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A. Böttcher and I. M. Spitkovsky

Criteria for Drazin and Moore-Penrose invertibility of operators in the von Neu-
mann algebra generated by two orthogonal projections are established and explicit
representations for the corresponding inverses are given. The results are illustrated
by several examples that have recently been considered in the literature.

Keywords: Drazin inverse, Moore-Penrose inverse, orthogonal projection, von
Neumann algebra

Mathematics Subject Classification (2000): Primary 47L15; Secondary
15A09, 46L10, 47C15

1 Main results

This note concerns operators lying in the von Neumann or W ∗-algebra W ∗(P,Q)
generated by two orthogonal projections P and Q. In [7], one of the authors
explored ranges, null spaces, and related characteristics of operators in W ∗(P,Q)
and established in particular a criterion for Moore-Penrose invertibility. For sev-
eral special operators in the algebra, Drazin invertibility was recently studied in
[1] (and in a more general context also in [2]), and paper [1] actually prompted
us to write the present note. Our aim is to show that a criterion for Drazin
invertibility in W ∗(P,Q) and an explicit representation of the Drazin inverse can
be easily derived from the corresponding results for Moore-Penrose inverses and
that many of the results of [1] pertaining to various specific operators can be
deduced very comfortably from a single general theorem.

Let H be a Hilbert space and B(H) be the algebra of all bounded linear
operators acting on H. For A ∈ B(H), a Moore-Penrose inverse is an operator
X ∈ B(H) such that

XAX = X, AXA = A, (AX)∗ = AX, (XA)∗ = XA. (1)
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Such X exists if and only if the range of A is closed, in which case it is defined
uniquely. The standard notation for the Moore-Penrose inverse of A is A†. Due
to (1), AA† and A†A are the orthogonal projections onto the range of A and of
A∗, respectively.

The Drazin inverse, on the other hand, exists by definition if and only if both
sequences ImAj and KerAj stabilize. In this case there is a smallest non-negative
integer k for which KerAk = KerAk+1 and ImAk = ImAk+1, and the Drazin
inverse of A, denoted by AD, is the uniquely determined operator X ∈ B(H)
satisfying

Ak+1X = Ak, XAX = X, AX = XA. (2)

Obviously, for invertible operators A both the Moore-Penrose inverse and the
Drazin inverse coincide with the usual inverse A−1. Equalities (2) then hold with
k = 0.

Now let P ∈ B(H) and Q ∈ B(H) be two orthogonal projections and denote
by W ∗(P,Q) the smallest von Neumann subalgebra of B(H) that contains P ,
Q, and the identity operator I. Let L and N denote the ranges of P and Q,
respectively. We denote by PM the orthogonal projection of H onto a closed
subspace M and may therefore also write P = PL and Q = PN . The structure of
W ∗(P,Q) was described in [4] on the basis of the pioneering papers [3] and [5].
Namely, W ∗(P,Q) consists of all operators of the form

A = (α11, α10, α01, α00)⊕
(
I 0
0 R∗

)(
ϕ00(H) ϕ01(H)
ϕ10(H) ϕ11(H)

)(
I 0
0 R

)
, (3)

where, in notation slightly different from [7],

(α11, α10, α01, α00) = α11IM11 ⊕ α10IM10 ⊕ α01IM01 ⊕ α00IM00

with

M11 = L ∩N, M10 = L ∩N⊥, M01 = L⊥ ∩N, M00 = L⊥ ∩N⊥,

H is the compression of I − PN to the subspace M0 = L 	 (M11 ⊕ M10), the
operator R performs a unitary equivalence of H with the compression of PN to
M1 = L⊥	(M01⊕M00) (the existence of such unitary equivalence is a non-trivial
fact, lying at the heart of the “two projections theory”), αij ∈ C, and ϕij are
Borel-measurable and essentially bounded functions on the spectrum σ(H) of H.
The null sets here and in what follows are always in the sense of the spectral type
of H, that is, sets mapped to {0} by the spectral measure of H.

Of course, the first orthogonal sum in (3) is limited to the terms (if any) with
dimMij > 0 and the last term is present if and only if dimM0 > 0. Observe also
that σ(H) ⊆ [0, 1] and that the choice of M0 precludes 0,1 from lying in the point
spectrum of H.
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Since unitary multiples have no effect on the generalized invertibility of the
operators in question, we may without loss of generality identify the subspaces M0

and M1 via the unitary mapping R : M1 →M0. Consequently, representation (3)
simplifies to

(α11, α10, α01, α00)⊕
(
ϕ00(H) ϕ01(H)
ϕ10(H) ϕ11(H)

)
. (4)

For the generating projections themselves, representation (4) will then look as

P = (1, 1, 0, 0)⊕
(
I 0
0 0

)
, (5)

Q = (1, 0, 1, 0)⊕
(

I −H
√
H(I −H)√

H(I −H) H

)
. (6)

In what follows, we let

ΦA =

(
ϕ00 ϕ01

ϕ10 ϕ11

)
.

Then of course the last term in (4) simply becomes ΦA(H). In particular,

ΦP (t) =

(
1 0
0 0

)
, ΦQ(t) =

(
1− t

√
t(1− t)√

t(1− t) t

)
.

We also put

ωA = det ΦA = ϕ00ϕ11 − ϕ01ϕ10, ϕA = |ϕ00|2 + |ϕ01|2 + |ϕ10|2|+ ϕ11|2,

and denote by ∆r(A) the set of all t ∈ σ(H) such that the rank of ΦA(t) equals
r (r = 0, 1, 2).

Theorem 1 of [7] contains, among other things, a necessary and sufficient
condition for ImA to be closed (and thus for A† to exist). It reads as follows.

Theorem 1.1 Let A ∈ W ∗(P,Q). Then the range of A is closed if and only if the
functions ωA and ϕA are separated from zero on ∆2(A) and ∆1(A), respectively.

If the range of A is closed, the Moore-Penrose inverse A† can be expressed in
terms of H as follows. For r = 0, 1, 2, denote by M (r) the spectral subspace of H
corresponding to the part ∆r(A) of σ(H) and let Hr be the restriction of H to
M (r). In [7] it was shown that

A† = (α†11, α
†
10, α

†
01, α

†
00)⊕ 0M(0)⊕M(0) ⊕

⊕
(
ϕA(H1) 0

0 ϕA(H1)

)−1

ΦA(H1)
∗ ⊕ ΦA(H2)

−1, (7)

where α† = 1/α if α 6= 0 and 0† = 0. Note that Φ(H2) is invertible whenever ωA

is bounded away from zero on ∆2.
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To state the result for the existence of AD, we need to stratify the set ∆1(A)
further. Namely, let

∆10(A) = {t ∈ ∆1(A) : tr ΦA(t) = 0}, ∆11(A) = ∆1(A) \∆10(A).

Theorem 1.2 An operator A ∈ W ∗(P,Q) is Drazin invertible if and only if the
functions ωA and tr ΦA are separated from zero on ∆2(A) and ∆11(A), respec-
tively.

Proof. Necessity. It is well known that conditions (2) imply that the range
of B := Ak is closed. Indeed, we have ImB = ImB2 and KerB = KerB2

and hence B is Drazin invertible with k = 1, which guarantees a Z ∈ B(H)
such that B2Z = B and BZ = ZB. It follows that if yn = Bxn → y, then
yn = B2Zxn = BZBxn = BZyn and thus y = BZy ∈ ImB. Since ImAj = ImAk

for j ≥ k, the range of Aj is closed for all j ≥ k. Applying Theorem 1.1 to Aj, we
conclude that ωAj and ϕAj must be separated from zero on ∆2(A

j) and ∆1(A
j),

respectively (j ≥ k). It remains to observe that

ωAj = (ωA)j, ϕAj = |tr ΦA|2(j−1) ϕA on ∆1(A)

while

∆2(A
j) = ∆2(A) for j = 1, 2, . . . and ∆1(A

j) = ∆11(A) for j = 2, 3, . . . .

Sufficiency. In addition to the subspaces M (r) and operators Hr introduced above
for r = 0, 1, 2, we denote by M (r) the spectral subspace of H corresponding to
the part ∆r(A) of σ(H) and by Hr the restriction of H to M (r) for r = 10 and
r = 11. Then (4) can be rewritten as

A = (α11, α10, α01, α00)⊕ 0M(0)⊕M(0) ⊕ ΦA(H10)⊕ ΦA(H11)⊕ ΦA(H2).

The operator ΦA(H2) is invertible (due to the condition on ωA), the operator
ΦA(H10) is nilpotent of degree two, and

(Φ(H11))
2 =

(
(tr ΦA)(H11) 0

0 (tr ΦA)(H11)

)
ΦA(H11),

the first term on the right-hand side being invertible because of the condition on
tr ΦA. It can be checked directly that the Drazin inverse of A is then given by
the formula

AD = (α†11, α
†
10, α

†
01, α

†
00)⊕ 0M(0)⊕M(0) ⊕ 0M(10)⊕M(10) ⊕

⊕
(

(tr ΦA)(H11) 0
0 (tr ΦA)(H11)

)−2

ΦA(H11)⊕ ΦA(H2)
−1, (8)

which completes the proof. �
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Observe that M (10) ⊕M (10) is a reducing subspace for A and therefore for A†

as well. Since A|M(10)⊕M(10) is non-zero (unless M (10) = {0}), the restriction of A†

onto M (10) ⊕M (10) also is non-zero. Comparing this to (8) we conclude that AD

and A† may coincide only if M (10) = {0} (that is, ∆1(A) = ∆11(A)).

Suppose now that this condition holds (and consequently H1 = H11). Another
glance at (7) and (8) then reveals that AD = A† if and only if for all t ∈ ∆1 the
matrix

ΦA(t) =:

(
a(t) b(t)
c(t) d(t)

)
(9)

has the property

1

(a+ d)2

(
a b
c d

)
=

1

|a|2 + |b|2 + |c|2 + |d|2

(
a c

b d

)
. (10)

Direct computations show that, under the condition ad = bc (which holds since
t ∈ ∆1(A)), (10) is equivalent to

arg a = arg d, |b| = |c| . (11)

On the other hand, normality of the matrix (9) is equivalent to

arg b+ arg c = 2 arg(a− d), |b| = |c| . (12)

But (once again, under the condition ad = bc) (11) and (12) are equivalent.

Consequently, AD = A† if and only if M (10) = {0} and the matrix ΦA(t) is
normal for t ∈ ∆1(A).

Note also that k = 0 (that is, the operator A is invertible and therefore A† =
AD = A−1) if and only if αij 6= 0 whenever dimMij > 0 and M (0) = M (1) = {0}.
On the other hand, k = 2 if and only if M (10) 6= {0}. In all other cases when AD

exists, it does so with k = 1.

We now consider the particular situation when A is actually a polynomial in
P and Q. Direct computations (see e.g. formula (2.2) in [8]) show that ϕ00 and
ϕ11 in representation (4) are also polynomials, while ϕ10 and ϕ01 are polynomials
times

√
t(1− t) (explicit formulas for these polynomials are available in [8] but

they are not important for our purposes). Consequently, the functions ωA and
tr ΦA are in this setting polynomials as well, and therefore either vanish identically
or have only isolated roots. Theorem 1.2 may therefore be simplified as follows.

Theorem 1.3 Let A be a polynomial in P and Q. Then A is Drazin invertible
if and only if one of the following three situations takes place:

(i) ωA does not vanish at the limit points of σ(H),

(ii) ωA ≡ 0, and tr ΦA does not vanish at the limit points of σ(H),
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(iii) ωA ≡ 0, tr ΦA ≡ 0.

Proof. If the polynomial ωA is not identically zero, the set ∆2(A) is σ(H) with
zeros of ωA (if any) deleted. So, for ωA to be separated from zero on ∆2(A) it is
necessary and sufficient that these zeros are isolated points of σ(H). On the other
hand, ∆1(A) (and therefore ∆11(A)) in this case consists of isolated points only,
so that the condition on tr ΦA from Theorem 1.2 holds automatically. Thus, in
this setting condition (i) is necessary and sufficient for A to be Drazin invertible.

Let now ωA ≡ 0. Then ∆2(A) = ∅, so that the condition on ωA from The-
orem 1.2 holds again automatically. If in addition tr ΦA is not identically zero,
then ∆11(A) differs from σ(H) by at most finitely many points, and tr ΦA is sep-
arated from zero on ∆11(A) if and only if its zeros are not limit points of σ(H).
This is exactly condition (ii).

Finally, if ωA and tr ΦA are both identically equal to zero, then the sets ∆2(A)
and ∆11(A) are void. Conditions of Theorem 1.2 then hold vacuously, so that A
is Drazin invertible. �

Observe that in cases (i) and (ii) of Theorem 1.3 the range of A is closed, so
that its Moore-Penrose inverse also exists. On the other hand, case (iii) corre-
sponds to a nilpotent A, and then ImA may or may not be closed.

2 Examples

The purpose of this section is to demonstrate how Theorems 1.1 and 1.2 and the
explicit representations (7) and (8) work in concrete situations, in particular in
the cases studied in [1] and [2].

Let us first consider P +Q. From (5) and (6) we infer that

P +Q = (2, 1, 1, 0)⊕
(

2I −H
√
H(I −H)√

H(I −H) H

)
. (13)

Theorem 2.1 The following are equivalent: (i) P + Q is Drazin invertible, (ii)
P +Q is Moore-Penrose invertible, (iii) M0 = {0} or M0 6= {0} and H is invert-
ible. If M0 = {0}, then

(P +Q)D = (P +Q)† =

(
1

2
, 1, 1, 0

)
and if M0 6= {0} and H is invertible, then (P +Q)D and (P +Q)† are equal to(

1

2
, 1, 1, 0

)
⊕
(
H−1 0

0 H−1

)(
H −

√
H(I −H)

−
√
H(I −H) 2I −H

)
. (14)
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Proof. If M0 = {0}, then the matrix in (13) is actually absent, so that P +
Q = (2, 1, 1, 0), which implies that (P + Q)D and (P + Q)† exist and are just
(1/2, 1, 1, 0). So assume M0 6= {0}. We then have

ΦP+Q(t) =

(
2− t

√
t(1− t)√

t(1− t) t

)
,

whence ωP+Q(t) = t, ϕP+Q(t) = 4− 2t, tr ΦP+Q(t) = 2. It follows that

∆0 = ∅, ∆10 = ∅, ∆11 = ∆1 = {0}, ∆2 = σ(H) \ {0}.

Since M (10) is absent (or may be taken to be {0}) and ΦP+Q(t) is normal for
t ∈ ∆1, we conclude that P + Q is Drazin invertible if and only if it is Moore-
Penrose invertible and that the two inverses coincide. Theorem 1.2 shows that
P + Q is Drazin invertible exactly if σ(H) ⊆ {0} ∪ [ε, 1) for some ε > 0, which
is equivalent to the invertibility of H because 0 is known to be not an eigenvalue
of the Hermitian operator H. If H is invertible, then H2 = H and equality (8)
yields the asserted formula for (P +Q)D = (P +Q)†. �

Theorem 2.1 gives the Drazin inverse in terms of H. In paper [6], the authors
raised the problem of expressing (A + B)D via A, B, AD, BD in the case where
A and B are arbitrary matrices. We here deal with orthogonal projections P and
Q. If A is a projection (not necessarily orthogonal), then (2) is obviously true
with X = A and k = 1, so that AD = A. Thus, in our setting the problem of [6]
amounts to finding a formula for (P + Q)D in terms of only P and Q. From (8)
it follows that the Drazin inverse of every Drazin invertible operator in W ∗(P,Q)
belongs also to W ∗(P,Q). This shows that the formula we are looking for must
exist.

The following theorem provides us with such a formula. In connection with
this theorem notice that if K and M are closed subspaces of H, then PK∩M can
be expressed in terms of PK and PM as the strong limit

PK∩M = s-lim
n→∞

(PKPM)n = s-limPKPMPKPMPKPM . . . .

This formula goes back to von Neumann [9] and is frequently called the method
of alternating projections or von Neumann’s algorithm. Incidentally, the formula
follows easily from (5) and (6), applied to K = L, M = N . Indeed,

PK∩M = (1, 0, 0, 0)⊕ 0M0⊕M0

while

(PKPM)n = (1, 0, 0, 0)⊕
(

(I −H)n−1 0
0 (I −H)n−1

)(
I −H

√
H(I −H)

0 0

)
,

and since the Hermitian operator I − H has its spectrum in [0, 1] and does not
have 1 as its eigenvalue, its powers converge strongly to zero.
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In our context PL = P and PN = Q and hence

PL∩N = s-lim
n→∞

(PQ)n, PL⊥∩N⊥ = s-lim
n→∞

((I − P )(I −Q))n.

We put

S = P (I −Q)P + (I − P )Q(I − P ) = P +Q− PQ−QP,
T = PL∩N + PL⊥∩N⊥ + S.

Theorem 2.2 The operator P +Q is Drazin invertible if and only if T is invert-
ible, in which case

(P +Q)D =
1

2
PL∩N − 2PL⊥∩N⊥ + T−1(2I − P −Q).

Proof. Suppose first that M0 6= {0}. From (5) and (6) we see that

P (I −Q)P = (0, 1, 0, 0)⊕
(
H 0
0 0

)
,

(I − P )Q(I − P ) = (0, 0, 1, 0)⊕
(

0 0
0 H

)
,

which gives

S = (0, 1, 1, 0)⊕
(
H 0
0 H

)
.

Since PL∩N = (1, 0, 0, 0) and PL⊥∩N⊥ = (0, 0, 0, 1), we obtain that

T = (1, 1, 1, 1)⊕
(
H 0
0 H

)
.

Clearly, T is invertible if and only if so is H. Thus, by Theorem 2.1, P + Q is
Drazin invertible if and only if T is invertible. In that case

T−1 = (1, 1, 1, 1)⊕
(
H−1 0

0 H−1

)
.

A straightforward computation yields

2I − P −Q = (0, 1, 1, 2)⊕
(

H −
√
H(I −H)

−
√
H(I −H) 2I −H

)
.

Combining the last two formulas we see that T−1(2I − P −Q) equals

(0, 1, 1, 2)⊕
(
H−1 0

0 H−1

)(
H −

√
H(I −H)

−
√
H(I −H) 2I −H

)
,
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which after addition of (1/2)PL∩N−2PL⊥∩N⊥ = (1/2, 0, 0,−2) becomes (14). This
completes the proof under the assumption that M0 6= {0}. If M0 = {0}, then
T = (1, 1, 1, 1) is the identity operator and the theorem is equivalent to saying
that P +Q is Drazin invertible with

(P +Q)D =
1

2
PL∩N − 2PL⊥∩N⊥ + 2I − P −Q =

(
1

2
, 1, 1, 0

)
.

But this is immediate from Theorem 2.1. �

The following theorem is a generalization of Theorem 2.2. The proof is similar
to the proofs of the previous two theorems and is therefore omitted.

Theorem 2.3 Let a, b ∈ C. The operator aP+bQ is Drazin invertible if and only
if it is Moore-Penrose invertible, which is in turn equivalent to the invertibility of
the operator T . If T is invertible, then

(P −Q)D = (P −Q)† = T−1(P −Q),

while if ab 6= 0, a+ b 6= 0, then both (aP + bQ)D and (aP + bQ)† are equal to

1

a+ b
PL∩N −

(
1

a
+

1

b

)
PL⊥∩N⊥ +

1

ab
T−1(a(I − P ) + b(I −Q)).

We now turn to the products PQ and PQP . Representations (5) and (6) give

PQ = (1, 0, 0, 0)⊕
(
I −H

√
H(I −H)

0 0

)
, (15)

PQP = (1, 0, 0, 0)⊕
(
I −H 0

0 0

)
. (16)

Theorem 2.4 For the operators PQ and PQP , both Drazin and Moore-Penrose
invertibility are equivalent to the condition that either M0 = {0} or M0 6= {0}
and I −H is invertible. If M0 = {0}, then

(PQ)D = (PQ)† = (PQP )D = (PQP )† = (1, 0, 0, 0),

and if M0 6= {0} and I −H is invertible, then

(PQ)D = (1, 0, 0, 0)⊕
(

(I −H)−2 0
0 (I −H)−2

)(
I −H

√
H(I −H)

0 0

)
,

(PQ)† = (1, 0, 0, 0)⊕
(

(I −H)−1 0
0 (I −H)−1

)(
I −H 0√
H(I −H) 0

)
,

(PQP )D = (PQP )† = (1, 0, 0, 0)⊕
(

(I −H)−2 0
0 (I −H)−2

)(
I −H 0

0 0

)
.
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Proof. The case M0 = {0} is trivial. So let M0 6= {0}. We have

ΦPQ(t) =

(
1− t

√
t(1− t)

0 0

)
,

and hence ωPQ(t) = 0, ϕPQ(t) = 1 − t, tr ΦPQ(t) = 1 − t, ∆0 = {1}, ∆10 = ∅,
∆11 = σ(H) \ {1}, ∆2 = ∅. From Theorem 1.2 we therefore obtain that PQ is
Drazin invertible if and only if 1− t is separated from zero on σ(H) \ {1}, which
happens if and only if σ(H) ⊆ (0, 1 − ε] ∪ {1} for some ε > 0. As 1 is not an
eigenvalue of H, this is equivalent to the invertibility of I − H. In the same
way we deduce from Theorem 1.1 that PQ is Moore-Penrose invertible exactly if
I − H is invertible. In the case at hand, H11 = H. The representations of the
Drazin and Moore-Penrose inverses of PQ are therefore immediate from (7) and
(8). The operator PQP can be tackled equally. �

Let now

U = PQP + (I − P )(I −Q)(I − P ), V = PL∩N⊥ + PL⊥∩N + U

and recall that PL∩N⊥ and PL⊥∩N are the strong limits of

P (I −Q)P (I −Q)P (I −Q) . . . and (I − P )Q(I − P )Q(I − P )Q . . . ,

respectively.

Theorem 2.5 For each of the operators PQ and PQP , both Drazin and Moore-
Penrose invertibility are equivalent to the invertibility of V . In case V is invert-
ible,

(PQ)D = V −2PQ, (PQ)† = V −1QP, (PQP )D = (PQP )† = V −2PQP.

Proof. Since

U = (1, 0, 0, 1)⊕
(
I −H 0

0 I −H

)
, V = (1, 1, 1, 1)⊕

(
I −H 0

0 I −H

)
,

this follows from Theorem 2.4 in conjunction with (15) and (16). �

In analogy to Theorem 2.5 one can prove the following.

Theorem 2.6 Let A be one of the operators PQ, PQP , PQPQ, PQPQP , . . ..
Then A is Drazin invertible if and only if it is Moore-Penrose invertible, and this
is in turn the case if and only if V is invertible. If V is invertible, then for every
natural number m ≥ 1,

((PQ)m)D = V −m−1PQ, ((PQ)m)† = V −mQP,

((PQ)mP )D = ((PQ)mP )† = V −m−1PQP.
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Albrecht Böttcher, Fakultät für Mathematik, TU Chemnitz, D-09107 Chemnitz,
Germany

aboettch@mathematik.tu-chemnitz.de

Ilya M. Spitkovsky, Department of Mathematics, The College of William and
Mary, Williamsburg, VA 23187, USA

ilya@math.wm.edu, imspitkovsky@gmail.com

11


