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C*-algebras and asymptotic spectral theory

Bernd Silbermann, TU Chemnitz, Germany

Abstract. The presented material is a slightly polished and extended version
of lectures given at Lisbon, WOAT 2006. Three basic topics of numerical
functional analysis are discussed: stability, fractality, and Fredholmness. It is
further shown that these notions are corner stones in order to understand
a few topics in asymptotic spectral theory: asymptotic behavior of singular
values, e-pseudospectra, norms. Four important examples are discussed: Fi-
nite sections of quasidiagonal operators, Toeplitz operators, band-dominated
operators with almost periodic coefficients, and general band-dominated oper-
ators. The elementary theory of C*-algebras serves as the natural background
of these topics.

1. Introduction

One goal of functional analysis is to solve equations with “infinitely” many vari-
ables, and that of linear algebra to solve equations in finitely many variables. Nu-
merical analysis builds a bridge between these fields. Functional numerical analysis
is concerned with the theoretical foundation of numerical analysis.

Given a bounded linear operator A acting on some Hilbert space H, that is A €
B(H), consider the equation

Ag=h, (1.1)
where h € H is given and g is to find if this equation is supposed to be uniquely
solvable.

Even if the operator A is continuously invertible (and this will be assumed in
what follows), it is as a rule impossible to compute the solution A~'A. Then one
tries to solve (1) approximatly. For, one chooses a sequence (h,,) C H of elements



which approximates the right hand side y, and a sequence (A,,) of operators which
approximates the operator A, and one replaces (1) by the approximation equations

Avgn =l m=1,2,... (1.2)

the solutions g,, of which afe sought in A (or in certain subspaces H,, of H) again.
Approximation of h by h,, means that |h — hy||zr — 0 as n — oo.

It is tempting to suppose that the operators A, also approximate A in the norm,
but this assumption does not work in practice. The point is that usually A acts
on an infinite-dimensional space, whereas one will, of course, try to choose the
Ay as acting on spaces of finite dimension, i.e., as finite matrices. But the only
operators which can be approximated in norm by finite rank operators, are the
compact ones.

The kind of approximation which fits much better to the purpose of numerical
analysis is that of pointwise or strong convergence: the sequence (A,) converges
strongly to the operator A if ||Ah — Aph||g — O for every h € H (notation: s-lim
An, = A).

We write s*-lim A, = A, if s-lim A, = A and s-lim A% = A*.

Basic question: suppose that A, is invertible for all n > ng. Does the sequence
(gn) of solutions of (2) converge to the solution g of (1)?

The answer is NO!

Example 1: 1% := {(zo,...,%n,...) : Y. |2&|? < 00}, Ac(e = (€n), €n > 0 and
kEZ
lim e, = 0) is given by the infinite matrix

€o 1
1 50 0
0 €1 1
1 &1 0 %, . 2
0 & 1 (with respect to the standard basis of ?).
I €2

Cosider P APy By 112 = B (S0« « o 5@y @isbize <+ ) 7> ( @iy 5% 0 O 0 0.0
Then:

|(PoAcPy) P, < 2,if nis odd,
|(PrAePy) L P, || are at least e}, if n is even '
= if n is even then ||(P,A.P,) ! P,|| — oo, that is there is an h € H such that

gn = (PoAP) 'Poh» A"th=g.




Reason: ((P,A:P,)'P,) is not uniformly bounded.

Back to the general situation: Suppose that (A, 1P,) is uniformly bounded (n >
no) ((P,) C B(H) is a sequence of orthogonal projections such that s-lim P, =
I, A,:im P, — imP, invertible and bounded) and A is invertible. Then

A 1Pz — A7 x| — 0 for every z € H :

|A, Pz — A~z A7 Por — Py A + ||PA™ i — A M|
147 Pyl ||z — Ap P A~ 1+
|PnA™ e — A= x| — 0.

INIA

Remark: Suppose (A, ' P,)n>n, is uniformly bounded and s*-lim A4, P, = A. =
A is invertible.

Indeed:
[AnPrz || 2 C||Paz]l  (n > mno,C >0)
!

|| Az | >Clz|| = imA=imA,ker A = {0}
and
|AnPaz || > C||Prz|
!

|A*z || > C|lz|]| = im A* = im A* , ker A* = {0}

Definition 1: A sequence of operators A,, € B(imP,) is called stable if there exists
a number ng such that the operators A, are invertible for every n > ng and if the
norms of their inverses are uniformly bounded:

sup |4, Pyl < c0.

n>ng
The above discussion shows the crusial role of stability in analysis. How to prove
stability? No general idea. In most cases it is very complicated.

Fasy cases:

e A= B+ 1iS, B positive and S selfadjoint,

e A=1+T,T compact,
and A, = P,AP,, where (P,) is a sequence of orthogonal projections with
s-lim P, = 1.

Exercise: prove it!

We will show that the stability problem can frequently be tackled by the help of
C*-algebra techniques. Recall that a complex Banach algebra is called C*-algebra
if there is an involution a — a* such that ||aa*|| = ||al|?. Given two C*-algebras A



and B, a %-homomorphism ¢ : 4 — B is a continuous homomorphism such that
w(a*) = ¢(a)* for all a € A.

2. Algebraization of stability

Let H be a (separable) Hilbert space and (L,) be a sequence of orthoprojections
on H with s-lim L, = I.

Definition 2: Let F be the set of all sequences (A4,)%2, of operators
Ap € B (im Ly,) which are uniformly bounded:

sup || AnLy| < 0o.
n>0

The natural operations (A,)+ (Bn) := (A + Bp), (4n)(Br) := (4, Bn), M(A,) =
(Ar), (An)* := (A}) make F to an algebra with involution.

Proposition 1: F is a C*-algebra (prove it).

We are mainly interested in the asymptotic behavior of the sequences belonging
to F. This means that sequences which differ in a finite number of entries only
will have the same asymptotic behavior, and therefore can be identified. For this
goal we introduce the set G of all sequences (G,,) in F with nan;o |GnLnl|l = 0.

Proposition 2: G is a closed ideal in F (prove it).
The following theorem reveals a perfect frame to study stability problems in an
algebraic way.

Theorem 1: (A. Kozak) A sequence (A,) € F is stable < the coset (4,) + G is
invertible in the quotient algebra F/G.

Proof: =: If (A,) is stable, then (A;'),>y, is bounded for some sufficiently large
no by definition. We make (A;;!)n>n, to a bounded sequence

(BoyBis i wx; Brg_isAnes A;01+1, ...) in F by freely choosing operators B; € B(imL;).
It is evident that this sequence is an inverse of (4, ) modulo G.

<= Let conversely, (An)+G be invertible in F/G. Then there are sequences (B,,) €
F as well as (G,,) and (Hy,) in G such that A,B, = L, + Grn, GpAn = L, + H,.
If n is large enough, then ||Gy|| < 3, ||Hya|| < 3, and a Neumann series argument
yields the invertibility of L,,+ G, and L, + H,, as well as the uniform boundedness
of this inverses by 2. Hence, A By (Ly + Gn)™t, (L, + H,) ! Bp A, are uniformly
bounded. Thus, the operators A, are invertible for all sufficiently large n, and
their inverses are uniformly bounded. |




Proposition 3: For all (A,) € F,
(4 + G)ll7/e = lim sup[|A, L] . (2.1)

Proof: Exercise.

Formula (3) gives raise to ask if there are interesting sequences in F for which
limsup in (3) can be replaced by lim. This question is important in order to
prove that the condition numbers of a stable sequence converge. Recall, that the
condition number (cond A) for an invertible matrix (operator) A is defined by

condA := | A]| [A7Y|

(for computational purposes: cond A should be small).

The right tool to study this and related questions is another fundamental notion
of numerical analysis — that of a fractal sequence.

It is not important in this place that the elements of the sequences under considera-
tion are operators. So we will use slightly generalized definitions of the C*-algebras
F and G, namely, given unital C*-algebras C,,, n = 0,1,2,..., with identity ele-
ments ey, let F stand for the set of all bounded sequences (¢, ¢1,...) with ¢, € C,
and let G refer to the set of all sequences (co, ¢1,- -+ ) in F with ||¢, || — 0asn — oo.
Defining elementwise algebraic operations and an elementwise involution, and tak-
ing the supremum norm, we make F to a C*-algebra and G to a closed ideal of
F. Thus, is the F-product of the C*-algebras C,,, and G-their restricted product.

Given a strongly monotonically increasing sequence 7 : Z4 — Zy, let F,, and G,
denote the product and the restricted product of the C*-algebras Cp gy, Cp(1),- - - »
respectively, and let R, stand for the restriction mapping R, : F — F, (an) —
(@y(ny)- The mapping R,, is a *-homomorphism from F onto F,,. Further, given a
C*-subalgebra A of F, let A, refer to the image of A under R,. By the first iso-
morphy theorem for C*-algebras ([1], Theorem 1.45), A, actually is a C*-algebra.

Definition 3: Let A be a C*-subalgebra of F.

(a) A x-homomorphism W : A — B of A into a C*-algebra B is fractal if for every
strongly monotonically increasing sequence 7, there is a s-homomorphism
W, : A, — B such that W = W, R,,.

(b) The algebra A is fractal, if the canonical homomorphism ||i : A — A/ANG
is fractal.

(c) A sequence (a,) € F is fractal, if the smallest C*-subalgebra of F containing
(an), is fractal.

Roughly spoken: given a subsequence (a,(n)) of a sequence (a,) which belongs to
a fractal algebra A, it is possible to reconstruct the original sequence (a,) from
its subsequence modulo sequences in AN G.



Consequences:

o (apny) €EGy=(an) €G (2.2)
([7], Theorem 1.66)
e (apm)) stable = (ay) stable (see Theorem 4 (])). (2.3)

Theorem 2: Let A be a fractal C*-subalgebra of 7.

If (an) € A, then the limit lim ||a,, || exists and is equal to ||(an)+G||. ([7], Theorem
1.7.1)

Example 2: Consider I*(Zy) = {(an)nez, : Y. |an|?> < oo} and the bounded
nELy
linear operators Py, R,, : 12(Zy) — 12(Z4) given by

(ar) — (ao,a1,...,an,0,0,0,...),
(ar) — (an,an-1,...a0,0,0,0,---),

respectively.

Let C,, = B(imP,), and let FW refer to the set of all sequences (A,) € F for
which the strong limits W(4,,) := s — lim A, P,, and W(An) = s—lim R, A, R,
as well as the strong limits W(A*) and W (A?) exist. The set FW actually forms
a C*-subalgebra of F (prove it or compare the proof of Theorem 1.18 (a) in [7]).

The *-homomorphism W, W : FW — B(I*(Z)) turn out to be fractal: given
a strongly monotonically increasing sequence 7, we can define W,, W, : 7, —
F(2(Zy)) via

Wa(Anemy) = s — lim Ay By )
and '
Wi (Ay(ny) = 8 = i Ryy(n) Ay Ryn) -

Then, obviously, W = W,R,, W = W, R,,.

The algebra F" is not fractal: consider the sequence (A,) € F, where Agpp1 =0
and Ay, = diag(0,...,0,1,0,...,0), where the 1 stands in the center of this
diagonal matrix. It is easily seen, that (4,) € FV, W(A,) =0, W(A,) = 0, but
(4n) ¢ G(C FW).

For the special choise n(n) = 2n + 1 one obtains R, (An) = (A2nt+1) € Gy. By
(4) FW cannot be fractal. One the other hand, F" contains interesting fractal
subalgebras as we will see later on.




3. Asymptotic behavior

Given a sequence (Ay) € F one can ask how the spectra (e-pseudospectra) of the
entries develop.

Let (M,)22; be a set sequence with values in the set of all subsets of the complex
plane. For instance, if (A,) € F, then the mapping n — sp A, is a set sequence in
this sense.

Definition 4: (a) Let (M,)52; be a set sequence. The partial limiting set or limes
superior lim sup M, (resp. the uniform limiting set or limes inferior lim inf M,,)
of the sequence (M) consists of all points m € C which are a partial limit (resp.
limit) of a sequence (my,) of points m,, € M, (partial limit of a sequence (m,,) is
by definition a limit of some subsequence of (m,,)).

Observe that the partial limiting set lim sup M, is non-empty if infinitely many of
the M,, are non-empty and if | M,, is bounded, whereas the uniform limiting set

n
can be empty even under these restrictions as the trivial example M,, = {(—1)"}
shows.

Let C¢ denote the set of all non-empty and compact subsets of C. The Hausdorff
distance of two elements A and B of C® is defined by

h(A, B) := max {max dist (a, B), max dist (b, A)} g
a€A beB

where dist (a, B) = Enig|a — b. The function h is actually a metric on C¢. We
€

denote limits with respect to this metric by A-lim.

Proposition 4: Let (M,,) be a set sequence taking values in C®. Then lim sup M,
and lim inf M,, coincide if and only if the sequence (M,,) is h-convergent. In that
case

limsup M,, = liminf M,, = h — lim M,
([7], Proposition 3.6).

Example 3: Let V : [2(Z1) — [?(Z4) be the shift operator acting by

(ap,ai1,az,...) — (0,a0,a1,as0,...)



and consider (P,V P,). It is easy to see that the matrix representation of P,VP,
with respect to the standard basis of im P, equals

0
1 0
1 0 0
0 1 0
1 0
10

= sp P,V P, = {0} for all n and lim inf sp P,V P, = limsupsp P,V P, = {0},
but sp V.={z € C: 2| <1} Cspr,c((PaVPn) +G).

What is the reason for this unpleasant fact? One can prove that for (a,) € F
a point s € C belongs to the partial limiting set limsupspa,, if and only if the
sequence (a, — sep) is not spectrally stable (Theorem 3.17 in [7]). (A sequence (ay, )
is spectrally stable if its entries a, are invertible for sufficiently large n and if the
spectral radii p(a,,!) of their inverses are uniformly bounded.) Spectral stability
is a very involved notion and not much is known. We accomplish this discussion
with

Theorem 3: Let C,, = C™*" and (A,) € F. Then

U limsupsp (4, + C,) = spf/G((An) +G)
(Cn)€EG

([7], Theorem 3.19).

One conclusion: Spectral stability is very sensitive with respect to perturbations
from G (contrary to stability).

These difficulties disappear if we restrict our attention to sequences for which
stability and spectral stability coincide.

Corollary 1: If (a,) € F is a sequence of normal elements, then
limsupspan = spr/;((an) + G)
([7], Corollary 3.18).

For fractal algebras we get refinements.

Theorem 4: Let A be a fractal C*-subalgebra of F which contains the identity.

(a) A sequence (an) € A is stable if and only if it possesses a stable (infinite)
subsequence.
(b) If (an) € A is normal, then lim sup sp a,, = liminfspa, = h — limspa,,.




(c) If (an) € Ais normal, then the limit lim p(a,) exists and is equal to p((an)+
G) (p-spectral radius).
([7], Theorem 3.20)

Let us shortly discuss limiting sets of singular values (because of their importance
in numerical analysis). Let B be a unital C*-algebra and a € B. The set Y (a)
of the singular values of a is defined to be {A € RT : \? € sp(a*a)}. Since
the determination of the singular values is equivalent to the determination of the
spectrum of a self-adjoint element, the previous results have the following evident
analogues for singular value sets.

Theorem 5: If (a,) € F, then lim sup > (an) = >.((an) + G).

Theorem 6: If A is a fractal C*-subalgebra of F containing the identity and if
(an) € A, then

lim sup Z(an) = lim inf Z(an) =h-— limZ(an) ;

The last topic in this section is e-pseudospectra.

A computer working with finite accuracy cannot distinguish between a noninvert-
ible matrix and an invertible matrix the inverse of which has a very large norm.
This suggests the following definition reflecting finite accuracy.

Definition 5: Let B be a C*-algebra with identity e and let € be a positive con-
stant. An element a € B is e-invertible if it is invertible and [la™'|| < 1. The
e-pseudospectrum sp.(a) of a consists of all A € C for which a — Ae is not e-
invertible.

It is easily seen that e-invertible elements of a C*-algebra form an open set, and
that e-pseudospectra are compact and non-empty subsets of C.

The following theorem provides an equivalent description of the e-pseudospectrum
which offers a way for numerical computations at least for (finite) matrices.

Theorem 7: Let B be a unital C*-algebra and € > 0. Then, for every a € B, the
e-pseudospectrum is equal to

sp.(a)= |J sp(a+p)
PEB
vl <e

([7], Theorem 3.27).

Let us still remark that (unital) C*-algebras are also inverse closed with respect
to e-invertibility. What about limiting sets of e-pseudospectra?
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Theorem 8: Let (a,) € F and € > 0. Then

lim sup spg" (an) = spf/G((an) +G)

([7], Theorem 3.31).
The proof of Theorem 8 is based on the following result.

Proposition 5: (Daniluk) Let B be a C*-algebra with identity e, let a € B, and
suppose a — Ae is invertible for all A in some open subset ¢ of the complex plane. If
[(a—Xe)™|| < C for all A € U, then ||(a —Xe) ™| < C or all X € Y. ([3], Theorem
3.14)

In other words: the analytic function U — B, A — (a—\e) ™! satisfies the maximum
principle. This is a surprising fact since — in contrast to complex-valued analytic
functions — the maximum principle fails in general for operator-valued analytic

functions (consider C — C2*2 \ < 3 (1) ).

It is an open question for which Banach algebras Daniluk’s result is true (one
particular answer is in [3], Theorem 7.15).

In case A is a fractal C*-subalgebra of F behave the following refinement of The-
orem 8:

h —limspg™ (an,) = SPS/G((%) +G).

4. First applications

I. Quasidiagonal operators and their finite sections.

Recall that a bounded linear operator 7" on a separable (complex) Hilbert space is
said to be quasidiagonal if there exists a sequence (P, )nen of finite rank orthogonal
projections such that s-lim P, = I and which asymptotically commute with T,
that is

T, Pl := TP, — P,T|| =0 as n— oo.

In particular, every selfadjoint or even normal operator is quasidiagonal as well
as their perturbations by compact oeprators. However it is by no means trivial to
single out a related sequence (P,). For instance, for multiplication operators in
periodic Sobolev spaces H* related sequences can explicitely be given: these are
orthogonal projections on some spline spaces.

Let T' be quasidiagonal with respect to (P,) = (P, )nen. Consider the C*-subalgebra
F of F, the last one defined by help of (P, ), consisting of all sequences of F for




igl.

which s*-lim A, P, exist. It is not hard to prove that J := {(P,KP,) + (Cy) :
K-compact, (Cy,) € G} forms a two-sided closed ideal in F! (but not in F!)

Let C(p,)(T') denote the smallest C*-subalgebra of F! containing the sequences
(P, TP,), (P,), and the ideal J.

Proposition 6: The quotient algebra C(p,(T")/G is isometrically isomorphic to the
smallest C*-subalgebra C(T") of B(H) containing 7', I, and all compact operators.
This isomorphism is given by the quotient map induced via s-lim A, P, ((A,) €
C(P,L)(T))-

Sketch of the proof: Suppose s-lim A, P, =: A is invertible. then A= € C(T), and
since every element in C(T) is quasidiagonal, A~! also owns this property, and

P, — P,AP,A1P,|| = | P,AA™'P, — P, AP, A'P,||

= ||Po(PnA — AP,)A7IP,|| — 0.
Hence, (P, AP,) is stable. This means that (P,AP,) + G is invertible if and only
if s-lim P, AP, is invertible. Now it is sufficient to prove that P,AP, — A, € G.

For, it is sufficient to show this for the special case A,, = P, B, P, B>P,,. We have
“PnBlBQPn o PnBanBQPnH = H-Pn(PnBl o Blpn)BZPnH — 0 as n — oo. #

Corollary 2: A sequence (A,) € Cp,)(T) is stable if and only if s-lim A, is
invertible. Moreover, Cp,)(T') is fractal.

Now it is evident that the theory of Section 3 applies.

Proposition 7: Let (A,) € C(p,)(T).

(a) lim ||A] = ||s — im A, Py |-
(b) liminfsp A, = limsupsp, A, =sp.(s—limA,) (¢ > 0).
(c) If (A,) is normal then

liminf sp A, = limsupsp A, = sp (s — lim 4,,).

(d) liminf ) (A,) =limsup ) (A,) = > (s —lim Ay,).

In the papers [5], [6] Nathaniel Brown proposed further refinements into two di-
rections: speed of convergence and how to choose the sequence (P,,) of orthopro-
jections in some special cases such as quasidiagonal unilateral band operators,
bilateral band operators or operators in irrational rotation algebras.

Remark. If (a,,) € F! is stable and s*-lim a,, = A, A+ K invertible and compact,
then (a, + P,kP,) is stable (this sequence equals (a,)(I + Ppa,'P,KP,) for n

large enough.

II. Toeplitz operators and their finite sections
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Let a € L*°(T) and denote by aj, the k-th Fourier coefficient of a:
2||4
1 0 ,—ik0
Sag = — v Ao, ke Z.
ak o /a(e )e , ke
0

Then the Laurent operator L(a) on [2(Z), the Toeplitz operator T'(a) on 1%(Z.),
and the Hankel operator H(a) on I?(Z, ) are given via their matrix representation
with respect to the standard bases of [2(Z) and 1?(Z,.) by

L(a') = (ak—j)]cfj:—oo ”
ay az as
a a .
T(a’) = (ak—j)?jzo ) H(a') = ai 3

Here is a list of elementary properties of these operators (see any textbook on
Toeplitz operators).

e If a € L>(T), then Laurent operator L(a) is bounded on [%(Z).

e (Brown/Halmos) If a € L*°(T), then the Toeplitz operator T'(a) is bounded
on I*(Z4), and || T(a)|| = |lallco-

e (Nehari) If a € L*°(T), then H(a) is bounded on (?(Z), and ||H(a)|| =
dist .00 (T) (a, HOO)

o T(ab) = T(a)T(b) + H(a)H(b), where b(t) := b(3).

e T(a)* =T(a).

e (Coburn) Let a € L°°(T) \ {0}. Then at least one of the spaces ker T'(a) and
I2/imT (a) consists of the zero element only.

Proposition 8:

(i) Let a € C(T). The Toeplitz operator T'(a) is Fredholm on (% = [2(Z.) if and
only 0 ¢ a(T). In this case, ind T'(a) = —wind a, where wind a refers to the
winding number of the curve a(T), provided with the orientation inherited by
the usual counter-clockwise orientation of the unit circle, around the origin.

(ii) Let a € C(T). The Toeplitz operator is invertible on {2 if and only if 0 ¢ a(T)
and wind a = 0.

(iii) Let a € C(T). Then H(a) is compact on [2.
(iv) The smallest C*-subalgebra 7 (C) of B(I?) containing all Toeplitz operators
with continuous generating functions, decomposes as

T(C)={T(a) : a € C(T)}+K(?),

where K(I?) stands for the (closed) ideal of all compact operators. ([3], Chap-
ter 1)
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Now let us turn to the finite section method for Toeplitz operators (with continuous
generating function). The first question is about the stability of the sequence
(P,T(a)P,), where P, : 1> — [? is the projection defined by

(ao,al,...,an,anﬂ,...)H(ao,...,an,O,O,...).

This problem was investigated by many people.

G. Baxter, 63’ : (P,T(a)P,) stable in [! if and only if T'(a)
is invertible (a € W,0 ¢ a(T), wind a = 0).

I. Gohberg, 1. Feldmann, 65’ : (P,T(a)P,) stable in {? if and only if
T'(a) is invertible.

Later on related results for classes of discontinuous generating functions were
achieved: QC,C + H*, PC, PQC.

Treil, 87’ : There are generating functions a with only one point of
discontinuity such that T'(a) is invertible but
{P,T(a)P,) is not stable.

Recall the definition of the algebra FW (Example 2):

A sequence (4,) € F belongs to FW, if and only if the strong limits W (A,,) :=
s—lim A, Py, , W(Ay) = s—lim R, Ap Ry, as well as W (A%), W(A%) exist. Because
of R,T(a)Ry, = P,T(@)P, (a € L*>®(T)) it is easy to see that (P,T(a)P,) € FW.
Moreover, R, K R,, tends strongly to zero for every compact operator due to the
week convergence of (R,,) to zero.

Hence, the smallest C*-subalgebra S(C) in F containing all sequences (P, T'(a)P,), a €
C(T), is actually contained in F%W. Our next goal is to describe the structure of
the algebra S(C). For, we need Widom’s identity

P,T(ab)P, = P,T(a)P,T(b)P, + P, H(a)H(b) P+
+R,H(a)H(b)Rn

(prove it).

The collection
Jw = {(P,KP, + R, LR, + Cy,) : K, L compact, (C,) € G}
forms a closed two-sided ideal in FW.

Theorem 9: Ji C S(C). Moreover, each element (A,) € S(C) can uniquely be
written as

Ap = PyT(a)Py + PaK Py + RoLRy + Cy
where K, L are compact operators, (Cy,) € G. ([7], Theorem 1.5.3).
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Using this representation, it is evident that
W(An) = T(a) + K, W(An) = T(a’) + L,
and ker W NkerW =G. .

Now take the *-homomorphisms W, W : §(C) — B(1?) and glue them together to
obtain a *-homomorphism smb° : S(C) — B(1?) x B(I?),
(An) = (W(An), W (4n)).
Furthermore, it is clear that ker smb® = G. Thus, the quotient homomorphism
smb : S(C)/G — B(I*) x B(1?)

is correctly defined and is injectiv. Notice that an injective x-homomorphism is
isometric.

Theorem 10:

(i) The map smb is a *-isomorphismus from S(C)/G onto the C*-subalgebra of
B(1?) x B(1?) which consists of all pairs (W (A,), W(Ay)) with (A,) running
through S(C). .

(ii) (A,) € S(C) is stable if and only if W(A,) and W(A,) are invertible opera-
tors.

(iii) S(C) is fractal.

Now it is clear that the theory of Section 3 applies.

Theorem 11:

(a) tim [ 4n | = max{[W ()], W (A0} )

(b) liminf sp_ Ap, = limsupsp, A, = sp, W (An)Upsp. W (A,). If (An) = (PuT'(a) Pr),
then sp. W (An) = spcT'(a) = sp.T'(a) = sp. W (An). 5

(c) If (Ay) is normal then liminf spA, = limsupsp A, = sp W(4,)Usp W (4y).

() liminf Y3(A,) = limsup 3(An) = (W (40) U T (W (4r)).

5. Fredholm sequences

Now we are going to introduce a third fundamental notion, namely that one of
Fredholm sequences. First we introduce Fredholm sequences in some restricted
form and finally in full generality.

We introduce C*-subalgebras of F which are generalizations of the algebras F°
and F* and which give raise to consider Fredholm sequences. Let H be an in-
finite Hilbert space and (L,) be a sequence of orthogonal projections such that
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Ly, — I strongly as n — o0o. The related C*-algebra of all bounded sequences is
again denoted by F. We shall assume that all projection operators are finite rank
operators.

Let T be a (possibly infinite) index set and suppose that, for every t € T', we are
given an infinite dimensional Hilbert space H? with identity operator I'* as well as
a sequence (E?) of partial isometries EL: H® — H such that

e the initial projections Lf, of E! converge strongly to It as n — oo,
e the range projection of E! is Ly,
e the separation condition

(E5)" EY — 0 weekly as n — oo (5.1)

holds for every s,t € T' with s # t. (Recall that an operator £ : H' — H"
is a partial isometry if EE*E = E and that E*FE and EE* are orthogonal
projections which are called the initial and the range projections of E, re-
spectively). For brevity, write £, instead of (E!)*, and set H, := im L,
and H! :=im L{.

Let FT stand for the set of all sequences (A,) € F for which the strong limits
s— lim E' A,E! and s —lim(E', A,E%)*

exist for every ¢t € T, and define mappings Wt : FT — B(H!) by Wi(A,) :=
s— lim E', A, E!. Tt is easily seen that F7 is a C*-subalgebra of F which contains

the identity, and that the W' are *-homomorphisms.

The separation condition (5) ensures that, for every ¢ € T and every compact
operator K* € K(H?), the sequence (E{K'E!,) belongs to the algebra 7, and
that for all s € T'

Kt if s=t

0 it sAt (52}

WH(BLK'E" ) = {

Conversely, (6) implies (5). Moreover, the ideal G belongs to FT. So we can intro-
duce the smallest closed ideal JT which contains all sequences (Ef K*E® ) with
t €T and Kt € K(H?) as well as all sequences (G,) € G.

Remark: The algebra "W provides an example of this type. Indeed T' consists only
of two points, say 1 and 2. Then W' = W, W? = W, and

Ji = {(P.KP,+C,): K compact, (C,) € G},
Jo = {(RnLR,+ Cp): L compact, (C,) € G}.

The separation condition (5) is obviously is fulfilled (recall that R,, tends weekly
to zero).
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There are examples which show that indeed infinite index sets T" are needed ([7],
4.5.1 — 4.5.2, for instance).

Theorem 12:

(a) A sequence (A,) € FT is stable if and only if the operators W'(A,,) are
invertible in B(H?) for every t € T and if the coset (A,)+Z7T is invertible in
the quotient algebra F7 /Z7.

(b) If (A,) € FT is a sequence with invertible coset (A,)+Z%, then all operators
WT(A,) are Fredholm on H®, and the number of the non-invertible operators
among the W?*(A,) is finite. ([7], Theorem 6.1)

Notice that this theorem can be used to give a different proof of Theorem 10, (ii).

Definition 6:

(a) A sequence (A4,) € FT is called Fredholm if the coset (A,)+Z7T is invertible.
(b) If the sequence (A,) € FT is Fredholm then its nullity a(A,), deficiency
B(A,) and index ind (A,,) are defined by a(A,) := > dimker W¥(A,), B(A,) :=
teT

>~ dim coker W¥(A,,) and
teT

ind (A,) = a(An) — B(An).

It is a triviality to carry over the well-known properties of Fredholm operators to
Fredholm sequences.

Remark: As we will see later on, this notion of Fredholm sequence depends on the
underlying algebra FT. We shall also see that Fredholmness of a sequence in the
sense of Definition 6 implies its Fredholmness in a general sense which has still to
be defined.

Let (A,) € F be arbitrary. We order the singular values of A, as follows (I, =
rank L,,):

0< s1(An) < -+ < s, (An)(= [ 4nl]) -
For the sake of convenience let us also put sq(A4,) = 0. Recall that usually the
singular values are ordered in the reverse manner.

Definition 7: We say that (A, ) € F has the k-splitting property if thereisa k € Z4
such that
lim si(A4,) =0,

while the remaining [,, — k singular values stay away from zero, that is
Sp+1(An) > 6 > 0

for n large enough. The number k is also called the splitting number.
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Notice if (Ay) has the 0-splitting property then (4,) is stable (hint: if s1(A4,) # 0
then A, is invertible and ||A7!|| = s1(A,)71).

Theorem 13: Let (A4,) € FT be Fredholm. Then

(a) (Ay) is subject to the k-splitting property with k = a(Ay).
(b) sa(a,)(An) < “An(t;T B P& we(am ELa)ll

If for (A,) € FT there is at least one t; € T such that W% (A,) is not
Fredholm, then

(c) lim s(A,) =0forallleZ;.
n—oo

Assertions (a) and (c) can be proved slightly modifying the idea of the proof of
Theorem 6.11 and using Theorem 6.67 in [7]. A complete proof of Theorem 13 is

| contained in [16]. We present here the proof of Theorem 13, (a) and (b) for the
special case F'.

Proof: We shall make use of the following alternative description of the singular
values (as approximation numbers):

5j(An) = min An — B,
BeF{™_,
where ]:,lg denotes the collection of all [,, x [,,-matrices of rank at most m. Let R,
be the orthoprojection onto im (P, Prer s Pn), where A = s — lim A, P,,. It is easy
to check that
1mRn = imPnH(erAPn ’
rank R, = rank P, Pier AP, = rank Pier a4 = dimker A =: k for n large enough,
and
|Rn — PpPier APn|| — 0 as n — oo.

Consequently, ||A,R,|| — 0 as n — oo, and (A, R,) € G. Consider the sequence
(Bn) € F!, B, := A% A (P, — Ry) 4 Py Pier A P,. Obviously, this sequence is also
Fredholm and s-lim B, P, = A*A + Pyer 4 is invertible. Then (B,,) is stable by
Theorem 12, (a). Since rank (P, — R,,) = l,, — k we get for n large enough

sk(An) [ (An *AnAzAn<Pn_Rn)Br?1) Py
“ (Aan - AnA:An(Pn - Rn)) Pn” ||B;1Pn[|
1B Pl | || An P Per 4P| -

IANIAIA

Since (B,,) is stable, there exists for n large enough a constant C with || B,;1 P,|| <
C. Thus we have

5k(An) < Cl|AnPpPrer aPp|| — 0 as n — 0.

Now consider sg11(Ar). By using the well-known inequality sg11 (A% Ap) < spt1(An)|| AL
and that ||A%|| is bounded (recall that A} P, converges strongly to A* # 0) it has
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to be shown that sii1(A*A,) is bounded away from zero (n large enough). We

have
sk+1 (A7 An) = Hllin | (A An — B) Pyl =
‘ BeF,! ;-1
= min || (A5 An + PnPeer aPr) = B = Py Peer aPn) Prl|
BG.Fl;’_,c41
> miln ||((A:An“f‘PnH(erAPn)—B)PnH:
BeF"_,
= 5 (A%An+ PpPieraPrn) >06>0
for n large enough since (A% A, + PnPier A Pr) is stable, and we are done. =

Corollary 3: If (A,,) € FT is Fredholm, then
ind (A,) =0.

Proof: One has only to use that the matrices A% A, and A, A}, are unitarily equiv-
alent. This shows that the splitting numbers of (A,) and (A},) coincide.

Example 4: The sequence (P,V P,) belongs to both algebras F' L and FW (7). This
sequence is Fredholm in F W but not in FL. If it would be Fredholm in F! then
ind V =0; but ind V = —1.

(V=T(@)

Theorem 13 has remarkable applications. Let us mention some simple results:

e If T(a) (a € C(T)) is Fredholm, then the Moore-Penrose inverses P,T(a)P;}
converge strongly to T'(a)* if and only if '

dimker P,T(a) P, = a(P,T(a)Py,)

for n large enough.
A deeper study of this problem is presented in [3], Chapter 4.

e Let T(a) (a € C(T)) be Fredholm and K be compact. Since (Pn(T'(a) +
K)P,) is subject to the splitting property with splitting number a (P, (T (a)+
K)P,) = dimker(T(a) + K) + dimker T'(a) and dimkerT'(@) is known by
Coburns Theorem, dim ker(T'(a)+ K) can be found numerically (in principle).

e If T(a) (a € C(T)) is Fredholm and a is smooth then sa(PpnT(a)Py) tends
fast to zero.

e It was mentioned before that multiplication operators M, with continuous
functions a are quasidiagonal in L2(T). The corresponding sequence of finite
dimensional projections can be taken as orthogonal projcetions on some spline
spaces. To be more precise let T := {|2| = 1} be parametrized be ¢ : [0,1] —
T, o(t) = 2™, A sequence of partitions (Ax)ren, Ak : {08, 00}, 0=
ok <ok <. <ok =1,issaid to be admissible if ha, = max(crfﬂ—aj) —
0 as k tends to infinity. We denote by S%(Ak) the space of all 9 € C(T) such
that 1 o ¢ is (§ — 1) times continuously differentiable and the restriction of
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1 o ¢ to each intervall (af,o}“ 11) is a polynom of degree < § (smoothest

splines). Let Pa, denote the orthogonal projections of L2(T) onto S°(Ax).
Then (see S. Prdorf, B. Silbermann: Numerical Analysis for Integral and

related Opérator Equations, Akademie Verlag, Berlin 1991, Section 2.14)

(I = Pax)fPaxll—0, | Pax f(I = Pag)ll — 0

as k — oo, where

— || - || stands for the operator norm in L?(T),

— f is continuous,

- (Ak) is admissible.
Consider the singular integral operator A with continuous coefficients:

Ag=ag+ —b— / -Q(T—)dT
m ) T—t1
T
(integral understood in the sense of Cauchy’s principal value).
A is called strongly (locally) elliptic, if there is a continuous function ¢

on T, a linear operator 7" with ||T'|| < 1 and a compact operator K such that

A=cI+T)+K,c(t)#0 forall teT.

= A is Fredholm with index 0 (even invertible).
Well-known: A is strongly elliptic <

a(t) + Ab(t) #0Vt € T und VA € [-1,1].
If A is strongly elliptic and (Ax) admissible then

(PAKAPAK) is stable (use PAKAPAK = PAKMCPAK(I—FT)
Py + PaykPay + Cag 7||CAK” —0).

If a and b are merely continuous N x N-matrix functions, then A is strongly
elliptic if and only if
det(a(t) + Ab(t)) # 0 for V¢ € T and VA € [—1,1]

(see S. Prdorf, B. Silbermann: Numerical Analysis for Integral and related
Operator Equations, Akademie Verlag, Berlin 1991, Section 13.31).

In this case A is Fredholm of index 0, but might be not invertible. In
any case, (Pa, APa, ) is Fredholm and a(Pa, APa,) = dimker A ((Pag)
admissible).

Now we turn to general Fredholm sequences.

Definition 8: Let B be a unital C*-algebra. An element & € B is of central rank
one if, for every b € B, there is an element p(b) belonging to the center of B such
that kbk = p(b)k. An element of B is of finite central rank if it is the sum of a
finite number of elements of central rank one, and it is centrally compact if it lies
in the closure of the set of all elements of finite central rank.
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We denote the set of all centrally compact elements in B by J (B). It is easy to
check that J(B) forms a closed two-sided ideal in B.

Proposition 9: A sequence (A,) € F is centrally compact if and only if, for every
€ > 0, there is a sequence (K,) € F such that

sup |An — Kn| <& and supdimim K, < oo.
n
([7], Proposition 6.33)

Definition 9: A sequence (A,) € F is a Fredholm sequence if it is invertible modulo
the ideal J(F) of the centrally compact sequences.

Theorem 14: A sequence (A,) € F is Fredholm if and only if there is a | € Z4
such that

lim inf s;41(Ap) > 0.
n—oo

([7], Theorem 6.35)

Conclusion: It (A4,) € FT is Fredholm then it is also Fredholm in the sense of
Definition 9.

6. Applications continued: Around Finite Sections of Operators
with Almost Periodic Diagonals

This material is based on [9].

6.1. Example:

The Almost Mathieu Operator is the operator
Hop: 1(Z) = (2),
given by (z = (zn)nez)
(Ha2,6T)n i= Tnt1 + Tn—1 + ALn COS 27 (na + 0)
= Hg, ¢ is a band operator with almost periodic coefficients;

this means: a € [°°(Z) is called almost periodic, if the set {Uma}mez is relatively
compact,

(Upa)(n) = a(n —m).
Thus, Haxe = U-1+ Ui +al,
a(n) = Acos2m(na +0).
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Only recently the long-standing Ten Martini problem was solved, see [1], [8], and
for a introduction to the topic [2].

Basic: commutation relation UV = e?™*VU and Hy g := U + U* + 2(e2™0V +
—27i0 7/ *
e V).

Model case: U = Uy and V = Vy, (Viz)(n) = e*™°g,,.

The result says (in a somewhat incomplete form) that

o If o is rational, o = § and p, q relatively prime with ¢ > 0, then the spectrum
of Ha xe is the union of exactly ¢ closed and pairwise disjoint intervals,
0L ¢ 7.

e If o € [0,1) is irrational, then the spectrum is a Cantor type set (means:
nowhere dense, closed, and does not contain isolated points).

This result is a qualitative one! It does not allow to say that a given number p
belongs to the spectrum (or not). There is (at least in present time) only one way
to tackle this problem, namely the use of approximation methods. For, introduce
the projection operators P, and P,:

Pz = {6 s DyB et T5 45 5 W15 00« 3
Pnl' = {...,0,.7}0,...,1'n_1,0,...}.

First idea: consider the operators (matrices) (P, Ha,x0P,) (restricted to im P, and
with respect to the standard basis) and compute the eigenvalues using Matlab or
something else. Then the question arises, is this spectrum some how related to the
spectrum of the AMO H,, » ¢? The following is devoted to some theory around
this problem. However, we will merely make use of the projections P,.

6.2. Band-dominated operators with almost periodic diagonals and related Toeplitz-
like operators

Band operator with almost periodic diagonals:

k
A= Z%Uk, A:1*(Z) — 1*(Z), a;, almost periodic ,
—k
that is
ai € AP(Z) .
Band-dominated operator with almost periodic- diagonals: norm limits of band

operator with almost periodic diagonals. The collection of all such operators is
denoted by A4p(Z) and actually forms a C*-algebra.
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Simple example: Laurent operator L(a) with continuous generating function a €

C(T). Matrix-representation of a € L°°(T) (with respect to the standard basis):
(ai—j)i,jez )

where

1 2m
@y t= é}-/a(eit)e_ijt dt.
0

Toeplitz-like operators: Clearly, [#(Z") can be thought of as a subspace of 12(Z).
Let P denote the orthogonal projection onto 12(Z*), @ := I — P. Consider T'(A) :
12(Z*) - 12(Z%), A € Aap(Z),

T(A) := PAP|imp -
If A= L(a),a € C(T), then T(L(a)) is denoted simply by T(a), and this is
a familiar Toeplitz operator. Introduce J : 12(z) — 1*(z) (flip operator) z, —
(_n—1)) and H(A) := PAQJ, A:= JAJ.

Then one has
T(AB) = T(A)T(B)+ H(A)H(B) (A, B € Aap(2)),

which reminds the basic identity relating Toeplitz and Hankel operators and it is
this identity for A = L(a), B = L(b), a,b € C(T).

Notice: H(A), H(B) are compact operators!
Let Aap(Z*1) denote the smallest C*-subalgebra of B (13(Z)) containing all oper-
ators T'(A), A € Asp(Z).
=

o T4 = [IA]l '

o Aap(Zt) ={T(A): A€ Aap(Z)}+K(*(ZY)
The first identity is based on a remarkable fact which plays an important role in
what follows. Let us have a closer look. Let H refer to the set of all sequences
h:Zt — 7Z which tend to 400 or —oo.

(6.1)

Definition 10: An operator A, € B({%(Z)) is called a norm limit operator of the
operator A € B(I(Z)) with respect to the sequence h € H if

U—-h(k)AUh(k) —> Ah as k— o0

in norm. The set of all norm limit operators is called the norm operator spectrum
Oop(A).

Theorem 15: A € Asp(Z") is Fredholm < each Ap € oop(A) is invertible.

Lemma 1: If A € Aap(Z) then A € o,p(A).

Definition 11: A monotincally increasing sequence h : Z+ — Z7T is called distin-
guished if Ap, exists and equals A.
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Notice: Distinguished sequences exist!

The first assertion in (7) is now easy to prove: Consider

U—n(ey PAPUR(k) = U-nk) PUn(ky U-nk) AUnr) U-n(iy PUnr)

| strongly | in norm | strongly
I A I

Banach-Steinhaus = result.

Further conclusion: ess sp A = spA for A € Apa(Z) and T'(A) is Fredholm if and
only if A is invertible (ess sp A = sp(A4 + K(12(Z))).

Example: Almost Mathieu operators.

We have

U—kHa,A,eUk =U_1+U; +ail,
ar(n) = a(n+k)=Acos2r((n+ k)a+ 0)
A(cos 2m(na + 0) cos 2w (k) — sin 2m(na + 6) sin 27 (ka)) .

Let o € (0,1) be irrational.

We write o as a continued fraction with n-th approximant % such that

_ 1
DS 1

by +

by +

with uniquely determined positive integers.

Write this continued fraction as p, /g, with positive and relatively prime integers
Dn, @n. These integers satisfy the recursions

Pn = bnpn—l + Pn—2,qn = ann—-l + qn—2

with po = 0,p1 = 1,90 =1 and ¢; = by, and one has for all n > 1

_ Pn 1
’Oé dn <E§’
1

= logn —pa| < - —0.

Now it is not hard to see that (g,) is a distinguished sequence for H, x ¢ (note:
(gn) depends only on «).
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6.3. Distinguished sequences and finite sections

In what follows we fix a strongly monotonically increasing sequence h : Zt -7t
and define

Aapn(Z) :={A € Aap(Z): A exists and Ap = A}.

It is easy to check that Aapx(Z) is a C*-subalgebra of B(I*(Z)) which is more-
over shift invariant, i.e., U_; AUy again lies in A4 p,h(Z+) whenever A does. Let
Aapn(ZT) refer to the smallest closed subalgebra of B (1%(Z™*)) which contains all
operators T'(A) with A € Aapn(Z).

For instance, all Toeplitz operators with continuous generating functions lie in this
algebra.

=
° ’C(ZQ(Z+)) C .AAp’h(Z'F) and
o Aupn(Zt) = {T(A): A € Aapn(Z)}HKI*(ZT)).

Let us turn over to finite sections. For, let F; denote the set of all bounded
sequences (A,) of matrices A, € Ch(m)xh(n)  Provided with pointwise defined
operations and the supremum norm, 7, becomes a C*-algebra (|| An| — norm of
the operator defined by A, on im Phy)).

Finally, we let Sa p,h(Z+) denote the smallest closed subalgebra of F3, which con-
tains all sequences (Py(n)T (A)Py(n)) with operators A€ Aapn(Z).

Define R, : I2(Z%) — I2(Z1), (Tn)n>0 = (%n, Tn-1,---,%0,0,0,...).

Theorem 16: The C*-algebra Sapx(Z*1) consists exactly of all sequences of the
form

(Pun)T(A) Pagny + Ph(nyK Pany + Ran)LRh(n) + Chn)) (6.2)
with A € Aapn(Z), K,L € K(*(ZY)), [|Ch(n)ll — 0 as n — oo, and each se-
quence in Sapn(Z*) can be written in the form (2) in a unique way.

Define mappings W, W Sapn(ZT) — Aapn(Zt) by

W(A,) = s—1imPyn)AnPrn),

W(A,) = s—limRpym)yAnRuem)-
These mappings are well-defined C*-homomorphisms. Their importance is given
by the following stability theorem

Theorem 17: A sequence (A,) € Sapx(Z1) is stable < the operators W (A,), W(Ay)
are invertible, that is, if

Ap = PryT(A)Prn) + Pr(n)K Prn) + Brn) LRh(n) + Ch(n) »
(K, L,Chn) as above)
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then (Ay) is stable & T(A) + K, T(A) + L are invertible. Moreover, S4 ph(Zy)
is fractal.

The proof is basically the same as in the Toeplitz case.

6.4. Spectral approximations

The last theorem in Section 6.3 is one of the keys to study spectral approximations.

Theorem 18: Let A := (A,) € Sapn(ZT) be a self-adjoint sequence. Then the
spectra sp A, converges in the Hausdorff metric to sp W(A) U sp W(A).

Theorem 19: Let A := (A,) € Sapnr(ZT). Then the set of the singular values
>_(An) converges in the Hausdorff metric to (W (A)) U 3 (W (A)).

(Hausdorff metric: A, B ¢ C compact,
= h(A, B) = max{ max dist (a, B) max dist (b, 4) } )

Theorem 20: A sequence A = (A,) € Sapn(Z*) is Fredholm if and only if its
strong limit W(A) is a Fredholm operator. In this case W(A) is a Fredholm
operator too, and

a(A) = dimker W(A) + dimker W(A);

moreover, lim s4(Ay,) = 0.
n—oo

These theorems can be completed by results concerning e-pseudospectra and the
so-called Arveson’s dichotomy (the last for self-adjoint sequences).

Arveson’s dichotomy: Given a self-adjoint sequence A := (A4,) € Sapn(ZT) and
an open interval U C R, let N, (U) refer to the number of eigenvalues of A,, in U,
counted with respect to their multiplicity. A point A € R is called essential for A,
if for every open interval U containing A,

lim N, (U) = o0,
n— 00
and A € R is called a transient point for A is there is an open interval U containing

A such that
sup N, (U) < oo

Theorem 21: Let A := (A,) € Sapn(Z") be self adjoint, s-lim A, = T(A) + K.
Then every point A € sp A is essential, and every point A € R\ sp A is transient for
A. Moreover, for every point A € R\ sp A, the sequence A — A\P(P := (Prini) €
Sapn(ZT)) is Fredholm and there is an open interval U C R containing A such
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that sup N, (U) = a(A — AP).
n
([7], Theorem 7.12)
The first assertionlof Theorem 21 implies in particular that each real number

is either essential or transient for A. This property is usually referred to as the
Arveson’s dichotomy of that sequence.

A deep study of the finite sections for general band-dominated operators in 1%(Z)
is carried out in [14]. Let us mention also the recent book [4], where spectral
properties of banded Toeplitz matrices are studied.

6.5. Test calculations

Here we shall demonstrate how the theory can be used to determine numerically
the spectrum of the Almost Mathieu operator for some choices of the parameters
a, ) and 60 (using Matlab).

For each of the triples

2 2 1 2 V2 1 V-1 _1
(57270> 9 <53275) ) (?’27()) ) (7527§> ) ( 2 727—2_> 3

in place of (a, \,0), we choose a distinguished sequence of the corresponding Al-
most Mathieu operator which depends only on

aje{z 2 V2 \/5—1},

E'fr g 2T 3

namely
ap = 2%:hi(k) =5k,
0z = 2:hao(k) =Tk,
0 = Len®=3(OVDTO-VD),
ay = \/52—1:]14(]9)___5-;(\)/3(12\/5) +5—18/§(1—2\/5) ‘

For irrational ay, this choice has been done via continued fractions. Notice that the
sequences hs and hy are rapidly growing. For instance, h3(13) = 47321, h4(23) =
46368. The results are plotted in pictures 1 — 8.

The results for as, A = 2,0 = 0,5 and hs(k) = 2k (non-distinguished!) are
plotted in picture 9.

The computations clearly indicate the advantage of distinguished sequences over
non-distinguished (compare the pictures 7 and 9). For irrational o the Cantor-like
structure of the spectrum is also somehow reflected in the computations (see the
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pictures 5 and 6). The computations also show that the speed of converges is very
high. There is only a guess why it should be, but not a proof.

ar
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Picture 1: Eigenvalues of Py, (k)Hg, x ¢ Ps, (k) with o = 2/5,A=2,0=0.
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Picture 2: Eigenvalues of Py, (k)Ha,x,6Ph, (k) with o =2/5,A=2,0 =1/2.
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Picture 3: Eigenvalues of Ph,(k)Ha,x,0Ph, (k) with o =2/7,A=2,0 =0.
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Picture 5: Eigenvalues of Ph, (k) Ha, 0 Ps, (k) with o = V2/2,A=2,0 =0.




