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Abstract. We give some new regularity conditions for Fenchel duality in
separated locally convex vector spaces, written in terms of the notion of quasi
interior and quasi-relative interior, respectively. We provide also an example of
a convex optimization problem for which the classical generalized interior-point
conditions given so far in the literature cannot be applied, while the one given
by us is applicable. Using a technique developed by Magnanti, we derive some
duality results for the optimization problem with cone inequality constraints and
its Lagrange dual problem and we show that a duality result recently given in
the literature for this pair of problems is incorrect.
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1 Introduction

Usually there is a so-called duality gap between the optimal objective values
of a primal convex optimization problem and its dual problem. A challenge in
convex analysis is to give sufficient conditions which guarantee strong duality,
the situation when the optimal objective values of the two problems are equal
and the dual problem has an optimal solution. Several generalized interior-point
conditions were given in the past in order to eliminate the above mentioned
duality gap. Along the classical interior, some generalized interior notions were
used, like the core ([14]), the intrinsec core ([9]), or the strong quasi-relative
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interior ([2]), in order to give regularity conditions which guarantee strong duality.
For an overview of these conditions we invite the reader to consult [8] and [16]
(see also [17] for more on this subject).

Unfortunately, for infinite-dimensional convex optimization problems, also in
practice, it can happen that the duality results given in the past cannot be applied
because, for instance, the interior of the set involved in the regularity condition
is empty. This is the case, for example, when we deal with the positive cones

lg- = {.’I} = (xn)neN el?: Ty > O,Vn S N}

and
LA(T,p) ={u e LP(T, u) : u(t) >0, a.e.}

of the spaces [ and LP(T, ), respectively, where (T, 1) is a o-finite measure space
and p € [1,00). Moreover, also the strong quasi-relative interior (which is the
weakest generalized interior notion from the one mentioned above) of this cones
is empty. For this reason, for a convex set, Borwein and Lewis introduced the
notion of quasi-relative interior ([3]), which generalizes all the above mentioned
interior notions. They proved that the quasi-relative interiors of [%, and L% (T, )
are nonempty.

In this paper, we start by considering the primal optimization problem with
the objective function being the sum of two proper convex functions defined on
a separated locally convex vector space, to which we attach its Fenchel dual
problem, stated in terms of the conjugates of the two functions. We give a
new regularity condition for Fenchel duality based on the notion of quasi-relative
interior of a convex set using a separation theorem given by Cammaroto and Di
Bellain [4]. Further, two stronger regularity conditions are also given. We provide
an appropriate example for which our duality results are applicable, unless the
other generalized interior-point conditions given in the past, justifying the theory
developed in this paper. Then we state duality results for the case when the
objective function of the primal problem is the sum of a proper convex function
with the composition of another proper convex function with a continuous linear
operator. Let us notice that for this case Borwein and Lewis in [3] gave also
some conditions by means of the quasi-relative interior, but they considered a
more restrictive case, namely that the codomain of the linear operator is finite-
dimensional. We consider the more general case, when both of the spaces are
infinite-dimensional.

In 1974 Magnanti proved that ”Fenchel and Lagrange duality are equivalent”
in the sense that the classical Fenchel duality result can be deduced from the
classical Lagrange duality result, and viceversa (see [13]). Using this technique
we derive some Lagrange duality results for the convex optimization problem
with cone inequality constraints, written in terms of the quasi-relative interior.
Let us notice that another condition for Lagrange duality, stated also in terms of
the quasi-relative interior, was given recently by Cammaroto and Di Bella in [4].
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We show that in fact this duality result is vacuous since the hypotheses of the
theorem are in contradiction. Let us mention that also in [11] some regularity
conditions, in terms of the quasi-relative interior, have been introduced. However,
most of these conditions require the interior of a cone to be nonempty, and this
fails for many optimization problems as we pointed out above.

The paper is structured as follows. In the next section we give some definitions
and results which will be used later in the paper. Section 3 is devoted to the theory
of Fenchel duality. We give here the announced regularity conditions written in
terms of the quasi-relative interior. Using an idea due to Magnanti we derive in
section 4 some duality results for the optimization problem with cone inequality
constraints and its Lagrange dual problem.

2 Preliminary notions and results

Consider X a separated locally convex vector space and X* its continuous dual
space. We denote by (z*, x) the value of the linear continuous functional z* € X*
at x € X. Further, let idx : X — X, idx(z) = z,Vz € X, be the identity
function of X. The indicator function of C C X, denoted by dc, is defined as
bc: X > R=RU {+oc},

5c(x)={ 0, ifzxedC,

400, otherwise.

For a function f : X — R we denote by dom(f) = {2 € X : f(z) < 400} its
domain and by epi(f) = {(z,7) € XxR: f(z) < r} its epigraph. We call f proper
if dom(f) # @ and f(z) > —oo,Vz € X. We also denote by epi(f) = {(z,7) €
X xR : (z,—r) € epi(f)}, the symmetric of epi(f) with respect to the variable
z € X. For a given real number o, f —a : X — R is, as usual, the function
defined by (f—a)(z) = f(z)—a,Vz € X. Given two functions, f : M; — M, and
g : N1 — Ny, where My, My, N1, Ny are nonempty sets, we define the function
fxg: M x Ny — My x Ny by fxg(m,n)=(f(m),g(n)),¥(m,n) € My x Nj.

The Fenchel-Moreau conjugate of f is the function f*: X* — R defined by
(=) = sgg{(:r*,x) — f(x)}, V2" € X™.

For a subset C' of X we denote by coC, aff C, clC and int C its convex hull,

affine hull, closure and interior, respectively. The set coneC = |J AC is the
A>0
cone generated by C. The following property, the proof of which we omit since it

presents no difficulty, will be used throughout the paper: if C is convex, then

cone co(C U {0}) = coneC. (1)



The normal cone of C at x € C is defined as No(z) = {z* € X*: (2*,y —z) <
0, Vy € C}.

Definition 2.1 ([3]) Let C be a convex subset of X. The quasi-relative
wnterior of C is the set

qriC = {z € C : clcone(C — z) is a linear subspace of X}.

We give the following useful characterization of the quasi-relative interior of
a convex set.

Proposition 2.2 ([3]) Let C be a convex subset of X and z € C. Then
x € qriC if and only if No(x) is a linear subspace of X*.

In the following we consider another interior notion for a convex set, which is
close to the one of quasi-relative interior.

Definition 2.3 Let C be a convex subset of X. The quasi interior of C is
the set

qiC = {z € C:clcone(C — z) = X}.

The following characterization of the quasi interior of a convex set was given
in [6], where the space X was considered a reflexive Banach space. One can prove
that this property is true even in a separated locally convex vector space.

Proposition 2.4 ([6]) Let C be a conver subset of X and © € C. Then
z € qiC if and only if No(x) = {0}.

It follows from the definitions above that qiC C qriC and qri{z} = {z},
Ve € X. Moreover, if qiC' # 0, then qiC = qriC. Although this property is
given in [12] in the case of a real normed space, it holds also in an arbitrary
separated locally convex vector space, as follows by the properties given above.
If X is a finite-dimensional space, then qiC = int C (cf. [12]) and qriC = riC
(cf. [3]), where ri C is the relative interior of C.

Useful properties of the quasi-relative interior are listed below. For the proof
of (i) — (viii) we refer to [1] and [3].

Proposition 2.5 Let us consider C and D two convex subsets of X, z € X
and o € R. Then:

(1) qriC + qri D C qri(C + D);
(i1) qri(C x D) =qriC x qri D;
(ii1) qri{C — z) = qriC — z;



(iv) qri(aC) = aqriC;
(v) tqriC + (1 —)C C qriC, Vt € (0,1], hence qriC is a convex set;
(vi) if C is an affine set then qriC = C;
(vii) qri(qriC) = qriC.
If qriC # O then:
(viii) clqriC = cl C;
(iz) clconeqriC = clconeC.

Proof. (iz) The inclusion clcone qri C C clcone C is obvious. We prove that
coneC C clconeqriC'. Consider z € coneC arbitrary. There exist A > 0 and
¢ € C such that x = Ae. Take zq € qriC. Applying the property (v) we get
trg+(1—t)c € qriC Vi € (0,1], so AMzo+(1—1t)x = A(tzo+ (1 —t)c) € coneqriC
Vt € (0,1]. Passing to the limit as t \, 0 we obtain z € clconeqriC' and hence
the desired conclusion follows. (]

The next lemma plays an important roll in this paper.

Lemma 2.6 Let A and B be nonempty convex subsets of X such that ANB #
0. If0 € qi(A—A) and BNqriA # 0, then 0 € qi(A — B).

Proof. Take z € BN qriA and let * € N4_p(0) be arbitrary. We get
(z*,a —b) <0,Va € A, Vb € B. This implies
(x*,a—x) <0,Va € A, (2)

that is 2* € Na(z). As z € qriA, Na(z) is a linear subspace of X* hence
—z* € Ny(z), which is nothing else than

(z*,z —a) <0,Va € A. (3)

The relations (2) and (3) give us (z*,a’ — a") < 0,Vd’,a" € A, so z* € Na_4(0).
Since 0 € qi(A — A) we have Ns_4(0) = {0} (cf. Proposition 2.4) and we get
z* = 0. As z* was arbitrary chosen we obtain N4_g(0) = {0} and, using again
Proposition 2.4, the conclusion follows. a

Next we give useful separation theorems in terms of the notion of quasi-relative
interior.

Theorem 2.7 Let C be a convex subset of X and xg € C. If xy & qri C, then
there exists x* € X*,z* # 0 such that

(¥, x) < (z*, o) Vx € C.
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Viceversa, if there exists z* € X*, «* # 0 such that
(z*,z) < (2", 20) V2 €C

and

0 € qi(C - O),
then zo € qriC.

Proof. Suppose that zq & qriC. According to Proposition 2.2, Nc(zo) is
not a linear subspace of X*, hence there exists z* € N¢(zg), o* # 0. Using the
definition of the normal cone, we get that (z*,z) < (z*,20), Vz € C.

Conversely, assume that there exists z* € X*, #* # 0 such that (x*,z) <
(z*,20), Vz € C and 0 € qi(C — C). We obtain

<I*,$ - $0> S O,Vl' € Ca (4)

that is z* € Neo(zo). If we suppose that g € qriC, then Ne(zo) is a linear sub-
space of X*, hence —z* € N¢(xg). Combining this with (4) we get (z*, z—x0) = 0,
Vz € C. The last relation implies {z*,z) = 0, V2 € C'— C, and from here one
has further that (z*,z) = 0, Vz € clcone(C — C) = X. But, this can be the case
just if 2* = 0, which is a contradiction. In conclusion, o g qriC. O

Remark 2.8 In [5] and [6] a similar separation theorem in case when X is a
real normed space is given. For the second part of the above theorem the authors
require that the following condition must be fulfilled:

Cl(Tc(l‘o) — Tc(ivo)) = X,

where
Te(zg) = {y € X :y= lim M\(z, — 20), \n > 0 VR €N,

z, € C ¥n € N and limxnzrrg}

is called the contingent cone to C at zo € C. In general, we have the following
inclusion: Te(zo) C clecone(C — xg). If the set C is convex, then Tc(zo) =
cleone(C — zg) (cf. [10]). As cl(cl E 4+ cl F) = cl(E + F), for arbitrary sets EF
in X and cone A — cone A = cone(A — A), if A is a convex subset of X such that
0 € A, the condition cl(T¢ (o) — Te(zo)) = X can be reformulated as follows:
clecone(C — C) = X or, equivalently, 0 € qi(C' — C). Indeed, we have

clcl cone(C — zo) — clcone(C — x0)] = X > cl[cone(C' — zo) — cone(C — o)) = X

& cleone(C —C) = X & 0€qi(C - C).



This means that Theorem 2.7 is a generalization to the case of separated locally
convex vector spaces of the separation theorem given in [5] and [6] in the frame-
work of real normed spaces.

The condition zy € C' in Theorem 2.7 is essential (see [6]). However, if zg
is an arbitrary element in X, we can give also a separation theorem using the
following result due to Cammaroto and Di Bella (Theorem 2.1 in [4]). The sep-
aration theorem is correct, unlike the duality result Theorem 2.2 given in [4].

Theorem 2.9 ([4]) Let S and T be nonempty convexr subsets of X with
qriS # 0, qriT # @ and such that clcone(qriS — qriT’) is not a linear sub-
space of X. Then, there ewists * € X*, * # 0 such that (z*,s) < (z*,t) for all
seS, teT.

The following result is a direct consequence of Theorem 2.9.

Corollary 2.10 Let C' be a conver subset of X such that qriC # @ and
clcone(C — xp) is not a linear subspace of X, where xo € X. Then there exists
x* € X*, 2* # 0 such that (x*, z) < (z*,z¢) Vz € C.

Proof. We take in Theorem 2.9 S := C and T := {z0}. Then we apply
Proposition 2.5 (4i¢) and (iz) to obtain the conclusion. O

3 Fenchel duality

In this section we give some new Fenchel duality results stated in terms of the
quasi interior and quasi-relative interior, respectively.
Consider the convex optimization problem

(Pe) inf {f(2) + g(a)},

where X is a separated locally convex vector space and f,g: X — R are proper
convex functions such that dom(f) N dom(g) # @. The Fenchel dual problem to
(PF) is
(Dp) sup {—f"(—-2") — g"(z")}.
T*eX*

We denote by v( Pr) and v(Dp) the optimal objective values of the primal and the
dual problem, respectively. Weak duality always holds, that is v(Dr) < v(Pr).
For strong duality, the case when v(Pr) = v(Dp) and (Dp) has an optimal
solution, several generalized interior-point regularity conditions were given in the
literature. In order to recall them we need the following generalized interior
notions. For a convex subset C' of X we have:



e coreC := {z € C : cone(C — ) = X}, the core of C ([14], [17]);

e icrC :={z € C : cone(C —z) is a linear subspace}, the intrinsec core of C

([, 191, (170);

o sqriC := {z € C : cone(C — z) is a closed linear subspace}, the strong
quasi-relative interior of C' ([2], [17]).

We have the following inclusions:
coreC CsqriC C qriC and coreC C qiC C qriC.

If X if finite-dimensional then qri C = sqriC' = icr C =ri C ([3], [8]) and core C =
qiC =int C ([12], [14]).

Consider now the following regularity conditions:
(i) 0 € int(dom(f) — dom(g));
(i7) 0 € core(dom(f) — dom(g)) (cf. [14]);

(i17) 0 € icr(dom(f) — dom(g)) and aff(dom(f) — dom(g)) is a closed linear
subspace (cf. [8});

(iv) 0 € sqri(dom(f) — dom(g)) (cf. [15]).

Let us notice that all these conditions guarantee strong duality if we suppose
the additional hypotheses that the functions f and g are lower semicontinuous
and X is a Fréchet space. Between the above conditions we have the following
relation: (i) = (i1) = (iii) < (iv) ([8)])-

Trying to give a similar regularity condition for strong duality by means of the
notion of quasi-relative interior of a convex set, a natural question arises: is the
condition 0 € gri{dom(f) — dom(g)) sufficient for strong duality? The following
example (which can be found in [8]) gives us a negative answer and this means
that we need additional assumptions in order to guarantee Fenchel duality (see
Theorem 3.5).

Example 3.1 As in [8], we consider X = [?, the Hilbert space consisting of

o0
all sequences = = (Z)nen such that > 22 < co. Consider also the sets
n=1

C={ze€ I 29n_1 + 29, = 0,Vn € N},

S={z¢€ % Zop + Tony1 = 0,Vn € N}.

The sets C and S are closed linear subspaces of > and C'N S = {0}. Define
the functions f,g : I? = R by f = §¢c and g(z) = z; if z € S and +o0 oth-
erwise. One can see that f and g are proper, convex and lower semicontinuous
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functions with dom(f) = C and dom(g) = S. As was shown in [8], v(Pr) =0
and v(Dp) = —o0, so we have a duality gap between the optimal objective val-
ues of the primal problem and its Fenchel dual. Moreover, S — C is dense in
12, thus clcone(dom(f) — dom(g)) = cl(C — S) = 2. The last relation implies
0 € qi(dom(f) — dom(g)), hence 0 € qgri(dom(f) — dom(g)).

Let us notice that if v(Pr) = —o0, by the weak duality follows that also strong
duality holds. This is the reason why we suppose in the following that v(Pr) € R.

Lemma 3.2 The following relation is always true:

0 € qri(dom(f) — dom(g)) = (0,1) € qrilepi(/) — epi(g — v(Pr))}-

Proof. One can see that epi(g — v(Pr)) ={l@zr)e X xR:r< —g(z) +
v(Pr)}. Let us prove first that (0, 1) € epi(f)—epi(g—v(Pr)). Since infzex[f(z)+
g(2)] = v(Pp) < v(Pr)+1, there exists 2’ € X such that f(z')+g(z') < v(Pr)+1.
Then (0, 1) = (¢, v(Pr)+1—g(')) (2, —g(a')+v(Pr)) € epi(f)—epi(g—v(Pr)).

Now let (2*,7%) € Nopir)_ami(g—u(ppy (0 1). We have
(e, 2 —a') 4" (u— i — 1) < 0,¥(z, ) € epi(f), V&', 1) € pilg — v(Pr). (5)

For (x, 1) := (2o, f(wo)) and (&', ') = (xo, —g(x0) + v(Pr) — 2) in (5), where
zo € dom(f) Ndom(g) is fixed, we get r*(f(zo) + g(zo) — v(Pr) +1) <0, hence
r* < 0. As infex[f(z) + g(z)] = v(Pr) < v(Pr) + 1/2, there exists z; € X such
that f(z1)+g(z1) < v(Pr)+1/2. Taking now (z, ) := (1, f(21)) and (', p') ==
(z1, —g(z1)+v(Pr)—1/2) in (5) we obtain r*(f(z1)+g(z1)—v(Pr)—1/2) < 0 and
sor* > 0. Thus 7* = 0 and (5) gives: (z*,z—2') < 0,Vz € dom(f),Vz’ € dom(g).
Hence z* € Naom(f)—dom(g)(0). Since Naom(s)—dom(g)(0) is a linear subspace of
X* (cf. Proposition 2.2), we have (—z*,z —2’) < 0,V € dom(f),Vz' €
dom(g) and so —(z*,7*) = (—z*,0) € Nepi(f)_ggi(g_v(PF))(O,1), showing that
Nopic1)—ani( g_v(PF))(O, 1) is a linear subspace of X* x R. Hence, applying again

Proposition 2.2, we get (0, 1) € qrifepi(f) — epi(g — v(Pr))). O

Proposition 3.3 Assume that 0 € qi[(dom(f)—dom(g))—(dom(f)—dom(g))].
Then Nco[(epi(f)—éﬁi(g—v(PF)))u{(o,O)}](0’ 0) is a linear subspace of X* x R if and only

if Neoiepir)-apita—v(pryoiom (0, 0) = {(0,0)}.

Proof. The sufficiency is trivial. Now let us suppose that the set
N o ((epi(f)—mi(g—o(Pr)) A O0)}] (0,0) is a linear subspace of X* x R. Take (z*,7*) €

Nco[(epi(f)—éﬁi(g_v(pp)))u{(o,o)}] (0, 0). Then
(¥, z—a') +r(p—p) <0,V¥(z,p) € epi(f),V(z', 1) € gﬁi(g —v(Pp)). (6)
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Let 2o € dom f N dom(g) be fixed. Taking (z,p) = (xo, f(20)) € epi(f) and
(@, 1) = (x0,—9g(xo) + v(Pr) — 1/2) € epi(g — v(Pr)) in the previous in-
equality we get r*(f(zo) + g(zo) — v(Pr) + 1/2) < 0, implying r* < 0. As
N of(epi( f)—mi(g—v(Pr)) UL 0.0)] (0,0) is a linear subspace of X* x R, the same argu-
ment applies also for (—z*, —r*), implying —r* < 0. In this way we get r* = 0.
The inequality (6) and the relation (—z*,0) € Nco[(epi(f)—Eﬁi(g—v(PF)))u{(o,o)}](0’0)
imply L
<113*, T — CE/> = O,V(.'II, ,u) € epi(f),V(x', ,ul) € epl(g - U(PF))a

which is nothing else than (z*,z — 2/) = 0,Vz € dom(f),Vz’ € dom(g), thus
{(z*, ) = 0,Vz € dom(f)—dom(g). Since z* is linear and continuous, the last re-
lation implies (z*,z) = 0,Vz € clcone[(dom(f)—dom(g))— (dom(f)—dom(g))] =
X, hence z* = 0 and the conclusion follows. O

Remark 3.4 (a) By (1) one can see that cl cone co[(epi(f) — epi(g —v(Pr)))U
{(0,0)}] = clconelepi(f) — epi(g —v(Pr))]. Hence one has the following sequence
of equivalences: Nco[(epi(f)—éﬁi(g—v(PF)))u{(o,O)}] (0, 0) is a linear subspace of X*xR <
(0,0) € qgrico[(epi(f) — epi(g — v(Pr))) U{(0,0)}] ¢ clconeco(epi(/f) — epi(g —
v(Pr)))U{(0,0)}] is a linear subspace of X xR < cl cone(epi(f)—epi(g—v(Fr)))
is a linear subspace of X x R. The relation Nco[(epi(f)—éﬁi(g—v(PF)))u{(o,O)}] (0,0) =

{(0,0)} is equivalent to (0,0) € qico|(epi(f) — epi(g — v(Pr))) U {(0,0)}] (cf.
Proposition 2.4), so in case 0 € qi[(dom(f) — dom(g)) — (dom(f) — dom(g))], the
conclusion of the previous proposition can be reformulated as follows

cl cone(epi(f) — epi(g — v(Pp))) is a linear subspace of X x R <

(0,0) € qicol(epi(f) — epi(g — v(Pr))) U {(0,0)}],

or, equivalently
(0,0) € qri co[(epi(f) — epi(g — v(Pr))) U{(0,0)}] &

(0,0) € gico[(epi(f) — epi(g — v(Pr))) U{(0,0)}].

(b) One can prove that the primal problem (Pp) has an optimal solution if and
only if (0,0) € epi(f) — epi(g — v(Pr)). This means that if we suppose that the
primal problem has an optimal solution and 0 € qi[(dom(f)—dom(g))—(dom(f)—
dom(g))], then the conclusion of the previous proposition can be rewritten as
follows: N(epi(f)—?m(g—v(PF)))(O’ 0) is a linear subspace of X* x R if and only if

N(epi(f)_;m(g_v(PF)))(O, 0) = {(0,0)} or, equivalently,

(0,0) € qrilepi(f) — epi(g — v(Pr))] & (0,0) € gilepi(f) — epi(g — v(Pr))].

We give now the first strong duality result for (Pr) and its Fenchel dual (Dr).
Let us notice that for the functions f and g we suppose just convexity properties
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and we do not use any closedness type condition.

Theorem 3.5 Suppose that 0 € qi[(dom(f) — dom(g)) — (dom(f) — dom(g))],

0 € qri(dom(f) — dom(g)) and (0,0) ¢ qricol(epi f — epi(g — v(Pr))) U{(0,0)}].
Then v(Pp) = v(Dr) and (D) has an optimal solution.

Proof. Lemma 3.2 ensures that (0,1) € qri[epi(f) — e/\pi(g — v(Pr))], hence
qrifepi(f) — epi(g — v(Pr))] # 0. The condition (0,0) ¢ qrico[(epi f — epi(g —

v(Pr)))U{(0,0)}], together with the relation cl cone co[(epi f — epi(g — v(Pr)))U
{(0,0)}] = clconeepi(f) — epi(g — v(Pp))], imply that clconelepil ) — epi(g —
v(Pr))] is not a linear subspace of X x R. We apply Corollary 2.10 with C :=
epi(f) — e/;;i(g — v(Pp)) and zo = (0,0). Thus there exists (z*,A) € X* x R,
(z*, A) # (0,0) such that

(@*,2) + M > (27, 2) + M, V(, p) € epi(g — v(Pr)),Y(a', 1) € epi(f).  (7)

We claim that A < 0. Indeed, if A > 0, then for (z, ) := (2o, —g(z0) + v(Pr))
and (2, i') := (2o, f(x0) + n),n € N, where zo € dom(f) N dom(g) is fixed, we
obtain from (7): (z*, zo) + AM(—g(z0) + v(Pr)) > (x*, z0) + A(f{x) +n),Vn € N.
Passing to the limit as n — 400 we obtain a contradiction. Next we prove that
A < 0. Suppose that A = 0. Then from (7) we have (z* z) > (z*,2'),Vz €
dom(g), V2’ € dom(f), hence (z*,z) < 0,Vx € dom(f) — dom(g). Using the sec-
ond part of Theorem 2.7, we obtain 0 ¢ qri(dom(f) —dom(g)), which contradicts
the hypothesis. Thus we must have A < 0 and so we obtain from (7):

1 * 1 * o ’ .
<Xx ,T) + < <Xr @) + 4, V(2 1) € epi(g — v(Pr)),V(z', 1) € epi(f).
Let be r € R such that

Wt (@5, @) > 7 > i+ (@, 2), (@, 1) € epi(g — v(Pr)), (@', 1) € epi(f),

where ) := $z*. The first inequality shows that f(z) > (—x%,z) + ,Vz € X,
that is f*(—z5) < —r. The second one gives us —g(x) +v(Pr) +{x}, ) < r,Vz €
X, hence g*(x7) < r—v(Pr) and so we have — f*(—x) — g*(z) > r+v(Pr)—r =
v(Pp). This implies that v(Dp) > v(Pr). As the opposite inequality is always
true, we get v(Pp) = v(Dp) and z§ is an optimal solution of the problem (Dr).
(|

The above theorem combined with Remark 3.4(b) gives us the following result.
Corollary 3.6 Suppose that the primal problem (Pr) has an optimal solution,
0 € gi[(dom(f) — dom(g)) — (dom(f) — dom(g))], 0 € qri(dom(f) —dom(g)) and
(0,0) ¢ qrifepi(f) — epi(g — v(Pr))]. Then v(Pr) = v(Dp) and (Dg) has an
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optimal solution.

Remark 3.7 The condition 0 € qi[(dom(f) — dom(g)) — (dom(f) — dom(g))]

implies
0 € gri(dom(f) — dom(g)) < 0 € gi(dom(f) — dom(g)).

Indeed, denote by C' := dom(f) — dom(g). Obviously 0 € qiC implies
0 € qriC. Suppose now that 0 € qriC and let z* € Ng(0) be arbitrary. We
have (z*,z) < 0,Vz € C. Since N¢(0) is a linear subspace of X*, we obtain
(z*,z) = 0,Vz € C. We get further (z*,z) = 0,Vz € clcone(C — C) = X, which
implies that 2* = 0. Thus N¢(0) = {0} and the conclusion follows.

Some stronger versions of Theorem 3.5 and Corollary 3.6, respectively, follows.

Theorem 3.8 Let us suppose that 0 € qi(dom(f) — dom(g)) and (0,0) ¢
qri co[(epi(f) — epi(g — v(Pr))) U {(0,0)}]. Then v(Pr) = v(Dp) and (Df) has
an optimal solution.

Proof. We have dom(f)—dom(g) C (dom(f)—dom(g))— (dom(f)—dom(g)),
so the condition 0 € gi(dom(f) — dom(g)) implies 0 € ¢i[(dom(f) — dom(g)) —
(dom(f) —dom(g))] and 0 € qri(dom(f) —dom(g)). Then we apply Theorem 3.5
to obtain the conclusion. g

Corollary 3.9 Suppose that the primal problem (Pr) has an optimal solu-
tion, 0 € qgi(dom(f) — dom(g)) and (0,0) ¢ qrilepi(f) — epi(g — v(Pr))]. Then
v(Pr) =v(Dp) and (Dg) has an optimal solution.

Theorem 3.10 Suppose that dom(f) N qridom(g) # @, 0 € qi(dom(g) —

dom(g)) and (0,0) ¢ qrico[(epi(f) — epi(g — v(Pr))) U{(0,0)}]. Then v(Pp) =
v(Dp) and (DfF) has an optimal solution.

Proof. We apply Lemma 2.6 with A := dom(g) and B := dom(f). We get
0 € gi(dom(g) — dom(f)) or, equivalently, 0 € gi(dom(f) — dom(g)). We obtain
the result by applying Theorem 3.8. (|

Corollary 3.11 Suppose that the primal problem (Pg) has an optimal solu-
tion, dom(f) Nqgridom(g) # @, 0 € qi(dom(g) —dom(g)) and (0,0) ¢ qrifepi(f) —
epi(g — v(Pr))]. Then v(Pr) =v(DF) and (Dfp) has an optimal solution.

Remark 3.12 (a) We introduced above three new regularity conditions for

Fenchel duality. As one can easily see from the proof of these results, the relation
between these conditions is the following one: the regularity condition given in
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Theorem 3.10 (Corollary 3.11) implies the one given in Theorem 3.8 (Corollary
3.9), which implies the one given in Theorem 3.5 (Corollary 3.6).

(b) If we renounce the condition (0,0) ¢ qrico[(epi(f) — e/\pi(g —v(Pp))) U
{(0,0)}], or, respectively, (0,0) ¢ qri(epi(f) — eﬁi(g — v(Pr))), in the case when
the primal problem has an optimal solution, then the duality results given above
may fail. By using again Example 3.1 we show that these conditions are essential
in our theory. Let us notice that for the problem in Example 3.1 the conditions
0 € qi[(dom(f) — dom(g)) — (dom(f) — dom(g))] and 0 € qri(dom(f) — dom(g))
are fulfilled. We prove in the following that in the aforementioned example we

have (0,0) € qri(epi(f) — epi(g — v(Pp))). Note that the scalar product on /2,
() 1 2 x I — Ris given by (z,y) = Z ZnYn, VT = (Tn)nen, ¥ = (Yn)nen € 1.

Also, for k € N, we denote by e(® the element in /2 which has on the k-th position
1 and on the other positions 0, that is el = 1,ifn = k and e = 0, ¥n € N\{k}.
We have epi(f) = C x [0,00). Further, epi(g — v(Pr)) = {(z,7) € 2 xR : 1 <
—g9()} ={(z,r) e PxR:xz = (mn)neN eSr<—zn}t={(z,—r1—¢) e 2xR:
2 = (Tn)nen € S, > 0}. Then A := epi(f) — epi(g — v(Pr)) = {(z -2 2] +¢):
z € C,x' = (2))neny € S, > 0}. Take (2*,7) € Na(0,0), where z* = (2} )pnen.
We have

(z*,z— 2"y +r(z] +¢€) <0,Vz € C,Vz' = (2))nen € S, Ve > 0. (8)

Taking in (8) 2’ = 0 and ¢ = 0 we get (z*,2) < 0,Vz € C. As C is a linear
subspace of X we have
(x*,z) =0,Vz € C. 9)

Since e*~1) — ¢(®®) € O, Vk € N, the relation (9) implies
Tl — 2l = 0,¥k € N. (10)
From (8) and (9) we obtain
(—z*,2') +r(z] +¢) <0,V2' = (2! )pen € S, Ve > 0. (11)

Taking ¢ = 0 and 2z’ := me! € S in (11), where m € Z is arbitrary, we get
m(—x] +71) <0,Vm € Z, thus r = 2}. For £ = 0 in (11) we obtain — }_ 2*z’ +
n=1

[0.¢]
rry < 0,Vz’ € S. Taking into account that r = z3}, we get — > 2z < 0,
n=2

Va' € S. As S is a linear subspace of X it follows Y xiz! = 0, V2’ € S, but,
n=2

since e(?f) — e(?k+1) ¢ § VW € N, the above relation shows that
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Combining (10) with (12) we get 2* = 0 (since z* € 12). Because r = z}, we have
also r = 0. Thus Na(0,0) = {(0,0)} and Proposition 2.4 gives us the desired
conclusion.

(c) Since in all the strong duality results given above, the relation 0 €
qi[(dom(f) — dom(g)) — (dom(f) — dom(g))] must be fulfilled, in view of Remark
3.4, the condition (0,0) ¢ qrico[(epi(f) — epi(g — v(Pr)))U{(0,0)}] (respectively,
(0,0) & arilepi(f) — epi(g—v(Pr))]) is equivalent to (0,0) ¢ gi col(epi(f) ~epi(g—

u(Pr))) U {(0,0)}], (respectively (0,0) ¢ ailepi(f) — epig — v(Pr))))-
(d) We have the following relation

(0,0) € qico[(epi(f) — epi(g — v(Pr))) U{(0,0)}] = 0 € qi(dom(f) — dom(g)).

Indeed, (0,0) € qico[(epi(f) — epi(g — v(Pr))) U {(0, 0)}l\¢> cl cone co[{epi(f) —
epi(g—v(Pr)))U{(0, Oll] — X xR, hence cl cone(epi(f)—epi(g—v(Pr))) = X xR.
Since cl cone(epi(f)—epi(g—v(Pr))) C clcone(dom(f) —dom(g)) xR, this implies
cl cone(dom(f) — dom(g)) = X, that is 0 € qi(dom(f) — dom(g)). Hence

0 ¢ qi(dom(f) — dom(g)) = (0,0) & gico[(epi(f) — epi(g — v(Pr))) U{(0,0)}].

Nevertheless, in the regularity conditions given above one cannot substitute the
condition (0, 0) & qri co[(epi(f) —epi(g —v(Pr))) U{(0, 0)}] by the ”nice-looking”
one 0 ¢ qi(dom(f)—dom(g)), since in all three strong duality theorems the other
hypotheses we consider imply 0 € gi(dom(f) — dom(g)) (cf. Remark 3.7).

Example 3.13 Consider again the space X = [2 equipped with the norm
-] 2 =R, |z> = 3 22, V& = (zn)nen € [*. We define the functions
n=1

f,g:lg—%ﬁl@by

+o0co, otherwise

f(x) - { “30“, ifx € xp— li—a

and

| {e,2), ifzell,
9(z) = { 400, otherwise,

where 12 = {(Zn)nen € 12 .z, > 0,¥n € N} is the positive cone, zo = (£)nen
and ¢ = (5 )nen- Note that v(Pp) = inlfz{f(x) + g(z)} = 0 and the infimum is
T

attained at 7 = 0. We have dom(f) = zo—12 = {(Tn)nen € I* : Tn < 2o, ¥n € N}
and dom(g) = 2. Since qril2 = {(Zn)new € I* 1 7 > 0,Yn € N} (cf. [3]),
we get dom(f) N qridom(g) = {(zn)nen € 1> 1 0 < zn < 1o, Vn € N} # 0.
Also, clcone(dom(g) — dom(g)) = I%, so 0 € qi(dom(g) — dom(g)). Further,
epi(f) = {(z,7) € B xR :z € 29 — I, ]jz]| < 7} = {(z, || +e) e ?xR:
r € mo — 2,e > 0} and epi(g — v(Pp)) = {(z,7) € P xR :7r < —g(z)} =
{(z,r) e PxR:r < —(ca),z€ll} ={=—(cz)—¢) € 12,6 > 0}. We
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get epi(/f) = epi(g — v(Pr)) = {(z — &' lall + ¢ + (e, &) + ) - 2 € 7 — 12,0/ €
B,e,e >0} ={(z—2,||z|| + (c,) +¢) : 2 € g — 2,2/ €2,e > 0}. We claim
that (0,0) ¢ qri(epi(f) — e/ﬁi(g —v(Pp))). Indeed, if we suppose that (0,0) €
qri(epi(f) — e/;;i(g — v(Pr))) then we obtain (0,0) € qi(epi(f) — e/p\i(g — v(Pr)))
(see Remark 3.4 and Remark 3.12(c)), thus 2 x R = clcone(epi(f) — e/ﬁi(g —
v(Pr))) € 1? x cleone{||z|| + {c,2') + ez € o — 12,2 € 2, > 0}. The last
relation implies clconef||z|| + {(c,z) + ¢ : 7 € mp— 12,2" € I2,¢ > 0} = R.
Let us notice that for a subset A of R the relation clcone A = R is fulfilled if
and only if 3(a1,az) € (AN (—00,0)) x (AN (0,400)). Thus there must exist
z1 € 7o — 13,2} € 1% and € > 0 such that |jz1]| + (¢, z}) + & < 0 and this is a
contradiction. Hence the conditions of Corollary 3.11 are fulfilled, thus strong
duality holds. Let us notice that the regularity conditions given in Corollary 3.6
and Corollary 3.9 are also fulfilled (see Remark 12(a)). Moreover, one can see
that z* = 0 is an optimal solution of the dual problem.

On the other hand, I? is a Fréchet space (being a Hilbert space), the functions
f and g are lower semicontinuous and, as sqri(dom(f) —dom(g)) = sqri{zo—12) =
0, none of the constraint qualifications (i) — (iv) presented in the beginning of
this section can be applied for this optimization problem.

In the following, by using the results introduced above, we give regularity
conditions for the following convex optimization problem

(Pa) inf {£(2) + (g0 A)(@)},

where X and Y are separated locally convex vector spaces with their continuous
dual spaces X* and Y*, respectively, A : X — Y is a linear continuous mapping,
f:X —Randg:Y — R are proper convex functions such that A(dom(f)) N
dom(g) # 0. The Fenchel dual problem to (P,) is (cf. [17])

(Da) sup {—f*(—A"y*) — g*(y")},

y*ey*

where A* : Y* — X* is the adjoint operator of A, defined in the usual way:
(A'y*, x) = (y*, Az),Y(y*,z) € Y* x X. In the following theorem the set

A x idr(epi(f)) = {(Az,r) € Y xR : f(z) < r}
is the image of epi(f) through the operator A x idg.

Theorem 3.14 Suppose that 0 € qi[(A(dom(f)) — dom(g)) — (A(dom(f)) —
dom(g))], 0 € qri(A(dom(f)) — dom(g)) and (0,0) ¢ qrico[(A x idg(epi(f)) —
epi{g — v(P4))) U{(0,0)}]. Then v(P4)'=v(D4) and (D) has an optimal solu-
tion.
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Proof. Let us introduce the following functions: F,G : X xY — R, F(z,y) =
f(z) + (zex:ac=y}(z) and G(z,y) = g(y). The functions F and G are proper
and convex and ;n}f{ Y[F(:v, y) + G(z,y)] = 1g)f({f(m) + (go A)(z)} = v(Pa).

YryeXx T

(=,

Moreover, dom(F) = dom(f) x A(dom(f)) and dom(G) = X x dom(g), so
dom(F) Ndom(G) # 0. Further,

dom(F) — dom(G) = X x (A(dom(f)) — dom(g)).

Combining the last relation with the hypotheses, we obtain (0,0) € gi[(dom(F)—
dom(G)) — (dom(F) — dom(G))] and (0,0) € qri(dom(F) — dom(G)). Since
epi(F) = {(z, Az,r) : f(z) <r}and epi(G—v(Py)) = {(z,y,7) : 7 < —G(z,y) +
v(Pa)} =X x epi(g — v(Py4)), we obtain

epi(F) — epi(G — v(Pa)) = X x (A x idw(epi(f)) — epi(g — v(Pa))),

and this means that (0,0,0) ¢ qrico[(epi(F) — epi(G — v(P4))) U {(0,0,0)}].
Theorem 3.5 yields for F' and G:

. f F G — _F* _p* * —G* * * )
(m,y;gXXY[ (z,y) + G(z,y)] (z*’yggggxy*{ (—z*, —y*) (", ")}

On the other hand, F*(z*,y*) = f*(z* + A*y*),V(z*,y*) € X* x Y* and

wiow oy ) 97T, ifrT =0,
GHe"y") = { +00, otherwise.

Therefore,  max  {—F*(—z*,—y*) — G*(z*,y")} = max{—f"(-A"") -
(z* 5" )EX* xY* Jnax,
g*(y*)} and the conclusion follows. 0

Corollary 3.15 Suppose that the primal problem (P4) has an optimal solu-
tion, 0 € qi[(A(dom(f))—dom(g))—(A(dom(f))—dom(g))], 0 € qri(A(dom(f))—
dom(g)) and (0,0) ¢ qri[A x idg(epi(f)) — epi(g — v(Pa))]. Then v(Pa) = v(Da)
and (D 4) has an optimal solution.

Theorem 3.16 Suppose that 0 € qi(A(dom(f)) — dom(g)) and (0,0) ¢
qrico[(A x idr(epi(f)) — epi(g — v(Pa))) U {(0,0)}]. Then v(Pa) = v(D4) and
(D4) has an optimal solution.

Proof. Considering the functions F' and G from the proof of Theorem 3.14, we
have cl cone(dom(F) — dom(G)) = X x clcone(A(dom(f)) —dom(g)) = X XY,
thus (0,0) € qi(dom(F) — dom(G)). Also we have (0,0,0) ¢ qrico[(epi(F) —
epi(G — v(P4))) U {(0,0,0)}]. Theorem 3.8 yields for F and G:

inf F G — _FM g ) — Gzt
(:l:,y)uelXxY[ (x,y) + (l‘,y)] (x*,yglea)?(*xy*{ ( xz,—Y ) (-T Y )}
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and the conclusion follows. d

Corollary 3.17 Suppoée that the primal problem (P4) has an optimal solu-

tion, 0 € qi(A(dom(f))—dom(g)) and (0,0) ¢ qri[Axidg (epi(f))—epi(g—v(P4))].
Then v(Py) = v(Da) and (D4) has an optimal solution.

Theorem 3.18 Suppose that A(dom(f)) N qridom(g) £ 0, 0 € qi(dom(g) —

dom(g)) and (0,0) ¢ arico[(A x idg (epi(f)) — epi(g — v(P4))) U {(0,0)}]. Then
v(Pa) = v(Da) and (D4) has an optimal solution.

Proof. Consider again the functions ¥ and G defined as in the proof of
Theorem 3.14. We have dom(F) Nqridom(G) = (dom(f) x (A(dom(f))) N (X x
qridom(g))) = dom(f) x (A(dom(f)) N qridom(g)) # . Also, cl cone(dom(G) —
dom(G)) = X x clcone(dom(g) — dom(g)) = X x Y, hence (0,0) € qi(dom(G) —
dom(G)). Moreover, (0,0,0) ¢ qrico[(epi(F) — epi(G — v(Pa))) U {(0,0,0)}].
Theorem 3.10 yields for F and G:

I f F G = _F* _ *’ —a*Y G* *, *
etk F (@Y G ) ey B AP0, =) = 67, y)}
and the conclusion follows. .

Corollary 3.19 Suppose that the primal problem (P4) has an optimal so-
lution, A(dom(f)) N qridom(g) # @, 0 € qi(dom(g) — dom(g)) and (0,0) ¢
ari[A x idr(epi(f)) — epi(g — v(P4))]. Then v(Pa) = v(D4) and (D) has an
optimal solution. '

4 Lagrange duality

Using an approach due to Magnanti (cf. [13]), in this section we derive from
the results we got in the previous section some duality results concerning the
Lagrange dual problem. We work in the following setting. Let X be a real linear
topological space and S a non-empty subset of X. Let (Y.l |I) be a real normed
space partially ordered by a convex cone C. Let f : $ — R and g: S —Y be
two functions such that the function (f,g) : § — R x Y, defined by (f,9)(z) =
(f(2),9(z)),Va € S, is convex-like with respect to the cone Ry xC CRxY, that
is the set (f,¢)(S) + Ry x C is convex. Let us notice that this property implies
that the sets f(S) +[0,00) and g(S)+ C are convex (the reverse implication does
not always hold). Consider the optimization problem

(P) inf f(a),
g(z)e~-C
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where the constraint set T = {z € S : g(z) € —C} is assumed to be nonempty.
The Lagrange dual problem associated to (Pr) is

(D) sup inf[f(z) + (A g(2))],
AeC* T€S
where C* = {z* € X* : (z*,z) > 0,Yz € C} is the dual cone of C. Let us
denote by v(Pg) and v(Dy) the optimal objective values of the primal and the
dual problem, respectively. A regularity condition for strong duality between
(P,) and (Dy) was proposed in [4]. We show first that the main theorem there
is incorrect. To this end we prove the following lemma.

Lemma 4.1 Suppose that cl(C—C) =Y and 3T € S such that g(T) € —qriC.
Then the following assertions are true:

(a) 0 € qi(g(S) + C);
(b) clcone[qri(g(S) + C)] is a linear subspace of Y.

Proof. (a) We apply Lemma 2.6 with A := —C and B := g(5)+C. We have
0 € AN B. The condition cl(C — C) =Y implies 0 € gi(A — A). The Slater-type
condition implies g(Z) € BNqri A. Hence, by Lemma 2.6 we obtain 0 € qi(A—B),
that is 0 € gi(—g(S) — C), which is nothing else than 0 € qi(g(S) + C).

(b) From (a) it follows that 0 € qri(g(S) +C). Applying Proposition 2.5 (vit)
we get 0 € qri(qri(g(S) + C)), which is nothing else than cl cone[qri(g(S) + C)]
is a linear subspace of Y.

In order to get strong duality between (Pr) and (Dg) in Theorem 2.2 in
[4] the authors ask that the following hypotheses are fulfilled: cl(C — C) =
7 € S such that ¢(Z) € —qriC, qri(g(S) + C) # 0 and cl cone[qri(g(S) + C)]
is not a linear subspace of Y. The previous lemma proves that this result due
to Cammaroto and Di Bella is completely useless, since the hypotheses of this
theorem are in contradiction.

Next we prove some Lagrange duality results written in terms of the quasi
interior and quasi-relative interior, respectively.

Consider the following convex set

Eupyy = {(flx) +a—v(Pr),9(z) +y):z€S,a >0,y € C} CRxY.

Let us notice that the set —&,p,) is in analogy with the conic extension, a
notion used by Giannessi in the theory of image space analysis (see [7]). One
can easily prove that the primal problem (Pp) has an optimal solution if and
only if (0,0) € &y(p,). Let us introduce the functions fi, fo : R Y — R,

. Yo, if (yo; yl) € S’U(PL) + (U(PL)) 0)7
F1(o, 1) = { +00, otherwise.
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and fo = Orx(—c)- It holds
dom(f1) — dom(fs) = R x (9(S)+ C). (13)

Moreover, as pointed out by Magnanti (cf. [13]), we have

inf ~ {fi(yo, 1) + fo(vo, 1)} = glcgg f(z) = v(Py) (14)

Y0,y1)ERXY
(yo.91) Dewc
and

sup (= f (=5, —u7) — (55,900} = sup nf[£(z) + (A, g(@))] = u(Dy).
(¥5,y7 ) ERXY * A€CH T€
(15)

By this approach, we can derive from the strong duality results given for
Fenchel duality corresponding strong duality results for Lagrange duality.

Theorem 4.2 Suppose that 0 € qi[(g(S)+C) — (¢(S) +C)], 0 € qri(g(S) +C)
and (0,0) & qrico(Eyp,y U{(0,0)}). Then v(Py) = v(Dy) and (Dr) has an opti-
mal solution.

Proof. The hypotheses of the theorem and (13) imply that the conditions
(0,0) € qi[(dom(fl)—dom(fg))—(dom(fl)—dom(fg))] and (0,0) € qri(dom(f;)—
dom(f,)) are fulfilled. Further, epi(f1) = {(yo,y1,7) € Rx Y xR : (yo,y1) €
Eutrey+(0(PL),0),30 < 7} = {(f(z) + 0,9(a) +y,1) i 5 € S, 0> 0,y € O, J(a) +
a < r}and epi(fa—v(Pr)) = {(yo,41,7) € RXY xR : 7 < — fo(yo, y1) +0(Pp)} =
{(y07 ylar) € RX/XXR ‘Yo € Ra Y1 € —C,’f‘ < U(PL)} =Rx (_C) X (—OO’U(PL)]'
Thus epi(f1) — epi(f2 — v(Pr)) = epi(f1) + R x C x [—v(PL), +00) = {(f(z) +
a+a,g(z)+y,r—v(P)+e):z€S,a>0,acR,yeC,e > 0,f(z)+a<r}=
{(f(x)+ata,g(x)+y, flz)+at+e—v(P)):z € S,a> 0,a eR,yeCe>0}
and this means that

epi(f1) —epi(fo—v(Pr)) = Rx {(g(2)+y, f(x)+a—v(Py)) 2 € 5,a > 0,y € C}.
Thus (0,0,0) € qri co[(epi(f) —epi(f, —v(F1)))U{(0,0,0)}] if and only if (0,0) €

qrico(Ey(p,) U {(0,0)}). Now we can apply Theorem 3.5 for f; and f2 and we
obtain

inf Y1) + , =  max —f1(=ys, —v1) = f(ys, yH)}.
oy 100, 41) + f2(30, 1)} (yg’y;)emy*{ JT(=v5, —v1) = f5 (vo, 1)}
By (14) and (15) the conclusion follows. O

Corollary 4.3 Suppose that the primal problem (Pr) has an optimal solution,
0 € qi[(g(5) + C) — (9(S) + C)], 0 € qri(g(S) + C) and (0,0) & qri Evpyy. Then
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v(Pr) =v(Dyr) and (Dr) has an optimal solution.
Further, like for Fenchel duality, other Lagrange duality results can be stated.

Theorem 4.4 Suppose that 0 € qi(g(S) + C) and (0,0) & qrico(Eyp,) U
{(0,0)}). Then v(Pp) =v(Dy) and (D) has an optimal solution.

Proof. This is a direct consequence of the previous theorem since g(S) +
C C (9(S) + C) — (g{S) + C) and so the condition 0 € qi(g(S) + C) implies
0 € qi[(g(S) + C) — (g(S) + C)] and 0 € qri(g(S) + C). O

Corollary 4.5 Suppose that the primal problem (Pr) has an optimal solution,
0 € qi(g(S) + C) and (0,0) & qri&yp,). Then v(Pr) = v(Dyr) and (D) has an
optimal solution.

Theorem 4.6 Suppose that cl(C — C) =Y and 3T € S such that g(T) €
—qriC. If (0,0) & qrico(Eyp,) U{(0,0)}), then v(P) = v(Dy) and (Dr) has an
optimal solution.

Proof. The condition (0,0) ¢ qrico(Eyp,y U {(0,0)}) implies that (0,0,0) ¢
grico[(epi(f1) — epi(f2 — v(Pp))) U {(0,0,0)}] (cf. the proof of Theorem 4.2).
Further, we have dom(f;) Nqridom(fy) = [Eyp,) + (V(Pr),0)]Nari(R x (=C)) =
[Euipy) + (0(PL), 0] N [R x (— qri C)]. From the Slater-type condition we get that
(f(®), 9(T)) € [Eupy) + (v(Pr), 0)])N[R x (— qri C)] hence dom(f1) Nqri dom(fs) #
(. Moreover, cl cone(dom( f,)—dom(f2)) = clcone[Rx (C'—C)] = Rxcl(C—-C) =
R x Y, hence (0,0) € qi(dom(f;) — dom(f2)). By Theorem 3.10 for f; and f, we
obtain

inf  {fiyo, ) + folyo, )} =  max {—fi (-5, —vi) — S (¥, 4D}
(yo,y1)ERXY Y&,y )ERXY*

and using again (14) and (15) the conclusion follows. O

Corollary 4.7 Suppose that the primal problem (Pp) has an optimal solution,
c{(C—C) =Y and 3T € S such that g(T) € —qriC. If (0,0) & qri&ypy,), then
v(Pr) = v(Dy) and (D) has an optimal solution.

Remark 4.8 Let us notice that from the above results one can derive duality
theorems for the case when in the set of constraints one has also equalities defined
by affine functions. Indeed, consider the optimization problem

aff :
(Pr")  inf  f(z)
g(z)e-C
h(z)=0
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where h : X — Z is an affine mapping and Z is a real normed space (the
hypotheses regarding the functions f and ¢ remain the same as in the beginning
of this section). The Lagrange dual problem associated to (PH7Y is

(D7) sup inf[f(z) + (A, g(x)) + {u, h(x))),
P

where Z* is the topological dual space of Z.

Using Theorem 4.2 and Theorem 4.4 one can formulate Lagrange duality
theorems for (P*7) and (DY) by noticing that the primal problem can be
reformulated as

Inf flz)=  inf  f(a),
g(z)e-C u(z)e~(Cx{0})
h(z)=0
where u : S — Y x Z, u(z) = (g(x), h(z)). For the optimization problem with
equality and cone inequality constraints some regularity conditions have been
given in [5] by using the notion of quasi-relative interior. Unfortunately, the
strong duality theorem in [5] is not correct. The approach proposed above is
offering an alternative for dealing with Lagrange duality for this class of opti-
mization problems.
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