \leq \frac{n - \delta}{\eta} n$ is shown by C.D. Godsil and M.W. Newman. We prove $\alpha \leq 2\sigma - 2\sigma \delta m$ for the largest normalized eigenvalue σ of G, if $\delta \geq 1$. For $\varepsilon > 0$, an infinite family F_ε of graphs is constructed such that $2\sigma - 2\sigma m = \alpha < (\frac{2}{3} + \varepsilon) \min\{\frac{-\lambda_1 \lambda_n}{\delta - \lambda_1 \lambda_n}, \frac{2\delta - 2\delta}{\eta} n\}$ for all $G \in F_\varepsilon$. Moreover, a sequence of graphs is presented showing that the difference between $2\sigma - 2\sigma m$ and D.M. Cvetković’s upper bound on α can be arbitrarily small.

Keywords. independence number, eigenvalues

1 Introduction and Result

We use standard notation and terminology of graph theory and consider a finite, simple, and undirected graph G with vertex set $V = \{1, ..., n\}$ and edge set E, where $m = |E|$. Let d_i and δ denote the degree of $i \in V$ in G and the minimum degree of G, respectively. Furthermore, we assume that G has no isolated vertices, i.e. $\delta \geq 1$. A set of vertices $I \subseteq V$ in G is independent, if no two vertices in I are adjacent. The independence number α of G is the maximum cardinality of an independent set of G.

The independence number is one of the most fundamental and well-studied graph parameters [14]. In view of its computational hardness [11] various bounds on the independence number have been proposed, for a survey see [12].

In this paper, we are interested in upper bounds on α involving eigenvalues of matrices assigned to G (lower bounds on α in terms of eigenvalues can be found in [16]). Let $\lambda_1 \leq ... \leq \lambda_n$ denote the eigenvalues of the adjacency matrix A of G. Our starting point is the following Delsarte-Hoffman-bound [4, 8, 10, 13]. If G is an r-regular graph, then

$$\alpha \leq \frac{-\lambda_1}{r - \lambda_1} n.$$

Note that $\lambda_n = r$ if G is r-regular [4]. In [9, 10], W.H. Haemers proved the following extension of the Delsarte-Hoffman-bound for arbitrary graphs.
\[\alpha \leq \frac{-\lambda_1 \lambda_n - n}{\delta^2 - \lambda_1 \lambda_n} \]

If all eigenvalues of \(G \) are taken into consideration, then D.M. Cvetković [4, 6, 7] proved

\[\alpha \leq \min\{|\{i \in \{1, \ldots, n\}| \lambda_i \leq 0\}|, \{|\{i \in \{1, \ldots, n\}| \lambda_i \geq 0\}| \}. \]

Let \(D \) be the degree matrix of \(G \), that is an \((n \times n)\) diagonal matrix, where \(d_i \) is the \(i \)-th element of the main diagonal. Moreover, let \(0 = \eta_1 \leq \ldots \leq \eta_n \) be the eigenvalues of the Laplacian matrix \(L = D - A \) of \(G \) [1].

In [8], C.D. Godsil and M.W. Newman established the following inequality, which is also a consequence of a result in [2] concerning the size of a cut in a graph.

\[\alpha \leq \frac{\eta_n - \delta}{\eta_n} n. \]

For \(G \) without isolated vertices, the normalized Laplacian is the \((n \times n)\) matrix \(\mathcal{L} = (l_{ij}) \) with \(l_{ij} = 1 \) if \(i = j \), \(l_{ij} = -\frac{1}{\sqrt{d_i d_j}} \) if \(ij \in E \), and \(l_{ij} = 0 \) otherwise. The eigenvalues \(\sigma_1 \leq \ldots \leq \sigma_n \) of \(\mathcal{L} \) are the normalized eigenvalues of \(G \) [3, 5]. It is known that \(\sigma_1 = 0 \) and \(1 < \sigma_n \leq 2 \) [3, 5].

Our result is the following inequality.

\[\alpha \leq \frac{2\sigma_n - 2}{\sigma_n \delta} m. \]

For its proof, let \(\{u_1, \ldots, u_n\} \) be an orthonormal basis of \(\mathbb{R}^n \) consisting of eigenvectors of the symmetric matrix \(\mathcal{L} \) such that \(u_i \) is an eigenvector of \(\sigma_i \) for \(i = 1, \ldots, n \).

Moreover, let \(y = (y_1, \ldots, y_n) \in \mathbb{R}^n \) and \(y = \mu_1 u_1 + \ldots + \mu_n u_n \) for suitable \(\mu_1, \ldots, \mu_n \in \mathbb{R} \). It follows

\[y^T \mathcal{L} y = \sigma_2 \mu_2^2 + \ldots + \sigma_n \mu_n^2 = -\sigma_n \mu_1^2 + (\sigma_2 - \sigma_n) \mu_2^2 + \ldots + (\sigma_n - \sigma_n) \mu_n^2, \]

\[\leq -\sigma_n \mu_1^2 + \sigma_n (\mu_2^2 + \ldots + \mu_n^2) = -\eta_n (y^T u_1)^2 + \sigma_n y^T y. \]

Let \(M \) be an \((n \times n)\) diagonal matrix, where \(\frac{1}{\sqrt{d_i}} \) is the \(i \)-th element of the main diagonal, and \(I \) be the \((n \times n)\) identity matrix. With \(M^T = M \) and \(\mathcal{L} = I - M A M \), we obtain \(y^T M A M y \geq \sigma_n (y^T u_1)^2 + (1 - \sigma_n) y^T y \). We may choose \(u_1^T = \frac{1}{\sqrt{2m}} (\sqrt{d_1}, \ldots, \sqrt{d_n}) \) and, substituting \(y_i = x_i \sqrt{d_i} \) for \(i = 1, \ldots, n \), it follows that

\[\sigma_n \left(\sum_{i=1}^{n} d_i x_i^2 \right)^2 + 2m (1 - \sigma_n) \sum_{i=1}^{n} d_i x_i^2 \leq 4m \sum_{ij \in E} x_i x_j \quad (1) \]

for arbitrary real numbers \(x_1, \ldots, x_n \). Let \(I \) be a maximum independent set of \(G \) and \(\overline{x} = (x_1, \ldots, x_n) \) with \(x_i = 1 \) if \(i \in I \) and \(x_i = 0 \), otherwise. By inequality (1),

\[\sigma_n \left(\sum_{i \in I} d_i \right)^2 + 2m (1 - \sigma_n) \sum_{i \in I} d_i = \sigma_n \left(\sum_{i=1}^{n} d_i x_i^2 \right)^2 + 2m (1 - \sigma_n) \sum_{i=1}^{n} d_i x_i^2 \leq 4m \sum_{ij \in E} x_i x_j, \]

hence, with \(\sum_{ij \in E} x_i x_j = 0 \) and \(\sum_{i \in I} d_i \geq \delta \alpha \), it follows \(\alpha \leq \frac{2\sigma_n - 2}{\sigma_n \delta} m. \)
Let us remark that \(\sum_{i=1}^{n} d_i x_i = \sum_{ij \in E} (x_i + x_j) \) and \(\sum_{i=1}^{n} d_i x_i^2 = \sum_{ij \in E} (x_i^2 + x_j^2) \). Hence, if \(G \) is bipartite, then \(\sigma_n = 2 \) [5, 15] and (1) is equivalent to
\[
(\sum_{ij \in E} (x_i + x_j))^2 \leq m \sum_{ij \in E} (x_i + x_j)^2. \tag{2}
\]

Note that inequality (2) is a consequence of the Cauchy-Schwarz inequality and, therefore, (2) is valid also for an arbitrary (not necessarily bipartite) graph \(G \).

Using (2), \(\sum_{i=1}^{n} d_i x_i^2 = (\sum_{ij \in E} (x_i + x_j))^2 = \sum_{ij \in E} (x_i^2 + x_j^2) - (\sum_{ij \in E} (x_i + x_j))^2 \geq m(\sum_{ij \in E} (x_i^2 + x_j^2) - \sum_{ij \in E} (x_i + x_j)^2) = m \sum_{ij \in E} (x_i - x_j)^2 \geq 0 \) and it follows that the coefficient \(c(\sigma_n) \) of \(\sigma_n \) in inequality (1) is not positive. Hence, the left side of (1) is a non-increasing function in \(\sigma_n \) and, if \(\sigma_n < 2 \) and \(c(\sigma_n) < 0 \), then (1) is stronger than (2).

Next, for given \(\varepsilon > 0 \), we present the infinite family \(F_\varepsilon \) mentioned in the abstract.

For a positive integer \(k \), consider the graph \(G_k \) on \(n = 3k + 1 \) vertices obtained from \(k \) pairwise disjoint paths each on 3 vertices, where the vertices of these paths are numbered arbitrarily from 1 up to 3k, an additional vertex \(n = 3k + 1 \), and additional 2k edges connecting \(n \) with the 2k endvertices of these paths. Obviously, \(G_k \) is bipartite, \(n \) has degree 2k; each other vertex has degree 2, \(m = 4k \), \(\delta = 2 \), and, since \(G_k \) is bipartite, \(\sigma_n = 2 \) and \(\lambda_1 = -\lambda_n \) [5, 15]. Moreover, \(\frac{2r_n}{\sigma_n^\delta} m = \alpha = 2k = \frac{2}{3}(n-1) \). Let \(z \in \mathbb{R}^n \) be defined by \(x_i = 1 \) if \(i \) is a neighbour of \(n \), \(x_n = \sqrt{2k} \), and \(x_i = 0 \) otherwise. It follows \(\lambda_n \geq \frac{x_i^2 A z}{\sqrt{2k} z} = \sqrt{2k} \).

Rayleigh’s principle [4], hence, \(\frac{\lambda_{\delta^2} - \lambda_{\delta^2} \lambda \lambda}{\lambda_{\delta^2} - \lambda_{\delta^2} \lambda \lambda} n \mid \lambda_n \leq 0 \leq \lambda_n \) if \(\frac{\lambda_{\delta^2}}{\lambda_{\delta^2} \lambda \lambda} n \mid \lambda_n \leq 0 \leq \lambda_n \). If \(x \) is defined by \(x_n \) if \(i = n \) and \(x_i = 0 \) otherwise, then \(\eta \mid \eta \leq 0 \mid \eta \leq 0 \leq \eta \) and \(\frac{\lambda_{\delta^2}}{\lambda_{\delta^2} \lambda \lambda} n \mid \lambda_n \leq 0 \leq \lambda_n \), \(\frac{\lambda_{\delta^2}}{\lambda_{\delta^2} \lambda \lambda} n \mid \lambda_n \leq 0 \leq \lambda_n \), \(\frac{\lambda_{\delta^2}}{\lambda_{\delta^2} \lambda \lambda} n \mid \lambda_n \leq 0 \leq \lambda_n \), \(\frac{\lambda_{\delta^2}}{\lambda_{\delta^2} \lambda \lambda} n \mid \lambda_n \leq 0 \leq \lambda_n \). Let the integer \(l = l_\varepsilon \geq 2 \) be chosen large enough such that \(\frac{\lambda_{\delta^2}}{\lambda_{\delta^2} \lambda \lambda} n \mid \lambda_n \leq 0 \leq \lambda_n \) and \(\frac{\lambda_{\delta^2}}{\lambda_{\delta^2} \lambda \lambda} n \mid \lambda_n \leq 0 \leq \lambda_n \). It follows \(k \geq \frac{k}{k+2} \) and \(\frac{\lambda_{\delta^2}}{\lambda_{\delta^2} \lambda \lambda} n \mid \lambda_n \leq 0 \leq \lambda_n \), \(\frac{\lambda_{\delta^2}}{\lambda_{\delta^2} \lambda \lambda} n \mid \lambda_n \leq 0 \leq \lambda_n \), \(\frac{\lambda_{\delta^2}}{\lambda_{\delta^2} \lambda \lambda} n \mid \lambda_n \leq 0 \leq \lambda_n \), \(\frac{\lambda_{\delta^2}}{\lambda_{\delta^2} \lambda \lambda} n \mid \lambda_n \leq 0 \leq \lambda_n \). Eventually, we show that the difference between \(\frac{\lambda_{\delta^2}}{\lambda_{\delta^2} \lambda \lambda} n \mid \lambda_n \leq 0 \leq \lambda_n \) and D.M. Cvetković’s bound \(\min\{\{i \in \{1, \ldots, n\} \mid \lambda_i \leq 0\}, \{i \in \{1, \ldots, n\} \mid \lambda_i \geq 0\}\} \) can be arbitrarily small. For two graphs \(G \) on \(V(G) \) and \(G' \) on \(V(G') \), the cartesian product \(G \times G' \) is the graph on \(V(G) \times V(G') \) and two vertices \((v, v') \) and \((w, w') \) of \(G \times G' \) are adjacent in \(G \times G' \) if and only if \(v = w \) and \(v' = w' \) or \(v' = w \) and \(w \neq w' \). For a positive integer \(k \), consider the bipartite and 4-regular graph \(H_k = C_{4k} \times C_{4k} \) on \(n = 16k^2 \) vertices, where \(C_{4k} \) is the cycle on \(4k \) vertices, and it follows \(\frac{\lambda_{\delta^2}}{\lambda_{\delta^2} \lambda \lambda} n \mid \lambda_n \leq 0 \leq \lambda_n \), \(\frac{\lambda_{\delta^2}}{\lambda_{\delta^2} \lambda \lambda} n \mid \lambda_n \leq 0 \leq \lambda_n \), \(\frac{\lambda_{\delta^2}}{\lambda_{\delta^2} \lambda \lambda} n \mid \lambda_n \leq 0 \leq \lambda_n \), \(\frac{\lambda_{\delta^2}}{\lambda_{\delta^2} \lambda \lambda} n \mid \lambda_n \leq 0 \leq \lambda_n \). If \(\lambda \) and \(\lambda' \) are eigenvalues of \(G \) and \(G' \), respectively, then \(\lambda + \lambda' \) is an eigenvalue of \(G \times G' \) [4]. If the graph \(G \) is bipartite, then the set of its eigenvalues is symmetric w.r.t. 0 [4]. Since \(C_{4k} \) has the eigenvalue 0 with multiplicity 2 [4], \(H_k \) has the eigenvalue 0 with multiplicity \(4k + 2 \), and, consequently,

\[
\min\{\{i \in \{1, \ldots, n\} \mid \lambda_i \leq 0\}, \{i \in \{1, \ldots, n\} \mid \lambda_i \geq 0\}\} = \frac{n}{2} + 2k + 1 \text{ for } G_k.
\]
Acknowledgement. The authors would like to express their gratitude to Horst Sachs, Ilmenau University of Technology, and two anonymous referees for their valuable advice.

References

