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Abstract

In this preprint we deal with convergence rates for a Tikhonov-like regularization
approach for linear and non-linear ill-posed problems in Banach spaces. Therefore
we deal with so-called distance functions which quantify the violation of a (non-
linear) reference source condition. Under validity of this reference source condition
we derive convergence rates which are optimal in a Hilbert space situation. In the
linear case we additionally present error bounds and convergence rates which base
on the decay rate of the distance functions when the reference source condition is
violated.
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1 Introduction

Let X and Y denote reflexive Banach spaces. Introducing, let A : X −→ Y describes a
linear and bounded operator with non-closed range, i.e. R(A) 6= R(A). We consider the
linear ill-posed equation

Ax = yδ, x ∈ X , (1)

with noisy data yδ ∈ Y . Here, only the estimate ‖y − yδ‖ ≤ δ, δ ≥ 0, is known, when the
exact data is denoted by y ∈ Y . We assume that there exists a solution x† ∈ X of (1) for
given exact data, i.e. the equation Ax† = y holds.

For a stable approximate solution of (1) we deal with modified Tikhonov regularization

1

p
‖Ax− yδ‖p + αP (x) → min subject to x ∈ D(P ), (2)

where P : D(P ) ⊆ X −→ Y defines a nonnegative convex stabilizing functional and p ≥ 1
is a given parameter. The problem is well-studied if p = 2, X and Y are Hilbert spaces
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and P (x) := 1
2
‖x‖2, see e.g. [4] and the references therein. Let us – as usual – denote a

solution of (2) with xδ
α, if it exists. In order to prove convergence rates xδ

α → x† for an
parameter choice α = α(δ) → 0 and δ → 0 an additional smoothness condition has to be
satisfied, for example

x† = ϕ(A∗A)ω, ω ∈ X , (3)

with strictly increasing function ϕ(t), 0 ≤ t ≤ ‖A‖2, and ϕ(0) = 0, see also [8, 12, 14]
and [18] for some newer results. It is also well-established, that ϕ(t) = t, t ≥ 0, and a

parameter choice strategy α(δ) ∼ δ
2
3 lead to the optimal convergence rate ‖xδ

α −x†‖ ∼ δ
2
3

for Tikhonov regularization. On the other hand, for function ϕ(t), t ≥ 0, with t ϕ(t) → 0
for t→ 0, the condition (3) can be interpreted as weakening of the condition x† ∈ R(A∗A)
leading to lower convergence rates. However, the convergence rates theory essentially
bases on spectral calculus of selfadjoint operators in Hilbert spaces, see e.g. [4, section
2.3]. Since we now deal with non-Hilbert spaces this theory cannot be applied in our
situation.

In [7] an alternative concept for proving convergence rates in Hilbert spaces were pre-
sented. Here, the violation of a reference source condition (3) with fixed function ϕ(t),
t ≥ 0, is measured by so-called distance functions d = d(R), R ≥ 0. Based on the decay
rate of these distance functions for R → ∞, convergence rates can be proved in a similar
way as with source condition (3) and arbitrary function ϕ(t), t ≥ 0. It turns out, that the
idea of distance function can be generalized to Banach spaces by replacing condition (3)
by an appropriate reference source condition in Banach spaces. This is the main purpose
of the present paper. We also refer to [6] for some first results where a reference source
condition was assumed, which do not propose optimal convergence rate.

We also want to mention the papers [15] and [16] which deal with convergence rates
for regularizing linear and nonlinear operator equations with operators mapping from a
Banach space into a Hilbert space. Convergence rates for regularizing operator equations
with operator mapping between two Banach spaces were recently presented in [9].

The paper is organized as follows: in section 2 basic notations and assumptions were
introduced. In section 3 we present error bounds in terms of Bregman distances for
regularized solutions of (2) under additional (nonlinear) smoothness conditions on the
exact solution x† ∈ X of (1). Introducing distance functions in section 4 we formulate first
convergence rates based on an a-priori choice of the regularization parameter α. Under
an additional convexity condition on the penalty functional P (x) improved convergence
rates were derived in section 5. Since the results of section 4 and 5 depend on the choice of
the parameter p > 1 we present conditions under which we obtain an unified convergence
rate result for arbitrary p > 1. Sections 7 shows that the derived convergence rates are
of optimal order if the spaces X and Y are Hilbert spaces. Afterwards, an a-posteriori
parameter choice is presented leading to optimal convergence rates. Finally, in section
9, convergence rates for nonlinear operator equations were shown under validity of the
proposed smoothness condition.
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2 Basic Assumptions and Notations

Throughout the paper the spaces X and Y are assumed to be reflexive Banach spaces
with dual spaces X ∗ and Y∗, respectively. For a linear operator A : X −→ Y we denote
with A⋆ : Y∗ −→ X ∗ the dual operator of A, i.e.

〈v, A x〉Y∗,Y = 〈A⋆v, x〉X ∗,X , ∀x ∈ X , ∀ v ∈ Y∗

hold. Here, 〈·, ·〉X ∗,X and 〈·, ·〉Y∗,Y stay for the duality products in X and Y , respectively.

Since we also deal with nonlinear problems, we replace (1) by the nonlinear equation

F (x) = yδ, x ∈ D(F ), (4)

where F : D(F ) ⊆ X −→ Y describes a nonlinear operator with domain D(F ). For
solving (4) approximately in a stable manner we consider the minimization problem

Jα(x) :=
1

p
‖F (x) − yδ‖p + αP (x) → min subject to x ∈ D(F ) ∩ D(P ), (5)

with stabilizing functional P : D(P ) ⊆ X −→ R. In our context, we need the following
assumptions:

(A1) For any sequence {xn} ⊂ D(F ) with weak convergence xn ⇀ x ∈ D(F ) and {F (xn)}
bounded we have x ∈ D(F ) and weak convergence F (xn) ⇀ F (x).

(A2) The nonnegative functional P is convex and weakly lower semi-continuous.

(A3) The set D(F ) ∩ D(P ) 6= ∅ is weakly closed.

(A4) The level sets
Sα(M) := {x ∈ D(F ) ∩ D(P ) : Jα(x) ≤M}

are bounded for each α > 0 and each M > 0.

(A5) We have δ ∈ [0, δmax] and α ∈ (0, αmax].

We additional make use of a further assumption. In particular, the existence of a solution
of equation (4) is supposed for given exact data y ∈ Y . We recall, that a P -minimizing
solution x† of equation (4) with δ = 0 satisfies

P (x†) := min {P (x) : F (x) = y} . (6)

Note, that if (4) has a solution then it has also a P -minimizing solution, see e.g. [9,
Theorem 3.4]. Under the conditions stated above there exists a solution xδ

α ∈ D(F )∩D(P )
of (5). Moreover, the solution xδ

α depends stable on the given data in the weak sense:
assume, that the solution x† of (4) with δ = 0 is unique. Then, for yδ → y and solutions
xδ

α of (6) with α = α(δ) chosen such that

α→ 0,
δp

α
→ 0 for δ → 0
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we can conclude xδ
α ⇀ x†, see e.g. [9, Theorem 3.5]. Under the assumptions stated

above we cannot conclude strong convergence xδ
α → x†, see e.g. [17] for further conditions

ensuring strong convergence. On the other hand,

1

p
‖F (xδ

α) − yδ‖p + αP (xδ
α) = Jα(xδ

α)

≤ Jα(x†)

=
1

p
‖F (x†) − yδ‖p + αP (x†)

≤ δp
max

p
+ αmaxP (x†) =: M = M(δmax, αmax).

Hence, xδ
α, x

† ∈ Sα(M) for each δ ∈ [0, δmax] and α ∈ (0, αmax]. By (A4), there exists a
constant K > 0 such that

‖xδ
α − x†‖ ≤ K ∀δ ∈ [0, δmax], ∀α ∈ (0, αmax], (7)

holds. Without further assumptions, this is the only known estimate in the norm-topology.

Additionally we define Bregman distances which has been well-established for presenting
convergence rates for general stabilizing functionals P (x), see e.g. [2].

Definition 2.1 Let P : D(P ) ⊂ X −→ [0,∞) denotes a convex functional with sub-
differential ∂P (x) for x ∈ D(P ). The Bregman distance of two elements x̃, x ∈ D(P ) and
ξ ∈ ∂P (x) is defined as

DP (x̃, x) := P (x̃) − P (x) − 〈ξ, x̃− x〉X ∗,X ≥ 0.

Then we can state the following assumption.

(A6) There exist a P -minimizing element x† ∈ D(F ) ∩ D(P ) and an element 0 6= ξ† ∈
∂P (x†).

In particular, the sub-differential ∂P (x†) should be non-empty.

We need some further assumptions. With JY : Y −→ Y∗ we denote the duality map in
the space Y , i.e.

JY (y) :=

(

1

2
‖y‖2

)′
, y ∈ Y .

Then the following properties are supposed.

(A7) There exists a constant C1 > 0 such that

DP (x, x†) ≤ C1‖x− x†‖2, ∀x ∈ Bρ(x
†),

with ball Bρ(x
†) around x†, ρ ≥ K > 0 chosen sufficiently large.

(A8) The duality map JY is differentiable in y and there exists a constant C2 > 0 such
that

‖J ′
Y (y)‖ ≤ C2, ∀ y ∈ Bρ̃(0),

with radius ρ̃ > 0 sufficiently large.

Note, that e.g. in Lq-spaces for q ≥ 2 the term ‖J ′
Y (y)‖ is uniformly bounded, i.e. (A8)

holds with ρ = ∞ for some constant C2 > 0.
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3 Some preliminary estimates

Let us now return the linear equation (1). For deriving error bounds and convergence
rates the element ξ† ∈ ∂P (x†) of (A6) has to fulfill an additional smoothness condition.
In [16], e.g., a source condition

ξ† = A⋆ω, ω ∈ Y∗, ‖ω‖ ≤ R, (8)

for some R ≥ 0 is supposed. However, this condition does not provides optimal conver-
gence rates in Hilbert spaces. For improved convergence rates we introduce the stronger
condition

ξ† = A⋆JY (Aω), ω ∈ X , ‖ω‖ ≤ R. (9)

Note, that (9) is in general a nonlinear source condition. Moreover, we follow a more
general strategy. We weaken condition (9) by assuming an approximative source condition

ξ† = A⋆JY (Aω) + υ, ω ∈ X , υ ∈ X ∗, ‖ω‖ ≤ R, ‖υ‖ ≤ d. (10)

for some R, d ≥ 0. Of course, the representation elements ω and υ of the approximative
source condition (10) are not unique for given ξ ∈ X ∗. On the other hand, this observation
will be used later in section 4 for deriving convergence rates. For presenting a unified
framework we introduce the sets

M(R, d) := {ξ ∈ X ∗ : ξ = A⋆JY (Aω) + υ, ω ∈ X , υ ∈ X ∗, ‖ω‖ ≤ R, ‖υ‖ ≤ d} .

for each R, d ≥ 0. The interpretation is quite simple: for given ξ ∈ X ∗ the number d ≥ 0
describes the maximal violation of the (reference) source condition (9) which is allowed,
when the norm of the source element ω ∈ X is bounded by some constant R > 0. Clearly,
ξ ∈ M(R, 0) is equivalent to the availability of the source condition (9).

Now we can prove a first estimate for the case p > 1.

Lemma 3.1 Assume (A1)-(A6) and ξ† ∈ X ∗ satisfies (10) for some ω ∈ X and υ ∈ X ∗.

If p > 1, γ := α
1

p−1‖Aω‖
2−p

p−1 , then

DP (xδ
α, x

†) ≤ DP (x†−γω, x†)+ 1

α
DY (DY (yδ−A(x†−γω), γAω)+‖υ‖ (K + γ‖ω‖) , (11)

where K > 0 is the constant of (7).

Proof. By assumption, the approximative source condition (10) holds. For γ > 0 we
have

P (xδ
α) − P (x† − γω) = P (xδ

α) − P (x†) + P (x†) − P (x† − γω)

= 〈ξ†, xδ
α − x†〉 +DP (xδ

α, x
†) − 〈ξ†,−γω〉 −DP (x† − γω, x†)

= 〈JY (Aω), A(xδ
α + γω − x†)〉 +DP (xδ

α, x
†) −DP (x† − γω, x†)

+〈υ, xδ
α + γω − x†〉

= 〈JY (Aω), A(xδ
α − x†)〉 +DP (xδ

α, x
†) −DP (x† − γω, x†)

+γ‖Aω‖2 + 〈υ, xδ
α + γω − x†〉.
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Moreover, we obtain

1

p
‖A(x† − γω) − yδ‖p =

γp

p
‖Aω‖p + γp−1‖Aω‖p−2〈JY (Aω), yδ − Ax†〉

+DY (yδ −A(x† − γω), γAω).

We set γp−1 := α‖Aω‖2−p. We conclude by the minimizing property of xδ
α

1

p
‖Axδ

α − yδ‖p + α
(

P (xδ
α) − P (x† − γω)

)

≤ 1

p
‖A(x† − γω) − yδ‖p.

Hence we can conclude

1

p
‖Axδ

α − yδ‖p + αDP (xδ
α, x

†) ≤ αDP (x† − γω, x†) +DY (yδ − A(x† − γω), γAω)

+
γp

p
‖Aω‖p + γp−1‖Aω‖p−2〈JY (Aω), yδ − Ax†〉

−αγ‖Aω‖2 + α〈JY (Aω), A x† −Axδ
α〉

+α‖υ‖‖xδ
α + γω − x†‖

= αDP (x† − γω, x†) +DY (yδ − A(x† − γω), γAω)

+
γα

p
‖Aω‖2 − αγ‖Aω‖2 + α〈JY (Aω), yδ −Axδ

α〉

+α‖υ‖ (γ‖ω‖ +K)

≤ αDP (x† − γω, x†) +DY (yδ − A(x† − γω), γAω)

+
γα

p
‖Aω‖2 − αγ‖Aω‖2 +

1

p
‖Axδ

α − yδ‖p +
(α‖Aω‖)q

q

+α‖υ‖ (γ‖ω‖ +K)

with p−1 + q−1 = 1 or q = p

p−1
. Since

αq−1 = α
1

p−1 = γ‖Aω‖
p−2
p−1 and ‖Aω‖q−2 = ‖Aω‖

2−p

p−1

we obtain
αq‖Aω‖q = α‖Aω‖2αq−1‖Aω‖q−2 = αγ‖Aω‖2

and hence

1

p
‖Axδ

α − yδ‖p + αDP (xδ
α, x

†) ≤ αDP (x† − γω, x†) +DY (yδ −A(x† − γω), γAω)

+
1

p
‖Axδ

α − yδ‖p + γα‖Aω‖2

(

1

p
+

1

q
− 1

)

+α‖υ‖ (γ‖ω‖ +K) . �

For deriving error bounds we have to find bounds for the residuals DP (x† − γ ω, x†) and
DY (yδ − A(x† − γω), γ Aω). Here, we have to distinguish between the cases p > 2 and
p < 2: depending on p 6= 2 a lower or an upper bound on ‖Aω‖ is needed. The correct
statements we present in the following two lemmas. We start with estimates for the term
DP (x† − γ ω, x†).
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Lemma 3.2 Assume (A7), 0 6= ξ† ∈ X ∗ satisfies (10) for some ω ∈ X and υ ∈ X ∗ and

γ := α
1

p−1‖Aω‖
2−p

p−2 .

(i) If 1 < p ≤ 2 then

DP (x† − γω, x†) ≤ C3α
2

p−1‖ω‖ 2
p−1 ,

where C3 > 0 is a constant which does not depend on ω, υ, δ and α.

(ii) If p > 2 and ‖υ‖ ≤ c‖ξ†‖ for some constant 0 < c < 1, then

DP (x† − γω, x†) ≤ C̃3α
2

p−1‖ω‖2.

where C̃3 > 0 is a constant which does not depend on ω, υ, δ and α.

Proof. From (A7) we conclude

DP (x† − γω, x†) ≤ C1γ
2‖ω‖2 = C1α

2
p−1‖Aω‖

4−2p

p−1 ‖ω‖2

If 1 < p ≤ 2 we estimate ‖Aω‖ ≤ ‖A‖ ‖ω‖ which provides

DP (x† − γω, x†) ≤ C1‖A‖
2−p

p−1α
2

p−1‖ω‖2+ 4−2p

p−1 = C1‖A‖
2−p

p−1α
2

p−1‖ω‖ 2
p−1 .

Hence (i) holds with C3 := C1‖A‖
2−p

p−1 . For p > 2 and the additional assumption we
conclude by the inverse triangle inequality

‖ξ†‖
1 − c

≤ ‖A∗JY (Aω)‖ ≤ ‖A∗‖ ‖JY (Aω)‖ = ‖A‖ ‖Aω‖

which implies ‖Aω‖ ≥ ‖ξ†‖[(1 − c)‖A‖]−1. Hence

DP (x† − γω, x†) ≤ C1α
2

p−1‖ω‖2

( ‖ξ†‖
(1 − c)‖A‖

)

2−p

p−1

,

which proves (ii) with C̃3 := C1

(

‖ξ†‖
(1−c)‖A‖

)
2−p

p−1
. �

For the second residual DY (yδ − A(x† − γω), γ Aω) we can find the following estimates.

Lemma 3.3 Assume (A8) and 0 6= ξ† ∈ X ∗ satisfies (10) for some ω ∈ X and υ ∈ X ∗

and γ := α
1

p−1‖Aω‖
2−p

p−2 . Moreover, if p 6= 2, there exists a constant 0 < c̃ < 1 such that
δ ≤ c̃ γ‖Aω‖.

(i) If 1 < p < 2 and ‖υ‖ ≤ c‖ξ†‖ for some constant 0 < c < 1, then

DY (yδ − A(x† − γω), γ Aω) ≤ C̃4δ
2α1+ 1

1−p ,

where C̃4 > 0 is a constant which does not depend on ω, υ, δ and α.

(ii) If p ≥ 2 then

DY (yδ − A(x† − γω), γ Aω) ≤ C4δ
2α1+ 1

1−p ‖ω‖
p−2
p−1 ,

where C4 > is a constant which does not depend on ω, υ, δ and α.
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Proof. For f(y) := 1
p
‖y‖p and 0 6= y ∈ Y we have

f ′(y) = ‖y‖p−2JY (y) and f ′′(y) = (p− 2)‖y‖p−4 [JY (y)·] [JY (y)·] + ‖y‖p−2J ′
Y (y).

Hence, since ‖JY (y)‖ = ‖y‖,

‖f ′′(y)‖ ≤ |p− 2|‖y‖p−4‖JY (y)‖2 + C2‖y‖p−2 = (|p− 2| + C2) ‖y‖p−2.

Moreover for τ ∈ (0, 1) we have (1− c̃)γ‖Aω‖ ≤ ‖τ(yδ −Ax†) + γ Aω‖ ≤ (1 + c̃)γ‖Aω‖.
Since

DY (yδ − A(x† − γω), γ Aω) = f ′′(τ(yδ − Ax†) + γ Aω)(yδ − Ax†, yδ −Ax†)

for some τ ∈ (0, 1) we conclude

DY (yδ −A(x† − γω), γ Aω) ≤ C δ2γp−2‖Aω‖2−p

= C δ2γp−1‖Aω‖2−p 1

γ

= C δ2α
1+ 1

1−p‖Aω‖
p−2
p−1 .

where C := (|p − 2| + C2)(1 + c̃)p−2 for p ≥ 2 and C := (|p − 2| + C2)(1 − c̃)p−2 for
1 < p < 2. The continuation with the same arguments as in the previous lemma yields
the assertions. �

The application of the estimate for DY (yδ −A(x† − γω), γ Aω) is the more sensitive one.
Proposing a parameter choice strategy α = α(δ) we have first to ensure that the conditions
of Lemma 3.3 are not injured. Based on the results above we are now able to present our
first error bound result.

Lemma 3.4 Assume (A1)-(A8) and 0 6= ξ† ∈ M(R, d) for some R, d ≥ 0. Moreover, if
p 6= 2, there exist two constants 0 < c, c̃ < 1 such that d ≤ c‖ξ†‖ and the regularization
parameter α is chosen such that δp−1 ≤ c̃α‖ξ†‖[(1 − c)‖A‖]−1.

(i) If 1 < p < 2, then

DP (xδ
α, x

†) ≤ C3α
2

p−1‖ω‖ 2
p−1 + C̃4δ

2α
1

1−p + d
(

K + C5α
1

p−1R
1

p−1

)

.

(ii) If p = 2, then

DP (xδ
α, x

†) ≤ C3α
2R2 + C4

δ2

α
+ d (K + αR) .

(iii) If p > 2, then

DP (xδ
α, x

†) ≤ C̃3α
2

p−1‖ω‖2 + C4δ
2α

1
1−p ‖ω‖

p−2
p−1 + d

(

K + C̃5α
1

p−1

)

.

Proof. First, for p 6= 2, we note,

γ‖Aω‖ = α
1

p−1‖Aω‖
2−p

p−1
+1 = α

1
p−1‖Aω‖ 1

p−1 ≥ α
1

p−1

( ‖ξ†‖
(1 − c)‖A‖

)
1

p−1

.
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This allows us the application of Lemma 3.3. Then the proof is an immediate consequence
of the previous lemmas by noticing

γ := α
1

p−1‖Aω‖
2−p

p−1 ≤











α
1

p−1‖A‖
2−p

p−1R
2−p

p−1 , p < 2,

α
1

p−1

( ‖ξ†‖
(1 − c)‖A‖

)

2−p

p−1

p > 2,

and introducing C5 := ‖A‖
2−p

p−1 and C̃5 :=
(

‖ξ†‖
(1−c)‖A‖

)
2−p

p−1

. �

We present a first convergence rate result, provided the element ξ† ∈ X ∗ satisfies the
source condition (9).

Theorem 3.1 Assume (A1)-(A8) and ξ† ∈ X ∗ satisfies the source condition (9) for some

R > 0. Then, an a-priori choice α := δ
2(p−1)

3 provides an error estimate

DP (xδ
α, x

†) ≤ C δ
4
3 . (12)

for some constant C > 0 which does not depend on δ and α.

Proof. We set υ := 0. Balancing

δ2α
1

1−p = α
2

p−1 ⇔ δ2 = α
3

p−1

we choose α := δ
2(p−1)

3 which proves (12). �

We now deal with the case p = 1, which plays a singular role. Here, we have

‖Axδ
α − yδ‖ + αDP (xδ

α, x
†) ≤ γ‖Aω‖ +

1

‖Aω‖〈JY (Aω), yδ − Ax†〉

+DY (yδ − A(x† − γ ω), γAω) + αDP (x† − γ ω, x†)

+α〈JY (Aω), A x† − Axδ
α〉 − αγ‖Aω‖2

+α‖υ‖ (K + γ‖ω‖)
≤ γ‖Aω‖(1− α‖Aω‖) +DY (yδ − A(x† − γ ω), γAω)

+αDP (x† − γ ω, x†) + α‖Aω‖‖Axδ
α − yδ‖2

+
(

‖Aω‖−1 − α
)

〈JY (Aω), yδ −Ax†〉
+α‖υ‖ (K + γ‖ω‖) .

We present the following convergence rate result.

Theorem 3.2 Assume (A1)-(A8) and ξ† ∈ X ∗ satisfies the source condition (9). If the

regularization parameter α > 0 is chosen such that 0 ≤ 1 − α‖Aω‖ ≤ δ
2
3 , then

DP (xδ
α, x

†) ∼ O
(

δ
4
3

)

.

Proof. We assume δ to be sufficiently small, i.e. δ < min{1, ‖Aω‖3}. We set γ := δ
2
3 .

Then
DP (x† − γω, x†) ≤ C1δ

4
3‖ω‖2

9



holds. Moreover, since δ < ‖Aω‖3 we have δ < δ
2
3‖Aω‖ = γ‖Aω‖ which allows us to

apply Lemma 3.3 . Hence, we derive

DY (yδ − A(x† − γω), γ Aω) ≤ C2
δ2

γ‖Aω‖ =
C2

‖Aω‖δ
4
3 .

This gives

DP (xδ
α, x

†) ≤ γ
‖Aω‖(1 − α‖Aω‖)

α
+ δ(1 − α‖Aω‖) + C1δ

4
3‖ω‖2 +

C2

α‖Aω‖δ
4
3

≤ δ
4
3

(‖Aω‖
α

+ C1‖ω‖2 +
C2

α‖Aω‖

)

+ δ
5
3
1

α
,

which proves the lemma. We note by the smallness of δ, that α > (1 − δ
2
3 )‖Aω‖−1 > 0

and 1 ≥ α‖Aω‖ ≥ 1 − δ
2
3 > 0. �

Note, that the choice of the regularization parameter α depends essentially on ‖Aω‖
which might be rather unusual. However, the same effect was already observed in [2]
for deriving a weaker convergence rate. Moreover, this dependency is the reason, that
presenting convergence rates in terms of approximate source conditions does not seems to
be promising for the case p = 1. For a given choice R = R(α), ‖ω‖ ≤ R we have to ensure

the condition 0 ≤ 1 − α‖Aω‖ ≤ δ
2
3 which does not seem to be possible under general

conditions.

4 Convergence rates

For presenting convergence rates in terms of approximative source conditions we apply
the idea of distance functions, see e.g. [7].

Definition 4.1 For given ξ ∈ X ∗ the distance function d(·; ξ) : [0,∞) −→ R is defined
as

d(R; ξ) := inf {‖ξ − A⋆JY (Aω)‖ : ω ∈ Y∗, ‖ω‖ ≤ R} , R ≥ 0.

Additionally, we introduce the set

M := {ξ ∈ X ∗ : ξ = A⋆JY (Aω), ω ∈ X}

of all element satisfying the source condition (9) for some ω ∈ X . Note, that the nonneg-
ative function d(R, ξ) is well-defined for each ξ ∈ X ∗. Moreover, by [20, Theorem 38.A],
for each R ≥ 0 there exists an element ω = ω(R) with d(R; ξ) = ‖ξ − A⋆JY (Aω)‖ and
‖ω‖ ≤ R. The distance functions are non-increasing with d(R; ξ) → 0 for R → ∞ if
ξ ∈ M. We have d(R; ξ) > 0 for all R ≥ 0 if ξ 6∈ M and d(R; ξ) = 0 for all R ≥ ‖ω‖
if ξ = A⋆JY (Aω) and ‖ω‖ = R. Altogether, the distance functions d(R; ξ) gives us a
quantity for measuring the violation of the source condition (9).

We now are able to present convergence rates, if the source condition (9) is not satisfied,
but ξ† ∈ M. This additional assumption seems to be very restrictive at first view. On
the other hand, the following statement yields.
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Lemma 4.1 Assume the operators A and A⋆ to be injective. Then M = X ∗.

Proof. By [19, Satz III.4.5] we have R(A⋆) = X ∗ and R(A) = Y . Assume ξ 6∈ M. On
the other hand, for each ε > 0 there exists an element ỹε ∈ Y∗ with ‖ξ−A⋆yε‖ < ε. Since
JY is bijective, there exists yε ∈ Y with JY (yε) = ỹε. Finally, there exists ωε ∈ X with
‖yε −Aωε‖ < ε. Hence,

‖ξ −A⋆JY (Aωε)‖ ≤ ‖ξ − A⋆JY (yε)‖ + ‖A⋆‖ ‖JY (Aωε) − JY (yε)‖
< ε+ ‖A⋆‖ ‖JY (Aωε) − JY (yε)‖

Since JY is continuously we conclude ‖JY (Aωε) − JY (yε)‖ → 0 for ε → 0 which implies
A⋆JY (ωε) → ξ for ε→ 0. Consequently, ξ ∈ M yields. �

We now present convergence rates results proposing an appropriate a-priori parameter
choice of the regularization parameter α = α(δ). We start with the case p = 2.

Theorem 4.1 Assume (A1)-(A8), ξ† ∈ M \M has distance function d(R) := d(R; ξ†).

Let p = 2, Ψ2(R) := d(R)
1
2R−1, Θ2(α) :=

(

α d
(

Ψ−1
2 (α)

))
1
2 and Φ(R) := d(R)

3
4R− 1

2 .
Then, the a-priori choice α := Θ−1

2 (δ) yields the convergence rate

DP (xδ
α, x

†) ∼ O
(

d
(

Φ−1(δ)
))

.

Proof. By definition, ξ† ∈ M(R, d(R)) for all R ≥ 0. Hence, there exist ω = ω(R) and
υ = υ(R) with ‖ω‖ ≤ R and ‖υ(R)‖ ≤ d(R) such that ξ† = A⋆ω(R)+υ(R). In particular,
Lemma 3.1 holds for all R ≥ 0. We consider only the first three terms, since the term
γd(R)R decays faster to zero than d(R). By balancing

α2R2 = d(R) ⇔ α =
d(R)

1
2

R
=: Ψ2(R) ⇔ R = Ψ−1

2 (α).

Moreover,

δ2α−1 = d(R) ⇔ δ =
(

α d
(

Ψ−1
2 (α)

))
1
2 =: Θ2(α).

Hence α := Θ−1
2 (δ) is the optimal parameter choice. Finally

d(R) = δ2α−1 = δ2 R

d(R)
1
2

⇔ δ =
d(R)

3
4

R
1
2

=: Φ(R)

which provides the convergence rate DP (xδ
α, x

†) ∼ O (d (Φ−1(δ))). �

For p 6= 2 we need an additional restriction to the decay of the distance function d(R).
In particular, in order to apply Lemma 3.3, we have to suppose, that the decay d(R) → 0
for R → ∞ is sufficiently fast. We first consider the case 1 < p < 2.

Theorem 4.2 Assume (A1)-(A8), 0 6= ξ† ∈ M \ M has distance function d(R) :=

d(R; ξ†) with d(R)R
2

p−1 → 0 for R → ∞. Let 1 < p < 2, Ψp(R) := d(R)
p−1
2 R−1,

Θp(α) :=
(

α
1

p−1d
(

Ψ−1
p (α)

)

)
1
2

and Φp(R) := d(R)
3
4R

− 1
2(p−1) . Then, the a-priori choice

α := Θ−1
p (δ) yields the convergence rate

DP (xδ
α, x

†) ∼ O
(

d
(

Φ−1
p (δ)

))

.
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Proof. First, we assume that the condition on the choice of the parameter α of Lemma
3.3 is satisfied. Then we choose R = R(α) such that

d(R) = α
2

p−1R
2

p−1 ⇔ α =
d(R)

p−1
2

R
=: Ψp(R)

or R := Ψ−1
p (α). Moreover,

δ2α
1

1−p = d(R) = d
(

Ψ−1
p (α)

)

,

which gives

δ =
(

d
(

Ψ−1
p (α)

)

α
1

p−1

)
1
2

=: Θp(α).

Hence α := Θ−1
p (δ) is the optimal parameter choice. Moreover,

d(R) = δ2α
1

p−1 = δ2d(R)
p−1

2(1−p)

R
1

p−1

= δ2R
1

p−1d(R)−
1
2

which provides

δ =
d(R)

3
4

R
1

2(p−1)

=: Φp(R)

Hence d
(

Φ−1
p (δ)

)

describes the convergence rate. Finally we note, that

δ

α
1

p−1

=
d(R)

3
4

α
1

p−1R
1

2(p−1)

=
d(R)

3
4
− 1

2

R
1

2(p−1)
− 1

p−1

= d(R)
1
4R

1
2(p−1) → 0

for δ → 0 which allows us the application of Lemma 3.3 if δ is sufficiently small. �

For p > 2 we can achieve the following result by similar calculations.

Theorem 4.3 Assume (A1)-(A8), 0 6= ξ† ∈ M \ M has distance function d(R) :=

d(R; ξ†) with d(R)R
2

p−1 → 0 for R → ∞. Let p > 2, Ψp(R) := d(R)
p−1
2 R1−p, Θp(α) :=

α
2p−3

2(p−1)2 d
(

Ψ−1
p (α)

)
p

4(p−1) and Φp(R) := d(R)
3
4R

− 2p−3
2(p−1) . Then, the a-priori choice α :=

Θ−1
p (δ) yields the convergence rate

DP (xδ
α, x

†) ∼ O
(

d
(

Φ−1
p (δ)

))

.

Proof. Here, by the same arguments as above, we have

d(R) = α
2

p−1R2 ⇔ α =
d(R)

p−1
2

Rp−1
=: Ψp(R) ⇔ R = Ψ−1

p (α).

Moreover,

δ2α
1

1−pR
p−2
p−1 = δ2α

1
1−p

(

d(R)
1
2

α
1

p−1

)
p−2
p−1

= δ2d(R)
p−2

2(p−1)α
1

1−p
− p−2

(p−1)2

= δ2d(R)
p−2

2(p−1)α
− 2p−3

(p−1)2

12



which implies

δ =
(

d(R)1− p−2
2(p−1)α

2p−3

(p−1)2

)
1
2

=
(

d(R)
p

2(p−1)α
2p−3

(p−1)2

)
1
2

=: Θp(α)

which provides the parameter choice α := Θ−1
p (δ). Hence

d(R) = δ2α
1

1−pR
p−2
p−1 = δ2 R

d(R)
1
2

R
p−2
p−1 = δ2d(R)−

1
2R

2p−3
p−1

or

δ =
d(R)

3
4

R
2p−3

2(p−1)

=: Φp(R)

which describes the convergence rate d
(

Φ−1
p (δ)

)

again. Moreover,

δ

α
1

p−1

=
d(R)

3
4

α
1

p−1R
2p−3

2(p−1)

=
d(R)

3
4
− 1

2

R
2p−3

2(p−1)
−1

= d(R)
1
4R

1
2(p−1) → 0

for δ → 0 which allows us again the application of Lemma 3.3 if δ is sufficiently small. �

Note, that the achieved convergence rates depend on the choice of the parameter p. In
particular, for p = 2 the fastest rate of convergence could be achieved. However, this seems
to have technical reasons. We can find an upper bound for the term ‖Aω‖ depending on
‖ω‖ ≥ 0 but there is no lower bound for ‖Aω‖ which depends on the choice of ω. As
we will see in further considerations, an additional lower bound on ‖Aω‖ with respect to
‖ω‖ will lead to convergence rates which do not depend on the parameter p anymore.

5 Improved convergence rates

For violated source condition (9) the bounds seems to be not of optimal order. Assume X
to be a Hilbert space and P (x) := 1

2
‖x‖2. Then ξ† = 2x† and DP (xδ

α, x
†) = 1

2
‖xδ

α − x†‖2.
Hence, e.g. for p = 2, the estimate

1

2
‖xδ

α − x†‖2 ≤ C3α
2R2 + C4

δ2

α
+ d‖xδ

α − x†‖ + d αR

≤
(

C3 +
1

2

)

α2R2 + C4
δ2

α
+
d2

2
+ d‖xδ

α − x†‖

holds. By the implication

a, b, c > 0, a2 ≤ b2 + ac ⇒ a ≤ b+ c (13)

we conclude

‖xδ
α − x†‖ ≤

√
2

(

√

C3 +
1

2
αR+

√

C4
δ√
α

+ d

(√
2 +

1√
2

)

)

=
√

2C3 + 1αR+
√

2C4
δ√
α

+ 3 d.

The improved result will provide better convergence rates. For applying the idea we need
an additional convexity condition on the stabilizing functional P (x).
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(A9) The functional P (x) is strongly convex in x†, i.e. there exists a constant η > 0 such
that

DP (x, x†) = P (x) − P (x†) − 〈ξ†, x− x†〉 ≥ η‖x− x†‖2

for all x ∈ Bρ(x
†) with radius ρ ≥ K > 0 sufficiently large.

First we present an error bound result.

Lemma 5.1 Assume (A1)-(A7) and (A9) and ξ† satisfies (10) for some ω ∈ X and

υ ∈ X ∗. If p > 1, γ := α
1

p−1‖Aω‖
2−p

p−1 then

‖xδ
α − x†‖ ≤ C6 γ ‖ω‖ +

√

DY (yδ − A(x† − γω), γAω)

η α
+ C7‖υ‖

for two positive constants C6, C7 > 0.

Proof. From Lemma 3.1 we conclude

η‖xδ
α − x†‖2 ≤ DP (xδ

α, x
†)

≤
(

C1 +
1

2

)

γ2‖ω‖2 +
1

α
DY (yδ − A(x† − γω), γAω)

+
‖υ‖2

2
+ ‖υ‖ ‖xδ

α − x†‖.

By the implication (13) we conclude

√
η‖xδ

α − x†‖ ≤
√

C1 +
1

2
γ‖ω‖ +

√

DY (yδ −A(x† − γω), γAω)

α
+ ‖υ‖

(

1√
2

+
1√
η

)

,

which shows the lemma with C6 :=
√

η−1(C1 + 2−1) and C7 := (2η)−
1
2 + η−1. �

We present the improved error bounds.

Lemma 5.2 Assume (A1)-(A9) and 0 6= ξ† ∈ M(R, d) for some R, d ≥ 0. Moreover, if
p 6= 2, there exist two constants 0 < c, c̃ < 1 such that d < c‖ξ†‖ and the regularization
parameter α is chosen such that δp−1 ≤ c̃α‖ξ†‖[(1 − c)‖A‖]−1.

(i) If 1 < p < 2, then

‖xδ
α − x†‖ ≤ C8α

1
p−1‖ω‖ 1

p−1 + C̃8δα
1

2(1−p) + C7‖υ‖.

(ii) If p = 2, then

‖xδ
α − x†‖ ≤ C8α‖ω‖ + C9

δ√
α

+ C7‖υ‖.

(iii) If p > 2, then

‖xδ
α − x†‖ ≤ C̃8α

1
p−1‖ω‖ + C9δα

1
2(1−p) ‖ω‖

p−2
2(p−1) + C7‖υ‖.
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Here, the constants C8, C̃8, C9 and C̃9 do not depend on R, d, α and δ.

The proof is essentially the same as in the previous section.

We now present improved convergence rates. Again, we have to distinguish between the
cases p < 2, p = 2 and p > 2. We first deal with p = 2.

Theorem 5.1 Assume (A1)-(A9), ξ† ∈ R(A⋆) \ R(A⋆) has distance function d(R) :=

d(R; ξ†). Let p = 2, Ψ̃2(R) := d(R)R−1, Θ̃2(α) := α
1
2d
(

Ψ−1
2 (α)

)

and Φ̃(R) := d(R)
3
2R− 1

2 .

Then, the a-priori choice α := Θ̃−1
2 (δ) yields the convergence rate

‖xδ
α − x†‖ ∼ O

(

d
(

Φ̃−1(δ)
))

.

Proof. By balancing the estimate of Lemma 5.1

αR = d(R) ⇔ α =
d(R)

R
=: Ψ̃2(R) ⇔ R = Ψ̃−1

2 (α).

Moreover,

δα− 1
2 = d(R) ⇔ δ = α

1
2d
(

Ψ̃−1
2 (α)

)

=: Θ2(α).

Hence α := Θ−1
2 (δ) is the optimal parameter choice. Finally

d(R) = δα− 1
2 = δ

R
1
2

d(R)
1
2

⇔ δ =
d(R)

3
2

R
1
2

=: Φ̃(R)

which provides the convergence rate ‖xδ
α − x†‖ ∼ O

(

d
(

Φ̃−1(δ)
))

. �

For p 6= 2 we obtain similar results by assuming a sufficient decay rate of the distance
function d(R). We present the corresponding rates in the following two statements.

Theorem 5.2 Assume (A1)-(A9), 0 6= ξ† ∈ M \ M has distance function d(R) :=

d(R; ξ†) with d(R)R
1

p−1 → 0 for R → ∞. Let 1 < p < 2, Ψ̃p(R) := d(R)p−1R−1, Θ̃p(α) :=

α
1

2(p−1)d
(

Ψ−1
p (α)

)

and Φ̃p(R) := d(R)
3
2R

− 1
2(p−1) . Then, the a-priori choice α := Θ−1

p (δ)
yields the convergence rate

‖xδ
α − x†‖ ∼ O

(

d
(

Φ̃−1
p (δ)

))

.

Proof. Here,

d(R) = α
1

p−1R
1

p−1 ⇔ α =
d(R)p−1

R
=: Ψ̃p(R) ⇔ R := Ψ̃−1

p (α).

Moreover
δ = α

1
2(p−1)d

(

Ψ̃−1
p (α)

)

=: Θ̃p(α) ⇔ α := Θ̃−1
p (δ)

is the optimal parameter choice. On the other hand

d(R) = δα
1

2(1−p) = δ
d(R)

p−1
2(1−p)

R
1

2(1−p)

= δ d(R)−
1
2R

1
2(p−1)
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which gives the improved convergence rate

δ =
d(R)

3
2

R
1

2(p−1)

=: Φ̃p(R).

or ‖xδ
α − x†‖ ∼ d

(

Φ̃−1
p (δ)

)

. In order to apply Lemma 3.3 we consider

δ

α
1

p−1

=
d(R)

3
2

α
1

p−1R
1

2(p−1)

=
d(R)

3
2
−1

R
1

2(p−1)
− 1

p−1

= d(R)R
1

p−1

which provides us the decay of the left hand side. �

Theorem 5.3 Assume (A1)-(A9), 0 6= ξ† ∈ M \ M has distance function d(R) :=

d(R; ξ†) with d(R)R
1

p−1 → 0 for R → ∞. Let p > 2, Ψ̃p(R) := d(R)p−1R1−p, Θ̃p(α) :=

α
2p−3

2(p−1)2 d
(

Ψ̃−1
p (α)

)
p

2(p−1)
and Φ̃p(R) := d(R)

3
2R

− 2p−3
2(p−1) . Then, the a-priori choice α :=

Θ̃−1
p (δ) yields the convergence rate

‖xδ
α − x†‖ ∼ O

(

d
(

Φ̃−1
p (δ)

))

.

Proof. First,

d(R) = α
1

p−1R ⇔ α =
d(R)p−1

Rp−1
=: Ψ̃p(R) ⇔ R := Ψ−1

p (α).

Then,

d(R) = δα
1

2(1−p)R
p−2

2(p−1) = δα
1

2(1−p)

(

d(R)

α
1

p−1

)
p−2

2(p−1)

= δ d(R)
p−2

2(p−1)α
1

2(1−p)
− p−2

2(p−1)2

= δ d(R)
p−2

2(p−1)α
− 2p−3

2(p−1)2

which implies with

δ = d(R)1− p−2
2(p−1)α

2p−3

2(p−1)2 = d(R)
p

2(p−1)α
2p−3

2(p−1)2 =: Θ̃p(δ)

the parameter choice α := Θ̃−1
p (α). On the other hand,

d(R) = δα
1

2(1−p)R
p−2

2(p−1) = δ
R

1
2

d(R)
1
2

R
p−2

2(p−1) = δ d(R)−
1
2R

2p−3
2(p−1)

implies

δ =
d(R)

3
2

R
2p−3

2(p−1)

=: Φ̃p(R).

Here we have
δ

α
1

p−1

=
d(R)

3
2

α
1

p−1R
2p−3

2(p−1)

=
d(R)

3
2
−1

R
2p−3

2(p−1)
−1

= d(R)R
1

p−1

which describes the necessary decay rate of the distance function d(R). �
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6 Optimal rates

In the following section we will show that we can achieve convergence rates which do not
depend on the parameter p provided we find upper and lower bounds for the term ‖Aω‖
depending on ‖ω‖ ≥ 0. Therefore, we need a further assumption.

(A10) There exists a reflexive Banach space Z ⊃ X such that

(i) The space X is continuously embedded in Z.

(ii) It holds
〈z, x〉X ∗,X = 〈z, x〉Z∗,Z , ∀z ∈ Z∗, ∀x ∈ X .

(iii) There exist two positive constants c1, c2 such that

c1‖ω‖Z ≤ ‖Aω‖ ≤ c2‖ω‖Z , ∀ω ∈ X ,

(iv) Assumption (A7) holds with ‖ · ‖X replaced by ‖ · ‖Z .

(v) The element ξ† belongs to (the smaller space) Z∗.

Condition (iii) implies that a solution of equation (1) depends continuously on the given
data in the (weaker) Z-norm. Analogously to the previous calculations we introduce the
sets

MZ(R, d) := {ξ ∈ Z∗ : ξ := A⋆JY (Aω) + υ, ω ∈ X , υ ∈ Z∗, ‖ω‖Z ≤ R, ‖υ‖Z∗ ≤ d} .

and
MZ := {ξ ∈ Z∗ : ξ := A⋆JY (Aω), ω ∈ X} .

Then we can achieve convergence rates which do not depend on p anymore, when we
define the distance function in the space Z∗. Hence, for ξ ∈ Z∗ we introduce

dZ(R; ξ) := inf {‖ξ − A⋆JY (Aω)‖Z∗ : ω ∈ X , ‖ω‖Z ≤ R} .

First we present an error bound result which is an immediate consequence of the previous
calculations.

Lemma 6.1 Assume (A1)-(A6), (A8), (A10) and 0 6= ξ† ∈ Z∗ satisfies (10) for some
ω ∈ X and υ ∈ X ∗. Then

DP (xδ
α, x

†) ≤ C10α
2

p−1‖ω‖
2

p−1

Z + C11δ
2α

1
1−p‖ω‖

p−2
p−1

Z + C12‖υ‖Z∗.

If - additionally - (A9) holds, then

‖xδ
α − x†‖ ≤ C̃10α

1
p−1‖ω‖

1
p−1

Z + C̃11δα
1

2(1−p) ‖ω‖
p−2

2(p−1)

Z + C̃12‖υ‖Z∗.

Here, the constants Ck, C̃k do not depend on ω, υ, α and δ.

Now we present convergence rates.
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Theorem 6.1 Assume (A1)-(A6), (A8), (A10), 0 6= ξ† ∈ MZ \MZ has distance func-

tion dZ(R) := dZ(R; ξ†), Ψp(R) := dZ(R)
p−1
2 R−1, Θ̂p(α) := dZ

(

Ψ−1
p (α)

)
4−p

4 α
p

2(p−1) and

Φ(R) := dZ(R)
3
4R− 1

2 . Then, the a-priori choice α := Θ̂−1
p (δ) yields the convergence rate

DP (xδ
α, x

†) ∼ O
(

dZ
(

Φ−1(δ)
))

.

Proof. We have ξ† ∈ MZ(R, dZ(R) + ε) for each R ≥ 0 and ε → 0. Taking the limit
ε → 0 we can apply the above error bounds. The same calculations as in the previous
sections lead to

α = dZ(R)
p−1
2 R−1 =: Ψp(R) ⇔ R = Ψ−1

p (α).

Moreover,

dZ(R) = δ2α
1

1−pR
p−2
p−1 = δ2α

1
1−p

(

dZ(R)
1
2

α
1

p−1

)p−2

= δ2dZ(R)
p−2
2 α

1
1−p

− p−2
p−1

= δ2dZ(R)
p−2
2 α

− p

p−1

which gives

δ = dZ(R)
4−p

4 α
p

2(p−1) =: Θ̂p(α)

and the parameter choice α := Θ̂−1
p (δ). Moroeover

dZ(R) = δ2α
1

1−pR
p−2
p−1 = δ2R

p−2
p−1

R
1

p−1

dZ(R)
1
2

= δ2dZ(R)−
1
2R,

which implies δ = R− 1
2dZ(R)

3
4 and the corresponding convergence rate. �

Under the additional convexity condition (A9) we can present the following improved
convergence rate.

Theorem 6.2 Assume (A1)-(A6), (A8)-(A10), 0 6= ξ† ∈ MZ\MZ has distance function

dZ(R) := dZ(R; ξ†), Ψ̃p(R) := dZ(R)p−1R−1, Θ̄p(α) := dZ

(

Ψ̃−1
p (α)

)
4−p

4
α

1
2 and Φ̄(R) :=

dZ(R)
3
2R− 1

2 . Then, the a-priori choice α := Θ̂−1
p (δ) yields the convergence rate

‖xδ
α − x†‖ ∼ O

(

dZ
(

Φ̄−1(δ)
))

.

Proof. Here we have

dZ(R) = α
1

p−1R
1

p−1 ⇔ α = dZ(R)p−1R−1 = Ψ̃p(R) ⇔ R = Ψ̃−1
p (α)

and

dZ(R) = δα
1

2(1−p)R
p−2

2(p−1) = δα
1

2(1−p)

(

dZ(R)

α
1

p−1

)
p−2
2

= δ dZ(R)
p−2
2 α− 1

2
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or
δ = dZ(R)

4−p

4 α
1
2 =: Θ̄p(α).

Finally

dZ(R) = δα
1

2(p−1)R
p−2

2(p−1) = δ R
p−2

2(p−1)
R

1
2(p−1)

dZ(R)
1
2

= δ R
1
2dZ(R)−

1
2

or δ = dZ(R)
3
2R− 1

2 =: Φ̄(R) which implies the improved convergence rate. �

Here, we also do not need a restriction to the decay rate of the distance function dZ(R)
because we have

γ‖Aω‖ = α
1

p−1‖Aω‖
2−p

p−1
+1 = α

1
p−1‖Aω‖ 1

p−1 ≥ C α
1

p−1‖ω‖
1

p−1

Z

Hence we need
δ

α
1

p−1R
1

p−1

→ 0 for δ → 0.

In Lemma 3.3 we have

δ

α
1

p−1R
1

p−1

=
dZ(R)

3
4

R
1
2dZ(R)

1
2

= dZ(R)
1
4R− 1

2 → 0

for R → ∞. In the second case we derive

δ

α
1

p−1R
1

p−1

=
dZ(R)

3
2

R
1
2dZ(R)

= dZ(R)
1
2R− 1

2 → 0

for R → ∞ again. Hence, Lemma 3.3 holds, provided δ is sufficiently small.

7 Application in Hilbert spaces

We will show that presenting convergence rates in terms of distance functions in Banach
spaces describes a natural generalization of formulating convergence rates for elements
satisfying a general source condition in Hilbert spaces. In fact, there seems to be a close
relation between the distance function and general source conditions in Hilbert spaces.
The following result can be found in [10, Theorem 3.2].

Proposition 7.1 Let X and Y be Hilbert spaces and A ∈ L(X ,Y) be injective and com-
pact. For given y ∈ R(A), let x† 6∈ R(A∗A) be the solution of Ax = y with distance
function d(R). If x† ∈ R ((A∗A)ν), 0 < ν < 1, then the estimate

d(R) ≤ κR
ν

ν−1 , R > 0, (14)

holds for some constant κ > 0.

A careful reading of the proof shows, that the estimate (14) is of optimal order. Let
us therefore assume, that the distance function is given by d(R) := κR

ν
ν−1 for some

κ > 0 and 0 < ν < 1. Moreover, we assume P (x) := 1
2
‖x‖2, which implies ξ = 2x† and

DP (x, x†) = 1
2
‖x− x†‖2 for x ∈ X .
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Let us consider the case p = 2. We have for the function Ψ2(R) in Theorem 4.1

Ψ2(R) := d(R)
1
2R−1 = κ

1
2R

ν
2(ν−1)

−1
= κ

1
2R

2−ν
2(ν−1) =: α

which implies

R =

(

α√
κ

)
2(ν−1)
2−ν

= Ψ−1
2 (α).

Hence

Θ2(α) =
√

α d
(

Ψ−1
2 (α)

)

∼ α
1
2(1+ ν

ν−1
2(ν−1)
2−ν ) = α

2+ν
2(2−ν)

which provieds a parameter choice α ∼ δ
2(2−ν)
2+ν . Moreover

Φ(R) = d(R)
3
4R− 1

2 = κ
3
4R

3ν
4(ν−1)

− 1
2 = κ

3
4R

ν+2
4(ν−1)

and
d
(

Φ−1(δ)
)

∼ δ
ν

ν−1
4(ν−1)

ν+2 = δ
4ν

ν+2

hold. This yields a convergence rate ‖xδ
α − x†‖ ∼ δ

2ν
ν+2 , which is not the optimal one. On

the other hand, in Theorem 5.1 we introduced

Ψ̃2(R) = d(R)R−1 = κR
ν

ν−1
−1 = κR

1
ν−1 =: α

or R = κ1−ναν−1. Hence

Θ̃2(α) = α
1
2d
(

Ψ̃−1
2 (α)

)

∼ α
1
2
+ ν

ν−1
(ν−1) = α

2ν+1
2

which implies the known optimal parameter choice α ∼ δ
2

2ν+1 . Finally

Φ̃(R) = d(R)
3
2R− 1

2 = κ
3
2R

3ν
2(ν−1)

− 1
2 = κ

3
2R

2ν+1
2(ν−1) =: δ

which provides

R =

(

δ

κ
3
2

)
2(ν−1)
2ν+1

= Φ̃−1(δ).

Then we derive the convergence rate

‖xδ
α − x†‖ ∼ d

(

Φ̃−1(δ)
)

= κ

(

δ

κ
3
2

)
2ν

2ν+1

∼ δ
2ν

2ν+1 . (15)

The rate (15) is known to be the optimal one for linear regularization methods such as
Tikhonov regularization if x† ∈ R ((A∗A)ν) for 0 < ν ≤ 1, see e.g. [4, Section 5.1]. Hence,
generalized source conditions and distance functions provide the same (optimal) conver-
gence rates. The example shows that by dealing with approximative source conditions we
can extend classical convergence rate results to linear (and nonlinear) operators mapping
between reflexive Banach spaces.
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8 On an a-posteriori parameter choice

If the stabilizing functional P (x) is strongly convex in x†, i.e. P (x) satisfies (A9), and
the choice p = 2 we can apply an a-posteriori parameter strategy for the regularization
parameter α, which is also known as Lepskij- or balancing principle, see e.g. [11], [13]
and [1]. This strategy has been well-established in the recent years since it is easy to
implement and applicable under relatively weak technical assumptions. In particular, it
can also be applied in Banach spaces.

For given (sufficiently small) α0 > 0, a real number q > 1 and maximal index jmax > 0
we define the (finite) sequence

{αj := qjα0 : 0 ≤ j ≤ jmax}. (16)

The maximal index jmax is chosen such that αjmax
≤ αmax. Then we can present the

following a-posteriori choice of the regularization parameter α.

Definition 8.1 (Lepskij-Principle) Let the sequence {αj} be defined by (16). We cal-
culate solutions {xδ

αj
} of (2) and choose the regularization parameter αL := αjL

such
that

jL := max

{

j ≤ jmax : ‖xδ
αi
− xδ

αj
‖ ≤ 4

√

C2

η

δ√
αi

, ∀ i ≤ j

}

, (17)

where C2 is the constant of (A8) and η is the constant of (A9). Then xδ
α := xδ

αL
is chosen

as regularized solution of (1).

We summarize the most important facts. The main idea of the balancing principle is
based on the decomposition of the approximation error of regularized solutions into two
parts which both depend on the regularization parameter α. We state the assumption in
detail below.

Assumption 8.1 For each 0 < α ≤ ‖A‖2 and given data yδ let xδ
α denotes any regularized

solution of (1) satisfying

‖xδ
α − x†‖ ≤ 1

2
(ψ(α) + φ(α)) (18)

for a known non-increasing function ψ(α), which can depend on δ and an unknown non-
decreasing (index) function φ(α).

Now we can establish the theoretical main results of the balancing principle, see also [13,
Proposition 2 and Corollary 1].

Proposition 8.1 Let α0 > 0 be chosen such that φ(α0) < ψ(α0), {αj} is given by (16)

and the index jL satisfies (17) when the bound 4
√

C2η−1 δ√
αi

is replaced by 2ψ(αi). More-

over, define ĵ := max{j : φ(αj) ≤ ψ(αj)} and j̃ := max{j : ‖xδ
αi
−x†‖ ≤ ψ(αi), ∀ i ≤ j}.

Then, under Assumption 8.1,

jL ≥ j̃ ≥ ĵ ≥ 0 and ‖xδ
αL

− x†‖ ≤ 3ψ(α̃) ≤ 3ψ(α̂).
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If – in addition – there exists a constant 1 < D < ∞ such that ψ(αj) ≤ Dψ(αj+1),
0 ≤ j < jmax, then

‖xδ
αL

− x†‖ ≤ 6D min{ψ(αi) + φ(αi), 0 ≤ j ≤ jmax}.

Assume, ξ† ∈ X ∗ satisfies the source condition (9) for some ω ∈ X with ‖ω‖ = R. Then,
by Lemma 3.4

η‖xδ
α − x†‖2 ≤ DP (xδ

α, x
†) ≤ C2

δ2

α
+ C3α

2R2

respectively

2‖xδ
α − x†‖ ≤ 2

√

C2

η

δ√
α

+ 2

√

C3

η
Rα =: ψ(α) + φ(α)

holds. Hence, Assumption 8.1 is satisfied. On the other hand, for ξ† ∈ M \M we have
for all R ≥ 0

2‖xδ
α − x†‖ ≤ 2

(

C8αR+

√

C2

η

δ√
α

+ C7d(R)

)

= 2

√

C2

η

δ√
α

+ 2 (C7 + C8) d
(

Ψ̃−1
2 (α)

)

=: ψ(α) + φ(α),

which Ψ̃2(R) := d(R)R−1 which is the first balancing step in the proof of Theorem 5.1.
Hence, in both cases (18) holds and we can apply Proposition 8.1. Of main interest is the
following consequence.

Corollary 8.1 Assume all conditions of Proposition 8.1 to be satisfied and αL is chosen
by (17). Moreover, assume ĵ < jmax.

(i) If ξ† = A⋆JY (Aω) for some ω ∈ X with ‖ω‖ ≤ R, then

‖xδ
α − x†‖ ≤ 6

√

q η−1 max
{

√

C2,
√

C3R
}

δ
2
3 .

(ii) If ξ† ∈ M \M with distance function d(R) = d(R; ξ†), then

‖xδ
α − x†‖ ≤ 6

√
qmax

{

√

C2η−1, C7 + C8

}

d
(

Φ̃−1(δ)
)

,

where Φ̃(R) := d(R)
3
2R− 1

2 .

Proof. We can apply Proposition 8.1 with ψ(α) := 2
√

C2η−1 δ√
α

and φ(α) := 2
√

C3η−1Rα

in the first and φ(α) := 2(C7 + C8)d(Ψ̃
−1
2 (α)) in the second case. We introduce the no-

tation ᾱ > 0 which satisfies ψ(ᾱ) = φ(ᾱ). Obviously ᾱ < αĵ+1 ≤ jmax holds. Hence, by
monotonicity

‖xδ
αL

− x†‖ ≤ 3ψ(α̂) ≤ 3Dψ(αĵ+1) ≤ 3Dψ(ᾱ) = 3Dφ(ᾱ).
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Moreover, since

ψ(αi) = 2

√

C2

η

δ√
αi

= 2

√

C2

η

√
q

δ√
qαi

=
√
qψ(αi+1)

the additional condition of Proposition 8.1 is satisfied with D :=
√
q. We now consider

the first case. Let α∗ > 0 satisfy δ√
α∗

= α∗ ⇔ α∗ = δ
2
3 . Assume C2 ≤ C3R. Then

ψ(α∗) ≤ φ(α∗) which implies α∗ ≥ ᾱ. Hence

‖xδ
αL,h − x†‖ ≤ 3

√
qφ(ᾱ) ≤ 3

√
qφ(α∗) = 6

√

q C3η−1Rα∗ = 6
√

q C3η−1Rδ
2
3 .

On the other hand, if C2 ≥ C3R then φ(α∗) ≥ φ(α∗) and hence α∗ ≤ ᾱ holds. This
provides

‖xδ
αL

− x†‖ ≤ 3
√
qψ(ᾱ) ≤ 3

√
qψ(α∗) = 6

√

q C2η−1
δ√
α∗

= 6
√

q C2η−1α∗ = 6
√

q C2η−1δ
2
3 .

The second case can be treated analogously when the constant
√

C3η−1R is replaced by
C7 + C8. �

9 Nonlinear equations

We now deal with the nonlinear equation (4). In order to restrict the nonlinearity of the
operator F by the following assumption

(A11) There exists a linear operator G ∈ L(X ,Y) such that

‖F (x) − F (x†) −G(x− x†)‖ ≤ LDP (x, x†), ∀x ∈ Bρ(x
†) ∩ D(F ) (19)

with ball Bρ(x
†) around x†, ρ ≥ K > 0 chosen sufficiently large, and a constant

L > 0.

This restriction is a modification of the original condition introduced in [3] for deriving
convergence rates for Tikhonov regularization of nonlinear ill-posed problems in Hilbert
spaces. In particular, if F is Fréchet-differentiable in x† ∈ intD(F ), we choose G = F ′(x†).
For γ > 0 we define the residuals

R1 := F (xδ
α) − F (x†) −G (xδ

α − x†) and R2 := F (x† − γω) − F (x†) + γ Gω.

Hence, the estimates

‖R1‖ ≤ LDP (xδ
α, x

†) and ‖R2‖ ≤ LDP (x† − γ ω, x†) ≤ LC1γ
2‖ω‖2

hold. We present the convergence rate result.

Theorem 9.1 Assume p > 1, (A1)-(A8), ξ† ∈ X ∗ satisfies the source condition (9) for
some ω ∈ X . Moreover, (A11) holds for some L ∈ R with L ‖Gω‖ < 1. Then, an a-priori

choice α ∼ δ
2(p−1)

3 leads to the convergence rate

DP (xδ
α, x

†) ∼ O
(

δ
4
3

)

.
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Proof. Here, we estimate

1

p
‖F (x† − γω) − yδ‖p =

1

p
‖F (x†) − γ Gω +R2 − yδ‖p

=
γp

p
‖Gω‖p + γp−1‖Gω‖p−2〈JY (Gω), yδ −R2 − F (x†)〉

+DY (yδ − F (x† − γω), γ Gω)

=
αγ

p
‖Gω‖2 + α〈JY (Gω), yδ − R2 − F (x†)〉

+DY (yδ − F (x† − γω), γ Gω),

by setting γp−1 := α‖Gω‖2−p. Moreover,

1

p
‖F (xδ

α) − yδ‖p + αDP (xδ
α, x

†) ≤ αDP (x† − γω, x†) +DY (yδ − F (x† − γω), γ Gω)

+α〈JY (Gω), G (x† − xδ
α)〉 − αγ‖Gω‖2

+
αγ

p
‖Gω‖2 + α〈JY (Gω), yδ − R2 − F (x†)〉

= αDP (x† − γω, x†) +DY (yδ − F (x† − γω), γ Gω)

+
γα

p
‖Gω‖2 − αγ‖Gω‖2

+α〈JY (Gω), yδ − F (x†) −G (xδ
α − x†) −R2〉

≤ αDP (x† − γω, x†) +DY (yδ − F (x† − γω), γ Gω)

+
γα

p
‖Gω‖2 − αγ‖Gω‖2 +

1

p
‖F (xδ

α) − yδ‖p

+
(α‖Gω‖)q

q
+ α‖Gω‖ (‖R1‖ + ‖R2‖) .

Same calculations as above leads to

DP (xδ
α, x

†) ≤ DP (x† − γω, x†) +
1

α
DY (yδ − F (x† − γω), γ Gω)

+‖Gω‖
(

LDP (xδ
α, x

†) + LDP (x† − γω, x†
)

= (1 + L ‖Gω‖)DP (x† − γω, x†) +
1

α
DY (yδ − F (x† − γω), γ Gω)

+L ‖Gω‖DP (xδ
α, x

†).

In order to apply Lemma 3.3 we consider

‖yδ − F (x† − γω) − γ Gω‖ = ‖yδ − F (x†) +R2‖
≤ δ + LC1 γ

2‖ω‖2

= δ + LC1γ α
1

p−1‖Gω‖
2−p

p−1‖ω‖2,

which leads to the condition

δ + LC1γ
2‖ω‖2 ≤ c̃γ‖Gω‖ = c̃ α

1
p−1‖Gω‖ 1

p−1
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for some constant 0 < c̃ < 1. Hence, Lemma 3.3 can be applied if δp−1α−1 and α are
sufficiently small. Then

DY (yδ − F (x† − γω), γ Gω) ≤ C2

(

δ + LDP (x† − γω, x†)
)2
γp−2‖Gω‖p−2

≤ C2

(

δ + LC1γ
2‖ω‖2

)2
γp−2‖Gω‖p−2

≤ 2C2δ
2α

1+ 1
p−1‖Gω‖

p−2
p−1

+L2C2
1α

4
p−1‖Gω‖

2(2−p)
p−1 ‖ω‖4α1+ 1

p−1‖Gω‖
p−2
p−1

= 2C2δ
2α

1+ 1
p−1‖Gω‖

p−2
p−1

+L2C2
1α

1+ 5
p−1‖Gω‖

2−p

p−1‖ω‖4.

Hence

(1 − L‖Gω‖)DP (xδ
α, x

†) ≤ 2C2‖Gω‖
p−2
p−1

δ2

α
1

p−1

+ C̃α
2

p−1

with
C̃ := L2C2

1α
1+ 3

p−1‖Gω‖
2−p

p−1‖ω‖4 + (1 + L ‖Gω‖)C1‖ω‖2,

which leads to the desired convergence rate result. Note, that the suggested parameter
choice provides δp−1α−1 → 0 for δ → 0 which holds the validy of Lemma 3.3. �

On the other hand, smallness conditions contradicts the idea of distance functions. So we
cannot derive convergence rates for nonlinear problems under condition (A11) for violated
source condition (9). On the other hand, other nonlinearity restrictions, which might
allow the application of distance functions turned to be not appropriated for proofing
convergence rates in this specific situation.

Finally, the case p = 1 is considered. Here we can present the following result.

Theorem 9.2 Assume p = 1, (A1)-(A8), ξ† ∈ X ∗ satisfies the source condition (9)
for some ω ∈ X . Moreover, (A11) holds for some L ∈ R with L ‖Gω‖ < 1. If the

regularization parameter α chosen such that 0 ≤ 1 − α‖Gω‖ ≤ δ
2
3 , then

DP (x†, xδ
α) ∼ O

(

δ
4
3

)

.

Proof. By the calculations above,

‖F (xδ
α) − yδ‖ + αDP (xδ

α, x
†) ≤ αDP (x† − γω, x†) +DY (yδ − F (x† − γω), γ Gω)

+α〈JY (Gω), G (x† − xδ
α)〉 − αγ‖Gω‖2

+γ‖Gω‖+
1

‖Gω‖〈JY (Gω), yδ −R2 − F (x†)〉

≤ αDP (x† − γω, x†) +DY (yδ − F (x† − γω), γ Gω)

+α〈JY (Gω), G (x† − xδ
α)〉 + αL ‖ω‖DP (xδ

α, x
†)

−αγ‖Gω‖2 + LDP (x† − γ ω, x†)

+γ‖Gω‖+
1

‖Gω‖〈JY (Gω), yδ − F (x†)〉

≤ (α+ L)DP (x† − γω, x†) +DY (yδ − F (x† − γω), γ Gω)

+α‖Gω‖ ‖yδ − F (xδ
α)‖ + αL ‖Gω‖DP(xδ

α, x
†)

+γ‖Gω‖(1− α‖Gω‖) + |1 − α‖Gω‖| δ
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By Lemma 3.3 we have

DY (yδ − F (x† − γω), γ Gω) ≤ C2

(

δ + LDP (x† − γω, x†)
)2

γ‖Gω‖ ≤ C2
(δ + LC1 γ

2‖ω‖2)
2

γ‖Gω‖

Setting γ := δ
2
3 again, we derive

(1 − L‖Gω‖)DP (xδ
α, x

†) ≤ δ
4
3 (α + L)C1‖ω‖2 + δ

4
3

C2

(

1 + LC1δ
1
3‖ω‖2

)2

‖Gω‖
+δ

5
3 .

This proves the assertion. �

A Duality maps in Lp-spaces

In order to get a bit more familiar we consider the duality maps in the spaces X = Lp(0, 1),
1 ≤ p <∞. We set

P (x) :=
1

2
‖x‖2

P =
1

2





1
∫

0

|x(t)|p dt





2
p

, x ∈ Lp(0, 1),

and JX(x) := P ′(x). Straightforward calculations shows

lim
ε→0

P (x+ ε h) − P (x)

ε
= lim

ε→0

1

2ε











1
∫

0

|(x+ ε h)(t) + |p dt





2
p

−





1
∫

0

|x(t)|p dt





2
p







= ‖x‖2−p
p

1
∫

0

|x(t)|p−1sgn(x(t))h(t) dt,

i.e. JX(x) = ‖x‖2−p
p |x|p−1sgn(x). Note, with q := p

p−1
for p > 1 we have

‖JX(x)‖q = ‖x‖2−p
p





1
∫

0

|x|(p−1)q dt





1
q

= ‖x‖2−p
p ‖x‖

p−1
p

p

p

= ‖x‖p

which shows JX(x) ∈ Lp(0, 1)∗ = Lq(0, 1) and ‖JX(x)‖q = ‖x‖p. Moreover, for p > 2 (the
case p = 2 is clear),

J ′
X(x) =

(

‖x‖2−p
p

)′ |x|p−1sgn(x) + ‖x‖2−p
p (p− 1)|x|p−2
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holds. Here we have

(

‖x‖2−p
P

)′
=

[

(

‖x‖2
p

)
2−p

2

]′

=
2 − p

2

(

‖x‖2
p

)
2−p

2
−1

2 JX(x)

= (2 − p)‖x‖−p
p JX(x)

Hence,

J ′
X(x)(h1, h2) = (2 − p)‖x‖2−2p

p

1
∫

0

|x(t)|p−1sgn(x(t))h1(t) dt

1
∫

0

|x(t)|p−1sgn(x(t))h2(t) dt

+(p− 1)‖x‖2−p
p

1
∫

0

|x(t)|p−2h1(t)h2(t) dt

=: M1(h1, h2) +M2(h1, h2).

Since ‖|x|p−1‖q = ‖x‖p−1
p we conclude by Hölder’s inequality

|M1(h1, h2)| ≤ (p− 2)‖x‖2−2p
p ‖|x|p−1‖q‖h1‖p‖|x|p−1‖q‖h2‖p

= (p2)‖h1‖p‖h2‖p

and
|M2(h1, h2)| ≤ (p− 1)‖x‖2−p

p ‖h1‖p‖h2‖p‖|x|p−2‖r

with

r =
p q

p− q
=

p2

p−1

p− p

p−1

=
p

p− 2
.

Finally,

‖|x|p−2‖r =





1
∫

0

|x(t)|(p−2) p

p−2 dt





p−2
p

= ‖x‖p−2
p ,

which shows |M2(h1, h2)| ≤ (p−1)‖h1‖p‖h2‖p and finally ‖J ′
X(x)‖ ≤ 2p−3, i.e. the norm

of the second derivative of P (x) does not depend on the element x anymore if p ≥ 2.
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