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Abstract. The purpose of this note is to prove a sufficient and necessary criterion on the stability of
a subsequence of the finite section method for a so-called band-dominated operator on `p(ZN , X). We
hereby generalize previous results into several directions: We generalize the subsequence theorem
from dimension N = 1 (see [11]) to arbitrary dimensions N ≥ 1. Even for the case of the full
sequence, our result is new in dimensions N > 2 and it corrects a mistake in the literature for
N = 2. Finally, we allow the truncations to be taken by homothetic copies of very general starlike
geometries Ω ∈ RN rather than convex polytopes.
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1 Introduction

Matrices. In this paper, we look at a truncation method for the approximate solution of certain
operator equations Au = b on the space E := `p(ZN , X) of functions u : ZN → X with

‖u‖ =


p

√ ∑
k∈ZN

|u(k)|p, p ∈ [1,∞)

sup
k∈ZN

|u(k)|, p = ∞

 < ∞,

where N ∈ N, p ∈ [1,∞] and X is an arbitrary complex Banach space. The operators A that
we have in mind are bounded linear operators E → E which are induced, via

(Au)(i) =
∑

j∈ZN

aij u(j), i ∈ ZN , (1)

by a matrix (aij)i,j∈ZN with operator entries aij : X → X. Among those operators we call A
a band operator if it is induced by a banded matrix, i.e. aij = 0 if |i − j| is large enough, and
we call A a band-dominated operator and write A ∈ BDO(E) if A is the limit, with respect
to the operator norm induced by the norm on E, of a sequence of band operators. Also for
A ∈ BDO(E), there is a unique matrix (aij)i,j∈ZN which induces A via (1); we denote it by [A].

Finite Sections. If A ∈ BDO(E) is invertible then Au = b has a unique solution u ∈ E for
every right-hand side b ∈ E. An analytic computation of u, however, is in general not possible
which is why one uses approximation methods. One of the most popular approximation methods
is as follows: Choose a finite set Ω ⊆ ZN , restrict the right-hand side b to Ω (call the restriction
b̃, say) and look for a function ũ : Ω → X that solves the truncated equation Ãũ = b̃ with
[Ã] = (aij)i,j∈Ω which is now an equation on a finite domain and in finitely many variables in X.
Now increase Ω – for example by a concentric scaling – and watch the solutions ũ evolve. The
hope behind this procedure is that, given Au = b is uniquely solvable, also Ãũ = b̃ is uniquely
solvable (at least once Ω is big enough) and the solution ũ approximates the exact solution u in
some way. This procedure is called the finite section method. Here is how we will formulate it:
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Definition 1.1 Let v ∈ N and ω1, ..., ωv ∈ ZN be such that 0 is an interior point (w.r.t. RN )
of the polytope Ω := conv{ω1, ..., ωv} ⊆ RN . Sets Ω ⊂ RN that can be written in this form will
henceforth be referred to as valid polytopes.

Now, for every n ∈ N, put

Ωn := nΩ ∩ ZN and Pn := PΩn , (2)

where, for a set U ⊆ ZN , by PU : E → E we denote the operator of multiplication by the
characteristic function χU of U . The finite section method consists in solving the equation

PnAPnũn = Pnb (3)

for large values n ∈ N. The method is called applicable if there exists an n0 ∈ N such that,
for every b ∈ E, (3) is uniquely solvable for all n ≥ n0 and if the sequence (ũn) of solutions is
bounded in E and converges componentwise to the exact solution u of Au = b as n →∞.

This truncation procedure is, of course, a very natural idea, and the fact that it can be
performed on all infinite matrices creates the temptation to simply use it and keep fingers
crossed it will work. A positive outcome, however, i.e. applicability as defined above, is in
general far from guaranteed.

Example 1.2 Consider the shift operator A = Vc : u 7→ v on E with u(k) = v(k + c) for
every k ∈ ZN and a fixed nonzero vector c ∈ ZN . Then Vc is invertible on E but since Vc maps
functions with support in Ωn to functions supported in Ωn + c, the truncated equation (3) is not
solvable for general right-hand sides (and even if it is solvable, the solution is not unique) – no
matter how big n is and how Ω is chosen.

By [4, Corollary 1.77] (which is a consequence of [10, Theorem 6.1.3]) one has that the finite
section method (3) is applicable iff A is invertible and the sequence

(PnAPn + Qn)n∈N (4)

is stable. Here we have put Qn := I−Pn and we call a sequence (An)n∈N of operators An : E → E
stable if there exists an n0 ∈ N such that all operators An with n ≥ n0 are invertible and
supn≥n0

‖A−1
n ‖ is finite. Also note that PnAPn + Qn is invertible on E iff PnAPn is invertible

on the image of Pn and that ‖(PnAPn + Qn)−1‖ = max(1, ‖(PnAPn|im Pn)−1‖).
So the key condition for the applicability of (3) is the stability of the sequence (4), which,

by the way, will be shown to automatically imply the other condition too: invertibility of A. In
fact, one can show [3, 4, 10, 13] the following.

The sequence (4) is stable iff all operators in an associated set σstab
Ω (A) are invertible

and if their inverses are uniformly bounded. The elements of σstab
Ω (A) are known and

include A itself; the set depends, apart from the operator A, on the geometry of Ω.
(5)

Example 1.3 Let N = 1 and consider the operator A induced by the block diagonal matrix

diag
(
· · · ,

(
0 1
1 0

)
,

(
0 1
1 0

)
, 1,

(
0 1
1 0

)
,

(
0 1
1 0

)
, · · ·

)
with the single 1 entry at position zero. Then A = A−1 is invertible and, for Ω = [−1, 1], its
truncations PnAPn correspond to the finite (2n + 1)× (2n + 1) matrices

diag
((

0 1
1 0

)
, · · ·

(
0 1
1 0

)
, 1,

(
0 1
1 0

)
, · · ·

(
0 1
1 0

))
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if n is even and to

diag
(

0,

(
0 1
1 0

)
, · · ·

(
0 1
1 0

)
, 1,

(
0 1
1 0

)
, · · ·

(
0 1
1 0

)
, 0

)
if n is odd. So sequence (4) is not stable since all its entries with an odd n are non-invertible.
The associated set σstab

Ω (A) consists in this example of five operators. They are A,

B = diag
(
· · · , 1, 1, 1,

(
0 1
1 0

)
,
(

0 1
1 0

)
, · · ·

)
, C = diag

(
· · · ,

(
0 1
1 0

)
,
(

0 1
1 0

)
, 1, 1, 1, · · ·

)
,

D = diag
(
· · · , 1, 1, 0,

(
0 1
1 0

)
,
(

0 1
1 0

)
, · · ·

)
, F = diag

(
· · · ,

(
0 1
1 0

)
,
(

0 1
1 0

)
, 0, 1, 1, · · ·

)
,

out of which only A,B and C are invertible.

The Philosophy. As we have just seen, the finite section method cannot be expected to
work for every operator A. But in some cases it is possible to “adjust” the method to the
operator at hand by choosing the right geometry Ω and an appropriate subsequence of (4). The
philosophy here is to give the operator A the chance to impose some of its “personality” on the
(otherwise too “impersonal”) method of finite sections. In the previous example, for instance,
one simply has to remove all elements from the sequence (4) that correspond to an odd value of
n to get a stable approximation method for A. We believe that, for a given operator A, finding
the right geometry Ω and an appropriate index set I ⊆ N such that (PnAPn + Qn)n∈I is stable
is a major task in the numerical analysis of the equation Au = b. The following observation (6)
helps to translate this task into a different, and sometimes more tractable, language.

Subsequences of Finite Sections. In [11] the following observation was made in the
one-dimensional case (N = 1):

An infinite subsequence (PnAPn +Qn)n∈I of (4), with index set I ⊆ N, is stable iff all
operators in an associated set σstab

Ω,I (A) are invertible with uniformly bounded inverses.

The set σstab
Ω,I (A) depends, in addition to A and Ω, on the index set I ⊆ N.

It holds that σstab
Ω,I (A) ⊆ σstab

Ω,J (A) if I ⊆ J ⊆ N and σstab
Ω,N (A) = σstab

Ω (A).

We call σstab
Ω,I (A) the stability spectrum of A with respect to Ω and index set I ⊆ N.

(6)

This generalization, (6), of the old result (5) from I = N to I ⊆ N has two important
consequences: Firstly, if the whole sequence (4) is not stable then one might be able, via the
new result, to detect a stable subsequence (with index set I ⊆ N, say) and to solve (3) for n ∈ I
only – thereby still approximately solving Au = b. Secondly, the observation (6) was used to
remove the uniform boundedness condition from the same statement (6) and hence also from
(5), which is the main result of [11].

If we put I = 2N and J = 2N+1 in Example 1.3 then it turns out that σstab
Ω,I (A) = {A,B, C}

while σstab
Ω,J (A) = {A,D, F}, so that, by (6), the finite section subsequence corresponding to all

even n is stable. Of course this just confirms what we already observed directly in Example 1.3
but there are, however, examples in which the detection of a less obvious stable subsequence of
(4) is possible via (6).

What’s new? The purpose of this note is to generalize statement (6) from dimension N = 1
(see [11]) to arbitrary dimensions N ≥ 1. Even for the case I = N of the full sequence, our
result is new in dimensions N > 2 (and it corrects an error in the literature for N = 2). Another
direction of generalization is that we can go away from truncations (2) by homothetic copies of
a convex polytope Ω ∈ RN with integer vertices and pass to more general geometries instead.

The question of the uniform boundedness condition in (6), however, is much more subtle if
N > 1 than it was in [11] for N = 1. We will say a bit about this in Section 6.
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2 Preliminaries

Let E = `p(ZN , X), A ∈ BDO(E) and Ω = conv{ω1, ..., ωv} ⊂ RN a valid polytope as in
Definition 1.1. For an infinite index set I = {n1, n2, ...} ⊆ N, we want to study the stability of
the operator sequence

(PnAPn + Qn)n∈I = (PniAPni + Qni)
∞
i=1, (7)

where we suppose that n1, n2, ... is a strictly monotonous enumeration of I. For the study of
this sequence as one item, we will assemble it to a single operator. To do this, let

Ai :=
{

PniAPni + Qni , i ∈ N,
I, i ∈ Z \ N,

(8)

put E′ := `p(ZN+1, X), thought of as `p(Z, E), and write ⊕Ai for the map u 7→ v on E′ with

v(j, i) = (Ai u(·, i))(j), j ∈ ZN , i ∈ Z. (9)

In other words, we think of u ∈ E′ as decomposed into layers u(·, i) ∈ E, i ∈ Z, and let each
Ai act on the i−th layer of u. We will therefore refer to Ai as the i−th layer of ⊕Ai. One can
show that then ⊕Ai ∈ BDO(E′).

A key argument in [3, 4, 10, 13] is that the stability of (7) is equivalent to ⊕Ai being invertible
at infinity. Here we say that an operator B ∈ BDO(E′) is invertible at infinity if there exist
C,D ∈ BDO(E′) and an m ∈ N such that CBΘm = Θm = ΘmBD holds, where Θm is the
operator of multiplication by the characteristic function of ZN+1 \ {−m, ...,m}N+1.

So it remains to study invertibility at infinity of ⊕Ai. This is done in terms of so-called limit
operators. The idea is to reflect the behaviour of an operator B ∈ BDO(E′) at infinity by a
family of operators on E′ and to evaluate this family. To do this, we need two notations. Firstly,
for B,B1, B2, ... ∈ BDO(E′), we write B = P ′-lim Bn if [Bn] converges entrywise (in the norm
of L(X)) to [B] as n → ∞ and if supn ‖Bn‖ < ∞. Secondly, for α ∈ ZN+1, let V ′

α : E′ → E′

denote the shift operator with (V ′
αu)(k) = u(k − α) for all k ∈ ZN+1 and u ∈ E′.

If B ∈ BDO(E′), h = (h(1), h(2), ...) ⊆ ZN+1 is a sequence with |h(n)| → ∞ and the operator
sequence V ′

−h(n)BV ′
h(n) is P ′−convergent as n →∞ then its limit will be denoted by Bh and is

called limit operator of B w.r.t. the sequence h. In a completely analogous fashion, one defines
limit operators in BDO(E). To distinguish between operators on E′ and on E we write P-lim
and Vα with α ∈ ZN if we are in the E setting. Different sequences h generally lead to different
limit operators and often the sequence V−h(n)BVh(n) does not P−converge at all. We will call
B ∈ BDO(E) a rich operator if every sequence h = (h(1), h(2), ...) ⊆ ZN with |h(n)| → ∞ has
a subsequence g such that the limit operator Bg exists.

As a final preparation, we turn our attention to the geometry of Ω. Let Γ := ∂Ω be the
boundary of Ω and, for every n ∈ N, put

Γn := nΓ ∩ ZN and then let ΓI :=
⋃
n∈I

Γn. (10)

For a sequence h = (h(1), h(2), ...) ⊆ ΓI , say h(k) ∈ Γmk
for some mk ∈ I, and a set S ⊆ ZN ,

we call S the geometric limit of Ω w.r.t. h and write S = Ωh if, for every m ∈ N, there exists a
k0 ∈ N such that

(Ωmk
− h(k)) ∩ {−m, ...,m}N = S ∩ {−m, ...,m}N , k ≥ k0.

Note that in this case V−h(k)Pmk
Vh(k) is P−convergent to PS as k →∞. For a polytope Ω, the

only candidates for the geometric limit S w.r.t a sequence h ⊆ ΓI are intersections of finitely
many half spaces and ZN (discrete half spaces, edges, corners, etc.).
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3 The stability theorem for subsequences

Given a rich operator A ∈ BDO(E) on E = `p(ZN , X) with p ∈ [1,∞], N ∈ N and a complex
Banach space X, a valid polytope Ω ∈ RN , and an index set I = {n1, n2, ...} ⊆ N with
n1 < n2 < · · ·, we put

HΩ,I(A) := {h = (h(1), h(2), ...) : h(k) ∈ ΓI ∀k, |h(k)| → ∞, Ah exists, Ωh exists }

and
σstab

Ω,I (A) := {A} ∪ {PΩh
AhPΩh

+ QΩh
: h ∈ HΩ,I(A)}. (11)

Then the following theorem holds.

Theorem 3.1 Under the conditions mentioned above, the following are equivalent.

(i) The sequence (PniAPni + Qni)
∞
i=1 is stable.

(ii) The operator ⊕Ai, with Ai as in (8), is invertible at infinity.
(iii) All operators in σstab

Ω,I (A) are invertible and their inverses are uniformly bounded.

For dimension N = 1, our statement coincides with a two-sided version of [11, Theorem 3].
As such it generalizes [9, Theorem 3] (also see [10, Theorem 6.2.2], [4, Theorem 4.2] and [13,
Theorem 2.7]) from the full sequence I = N to arbitrary infinite subsequences with index set
I ⊆ N. For N = 2, our Theorem 3.1, together with (11), corrects another version of the stability
spectrum (see (16) and Example 4.1 below) that was previously suggested in the literature (see
[9, 10]) for I = N. Moreover, our result demonstrates how to deal with subsequences I ⊆ N by
restricting consideration to sequences h = (h(1), h(2), ...) with values in the set ΓI = ∪n∈IΓn.
For dimensions N > 2, to our knowledge, the result is new – even in the case I = N.

Proof of Theorem 3.1. To simplify the following, we put ni := 0 for all i ∈ Z \ N which has
the effect that (Ai) from (8) can be written as PniAPni + Qni for all i ∈ Z with P0 := 0 and
Q0 := I.

Now we start by reformulating (ii) in terms of limit operators of ⊕Ai. By [4, Proposition
2.22 b)] and A ∈ BDO(E) it follows that ⊕Ai ∈ BDO(E′). Since ⊕Pni and ⊕A are rich if A is
rich, we have that ⊕Ai = (⊕Pni)(⊕A)(⊕Pni) + I ′ − (⊕Pni) is rich with I ′ denoting the identity
operator on E′. Consequently, [4, Theorem 1] is applicable and shows that ⊕Ai is invertible at
infinity iff all its limit operators are invertible and their inverses are uniformly bounded. (In
case p = ∞, it is required in [4, Theorem 1] that the operator has a so-called preadjoint – an
operator whose adjoint it is. Note that this requirement recently turned out to be unnecessary
[1, Theorem 6.28(iii)].)

The equivalence of (i) and (ii) follows from [4, Theorem 2.28].

(ii) ⇒ (iii) : Let ⊕Ai be invertible at infinity. From the discussion at the beginning of
the proof we know that all limit operators of ⊕Ai are invertible and that there is a uniform
upper bound C > 0 on the norms of their inverses. We use this to prove (iii). Firstly, take
h = (h(1), h(2), ...) ⊆ ZN+1 = ZN × Z with h(m) = (0,m) for m ∈ N. Then, since 0 is an
interior point of Ω, it is easy to see that (⊕Ai)h = ⊕A. From this and the invertibility of all
limit operators of ⊕Ai (with uniform bound C on the inverses) we get invertibility of A and
‖A−1‖ = ‖(⊕A)−1‖ ≤ C. Secondly, take an arbitrary α = (α(1), α(2), ...) ∈ HΩ,I(A) with
α(m) ∈ Γnβ(m)

for some β(m) ∈ N and put h(m) = (α(m), β(m)) for every m ∈ N. Then also
the following limit operator of ⊕Ai is invertible and the norm of its inverse is bounded by C:
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P ′- lim V ′
−h(m)(⊕Ai)V ′

h(m) = P ′- lim V ′
(−α(m),−β(m))(⊕Ai)V ′

(α(m),β(m))

= P ′- lim
m→+∞

⊕
i∈Z

(
V−α(m) Aβ(m)+i Vα(m)

)
= ⊕i P- lim

m→+∞
V−α(m) Aβ(m)+i Vα(m)

= ⊕i P- lim
m→+∞

V−α(m) (Pnβ(m)+i
APnβ(m)+i

+ Qnβ(m)+i
) Vα(m) (12)

= ⊕i P- lim
m→+∞

(
(V−α(m)Pnβ(m)+i

Vα(m))(V−α(m)AVα(m))(V−α(m)Pnβ(m)+i
Vα(m))

+ V−α(m)Qnβ(m)+i
Vα(m)

)
So in particular, its i = 0−th layer is invertible with its inverse bounded by C. But this operator
is equal to PΩαAαPΩα + QΩα by the compatibility of P-lim with addition and composition and
by our assumption α ∈ HΩ,I(A).

(iii) ⇒ (ii) : Suppose all operators in σstab
Ω,I (A) are invertible and their inverses are bounded

by a constant C > 1. We will show that the same holds for all limit operators of ⊕Ai which
implies (ii) by the discussion at the beginning of this proof. So let L be an arbitrary limit
operator of ⊕Ai, say w.r.t. the sequence h = (h(1), h(2), ...) ∈ ZN+1 with h(m) = (α(m), β(m))
where α(m) ∈ ZN and β(m) ∈ Z for all m ∈ N and |h(m)| → ∞. To understand the operator L,
we will pass to a suitable subsequence of h which, clearly, does not change the limit operator L.
By passing to a subsequence of h, it can be arranged that one of the following four cases holds.

Case 1. β(m) 6→ +∞. Then we can choose an infinite subset M ⊆ N such that β|M either
tends to −∞ or is bounded. In either case it is easy to see that L = I ′ and ‖L−1‖ = 1 < C.

Case 2. β(m) → +∞ and dist(α(m),Ωnβ(m)
) →∞. Also then, clearly, L = I ′.

Case 3. β(m) → +∞, α(m) ∈ Ωnβ(m)
for all m and dist(α(m),Γnβ(m)

) → ∞. Note
that under these conditions (also see (13) and Remark 3.2 below), dist(α(m), nβ(m)Γ) → ∞ as
m →∞, whence P- lim V−α(m)PmVα(m) = I. Now consider these two subcases:

Case 3.1. If |α(m)| → ∞, choose an infinite subset M of N such that A has a limit
operator w.r.t. the remaining subsequence α|M , for simplicity again denoted by α, which is
possible since A is rich. Then L = ⊕iAα, which is invertible since Aα is invertible by the
invertibility of A. Also ‖L−1‖ = ‖A−1

α ‖ ≤ ‖A−1‖ ≤ C.

Case 3.2. If |α(m)| 6→ ∞ then α has a bounded and therefore even a constant subse-
quence. So take M ⊆ N such that α|M ≡: d ∈ ZN . Then L = ⊕i(V−dAVd) is invertible since A
is invertible, and ‖L−1‖ = ‖A−1‖ ≤ C.

Case 4. β(m) → +∞ and dist(α(m),Γnβ(m)
) remains bounded. For m ∈ N and i ∈ Z, put

γ(i)(m) := argmin{ |α(m)− γ| : γ ∈ Γnβ(m)+i
} and δ(i)(m) := α(m)− γ(i)(m).

By our condition, δ(0) is bounded in ZN . Choose M ⊆ N such that δ(0)|M is constant, say equal
to δ

(0)
∞ ∈ ZN . For every i ∈ Z \ {0}, δ(i)|M either tends to infinity (in absolute value) or it has

a constant subsequence. By a simple diagonal construction, we can pass to a subset of M (for
simplicity again denoted by M) such that, for every i ∈ Z, δ(i)|M either tends to infinity or is
constant, say equal to δ

(i)
∞ ∈ ZN . The set of all i ∈ Z for which δ(i)|M is constant will be denoted

by Zfinite; otherwise, i.e. if |δ(i)|M | → ∞, we will write i ∈ Z+
∞ if α(m) ∈ Ωnβ(m)+i

as m → ∞
and i ∈ Z−∞ if α(m) 6∈ Ωnβ(m)+i

as m → ∞ (note that it can be arranged in the choice of the
subsequence above that α(m) is either ∈ or 6∈ of Ωnβ(m)+i

for all m > m0, say). Finally, again by
a diagonal procedure, pass to an infinite subset of M , again denoted by M , such that, for every
i ∈ Z, the geometric limit Ωγ(i)|M exists (see the construction in the proof of [8, Proposition
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5] or [10, Theorem 2.1.16]) and the limit operators Aγ(i)|M and Aα|M exist (possible since A is
rich). Abbreviating α|M , γ(i)|M and δ(i)|M by α, γ(i) and δ(i), respectively, and repeating the
previously performed computations up to line (12), we get that L = ⊕Li, where the i−th layer
of L is

Li = P- lim
m→+∞

V−α(m) (Pnβ(m)+i
APnβ(m)+i

+ Qnβ(m)+i
) Vα(m)

= P- lim
m→+∞

V−δ(i)(m)V−γ(i)(m) (Pnβ(m)+i
APnβ(m)+i

+ Qnβ(m)+i
) Vγ(i)(m)Vδ(i)(m)

= P- lim
m→+∞

V−δ
(i)
∞

(
PΩnβ(m)+i

−γ(i)(m)V−γ(i)(m)AVγ(i)(m)PΩnβ(m)+i
−γ(i)(m)

+ QΩnβ(m)+i
−γ(i)(m)

)
V

δ
(i)
∞

= V−δ
(i)
∞

(
PΩ

γ(i)
Aγ(i)PΩ

γ(i)
+ QΩ

γ(i)

)
V

δ
(i)
∞

if i ∈ Zfinite and

Li = P- lim
m→+∞

V−α(m) (Pnβ(m)+i
APnβ(m)+i

+ Qnβ(m)+i
) Vα(m)

= P- lim
m→+∞

(
PΩnβ(m)+i

−α(m) V−α(m)AVα(m) PΩnβ(m)+i
−α(m) + QΩnβ(m)+i

−α(m)

)
=

{
Aα, i ∈ Z+

∞,
I, i ∈ Z−∞

if i ∈ Z \ Zfinite. In either case, Li is invertible and ‖L−1
i ‖ ≤ C by (iii). Consequently, L is

invertible and ‖L−1‖ = supi ‖L−1
i ‖ ≤ C.

Remark 3.2 In case 3 of the proof we used the implication

dist(xn,Γn) → ∞ =⇒ dist(xn, nΓ) → ∞ (13)

for arbitrary points xn ∈ ZN . It is easy to see that (13) is equivalent to

dist(xn,Γn) ≤ dist(xn, nΓ) + δ (14)

with a global finite constant δ := maxγ∈nΓ dist(γ, Γn) independent of n, so that the δ−neighbour-
hood of every γ ∈ nΓ contains a point from Γn (that is, Γn is “relatively dense” in nΓ). For
convex polytopes Ω with vertices in ZN , it is clear that (14) and hence (13) holds – with a
constant δ that is the maximum of the respective constants for the finitely many facets of Ω.

Definition 3.3 We will say that Ω ⊂ RN is a valid starlike set if Ω is bounded, nonempty and
has the property that, for every x ∈ Ω and α ∈ [0, 1), αx is an interior point of Ω.

So in particular, 0 is an interior point of every valid starlike set. Moreover, all bounded
convex sets Ω ⊂ RN with interior point 0 are valid starlike sets. We claim that we can prove a
version of Theorem 3.1 in the much more general setting of a valid starlike set Ω. Our reason for
this choice of geometry (as opposed to convex polytopes with integer vertices) is, of course, more
generality (including e.g. the ball) but at the same time still to make sure that the boundaries
of mΩ and nΩ are disjoint if m 6= n. However, for valid starlike sets, the implication (13) is in
general not true:

Example 3.4 For example, let Ω = {(x1, x2) ∈ R2 : |x1|3 + |x2|3 ≤ 1} and put Γ := ∂Ω and
Γn := (nΓ) ∩ ZN for n = 1, 2, .... Then it is well-known (this is a result of Euler and of course
a special case of Fermat’s Last Theorem) that every Γn only consists of the four points (±n, 0)
and (0,±n), so that (13) and (14) clearly fail.
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The workaround is to use “fat boundaries”: If we replace the first definition in (10) by

Γn := (nΓ + H) ∩ ZN with H = (−1/2 , 1/2 ]N (15)

then (13) and (14) always hold with δ = 1 (distances measured in the | · |∞ metric). As the rest
of the proof of Theorem 3.1 carries over to valid starlike sets, we get the following generalization.

Theorem 3.5 Let A ∈ BDO(E) be rich, Ω ⊂ RN a valid starlike set, and I = {n1, n2, ...} ⊆ N
an infinite index set with n1 < n2 < · · ·. Then, with ΓI , HΩ,I(A) and σstab

Ω,I (A) defined as before
but now with Γn given by (15) for every n ∈ N, the following are equivalent.

(i) The sequence (PniAPni + Qni)
∞
i=1 is stable.

(ii) The operator ⊕Ai, with Ai as in (8), is invertible at infinity.
(iii) All operators in σstab

Ω,I (A) are invertible and their inverses are uniformly bounded.

Unlike for the polytopes in Theorem 3.1, for valid starlike sets Ω ⊂ RN , there can be an
infinite amount of different geometric limits Ωh. For example, if N = 2 and Ω is the unit disk
{(x1, x2) : |x1|2 + |x2|2 ≤ 1} in R2, then all discrete half planes {(x1, x2) ∈ Z2 : ax1 + bx2 < 0}
with (a, b) ∈ R2 \{0} occur as geometric limits, but also the same sets with one additional point
(x1, x2) with ax1 + bx2 = 0 (e.g. look at h(n) = (c, n) for fixed c ∈ Z and all n ∈ N – note that
h(n) ∈ Γn for all sufficiently large n – to see this effect for the case (a, b) = (0, 1)) are geometric
limits of the disk Ω. In Example 3.4 the same discrete half planes occur but only those with a
fully vertical or horizontal ascent appear again with an additional point.

4 Examples

As a particularly illustrative and not too difficult class of examples, we will look at operators
that are induced by an adjacency matrix. Therefore, let E denote a set of pairwise disjoint
doubletons {i, j} with i, j ∈ ZN , i 6= j, and put

aij :=

{
IX , if {i, j} ∈ E or i = j 6∈

⋃
e∈E

e,

0X , otherwise,

for all i, j ∈ ZN , where IX and 0X stand for the identity and zero operator, respectively, on the
Banach space X at hand. Then (aij)i,j∈ZN is the extended adjacency matrix of the undirected
graph G = (ZN , E) with vertex set ZN and edges E . We write Adj(G) for the operator that is
induced by this matrix (aij) and note that Adj(G) is band-dominated iff b := sup{i,j}∈E |i− j| is
finite, in which case Adj(G) is even a band operator with band-width b.

If applied to an element u ∈ E = `p(ZN , X), the operator Adj(G) “swaps” the values u(i) and
u(j) around if {i, j} is an edge of G, and it leaves all values u(k) untouched for which k ∈ ZN

is not part of an edge of G. From this it is obvious that ‖Adj(G)‖ = 1 and that Adj(G) is
invertible and coincides with its inverse. Moreover, it is clear that, for n ∈ N, the n-th finite
section PnAdj(G)Pn + Qn is invertible iff each edge e ∈ E has either both or no vertices in
Ωn = nΩ∩ZN . In the latter case, PnAdj(G)Pn + Qn equals Adj(Gn), where Gn = (ZN , E ∩Ω2

n),
is again its own inverse and has norm 1. So we get that, for A = Adj(G), the sequence (7) is
stable iff, for all sufficiently large n ∈ I, each edge e ∈ E has either both or no vertices in Ωn.

Note that Example 1.3 was already of the form A = Adj(G), namely with N = 1 and

E =
{

..., {−4,−3}, {−2,−1}, {1, 2}, {3, 4}, ...
}

.

Here Ωn separates the two vertices of the edge {−n− 1,−n} and also of {n, n + 1} if n is odd.
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We continue with two examples demonstrating that two particular sets of operators that
are closely related to σstab

Ω (A) – and that have, in the past, been suggested to replace (11) in
the N = 2, I = N version of Theorem 3.1 – are actually not stability spectra (meaning that
Theorem 3.1 is incorrect for I = N with σstab

Ω (A) replaced by any of them) if N > 1. These two
“non-replacements” for σstab

Ω (A) are

{A} ∪
⋃
x∈Γ

{PΩxBPΩx + QΩx : B ∈ σop
x (A)} (16)

and
{A} ∪

⋃
x∈Γ

{PΩxBPΩx + QΩx : B ∈ σop
x,ray(A)}, (17)

where Γ = ∂Ω and, for every x ∈ Γ, Ωx ⊆ ZN is the limit of n(Ω − x) ∩ ZN as n → ∞ in the
sense that, for each m ∈ N,

n(Ω− x) ∩ {−m, ...,m}N = Ωx ∩ {−m, ...,m}N

for all sufficiently large n ∈ N. Finally, σop
x (A) is the set of all limit operators Ah of A with respect

to sequences h = (h(1), h(2), ...) ⊆ ZN going to infinity in the direction x, i.e. h(n)/|h(n)| →
x/|x|, and σop

x,ray is the set of all limit operators Ah with respect to sequences of the form
h = ([m1 x], [m2 x], ...) ⊆ ZN where (mn) is an unbounded monotonously increasing sequence of
positive reals and [ · ] means componentwise rounding to the nearest integer.

Example 4.1 Take N = 2, Ω = [−1, 1]2 and let A = Adj(G) with G = (Z2, E) and

E =
{
{ (k2 − k − 1, k2) , (k2 − k, k2) } : k = 1, 2, ...

}
.

Then, with respect to h = (h(1), h(2), ...) with h(k) = (k2−k−1, k2) ∈ Z2, the limit operator of
A exists and is equal to B = Adj(G′), where G′ =

(
Z2,

{
{(0, 0), (1, 0)}

})
. Since h(k)/|h(k)| →

x/|x| with x = (1, 1), we have that B ∈ σop
x (A). But Ωx = {...,−1, 0}2 separates (0, 0) from (1, 0)

so that PΩxBPΩx +QΩx ∈ (16) is not invertible. However, the whole finite section sequence (4) is
stable since all edges e ∈ E have either both or no points in Ωn, so that PnAPn + Qn = Adj(Gn)
with Gn = (Z2, E ∩ Ω2

n) for every n ∈ N. So (16) is not a valid replacement of (11) as stability
spectrum.

Note that the element of (11) that corresponds to the limit operator B = Ah of A is
PΩh

BPΩh
+ QΩh

with Ωh = Z × {...,−1, 0} instead of {...,−1, 0}2, which is again equal to
B (since both (0, 0) and (1, 0) are in Ωh) and hence invertible.

Similarly, we can rule out (17) as stability spectrum by the following example:

Example 4.2 Again take N = 2, Ω = [−1, 1]2 and let A = Adj(G) with G = (Z2, E) and

E =
{
{ (k2 − k, k2) , (k2 − k, k2 + 1) } : k = 1, 2, ...

}
.

Then, with respect to h = (h(1), h(2), ...) with h(k) = (k2 − k, k2) ∈ Z2, the limit operator of A

exists and is equal to B = Adj(G′), where G′ =
(
ZN ,

{
{(0, 0), (0, 1)}

})
.

Again B ∈ σop
x (A) with x = (1, 1). But B 6∈ σop

x,ray(A) neither is B in σop
y,ray(A) for any other

y ∈ Γ! In fact, it holds that σop
y,ray(A) = {I} for all y ∈ Γ, whence (17) is elementwise invertible

with uniformly bounded inverses. However, the finite section sequence (4) is not stable since Ωn

separates (k2 − k, k2) from (k2 − k, k2 + 1) if n = k2. So also (17) is not a valid replacement of
(11) as stability spectrum.
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Note that, for I = N, (11) contains the operator PΩh
BPΩh

+ QΩh
with Ωh = Z× {...,−1, 0},

which is non-invertible since Ωh separates (0, 0) from (0, 1). This operator is however removed
from (11) if we remove all (sufficiently large) square numbers from I, which matches our direct
observation that PnAPn + Qn is non-invertible iff n is a square number.

It is clear that Examples 4.1 and 4.2 can easily be heaved to dimensions N > 2. Let us look
at another example, for simplicity also in dimension N = 2.

Example 4.3 We look at A = Adj(G) for G = (Z2, E), where

E =
{
{ (k, 1) , (k + 1, 0) } : k = 1, 2, ...

}
.

It is not hard to see that every limit operator of A is either the identity operator I or the
operator B = Adj(G′) for G′ = (Z2, E ′), where

E ′ =
{
{ (k, 1) , (k + 1, 0) } : k ∈ Z

}
,

or it is a translate of B. Looking at B and noting that B = Ah for all sequences h =
(h(1), h(2), ...) with h(k) = (mk, 0) and mk → +∞, we can say how Ω has to look locally
at the intersection z of its boundary Γ with the positive x-axis in order for the finite section
method to be stable. Here the upward tangent of Γ at z has to enclose an angle α ∈ (90o, 135o]
with the positively directed x-axis. So, for example, the finite section sequence is stable if Ω
is the square conv{(1, 0), (0, 1), (−1, 0), (0,−1)} or the triangle conv{(0, 2), (2,−2), (−2,−2)},
whereas it does not even have a stable subsequence if Ω is the square [−1, 1]2.

The next example is closely related to Example 1.3.

Example 4.4 a) Let A = Adj(G) where G = (Z, E) is the following infinite graph:

Then, no matter how we choose Ω = [a, b] with integers a < 0 < b, the finite section method
does not even have a stable subsequence. A workaround would be to take Ω = [−1, 1) (which
is not a valid polytope in our sense but a valid starlike set) or to increase the dimension to
N = 2, where we place the edges E along the x-axis and put Ω = conv{(−1, 0), (1, 1), (0,−1)},
for example. In the latter case, the finite section subsequence corresponding to I = 4N+1 turns
out to be stable.

b) In contrast to a), there is no workaround whatsoever if A = Adj(G) with the following
graph G (embedded in dimension N = 1 or higher):

For every valid polytope or starlike set Ω and every n ∈ N, the set Ωn separates the endpoints
of at least two edges of G so that PnAPn + Qn is non-invertible.

For any dimension N ∈ N, any valid set Ω ∈ RN and any given sequence n1 < n2 < · · · of
naturals, one can construct a graph G in the style1 of Example 4.4 b) such that (PnAPn+Qn)n∈I
is stable iff I is a subset of {n1, n2, ...}.

1The idea is to take the graph from Example 4.4 b) and to place “gaps” between ai := danie and ai − 1 and
between bi := bbnic and bi + 1 for i = 1, 2, ..., where a < 0 and b > 0 are the unique intersection points of Γ = ∂Ω
with the x-axis and d·e and b·c stand for rounding up and down to the next integer, respectively.
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5 Some specialities in the case N = 1

In this section we let N = 1. Not surprisingly, our results are most complete in this case, where
we can sharpen and extend much of what was said previously. This is clearly due to the simple
geometry of this setting: Firstly, to infinity there are only two ways to go: right or left, and
secondly, all valid starlike sets Ω are intervals (open, closed or semi-open) from a to b with reals
a < 0 < b (for valid polytopes, the interval is closed and a, b are integers) so that there are only
two possibilities for the set Ωh in (11), namely {0, 1, ...} and {...,−1, 0}.

The first result is from [11]. We include it here for completeness and because it highlights
another important benefit from extending the original stability theorem (5) to subsequences.

Proposition 5.1 The uniform boundedness condition in Theorems 3.1 (iii) and 3.5 (iii) is
redundant if N = 1.

We give the proof later in Section 6 as a special case of Lemma 6.1, where we discuss possible
extensions to N ≥ 2. Next we show that, in dimension N = 1, if the full finite section sequence
(4) is stable for one valid polytope Ω (i.e. interval [a, b] with integers a < 0 < b) then (4) has
a stable subsequence for all valid polytopes Ω. So conversely, if there exists a valid polytope Ω
for which (4) has no stable subsequence then there is no valid polytope Ω for which the whole
sequence (4) is stable.

Proposition 5.2 Let E = `p(Z, X) with p ∈ [1,∞] and a Banach space X, let A ∈ BDO(E) be
a rich operator, and take integers a < 0 < b. If the full finite section method (PnAPn + Qn)n∈N
is stable for Ω = [a, b] then, for all integers a′ < 0 < b′, there exists an infinite index set I ⊆ N
such that the finite section subsequence (PnAPn + Qn)n∈I is stable for Ω = [a′, b′].

Proof. Let (4) be stable for Ω = Ω(1) = [a, b]. Putting Ω(2) := [a′, b′] for two arbitrary integers
a′ < 0 < b′, Γ(i) := ∂Ω(i) for i = 1, 2, and I := {−ab,−2ab,−3ab, ...} ⊆ N, it is easy to see that

Γ(2)
I =

⋃
n∈I

nΓ(2) = {na′, nb′ : n ∈ I} = {−maba′,−mabb′ : m ∈ N}

⊆ {nab,−nab : n ∈ N} ⊆ {ka, kb : k ∈ N} =
⋃
k∈N

kΓ(1) = Γ(1)
N

and consequently HΩ(2),I(A) ⊆ HΩ(1),N(A). Since, moreover, for both choices of Ω and all

sequences h = (h(1), h(2), ...) with values in, respectively, Γ(1)
N or Γ(2)

I , it holds that

Ωh =
{

{0, 1, 2, ...} if h(k) → −∞,
{...,−2,−1, 0} if h(k) → +∞,

we get that σstab
Ω(2),I(A) ⊆ σstab

Ω(1),N(A). Using Theorem 3.1 (twice), we get that (PnAPn + Qn)n∈I

is stable for Ω = Ω(2).

Note that it is not true that if (4) has a stable subsequence for one valid polytope Ω then (4)
has a stable subsequence for all valid polytopes Ω. For example, (7) is stable for A = Adj(G)
with G = (Z, E) and

E =
{
{−2(2k + 1),−2(2k − 1)− 1} , {3(2k − 1) + 1, 3(2k + 1)} : k ∈ N

}
if one takes Ω = [−2, 3] and I = 2N+1 but there is no stable subsequence of (4) for Ω = [−1, 1].
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Example 4.4 b) has shown that, for some operators, the finite section method cannot be
“adjusted” via choosing Ω and I to become stable. We now give a necessary criterion for the
existence of an index set I ⊆ N such that (7) is stable.

Proposition 5.3 Let E = `p(Z, C) with p ∈ [1,∞] and A ∈ BDO(E). For the existence of a
valid starlike set Ω and an infinite index set I ⊆ N such that the sequence (PnAPn + Qn)n∈I is
stable it is necessary, but not sufficient, that A is invertible and ind+(A) = 0.

Here we denote by ind+(A) the Fredholm index of PAP +Q and by ind−(A) the Fredholm index
of QAQ + P , where we abbreviate PN =: P and I − PN =: Q. From

A = PAP + QAQ + PAQ + QAP

= (PAP + Q)(QAQ + P ) + PAQ + QAP

and the compactness of PAQ and QAP (both are of finite rank if A is a band operator), it
follows that the Fredholm index of A, ind(A), is equal to the sum of ind+(A) and ind−(A).

Proof of Proposition 5.3. That invertibility of A and ind+(A) = 0 are not enough for the
existence of an Ω and an index set I ⊆ N such that (7) is stable can be seen in Example 4.4 b)
(note that ind+(A) = 0 there since the adjacency matrix of an undirected graph G, and hence
also P Adj(G) P + Q, is symmetric).

Now suppose Ω is a valid starlike set (i.e. an interval from a < 0 to b > 0) and an index
set I ⊆ N is found such that (7) is stable. Then, by Theorem 3.5, we have that A is invertible
and QAhQ + P is invertible for all h ∈ HΩ,I(A) tending to +∞ (note that A is automatically
rich if X = C, see e.g. [4, Corollary 3.24]). If we denote by σop

+ (A) the collection of all limit
operators Ah of A with a sequence h = (h(1), h(2), ...) tending to +∞ then the latter clearly
implies that QBQ + P is invertible for some operator B ∈ σop

+ (A), whence, ind−(B) = 0. Since
A is Fredholm (even invertible), all its limit operators (including B) are invertible [8], so that
also ind+(B) = 0 holds since ind+(B) + ind−(B) = ind(B) = 0. By [12, Theorem 2.3] (which
also holds in case p = ∞, by [5, Theorem 1.2]) we get that not only B but all operators in σop

+ (A)
have plus-index zero, and even more: ind+(A) = 0. (Analogously, all operators in σop

− (A) and
A itself have minus-index zero, but the latter also follows from ind+(A) = 0 and ind(A) = 0).

In [6] (see [12] for p 6= 2) we have shown that, under the additional condition that all
diagonals of [A] are slowly oscillating, invertibility of A and ind+(A) = 0 are even sufficient for
the stability of the full finite section sequence (4) for all valid Ω. Here we call a sequence (bk)k∈Z
slowly oscillating if bk+1 − bk → 0 as k → ±∞.

By Proposition 5.3, for an invertible operator A with κ := ind+(A) 6= 0, there is no valid Ω
and no index set I ⊆ N for which (7) is stable. This problem of a nonzero plus-index κ can be
overcome as follows: Instead of solving Au = b, one looks at VκAu = Vκb with Vκ as in Example
1.2. Since Vκ is invertible, these two equations are equivalent. Moreover, we have that also
A′ := VκA is invertible and

ind+(A′) = ind+(VκA) = ind+(Vκ) + ind+(A) = −κ + κ = 0.

This preconditioning-type procedure of shifting all matrix entries (incl. the right hand side b)
down by κ rows is reminiscent of Gohberg’s statement that, in a two-sided infinite matrix, “it
is every diagonal’s right to claim to be the main one” (see page 51 in [2] and the discussion
there). Our computations show that, from the perspective of the finite section method, there is
one diagonal that deserves being the main diagonal a bit more than the others.
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6 On the uniform boundedness condition in statement (iii)

Of course, it would be desirable to remove the condition on the uniform boundedness of the
inverses from statement (iii) of our Theorems 3.1 and 3.5 for arbitrary dimensions N . For
N ≥ 2 this is a much more delicate problem than for N = 1.

What clearly can be said by looking at the proof of Theorem 3.1 is that the uniform bounded-
ness condition (UBC) can be removed from statement (iii) in all cases where it can be removed
from Theorem 1 of [4]. This is known to be the case if one of the following holds

• p ∈ {1,∞} (see [4, Theorem 3.109] or [1, Theorem 6.28]),

• [A] has slowly oscillating diagonals (see [7, Theorem 7.2] or [10, Theorem 2.4.27]),

• A is contained in the Wiener algebra W (see [10, Theorem 2.5.7] or [1, Theorem 6.40]).

Here, by a diagonal of [A] = (aij)i,j∈ZN we mean a sequence (aj+k,j)j∈ZN with k ∈ ZN , and a
sequence (bj)j∈ZN of operators on X is called slowly oscillating if ‖bj+d−bj‖L(X) → 0 as |j| → ∞
for all d ∈ {−1, 0, 1}N . Moreover, the term Wiener algebra stands for the completion W of the
set of all band operators with respect to the norm

‖A‖W :=
∑

k∈ZN

sup
j∈ZN

‖aj+k,j‖L(X).

So in particular, we can remove the UBC from Theorems 3.1 and 3.5 (iii) if A is a band operator.

For a more general removal of the UBC in dimension N ≥ 2, we try to generalize the approach
that has worked successfully for N = 1 in [11]. Therefore, given a rich operator A ∈ BDO(E)
and a valid starlike set Ω ⊂ RN , we will call the infinite index set I ⊆ N sufficient w.r.t. A
and Ω, and write I ∈ suff(A,Ω), if σstab

Ω,I (A) is either uniformly invertible or not elementwise
invertible, i.e. it holds that elementwise invertibility of σstab

Ω,I (A) implies its uniform invertibility.

Here, as usual, we call a set of operators elementwise invertible if all its elements are invertible,
and we call it uniformly invertible if, in addition, the inverses are uniformly bounded. In what
follows, when we use the letters I,J and K for subsets of N, we always mean infinite subsets.

In Example 1.3, one has that for every I ⊂ N and every valid Ω, the set σstab
Ω,I (A) is finite so

that, clearly, I ∈ suff(A,Ω). In general, the following lemma holds.

Lemma 6.1 Let A ∈ BDO(E) be a rich operator, Ω ⊂ RN be a valid starlike set, and take
I ⊆ N. If every J ⊆ I has a subset K ⊆ J with K ∈ suff(A,Ω) then I ∈ suff(A,Ω).

Proof. Contrarily to what we claim suppose I 6∈ suff(A,Ω). Then σstab
Ω,I (A) is elementwise but

not uniformly invertible. By Theorem 3.5, (PnAPn + Qn)n∈I is not stable. So there is a subset
J = {m1,m2, ...} ⊆ I with ‖(PmjAPmj + Qmj )

−1‖ ≥ j for j = 1, 2, ... with the convention that
‖B−1‖ = ∞ if B is not invertible. Hence, (PnAPn + Qn)n∈J has no stable subsequence.

By our assumption, the index set J ⊆ I has a subset K ∈ suff(A,Ω). Since σstab
Ω,K(A) ⊆

σstab
Ω,I (A) and all elements of the latter are invertible, we have that σstab

Ω,K(A) is elementwise
and hence uniformly invertible. By Theorem 3.5 again, (PnAPn + Qn)n∈K is stable. But this
contradicts the fact that K ⊆ J and (PnAPn + Qn)n∈J has no stable subsequence.

Lemma 6.1 reduces the problem of showing that I is sufficient to showing that every subset
of I has a sufficient subset K. The new problem is about how to choose K; that is, one has
to single out a subset K ⊆ J ⊆ I such that σstab

Ω,K(A) is as small as possible (ideally finite or
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compact in some sense) in order to be uniformly invertible if elementwise invertible. This is
exactly what one does in case N = 1 (see [11, Theorem 6]):

Proof of Proposition 5.1. Let I ⊆ N and J ⊆ I be arbitrary and let Ω be the interval (open,
closed or semi-open) from a < 0 to b > 0. Since A is rich there is a subset K = {k1, k2, ...} ⊆ J
such that both limit operators B = Ah and C = Ag exist, where h = ([k1 a], [k2 a], ...) tends to
−∞ and g = ([k1 b], [k2 b], ...) to +∞, and hence

σstab
Ω,K(A) = { A , PN0BPN0 + QN0 , P−N0CP−N0 + Q−N0 } (18)

is finite, where N0 = {0, 1, 2, ...} and −N0 = {...,−2,−1, 0}. So K is sufficient w.r.t. A and Ω
and thus, by Lemma 6.1, I is sufficient.

For N ≥ 2, a strategy might be to look at the partially ordered set of all σstab
Ω,K(A) with K ⊆ J ,

ordered by inclusion, and to look for minimal elements. In case N = 1, these minimal elements
consist of only three operators: A itself and one operator associated with each “direction” leading
to infinity, as in (18). How can we capture this notion of “direction” in dimensions N ≥ 2? In
Example 4.2 we have seen that, for our purposes, it is not enough to associate a “direction” with
each straight line from the origin to infinity; instead it seems one has to look at what are called
admissible domains in the first symbol calculus of Rabinovich, Roch and Silbermann [8, 10] or,
alternatively, at the Stone-Čech boundary of ZN as in the second symbol calculus by the same
authors. But this shall be the subject of a later investigation.

We close with a particular situation in N ≥ 2 where the UBC can be easily removed. Suppose
Ω is a valid polytope and the rich operator A ∈ BDO(E) is such that, for every x ∈ Γ = ∂Ω
and every sequence h = (h(1), h(2), ...) ⊂ ZN with h(n)/|h(n)| → x/|x|, the limit operator
Ah (if it exists) only depends on x – let us write Ax for Ah then – and that the mapping
x 7→ Ax is continuous in the operator norm. Then, without having recourse to subsequences and
Lemma 6.1, every I ⊆ N is sufficient. This is because, in accordance with the geometry of Γ,
σstab

Ω,I (A) splits into finitely many sets, each of them being the image of the continuous function
x 7→ PΩh

AxPΩh
+QΩh

over a compact set (the corresponding face of Ω, including its boundary).
However, one can show that if Ah only depends on lim h(n)/|h(n)| then the diagonals of [A]
are convergent and hence slowly oscillating so that the case is already settled by what we said
earlier.
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