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Abstract. We deal with duality for almost convex finite dimensional opti-
mization problems by means of the classical perturbation approach. To this aim
some standard results from the convex analysis are extended to the case of almost
convex sets and functions. The duality for some classes of primal-dual problems
is derived as a special case of the general approach. The sufficient regularity
conditions we need for guaranteeing strong duality are proved to be similar to
the ones in the convex case.
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1 Introduction

Dealing with duality for a given optimization problem is one of the main features
in mathematical programming and convex analysis both from theoretical and
practical point of view.

There is a well developed theory of duality for convex optimization problems
in finite dimensional spaces, as one can read for instance in [15]. Distinct dual
problems have been investigated by using the so-called perturbation approach in
[16]. This is based on the theory of conjugate functions and describes how a dual
problem can be assigned to a primal one ([5]).

Generalized convex functions are those non-convex functions which possess at
least one valuable property of convex functions. Their growing interest in the last
decades comes with no surprise since they are often more suitable than convex
functions to describe practical problems originated from economics, management
science, engineering, etc. (see for instance [10] and [12]). Therefore, the question
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concerning possible extensions of different optimality conditions and duality re-
sults also for non-convex programming problems arises naturally. Giannessi and
Rapcsék in [9] and Mastroeni and Rapesék in [13] have given statements on the
solvability of generalized systems, which is an important tool for proving duality
results. Kanniappan has considered in [11] a Fenchel-type duality theorem for
non-convex and non-differentiable maximization problems, Beoni has considered
in [1] the extension of the same result in the context of fractional programming,
while Penot and Volle ([14]) have studied Fenchel duality for quasiconvex prob-
lems. In [4] an extension of Fenchel’s duality theorem to so-called nearly convex
functions is given. Regarding this generalized convexity concept, let us also men-
tion our paper [2]|, where we deal with duality for an optimization problem with
a nearly convex objective function subject to geometrical and inequality cone
constraints also defined by nearly convex functions.

In this paper we consider another generalized convexity concept, called almost
converity, which is due to Frenk and Kassay ([6]). We show first how standard
results from the convex analysis may be extended to the case of almost convex
sets and functions. Along with the nearly convex functions, the class of almost
convex functions is another generalization of the class of convex functions which
fulfills some of the important properties of the latter. The two classes of almost
and nearly convex functions contain strictly the class of convex functions and do
not coincide ([3]). By means of some counterexamples we also emphasize some
basic properties of convex sets (functions) which do not hold for almost convex
sets (functions). Among these, we mention that the intersection of almost convex
sets may not be almost convex, and there are almost convex functions which are
not quasiconvex. .

Considering a general almost convex optimization problem we construct a dual
to it by means of the classical perturbation approach and state some sufficient
regularity conditions which guarantee strong duality. The duality for some classes
of primal-dual problems is derived as a special case of the general approach. In
this way we extend some results from [2] and [3].

The paper is organized as follows. Section 2 recalls the definitions of almost
convex sets and functions as well as presents some basic facts and properties for
them, necessary for the subsequent investigations. In Section 3 we deal with the
duality in the general framework of the perturbation approach, by introducing to
a primal optimization problem a conjugate dual problem. We are able to verify
a strong duality assertion by replacing the classical convexity assumptions with
almost convexity ones and assuming a general regularity condition. Finally, in
Section 4 we get as a particular case strong duality results for the Lagrange and
the so-called Fenchel-Lagrange dual problem of an optimization problem with an
almost convex objective function and almost convex inequality cone constraints.
The regularity condition we need here is a generalized Slater condition. Under
the use of a classical regularity condition, the Fenchel duality in case of almost
convex optimization problems is obtained as another application of the general
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results. The presentation is accompanied by several examples illustrating the
theoretical considerations and results.

2 Almost convex sets and functions: basic prop-
erties

2.1 Almost convex sets

Definition 2.1 (cf. [6]) A subset C C R is called almost convez, if cl(C) is a
convez set and ri(cl(C)) C C.

It is obvious that any convex set C C R™ is also almost convex, but the
converse is not true in general as the following example shows.

Example 2.1 (Almost convex set which is not convex.) Let C = ([0,1] x [0, 1]) \
{(0,y) :y € (R\Q)} C R2. It is easy to check that C is almost convex but not a
conver set.

Some properties which are specific for convex sets in R™ hold also for almost
convex sets, as the following results show.

Lemma 2.1 For any almost convex set C' C R™ it follows that
ri(cl(C)) = ri(C). (1)

Proof: If C is empty, then (1) is trivial. Otherwise ¢/(C') is nonempty and
convex, and so ri(cl(C)) # 0. This implies by Lemma 1.12, relations (1.19) and
(1.24) in [8]) that a f f(ri(cl(C))) = af f(cl(C)) = af f(C), which yields by almost
convexity of C that ri(cl(C)) C ri(C). Since the reverse inclusion is trivial, we
obtain (1). m

Notice that by the previous lemma, any nonempty almost convex set in R"
has a nonempty relative interior.

Lemma 2.2 Let C CR"™ be any almost convex set. Then
acl(C) + (1 —a)ri(C) C ri(C), VO<a<l. (2)

Proof: Since ¢l(C) is a convex set, by a well-known result (see for instance
Rockafellar [15]) acl(C) + (1 — a)ri(cl(C)) C ri(cl(C)), Y0 < a <1, and this,
together with (1) proves the statement. m

The proof of the next lemma is obvious taking into account the well-known
properties of the operators ¢l and ri.



Lemma 2.3 Suppose that C C R"™ and D C R™ are almost conver sets. Then
C x D is also almost conver in R™ x R™.

Lemma 2.4 Suppose that C C R" is an almost conver set and let T : R — R™
be a linear operator. Then

(i) The set T(C) is almost convez;

(it) ri(T(C)) = T(ri(C)).

Proof: (i). Since T is linear we have T(C) C T(cl(C)) C cl(T(C)) from which
we obtain that cl(T'(C)) = cl(T(cl(C))). This proves that cl(T'(C)) is a convex
set. Taking the relative interior of both sides, then using the well-known relations
ri(cl(A)) = ri(A) and ri(T(B)) = T(ri(B)) for any convex sets A and B (see for
instance [15]), and the fact that C is an almost convex set, we get the following
relations

ri(cl(T(C))) = ri(cl(T(cl(C)))) = ri(T(cl(C))) = T(ri(cl(C))) S T(C), (3)

which shows that T'(C) is an almost convex set.
(ii). By part (i), (3) and Lemma 2.1, we have that

ri(T(C)) = ri(c(T(C))) = T(ri(cl(C))) = T(ri(C))
as claimed. m

An immediate consequence of Lemma 2.3 and Lemma 2.4 using the linear
operator T': R® x R® — R", T'(z,y) = ax + Py is given by the observation that

ri(aCy + BC2) = ari(Cy) + Bri(Cy), (4)

for any a, 8 € R and C; C R",i = 1,2 almost convex sets.

The results above reveal that almost convex sets are in some sense "not so
far” from convex sets. However, there are basic properties of convex sets like ”the
intersection of any family of convex sets is also convex” which almost convex sets
fail to possess. The next example shows even more: the intersection of a linear
subspace with an almost convex set may not be almost convex.

Example 2.2 (The intersection of almost convex sets is not almost convezr in
general.) Take the set C as in Example 2.1 and let D = {(0,y) : y € R} C R2
Then both sets are almost convex (D is even convez, as being a linear subspace),
CND = {(0,y) : y € [0,1]NQ)} has cl(CND) convez, but ri(cl(CND)) £ CND.
This shows that C'N D is not an almost convex set.

A careful examination of the example above shows that the relative interiors
of the two sets (nonempty for each of them) have no common point. As shown
by the next result (which can be seen as an extension of Theorem 6.5 of [15]), the
"intersection property” holds for an arbitrary family of almost convex sets too,
provided their relative interior have a common point.
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Theorem 2.1 Let C; CR™ (i € I) be almost convezx sets satisfying
ﬂielri(Ci) 7é @ Then

(Z) cl(ﬂieICi) = ﬂieICl(Ci),'

(i) Nie1C; is almost convex;

If the set I is finite, then also

(ZZZ) Ti(mie]Ci) = ﬂieﬂ“i(ci),'

Proof: (i). Let x € Mie;ri(C;) and take an arbitrary y € M;e;cl(C;). Then by
Lemma 2.2

(1—-a)z+ay € Nigrri(C;), V0<a <1,
thus, by letting o — 1 we obtain y € cl(N;erri(C;)). It follows that

Niercl(C;) C cl(Nierri{C;)) C cl(MierCy) € Nierel(Cy), (5)

hence, (i) holds.

(ii). By part (i) cl(NiesCi) = Miercl(C;), which shows that the set cl(M;e;C;)
is convex. On the other hand, by (5) we obtain that cl(M;e;ri(C;)) = cl(NierCi)
and thus

ri(cl(Nierri(Cy))) = ri(cl(NierCy)). (6)

As a consequence of Lemma 2.1 and the almost convexity of C; (i € I), the
sets 7i(C;) are convex. Thus N;erri(C;) is also convex (and, by the hypothesis,
nonempty). Applying now again Lemma 2.1 for the convex set N ri(C;) leads
to

Ti(Cl(ﬂieﬂ"i(Ci))) = Ti(ﬂieITi(Ci)) Q ﬂieﬁi(C’i) g nie[Ci,

which, together with (6) proves the assertion (ii).
(iii) By Theorem 6.5 (part two) of [15] applied to cl(C;) instead of C; we
obtain
ri(Niercl(C;)) = Nierri(cl(C;)). (7)

The right hand side of this relation equals N;e;7i(C;). Using (i), (ii) and Lemma
2.1 one gets ri(Niercl(C;)) = ri(cl(MierCi)) = ri(NierC;), and this together with
(7) provides (iii). =

Next we show another important property of almost convex sets. The follow-
ing result can be seen as an extension of Theorem 6.7 of [15].

Theorem 2.2 Let T' : R® — R™ be a linear mapping and let C C R™ be an
almost convex set such that T~1(ri(C)) # 0. Then

ri(T~1(C)) = T (ri(C)), cl(T~Y(C)) = T-1(cl(C)).

Proof: Let D = R" x C, and let G C R™ x R™ be the graph of 7. By the
hypothesis the set ri(G) N ri(D) = G Nri(D) is nonempty. Thus, by Theorem
2.1 (ii) GN D is an almost convex set. We have T71(C) = Prg~(G N D), where
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Prg» is the projection operator of R® x R™ to R™. Since this operator is linear,
we obtain by Lemma 2.4

ri(T~(C)) = Prga(ri(G N D)) = Prg-(G Nri(D)) = T~ (ri(C)),

thus proving the first claim. For the second claim observe that cl(T!(C)) C
T'(cl(C)) by the continuity of T. The reverse inclusion follows by the obvious
relations (using that G Nri(D) = ri(G) Nri(D) # 0)

cl(T~4(C)) = cl(Prga(G N D)) 2 Prgs(cl(G N D))
= Praa(G N cl(D)) = TY(cl(O)).

By Theorem 2.2 we immediately obtain the following result.

Corollary 2.1 If the linear operator T : R® — R™ satisfies T~ (ri(C)) # 0 for
an almost convex set C C R™, then T~(C) is an almost convex set.

2.2 Almost convex functions

In this subsection we define the concept of almost convexity for extended real
valued functions and for vector valued functions with respect to a set. Also, we
show some important properties needed for establishing strong duality results.

Let f:R* - R, g: R* - R™ and M C R™ a nonempty set. Recall that
the epigraph of f is defined to be the set epi(f) = {(z,r) e R xR : f(z) < r}
and the effective domain as dom(f) = {z € R": f(z) < +oo}. The function f is
called proper if f(x) > —oo for all z € R™ and dom(f) # 0.

Define the epigraph of g with respect to the set M as

epin(g) = {(z,y) e R" xR™ 1y — g(x) € M}.

Definition 2.2 The function f : R* — R is said to be almost convez if epi(f) is
an almost convez set (in R™ x R). Moreover, the vector-valued function g : R™ —
R™ s almost convex with respect to M (shortly M - almost convez) if epip(g) is
an almost conver set (in R™ x R™).

We notice that dom(f)) = Prge~(epi(f)) with Prg» : R x R — R™ the linear
projection operator, is almost convex if f is almost convex as a consequence of
Lemma 2.4 (i).

Recall that in Example 2.1 we constructed an almost convex set set C C R?
which is not a convex set. Taking the indicator function §o of the set C it is
immediate that this function is almost convex but not convex. With respect
to vector-valued functions, the set M is usually a convex cone of K (e.g. in



optimization theory) and the concept of K-convex functions, defined as having
their epigraph a convex set, is widely used within the literature.

One might wonder whether there exist K-almost convex functions without
being K-convex, or, in other words, the concept introduced in Definition 2.2
is a proper generalization of K-convexity? The next example provides such a
function.

Example 2.3 (K-almost conver function which is not K -convez) Let g : R — R2

given by
_ J(2,0), zeQ,
o) = {(o,m, rER\Q,
and let K = {(0,0)} U {(s,t) € R* : t > 0}. It is obvious that epig(g) =
graph(g) + {0} x K and
graph(g) = {(z,z,0) e R* : 2 € Q} U {(2,0,0) e R* : 2 € R\ Q}.

This leads to epix(g) = graph(g) U{(z,y,2) € R®: 2 > 0}. It can be easily seen
that this set is almost convez without being convez.

It follows by Definition (2.2) and Lemma 2.1 that for an M-almost convex
function g : R — R™ the set 7i(epiy(g)) is nonempty and convex. The next
result establishes an exact formulation of this set.

Lemma 2.5 Suppose that g : R® — R™ is an M-almost convez function. Then
one has

ri((epin(9)) = {(z,y) €R" xR™ : y — g(2) € ri(M)}. (8)
Proof: Consider the projection operators Prg» : R* x R™ — R” on R™ and
Prgm : R™ x R™ — R™ on R™.

For an element (z,y) € R™ x R™, one has that (z,y) € ri((epin(g))) if and
only if z € R™ and y € Prgm (ri((epirn(g))) N ({z} x R™)). Since by Lemma 2.4
we obtain Prg» (ri((epin(g)) = 7i (Prge(epin(g))) = R, for all z € R" it holds

0 # ri((epin(9))) N ({2} x R™) = ri((epinm(9))) Nri({z} x R™)
= 7i (epina(9) N ({2} x R™)
Thus by Lemma 2.4 (ii) (z,y) € ri((epin(g))) if and only if z € R" and
y € Pran (ri ((epin(9)) N ({2} x R™)))

= ri (Pre=((epin(9)) N ({z} x R™))

)
Since for z € R™, Prg~(({epin(g9)) N ({z} x R™)) = g(z) + M, we get that
(z,y) € ri((epin(g ))) if and only if z € R" and y € ri(g(z)+ M) = g(x)+ri(M).
This concludes the proof. m

Lemma 2.5 leads to the following result.

7



Lemma 2.6 Suppose that X C R" is an almost convex set and g : R® — R™ is
an M-almost conver function. Then one has ri(g(X) + M) = g(ri(X)) +ri(M).

Proof: By using the projection operator Prgm : R™ x R™ — R™, we can write
ri(g(X) + M) equivalently as

ri(g(X) + M) = riPrgm (epiar(g) N (X x R™)).

As shown by the proof of Lemma 2.5 ri((epiar(g))) N ({z} x R™) # @ for every
r € R", thus ri(epiy(g)) N ri(X x R™) is nonempty and by Theorem 2.1 and
Lemma 2.4 we get that epip(g) N (X x R™) is almost convex and moreover

riPrgm (epiy(g) N (X x R™)) = Prgm (ri(epip(g) N (X x R™)))

= Prgm (ri(epip(g)) N (ri(X) x R™)).

But, by the previous lemma. it holds ri(epin (g))N(ri(X)xR™) = {(z,y) : = €
ri(X),y € g(z)+ri(M)} and so Prm (ri(epin(g)) N (ri(X) x R™)) = g(ri(X))+
ri(M). In conclusion, ri{g(X) + M) = g(ri(X)) + ri(M). =

It is well-known that any local minimum point of a convex function is also a
global minimum point. One might wonder whether this important property still
holds for almost convex functions. The next result shows that it is indeed the
case.

Theorem 2.3 Suppose f : R® — R is a proper almost convezr function. If
T € dom(f) is a local minimum point of f then it is also a global minimum point

of f.

Proof: Our assumption means that there exists an € > 0 such that f(z) < f(z)
for every x € dom(f) N B(Z,¢), where B(Z,¢) is the open ball centered at Z with
radius €. Supposing the contrary, there exists an element § € dom(f) such that

f@) < f(z) (9)

We have § € dom(f) C dom(f), where f is the so called lower semicontinuous
hull function of f, which - in case f is almost convex - is a convex function (see
for instance [6]). Therefore ri(dom(f)) # @, thus by choosing an element 3 €

ri(dom(f)) we obtain by Theorem 6.1 of [15] tz+ (1 —t)7 € ri(dom(f)), V0 <
t < 1. Thus, by Theorem 1 of [3] (see also [6]) and the convexity of f we obtain

fEZ+ 1 -0)g) = flz+ 1 -0y <tf(2) + 1 - ) f (@)

= @) +Uf(2) - F@) < f@) +:F(D) - J(@), Yo<t<1l  (10)
Due to (9) we may choose a (sufficiently small) 7 > 0 such that f(3) + £(f(z) —
J(@)) < f(&) and such, denoting 2(f) = £z + (1 — £)§ € ri(dom(f)) we obtain by

(10) that
fz() < f(2). (11)
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Now since Z € dom(f) C dom(f), again by Theorem 6.1 of [15] we have

Az(t) + (1 = N)Z € ri(dom(f)), V0 < X <1, hence by (11)
FQ(0) + (1= N)z) = fRe(®) + (1 - N)z)

SMED)+ (1 -NF(@) < f(@) < f(7), YO<A<L. (12)

Since Az(f) + (1 — A\)Z — & as A — 0, one may choose 0 < A < 1 such that
z(A) = Az(H)+(1-\)z € B(Z,¢) and such, by (12) we obtain that f(z(})) < f(z),
contradicting the hypothesis. This completes the proof. =

As well-known, the property discussed in Theorem 2.3 i.e, ”local minima
coincide with global minima” is satisfied by quasiconvex functions as well. One
might wonder what is the relationship between the classes of almost convex and
quasiconvex functions. The next two examples show that none of them is included
in the other. First we construct an almost convex function with domain a convex
set, which is not quasiconvex.

Example 2.4 (Almost convex function which is not quasiconver) Let C = [0,1]x
[0,1] € R? and define f : R?> > R as

1, (z,y) = (0,1/2)
f(z,y) =10, (z,y) € C\{(0,1/2)}
+o00, (z,y) ¢ C.

It is easy to see that f is almost convez. On the other hand,

1= f (%) > max{ £(0,0), (0, 1)} =0,

showing that f is not quasiconvexz.

It is obvious that not any quasiconvex function is almost convex. For instance,

f R — R given by
Vx>0
f(x)_{o, z <0

is increasing, and such quasiconvex, but clearly not almost convex.

3 Strong duality for almost convex optimization
problems

One of the most fruitful approaches in the duality theory is the one based on the
so-called perturbation theory. The main idea is to attach to a general optimization
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problem (notice that every constrained optimization problem may be equivalently
written as an optimization problem without constraints, but with a different
objective function) '
(P)  inf F(a),

where F' : R" e_ﬁ = R U {zxoo}, a dual one by using the perturbation function
® :R™ x R™ — R. We call R™ the space of the perturbation variables and ® has
to fulfill the following relation ®(z,0) = F(x),Vx € R®. A dual problem to (P)
may be defined as follows ([5], [15])

(D) sup {—®*(0,y")},

y* eRm

where by ®* we denote the conjugate of the function .

From this generalized dual one can obtain for constrained primal problems in
particular three dual problems (i.e., Lagrange, Fenchel and Fenchel-Lagrange) by
choosing the perturbation function ® in an appropriate way as done in [16] and
[2].

In connection with the perturbation function ® define the so called infimal
value function h: R™ — R by

h(y) = inf{®(z,y) : x € R"}. (13)

Obviously, the primal problem (P) can be written as h(0) = inf{®(z,0) : z €
R"}, while an easy calculation shows that the dual (D) is the problem

sup {—h"(y")},

-eRm
where h* denotes the conjugate function of h. If we denote by v(P) and v(D)
the optimal objective values of the primal and the dual problems, respectively,
then it is immediate that v(D) < v(P) (weak duality). It is well-known that
under usual convexity and regularity assumptions the strong duality also holds,
ie., v(P) = v(D) and the dual problem admits at least one solution (see for
instance [15]). It comes out natural to investigate whether the strong duality
holds for the general problems (P) and (D) if one is weakening the convexity
assumptions usually considered in the literature. Next we show that the strong
duality result for the above mentioned problems by replacing the convexity with
almost convexity still holds.

Theorem 3.1 Suppose that the function h : R™ — R is almost conver and
0 € ri(dom(h)). Then there exists a vector y* € R™ such that

h(0) = =" (y"). (14)
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Proof: In case h(0) = —oo (14) holds trivially for every y* € R™. Therefore,
we can assume that h(0) > —oo and so, by 0 € ri(dom(h)) it follows that h(0) is
finite. As mentioned within the proof of Theorem 2.3, the function A is convex.
Moreover (cf. [6] or [3]) ri(dom(h)) = ri(dom(h)) and h(0) = h(0), thus h(0)
is also finite. It follows by Corollary 7.2.1 of [15] that h is proper and since
0 € ri(dom(h)) we obtain from Theorem 23.4 of [15] that OR(0) # @, which
implies the existence of a vector y* € Oh(0) meaning that

h(0) + h*(y¥) = 0. (15)
Since h(0) = h(0) and (R)* = h* (15) reduces to (14). m
Observe that Theorem 3.1 provides strong duality between the primal problem
(P) and its dual (D). Indeed, relation (14) implies v(P) = v(D) with J* being a
solution of (D).
In the last result almost convexity of the function A plays a crucial role.

Therefore it is natural to ask which condition on the function ® guarantees the
almost convexity of h. The next result gives an answer to this question.

Theorem 3.2 If the function ® is almost convez, then h is also almost convex.

Proof: First we show that the set cl(epi(h)) is convex. To do so, let us denote
by Prgmyg : R* x R™ x R — R™ x R the projection operator of R® x R™ x R on
R™ x R. Clearly this is a linear operator. Denoting by epig(h) the strict epigraph
of h, i.e. the set {(y,7r) eR"™ xR : h(y) < r}, it is immediate to check that

epis(h) C Prgmygr(epi(®)) C epi(h). (16)

Taking into consideration that cl(epig(h)) = cl(epi(h)), relation (16) leads to
cl(epi(h)) = cl(Prgmxg(epi(®))). Since epi(®P) is almost convex, it follows by
Lemma 2.4 (i) that Prgmyr{epi(®) is almost convex, hence cl(epi(h)) is a con-
vex set. In order to prove the relation ri(cl(epi(h)) C epi(h), observe that
ri(cl(epi(h))) = ri(cl(Prgmyg(epi(®)))) C Prgmyr(epi(®)) C epi(h). This com-
pletes the proof. m

The next result is an immediate consequence of Theorems 3.1 and 3.2.

Corollary 3.1 Suppose that the function ® : R* x R™ — R is almost convex and
0 € riPrgm(dom(®)). Then we have strong duality between the problems (P) and
D).

Proof: By Theorem 3.2 the function % given by (13) is almost convex. More-
over, the obvious equality dom(h) = Prgm(dom(®)) implies that ri(dom(h)) =
riPrgm(dom(®)). Thus by Theorem 3.1 we obtain h(0) = —h*(y*). This im-
plies by h(0) = v(P), h*(y*) = ©*(0,7%) and weak duality (v(D) < v(P)) that
v(D) = v(P) and ¥ is a solution of the dual problem. m
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4 Applications: Lagrange, Fenchel and
Fenchel-Lagrange duality

In this section we apply the results of Section 3 to obtain strong duality for
almost convex optimization problems in case of different types of dual problems
considered within the literature (see for instance [16] and [2]).

4.1 Lagrange and Fenchel-Lagrange duality for almost con-
vex optimization problems

Let X C R™ be a nonempty set and K C R* a nonempty convex cone with
K* :={k* € R*: k*Tk > 0,Vk € K} its dual cone. Consider the partial ordering
<k induced by K in R¥, namely for y, 2 € R¥ we have that y <g z,iff z—y € K.
Let f: R” —» Rand g = (g1,...,9x)7 : R* — RF. The optimization problem
which we investigate in this subsection is the following
1 .
(P) Inf f(2),

where
G={ze X :g(x) <k 0}.

In what follows we always suppose that the set G N dom(f) is nonempty. We
denote by v(P') the optimal objective value of (P!). It is easy to see that in fact
(P') is a particular case of (the general) primal problem (P): take F : R» — R
given by F(z) = f(z) + d¢(z), with d¢ the indicator function of the set G.

By giving particular forms for the perturbation function ® : R® x R™ — R
introduced in Section 3 we obtain two types of dual problems attached to the
primal optimization problem (P!): the Lagrange and the Fenchel-Lagrange dual
problem. Using the general duality theorem established in Section 3 (Corollary
3.1), we obtain strong duality results for these types of dual problems. Let us
first start with Lagrange duality.

Consider the function @ : R® x R¥ — R defined by

| fla), if zeX, g(z)<ky,
®r(z,y) —{ +00, otherwise. ' )

Notice that evaluating @7 (0,y*) yields (cf. [16], [2]) with the definition of
the dual problem (D) introduced in Section 3 (with m = k and & = &) the
well-known Lagrange dual problem

(Dr)  sup inf{f(z)+ (y")"g(2)}
y*eK* T€

The next result guarantees the almost convexity of the function ®; under some
suitable conditions upon X, f and g.
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Theorem 4.1 If X C R" is an almost convez set, f:R® - R is an almost
convez function, g : R* — R* is a K -almost conver (vector -valued) function and

ri(X) Nri(dom(f)) # 0, (18)
then @y given by relation (17) is an almost convez function.

Proof: Define the linear operator T : R® x R x R¥ — R™ x R* x R given by
T(z,7,y) = (z,y,r). Then it is easy to verify that

epi(®r) = T(epi(f) x R*) N ((epix(g) x R) N (X x RF x R). (19)

By Lemmas 2.3 and 2.4 (i) the sets T'(epi(f) xR*), epix (9) xR and X x RF xR
are almost convex. If we show that

ri (T (epi(f) x R*)) Nri ((epik(g) x R) Nri (X x RF x R) # 0
or, equivalently,
T(ri(epi(f)) x R*) N (ri(epix(g)) x R) N (ri(X) x R x R) # 0, (20)

then the assertion follows by Theorem 2.1 (ii).

To do so, we consider ' € ri(dom(f))Nri(X), k' € ri(K) and ¢/ := g(z")+ k.

Since z' € ri(dom(f)) C dom(f) we may choose a number ' € R with fle') <
r’. The function f is almost convex, hence one has ri(dom(f)) = ri(dom(f)) and
(z') = f(z') (see [3] or [6]). It is also known (cf. [15]) that ri(epi(f)) = {(z,r) :
(z) < r,z € ri(dom(f))}, therefore («',r') € ri(epi(f)) = ri(epi(f)). Thus
(@', 7', y') € ri(epi(f)) x R* and (2',y/,7') € T(ri(epi(f)) x R¥).

More than that, by Lemma 2.5 one has (z/,y/,r') € (ri(epik(g)) x R) N
(ri(X) x R* x R). showing that (20) holds and concluding the proof. m

Notice that the regularity condition (18) in Theorem 4.1 is essential: if we
drop it, the almost convexity of ®, cannot be guaranteed, as the next example
shows.

f
f

Example 4.1 Consider the set C = ([0,2] x [0,2]) \ ({0}x]0,1]), let f = 6,
9 : R? > R defined by g(z,y) = —1 for all (z,y) e R:,, K =R, and X =
{0} x R C R%2. Then all the assumptions of Theorem 4.1 are satisfied, except
(18). Evaluating epi(®r) by formula (19) we obtain

epi(@2) = ({(0,0)} U ({0} x [1,2])) x [-1, +00[ xRy,

which is not an almost convezr set.
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Assuming relation (18) fulfilled, we say that the problem (P') satisfies the
generalized Slater condition if

0 € ri[g(X Ndom(f)) + K]
or, equivalently, (cf. Lemma 2.6 and Theorem 2.1)
0 € g(ri(X) Nri(dom(f))) + ri(K). (21)

The result below states strong Lagrangian duality for almost convex functions
under suitable assumptions.

Theorem 4.2 Suppose that the assumptions of Theorem 4.1 and (21) hold. Then
the strong Lagrangian duality holds, i.e. v(P') = v(Dy) and the dual problem
admits a solution.

Proof: We show that the assumptions of Corollary 3.1 hold for ® = &;.
Almost convexity of ®; is guaranteed by Theorem 4.1, so we only have to verify
the regularity condition

0 € riPrgx(dom(®r)). (22)

It is immediate to show that Prgedom(®L) = g(X Ndom(f)) + K, and so,
(21) is equivalent to (22). m

Notice that in case the cone K has a nonempty interior (as for instance when
K = Rk (the positive orthant of R¥)), the generalized Slater condition (21)
reduces to the (usual) Slater condition, namely

0 € g(X Ndom(f)) + int(K), (23)

or, equivalently, there exists an element & € X N dom(f) such that g(Z) €
—int(K). Indeed, since in this case g(X N dom(f)) + int(K) is an open set
we have by Theorem 3.2 of [7] that

rilg(X Ndom(f)) + K] = int[g(X Ndom(f)) + K]
= int[g(X Ndom(f)) + int(K)] = g(X Ndom(f)) + int(K).

Let us turn now to study Fenchel-Lagrange duality.
Consider the function ®p : R® x R™ x R¥* — R given by

i <
Bpa(o04) — { fla+uw), i zeX, ¢@)<xy,

400, otherwise.
Observe that evaluating ®%, (0, u*, y*) yields (cf. [16], [2]) with the definition
of the dual problem (D) introduced in Section 3 (with m = n+k and ® = ®pp)
the Fenchel-Lagrange dual problem

(Dr) s (=70 + i) e+ () g@)])

(24)

First we give sufficient conditions for the almost convexity of the function ®5y,.
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Theorem 4.3 If X C R™ is an almost conver set, f : R" — R is an almost
convez function, g : R™ — R* is a K -almost convex function and (18) holds, i.e.,
ri(X) Nri(dom(f)) # 0, then ®pr given by relation (24) is an almost convesx
function.

Proof: Consider the linear operators V : R” x R® x R¥ x R — R” x R x R¥ and
W R xRF x R® x R — R™ x R" x R* x R given by Viz,u,y,7) = (x +u,r,y)
and W(z,y,u,r) = (z,u,y,r), respectively. Then it can be easily checked that

epi(®rr) = V7 (epi(f) x R*) NW (epig(g) x R" x R)N (X x R" x R* x R). (25)

By the same arguments as in the proof of Theorem 4.1 it follows that the sets
W(epik(g9) X R* x R) and X x R x R¥ x R are almost convex. Since f is almost
convex, the set ri(epi(f)) x R* is nonempty, and so, if (z,ry) € ri(epi(f)) x
R, then (z,0,y,7) € V= (ri(epi(f) x R¥)), hence V=Y (ri(epi(f) x R¥)) # 0.
By Corollary 2.1 one gets that the set V~!(epi(f) x R*) is almost convex, too.
Therefore the assertion follows by Theorem 2.1 (ii) if we show that

ri(V= (epi(f) x RF)) Nri(W (epik(g) x R* x R)) Nri(X x R™ x R* x R) # 0.

Let us choose 2’ € ri(X) Nri(dom(f)), k' € ri(K), ' > f(z') and define y' :=
g(z') +k'. Then, by the same argument as in the proof of Theorem 4.1, (z/,7") €
ri(epi(f)). By Lemma 2.5, (/,3/,0,7') € ri(epik(g)) X R" x R and so, by Lemma
2.4 (i) it follows that (2,0,y/,7") € W(ri(epix(g)) x R* x R) = ri(W (epig(g) x
R™ xR)). It is obvious that («/,0,4/,r) € ri(X x R" x R¥ x R). Finally, since
(2',0,9',7") € V='ri((epi(f) x R¥)), by Theorem 2.2 we obtain that (@,0,y,r") €
ri(V = (epi(f) x R¥)). Thus we have found an element belonging to

ri(V = epi(f) x R¥)) Nri(W (epix(g) x R" x R)) Nri(X x R™ x RF x R),

showing that this set is nonempty. This completes the proof. m

Comparing Theorems 4.1 and 4.3 it can be seen that the same conditions
guarantee the almost convexity of ®7 and ® .. As the next result shows, the same
conditions guarantee the strong Lagrange and strong Fenchel-Lagrange duality
for almost convex functions.

Theorem 4.4 Suppose that the assumptions of Theorem 4.2 hold. Then the
strong Fenchel-Lagrange duality holds, i.e., v(P') = v(Dpy) and the dual problem
admits a solution.

Proof: We show that the assumptions of Corollary 3.1 hold for R” x R¥ instead
of R™ and for ® = ®p;. Almost convexity is guaranteed by Theorem 4.3, so we
only have to verify the regularity condition

(0,0) € riPrgaygs (dom(®pL)). (26)
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To this aim consider the function F': R® — R"® x R¥ given by F(z) = (—=z, g(x)).
It is immediate to check that Prgnygr(dom(®pr)) = F(X) 4 dom(f) x K.
Let us show that F' is a dom(f) x K-almost convex function. Indeed,

epidgom(fyxk (F) = {(z,u,y) € R" x R" x R* : (u,y) — F(z) € dom(f) x K}

= {(z,u,y) € R" x R" x R*: 2 +u € dom(f),y — g(z) € K},

which is nothing else than the domain of &g, for the particular case X = R".
We have shown in Theorem 4.3 that ® gy, is almost convex (for any almost convex
set X C R") and its domain being the projection of its epigraph, it follows that
eDlidom(f)xk (F') is an almost convex set, i.e., F' is a dom(f) x K-almost convex
function. Now applying Lemma 2.6 for R* x R¥ instead of R*, F instead of
g and dom(f) x K instead of M, we obtain that (26) is equivalent to (0,0) €
F(ri(X)) +ri(dom(f)) x ri(K), which is nothing else than there exists a vector
z' € ri(X) Nri(dom(f)) such that g(z') € —ri(K). Since the latter is equivalent
to (21), the proof is complete. m

4.2 Fenchel duality for almost convex optimization prob-
lems

Consider the functions f : R" — R, g : R* — R and a linear operator A : R" —
R*. Define @ : R® x R* — R by

Pp(z,y) = f(z) + 9(Az +y). (27)

The primal problem we deal with iﬁ this subsection is
(P inf {f(2) + g(A)}

Notice that evaluating ®% (0, y*) yields with the definition of the dual problem
(D) introduced in Section 3 (with m = k and ® = ®p) the well-known Fenchel
dual problem
(Dr) sup {—f*(—A"y") — g"(y")},
y*eRk
where A* denotes the adjoint operator of A. The next result, needed for Fenchel
duality, provides sufficient conditions for almost convexity of ®p.

Theorem 4.5 If f : R® — R and g : R* — R are proper almost convexr func-
tions, than the function ®p given by (27) is almost convez.

Proof: Let us consider the linear operators V : R” x RF x R — R"” x RF x R
and W :R" x R x R* x R — R™ x R* x R defined by V(z,y,7) = (z, Az +y,7)
and W(z,r,y,s) = (z,y,r + s), respectively. Then a simple calculation shows
that the epigraph of @ can be evaluated as epi(®r) = V1 (W (epi(f) X epi(g))).
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Indeed, (z,y,7) € epi(Pp) & f(2)+g9(Az+y) <r < ((z, f(2), (Az+y,r —
f(2))) € epi(f) x epi(g) & (z, Az +y,r) € W(epi(f) x epilg)) & (z,y,7) €
V=HW (epi(f) x epi(g))).

By Lemma 2.3 and Lemma 2.4 (i) it follows that W (epi(f) x epi(g)) is an
almost convex set, and by Corollary 2.1 we conclude the proof if we show that
V=Hri(W (epi(f) x epi(g)))) # 0. Since [ and g are almost convex, ri(epi(f)) x
ri(epi(g)) # @, thus, by Lemma 2.4 (i) we obtain ri(W(epi(f) x epi(g))) =
W(ri(epi(f) x epi(g))) # . Choose an element (', y',7") € ri(W(epi(f) x
epi(g))). Then (z/,y — Ax',7') € V= (ri(W (epi(f) x epi(g)))) and we are done.

n

Notice that differently to Theorems 4.1 and 4.3 in Theorem 4.5 no regularity
condition is needed.

Now let us give sufficient conditions for the Fenchel duality in case of almost
convex optimization problems.

Theorem 4.6 If the assumptions of Theorem 4.5 are satisfied and

ri(dom(g)) N A(ri(dom(f))) # 0, (28)

the strong Fenchel duality holds, i.e., v(P?) = v(Dr) and the dual problem admats
a solution.

Proof: By Theorem 4.5 we obtain that ® is almost convex. The result follows
by Corollary 3.1 if we show that

0 € riPrge(dom(®r)). (29)

To do this, let us observe that y € Prgx(dom(®p)) « Iz € R™ flz) +
g(Az +y) <400 & Iz € R : 2 € dom(f), Az +y € dom(g) & Iz € R : ¢z €
dom(f),y € dom(g) — Az & y € dom(g) — A(dom(f)). This shows that (29) is
equivalent to 0 € ri(dom(g) — A(dom(f))), which is equivalent to (28). m

Let us finally notice that in Theorem 4.6 we have rediscovered the strong
Fenchel duality result for almost convex optimization problems presented in [3]
by using a different approach.
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