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Abstract. In this paper we derive by means of the duality theory necessary
and sufficient optimality conditions for convex optimization problems having as
objective function the composition of a convex function and a linear continuous
mapping defined on a separated locally convex space with values in an finite-
dimensional space. We use the general results for deriving optimality conditions
for two portfolio optimization problems having as objective functions different
convex deviation measures.
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1 Introduction

The portfolio optimization theory is an important field of the optimization theory
having its roots in the work [4] of Markowitz published in 1952. The problem
considered there is to find an optimal portfolio in the sense of maximizing the
expected profit of the portfolio while minimizing its risk, which leads actually
to a multiobjective optimization problem. In this classical framework one can
meet some quiet natural requirements: risk is measured by the classical variance
or standard deviation, short sales are excluded and the sum of the portfolio
fractions is equal 1.

Since this paper has been published by Markowitz many authors extended or
changed the form of the feasible set in the classical case. Another direction
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of research consisted in using different objective functions, besides the variance
and standard deviation, for measuring the risk of a portfolio. Some important
functions used in the literature for this purpose are the so-called risk and deviation
measures. The class of coherent risk measures was introduced in an axiomatic
way in 1998 in [1]. Other papers written on this topic in the last time are due to
Rockafellar, Uryasev and Zabarankin (cf. [8],[10]), Ruszczynski and Shapiro (cf.
[11]), Plug (cf. [5]) and Follmer and Schied (cf. [3]).
The classical portfolio optimization problem is a vector optimization problem,
one way to treat it being the use of different scalarization techniques. One can
also avoid dealing with the expected profit of the portfolio as a component of
the objective function, by including it as a constraint in the feasible set of the
optimization problem (cf. [7], [9]). Thus besides the classical constraints for
the portfolio optimization problem one can integrate different assumptions for
feasible portfolios.
In this paper we consider the following optimization problem

(p) it f (Az),

zeX

where Z is a separated locally convex space, X C R" is a nonempty convex set,
f: Z — R is a convex function, A : R* — Z is a linear continuous mapping
and g : R* — R™ is a vector-valued function with the components being con-
vex functions. To (P) we assign a conjugate dual problem and prove weak and
strong duality theorems, the latter under the fulfillment of a regularity condition.
Furthermore, for the primal and dual problem we derive necessary and sufficient
optimality conditions by means of strong duality.
Particular instances of the general optimization problem (P) have been consid-
ered in the framework of the portfolio optimization theory, where z has been
interpreted as a portfolio vector of some given assets and Az has been providing
its random return. Rockafellar and Uryasev considered in {7] the minimization
of the variance, of the Value-at-Risk and of the Conditional-Value-at-Risk re-
garding the classical constraints. In [9] additional affine constraints have been
introduced, sometimes under the claim of having positive portfolio fractions. Suf-
ficient optimality conditions have been formulated by means of the so-called risk
envelope. In the same paper, portfolio optimization problems, the feasible set of
which containing a riskless asset, have been also considered.
This paper is organized as follows. In the following section we introduce some
definitions and notations from the convex analysis and stochastic theory we use
within the paper. In Section 3 we construct a conjugate dual for the optimization
problem (P) and prove the weak and strong duality theorems. By using the latter
we derive necessary and sufficient optimality conditions. In the last section we
present some special portfolio optimization problems with the objective function
defined by means of two convex deviation measures, namely the generalized vari-
ance and the generalized lower semivariance, respectively. We introduce for these
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problems their conjugate duals and derive by using the general results developed
in Section 3 necessary and sufficient optimality conditions.

2 Notations and preliminaries

Let Z be a separated locally convex space and Z* its topological dual space which
we endow with the weak* topology. We denote by (z*, z) := z*(z) the value of
the linear continuous functional z* € Z* at x € Z.

For a set D C Z we denote by dp : Z — R = RU {£o0} the indicator function
of the set D, that is defined by

6D(ac):{ 0, z €D,

+00, otherwise.

When D is a non-empty subset of Z we consider for f : Z — R the conjugate
relative to the set D, f}, : Z* — R defined by

fp(a*) = sup{(z*, z) — f(z)}.
zeD
One can see that for D = Z| f}, becomes the (Fenchel-Moreau) conjugate function
of f which we denote by f*. The effective domain of a function f : Z — R is
dom(f) ={z € Z: f(z) < +oo} and we will say that f is proper if dom(f) # @
and f(z) > —o0, Vz € Z.

For an optimization problem (P) we denote by v(P) its optimal objective value.
We write min (max) instead of inf (sup) if the infimum (supremum) is attained.

The following result is the so-called Fenchel duality theorem (for a general version
of this result one can consult [13]):

Theorem 2.1. Let h: R* —» R and f : Z — R be proper and convez functions
and A : R® — Z a linear continuous mapping. Assume that 32’ € dom(h) N
A7l (dom(f)) such that f is continuous at Az’. Then it holds:

inf {/(A2) + h(2)} = max {~h"(~A"0") = *(=")}.

Consider now the probability space (2, §,P), where € is a basic space, § a o-
algebra on Q and P a probability measure on the measureable space (2,F). We
assume later (cf. section 4.2 and 4.3) that Z is a space of measureable real-valued
random variables on €, more precisely Z = L,(Q, §, P, R) (cf. section 4.1).

Equalities and inequalities between random variables are to be viewed in the
sense of holding almost surely (a.s.) regarding P. Thus for z,y : 2 — R when
we write “c = y” or “z > y” we mean “z =y a.s.” or “x > y a.s.”, respectively.
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Having a random variable z : 2 — R which takes the constant value ¢ € R, i.e.
T = c a.s., we identify it with the real number ¢ € R.
For an arbitrary random variable z : 2 — R, we also define z_ :  — R as being

r_(w) := max(—z(w), 0) Yw € Q.

3 Optimality conditions via strong duality

In this section we consider a conjugate dual problem to an optimization prob-
lem with the objective function being the composition of a convex function with
a linear continuous mapping with respect to convex inequality constraints. We
prove weak and strong duality assertions and derive by means of the latter nec-
essary and sufficient optimality conditions. The primal optimization problem we
consider is

P inf
(P) O f(Az),
zeX

where X C R" is a non-empty convex set and f: Z — Ris a proper and convex
function. Further we assume that A : R* — Z is a linear continuous mapping
and g : R* — R™, g = (g1,...,9m)T be such that g; : R* - R4 = 1,...,m
are convex functions. For A € R™ let A\T¢g : R* — R be the function defined
by (A\Tg)(z) = ATg(x). By “<” we denote the partial ordering induced by the
non-negative orthant R on R™.

In the following we introduce a dual problem for (P) and prove weak and strong
duality theorems. The dual problem (D) to (P) we consider in this section is

(D) sup {=f*(z") = (\Tg)x (~A%z")}. (1)
ok

For the beginning the following result can be easily proved.
Theorem 3.1. Between (P) and (D) weak duality holds, namely v(P) > v(D).

Proof. Let z be feasible to (P) and (A, z*) be feasible to (D). By the Young-
Fenchel-inequality one has:

f(Az) > (z*, Az) — f*(z).
Since g(z) € —RT and A € R, we get ATg(x) < 0. Thus one has Vz € X,

f(Az) > —f*(z*) + X g(x) + (z*, Az),



from which follows
fldz) > ~ (@) + nf (Ng(@) + (a*, Az} = — (") — (Vg (~A'").
Since x, A and z* have been arbitrary chosen, we get

v(P) = mf f(Az) > sup {=f"(=") = (\Tg)x(=A*z")} = v(D).
g(l‘)<0 x EZ*
O
Remark 3.1. As the proof shows, the assertion of Theorem 3.1 applies without
any convexity assumptions for the problem (P).

In order to close the gap between the primal and the dual problem and to guaran-

tee the existence of an optimal solution for the dual problem we need a so-called

regularity condition. For (P) the regularity condition we assume looks like
g:(z') <0, ielL,

(CQ) 3z’ € ri(X) N A7 (dom(f)) : g:(z') <0, i€ N,
f is continuous at Azx’,

where L = {i € {1,...,m} : g; is affine} and N = {1,...,m} \ L. We can prove

now the strong duality theorem.

Theorem 3.2. Assume that (CQ) is fulfilled and v(P) > —oo. Then strong
duality between (P) and (D) holds, namely v(P) = v(D) and (D) has an optimal
solution. /

Proof. We prove the existence of strong duality in a constructive way. The La-
grange dual problem (Dy) to (P) is

(Dyr) sup inf {f(Ax) +Mg(2)}.

Py Rm z€X

Since fo A and g¢;, i = 1,...,m, are convex functions defined on R™ and (CQ) is
fulfilled, strong duality between (P) and (Dr) follows (cf. Theorem 28.2 in [6]),
i.e. (Dy) has an optimal solution A and we have

v(P)=v(Dr) = ;\2% inf {f(Aa:) +Ag(z)}

= inf {/(Az) + X g(@)} = inf {/(Az) + X g(2) + Ix(2)}.
Let us consider the problem iélmfn{ f(Azx) + XTg(x) +dx(z)}. Since dom(XTg N
dx) = X and (CQ) is fulfilled, by Theorem 2.1 there exists * € Z* such that
nf {f(Az) + X g(2) + 0x(2)} = max{~f"(=") - (X g+ 6x)"(~A"2")}

= @) - (N 9)x(-AT).



In conclusion (X, z*) is an optimal solution of (D) and it holds
v(P) = max {—f"(z") - (Wo)y(~4'2")} = @) — (X 9)x(—A'T) = (D).
+7
z*eZ*

This concludes the proof. |

By means of the strong duality we derive necessary and sufficient optimality
conditions for the primal optimization problem (P).

Theorem 3.3. (a) If (CQ) is fulfilled and (P) has an optimal solution T, then
(D) has an optimal solution (X, z%) such that the following optimality conditions
are fulfilled:

@) f(AZ)+ f*(@) - (AT, 77) =0,
(i) (AZ,7%) + (N g)x(~AT) =0,
@i5) (N g)(&) = 0.

(b) Let T be feasible to (P) and (X, 7%) be feasible to (D) fulfilling the optimality
conditions (i) — (i1i). Then T is an optimal solution for (P), (X, %) is an optimal
solution for (D) and v(P) = v(D).

Proof. (a) Since (P) has an optimal solution and (CQ) is fulfilled, Theorem 3.2
guarantees the existence of an optimal solution for (D), (X, 7%), such that

w(P)=u(D) & f(AT) = —'@) - (X 9)x(~AT)
& f(AT)+ [*@) — (AT,T) = —~(AT,T) — (X 9)x(—A'T),
which can be equivalently written as
sz + 1@ - (7)) - [ o))
+ iz, 7+ ()@ - inf e, 4T + @) =0. 2
On the other hand, by Young-Fenchel’s inequality it holds
f(AZ) + f*(@¥) — (AT, z%) 2 0. (3)

Since 7 is feasible to (P) and X € RT" we have

~(\'g)(@) 2 0. (4)



Finally the following inequaiity is fulfilled:
(42,7 + (X g)(7) — inf {(x, A'T) + (' g)(2)} 2 0. (5)

So formula (2) consists of 3 nonnegative terms, their sum being equal to zero.
This means that (3), (4) and (5) are fulfilled with equality, which is nothing else

than (i) — (i) are fulfilled if we drop (—):Tg)(f) in (5) based on ().

(b) All calculations done within part (a) can be carried out in reverse direction.
Thus it follows

~ s= T —
f(AZ) = =" (z%) — (X g)x(—A"z),
which together with Theorem 3.1 guarantees that 7 is an optimal solution to (P),

(A, 7%) is an optimal solution to (D) and v(P) = v(D).
Let us notice that for this statement no convexity assumption is needed. a

In the following section we apply the results developed in this section to special
portfolio optimization problems.

4 Applications to portfolio optimization

4.1 Convex risk and convex deviation measures

In this section we consider some particular instances of the general optimization
problem (P) coming from portfolio optimization with the objective function being
a so-called deviation measure. To this end some explanatory notions are first
necessary.

For a random variable z : 2 — R we define the ezpectation value with respect to
P by

The essential supremum of x is
essupz = inf{a € R: P(w : z(w) > a) = 0}.

Furthermore, for p € (1, +00) let L, be the following space of random variables:

L,:=L,Q,5PR)= {x Q—-R, z measureable,/lx(w)|pd]P’(w) < +oo}.
Q

The space L, equipped with the norm ||z||, = (E(|m|p))zl"’, xz € Ly, is a Banach
space. It is well-known that the dual space of L, is L, := Ly(Q2, §, P,R), where
g € (1,+00) fulfills 2 + 2 = 1.



For z € L, and z* € Ly we have (z*,z) = [2*(w)z(w)dP(w) = E(z*z) as
Q

representation of the linear continuous functional (cf. [12]).

In the following we recall the notion of a convez deviation measure on L,. The
convex deviation measures have been introduced for the first time in [8] in con-
nection to the convex risk measures. The latter are nothing else than extensions
of the coherent risk measure which are widely used in practice. The following def-
inition introduces the notion of a convex deviation measure in an axiomatic way.
Examples of convex deviation measures are the variance, the lower/upper semi-
variance, the standard (lower/upper) semideviation, the (lower/upper) semidevi-
ation and the Conditional Value-at-Risk Deviation (CVaRD).

Definition 4.1. The function d : L, — R is called convez deviation measure if
the following properties are fulfilled:

(D1) Translation invariance:  d(z + b) = d(z), Yz € L,, Vb€ R;
(D2) Strictness:  d(x) >0, Vz € L,
(D3) Convezity:  d(Az+(1-X)y) < Md(z)+(1-Nd(y), VYA€ [0,1],Vz,y € L,

If d is a convex deviation measure, a so-called convez risk measure p:L,— R,
is defined by p(z) = d(z) — E(z). The most prominent example of convex risk
measures is the Conditional Value-at-Risk (CVaR).

4.2 Minimization of the generalized variance

A natural aim in portfolio optimization is minimizing the risk of a portfolio
while maximizing its expected return/profit (cf. [4]). In the classical literature
on portfolio optimization risk is measured by the variance with respect to some
classical constraints ensuring positive fractions in the portfolio with the sum
equal 1. A classical strategy of dealing with this multiobjective optimization
problem is to eliminate the maximizing function and to add a constraint for the
expected return. Thus, in practical applications, a special benchmark must be
chosen, which should be achieved by the return. In modern portfolio optimization
different risk and deviation measures can be considered when dealing with this
problem.

In [7] the portfolio optimization problem with the feasible set taken in the fol-
lowing calculation was considered for different objective functions, such as the
classical variance, the Value-at-Risk and the Conditional Value-at-Risk.

In the first application we deal with the minimization of the generalized variance,
a problem which contains the minimization of the variance as a special case. Let



a

(P,) be the following primal problem:
inf

inf vazR ]E(le >
(P'U) P n
G:{xeR":xio, in—lzo,B—E<inRi)§0},

where ¢ > 1 and R, : @ >R, R €L, VYi=1,..,n We define by
R(w) = (Ry(w), ..., Ry(w)), Yw € Q, the n- tupel contalmng the random returns
for the cons1dered assets and we assume that

B< max_ ]E(R,) (6)

1e{l,..

n

Then we look for portfolios z with expected return E (z :ciRL-> of at least equal
i=1

to B. The optimization variable z = = (21,...,Z,)T can be interpreted as the

portfolio vector for n given assets. The constralnts taken in (P,) are most common
in the context of portfolio optimization. They forbid short sales and force that
the portfolio consists of the given assets.

Let us notice that (P,) can be written as
(P inf diy(4z),

where d; : L, — R,
dy(z) = ||z — E(z)][3

Il (a>1)

is the so-called generalized variance and A4 : R* — L,, Az = Z z;R; is a linear
continuous mapping. Let g : R® - R*xRxRxR = R"*3 be the following vector
function: g(z) = (—x sz -1,1—- sz,B E(leR,)) Fora=p=2,d;
becomes the classical vamance The generahzed variance is a convex deviation
measure and its conjugate function d} : L, — R is given by (cf. [2])

& (z*) = { min {(a =3 - C)H;%l}, E(z*) = 0,

ceR .
400, otherwise.

One can notice that for a portfolio vector z, Az provides the random portfolio
return.

For calculating its adjoint operator A* : Ly — R take z € R® and z* € L,.
Then we have

(Az,z*) <szRz,:z: > ((2:;3:1%,) x)

= in]E(Rix*) = (E(z"Ry),...,E(z*R,))z = (z, A*z*)



and so we get
A*z* = (E(z*Ry), ..., E(z*R,))T. (7)

For finding the dual of (P,) (cf. (1), where X = R*, Z = L,, Z2* = L, and
m=mn+3)

(D) sup  {~dj(z") — (\Tg)*(-A"z")},

AR}, z¥ €Ly

we need to make first some calculations. For A = (o, 8, 8%,7) € RT xRy xR, x
R, = R%" we have

(\Tg)"(-A"z") = sup {y"(~A"2") — (\Tg)()}

- sup { zz:;yi(—A*:c*)i + ; oy — ! (; yi — 1> L (1 - 2_; w) (8)
- (B - ii;yiE(Ri)> }

- sup { gyi(—A*x*)i " ; ay: — (6~ %) (2_:, i - 1)

y (B - gyﬂ(m)) }

— sup {Zyx—(A*x*)i +o— (B - )+ 71@(&))} (8" -8~ B

yeRr® i=1
_ p'— 3 — B, if —(A*z*);+a;— (B — B +1E(R) =0,i=1,...,n,
] +oo, otherwise,
Bt — B2 —B, ifa,=p'-F+E@*R) —1E(R:),i=1,...,n,
- i (9)
~+00, otherwise.
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So one has the following dual problem:

(Dy)

z*€Lg,E(z*)=0, ceR
(IGR;I ’ﬂl €R+ 7:82 €R+ ,’YGR+ )
a;=p"~p?+E(z" Ri)—7E(R:),

i=1,.,n

sup {—min{(a—l)H%(z*—c) E__l}—ﬂlﬂ—ﬂz%-'yB}

—ﬂ+vB}

a

1 a—1
& sup (1—a)||=(z*—¢)
z*€Lq,E(z*)=0, a
ceR,B:=p1 —B2cR yeR 1,
~B<E(z* Ry)~7E(R;) i=1,...,n

q

~—

z*€Lg,E(z*)=0, a q ie{l,...,n}
CER,’YER+

& sup {(1 —a) l(av* —c = + min (E(z*R;) — vE(R;)) + ’yB} i

Remark 4.1. For z* € Ly, y € L, we denote by cov(z*,y) = E((z* — E(z*))(y —
E(y)) the covariance of the random variables z* and y. If for z* € L,, E(z*) =0
then one has

cov(z*, R;) = E((z* — E(z*))(R; — E(R;))) = E(z*R;) — E(z")E(R,) = E(z*R,).

Thus the dual problem can be written as

(D)
1 a1
sup (I—a)||=(z"—¢) + min (cov(z*,R;) — vE(R;)))+vB ;.
z*€Lgq,E(z*)=0, a q ie{l,...,n}
ceERyeER+
Since the inequality constraints of (P,) are affine and z' = (1,0,...,0)T is a

feasible point to (P,), (CQ) is fulfilled. Moreover, one can easily see that v(P,) >
0.

By Theorem 3.2 we can state now the following strong duality theorem.

Theorem 4.1. Between (P,) and (D,) strong duality holds, i.e. v(P,) = v(D,)
and the dual problem (D,) has an optimal solution.

Remark 4.2. Since the problem (P,) has a compact feasible set and a continuous
objective function, the existence of an optimal solution T for it is guaranteed.

Next we derive necessary and sufficient optimality conditions for (P,) and (D,)
by using Theorem 3.3.

Theorem 4.2. (a) Let T be an optimal solution for (P,), then (D,) has an opti-
mal solution (z*,T,7) € Ly x R x Ry such that the following optimality conditions
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are fulfilled:

(1) gTiRi—E(gfi&) :+(a—1)H%(F—E) f
— cov (F,zn:@}zi) =0,

@ E@) =0, =

) %‘e%‘{(a*)H%(F—c) f}z(a—nH%@I_a q_

(4) ; cov(@, Ry ~7B < _min_ {eov(@, Ry) ~7E(R:)}-

(b) Let T be feasible to (P,) and (z*,¢,7) be feasible to (D,) fulfilling the optimality
conditions (1)-(4). ThenT is an optimal solution for (P,), (z*,¢,7) is an optimal
solution for (Dy) and v(P,) = v(Dy).

Proof. (a) In order to prove the theorem we just have to particularize the condi-
tions (i) — (444) in Theorem 3.3. By the latter, for T € G there exists z* € L, and

A= (6,31,32,7) e R xRy xRy xRy and 8= Bl —32 € R such that (cf. (8))
- - T 1L 7T
ZCB,RZ—E<Z$1R1> +ICHEIHI{1{(CL—1)\ ;(LE —C) }
i=1 i=1 p q
~E (FZ@&) =0,
i=1

(@)

E(z*) = 0,
(i) E (‘:F*Z@Ri) +B-7B =0,
i=1
@ = B+ E(@*R) — 7E(R:), Vi=1,.

(i)  — Zaﬁi +B (Z T — 1) +7 (B - Z@E(Ri)) =0.

1=

7n7

Let now ¢ € R be such that

e _ P
a—1 1

}=<a—1>H§(F—a

e
ceR
q q

min {(a - 1)“%(?— 8

12



Since @; > 0, ¢ = 1,...,n, conditions (¢) — (4i¢) can be equivalently written as

(57)

-
a—1

(@)

+(a—1) E—_E)

q

i=1

T¥) =

ﬂ%{@—lH ;*}=4a~nH5F>f>:i
(#) E (.FZE,R,-) +B8—-7B =0,
-B< i {E(z*R;) — 7E(R:)},
(i) - Z E(z*R;)Z; — B +7B = 0.
i=1
Observe that in (i4i) we have substituted @; by B+E(z*R;)—YE(R;), i = 1,...,n.

Using that Z E(z*R;)T; = E (ac* >, sz,> the relations (7) — (i¢7) become equiv-

alently
—ECFiﬁﬂJ:Q
@) E@F) =0, -
Q g%%wﬁﬂgﬁ—@ o

~(z* -7)

’
a

ﬁ}:w—n

(4 > E@R)T: 7B < in {E(@°Ri) — VE(R;)}.

.....

q

Using Remark 4.1, this leads to the desired solution.

(b) The calculations given in part (a) can be done in reverse order and the
conclusion follows. O
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4.3 Minimization of the generalized lower semivariance

The minimization problem we treat in this subsection has the following formula-

tion (ixiRi_E<ixiRi>>
G= {:ceR”- sz—l—O B - E(le Z>g }

wherea > 1, R, : Q2 = R, R; € Lp(z =1,...,n), Rlw) = (Ri(w),..., Ry(w)) is
the n-tupel of random returns for the considered assets and B € R is a constant
benchmark for the expected return of the portfolio represented by z € G.

Further, the first asset is assumed to be riskless, namely 0 < E(R;) = R, =
const. Usually, the expected values E(Ry), ..., E(R,) of the components of R are
assumed to be possitive, i.e. E(R;) = (1,R;) > 0, Vi = 1,...,n. Moreover,
we assume that G is nonempty. Let us remark that this could be guaranteed by
assuming that (6) holds. The portfolio fractions have the sum equal to 1, but
this time we permit short sales, that arises for z; < 0. Optimization problems
where one can find similar formulations of the feasible set have been treated in

[9]-
Let us notice that (P;) can be written as
(Fs) inf dy(Az),

a

(Ps) inf

z€G

p

where dy : L, — R,
do(z) = [|(z —E(z))-|l; (a>1)

is the so-called generalized lower semivariance and the linear continuous mapping
n

A:R" — L, is given by Az = ) x;R;. As we have seen in the previous section,
i=1

for 2* € L,, A*z* = (E(z*Ry),...,E(z *Rn))T. Further we define g : R* —
RxRxR=R3 g(x) = (Zx,—l 1-— Zml,B E(sz z))

The generalized variance as treated in the prev1ous subsectlon has the disadvan-
tage of measuring both positive and negative deviation. In financial application
often only loss, represented by negative deviation, is important. This is the rea-
son why we use the generalized lower semivariance as deviation measure. For
a = p =2, dy becomes the classical lower semivariance.
The generalized lower semivariance is a convex deviation measure and its conju-
gate d5 : L, — R is given by (cf. [2])

dy(z) = { (a — 1)||1(essupz* — z*) ot E(em) =0,

+00, otherwise.
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For finding the dual of (P;) we also need to make some calculations. For A =
(o}, 02, B) e Ry x Ry x Ry = R3 we have

(\Tg)*(-A%z") = sup {y"(-A"z") = (\T9)(»)}
:sup{zn:yi( A*z") (Zyz—l) 2<1—Zyi>
-3 (B - Xn:yiE(Ri)> }

i=1

- {Sneren-etoan (Sus) -a(a-Suem)|

1

= sup {zn: ( - (A*l'*)i - Oél -+ a2 -+ ﬁE(R;))yl} + al - Oé2 — ﬂB

CE e
[ a'—a?—-pB, if —(A*z*);—al+a?+PER)=0,i=1,...,n,
| oo, otherwise,
[ a'—a?—pBB, ifa'—a?=-E(z*R;)) + BE(R)), i=1,...,n, (10)
) oo, otherwise.
Now the dual problem turns out to be (cf. (1))
1 =T,
(Ds) sup (1—a)||-(essupz* — z*) —a +a°+pB}.
(z*,al,az,ﬁ)EquR+xR+ xRy, a q
E(z*)=0,
al—a?=—E(z* R;)+BE(R;),
i=1,...,n

Since for ¢ = 1, R; = R; is constant and a := a! — a? € R, if E(z*) = 0 we get
a+E@R) o
E(R;) Ry’

Because of § > 0 we must have @ > 0 and as E(z*R;) = cov(z*, R;), for z* €
L,, E(z*) = 0, the dual can be equivalently written as follows

a1 B
—af1-=)}.
g ( Rl)}

Remark 4.3. A special case of the considered example arises if we choose B =
Ry, i.e. the expected portfolio return should at least achieve the riskless return.
Optimization problems with the feasible set being defined like for (Ps) (for B =
Ry + A, A > 0) have been treated in [9)].

A=

1
E(essup zt — %)

(Ds) sup {(1 —a)

(x*,a)ELqX]R+,
E(z*)=0,

(E(R )_COV(Z*aRi),i=2,...,n

15



Since the constraints in (P;) are affine and the feasible set is nonempty, (CQ) is
fulfilled. Moreover, let us notice that v(P;) > 0. By Theorem 3.2 we can state
now the following strong duality theorem.

Theorem 4.3. Between (P;) and (D) strong duality holds, i.e. v(P;) = v(Ds)
and the dual problem (D,) has an optimal solution.

Now, by Theorem 3.3, we can derive necessary and sufficient optimality condi-
tions.

Theorem 4.4. (a) Let T be an optimal solution of (Ps), then (Ds) has an opti-
mal solution (z*,@) € Ly, x Ry such that the following optimality conditions are

fulfilled:

— cov (:p_ i@RJ =0,

a

a a—1

1 —  —
+(a— l)Ha(essupm* —z*)

q

—
(=2}

~—
Rl

(2) E@@*) =0,

(3) o <1 + R%) = cov (5;‘ ZZ:;@Rz) ,

4 a (E;R") - 1) =cov(z5,R), i =2,...,n,
(5) @>0, 1

B- i@E(R,-)) = 0.

(b) Let T be feasible to (P;) and (z*, @) be feasible to (D;) fulfilling the optimality
conditions (1)-(6). Then T is an optimal solution for (Ps), (z*,@) is an optimal
solution for (Ds) and v(Ps) = v(Ds)

Proof. (a) By Theorem 3.3, for T € G we get the existence of z* € L, and
A= (@',a?% B) € Ry xRy x Ry such that the following conditions hold (cf. (10),
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where @ = @' — o2 € R)
(3) H (Z ZiR - E (Z zm))
i=1 =1 — P
— Cov (E}—, Zf,Rz) = 0,
i=1

a

a a—1

1 —
+(a — l)Hg(essupx* - z¥)

q

E(z%) = 0,

(1) cov (F, Z'x’JL) +a@— 6B =0,
i=1

For i =1, from (ii) we get 3 = REI and the optimality conditions become equiva-

lently
a
1 — —
+ (a — 1)Ha(essup T* — z¥)

(?) H (gfiRi -E (,2:; fiRi>>_ .

-2 _
a—1

q

E(z*) =0,
(¢1) @+ BB = cov (F, ZE,&) ,
=1
- [a%
ﬁ - R_l’
= _ a+cov(z*, R) .
b= (R , 1 =2,...,n,

Gii) @+PB=ay z+FY TE(R).
=1 i=1

=

Since § > 0 it follows that & > 0 and the following conditions are equivalent to
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the previous one:

o | (zR E (ZR)) p
— cov (x_ if@) =0,

a

@ a—1

1 —
+(a — 1)Hg(essupm* —z*)

q

(2) E@@¥) =0,

3) @ (1 + R£1> = cov (F, Z -’Esz) ,
_(E(R)) B —

(4) a R 1) =cov(z*,R;), 1 =2,...,n,

(5) @ >0,

6) @ (B— ‘n EﬂE(Rﬁ) ~0.

(b) The calculations given in part (a) can be done in reverse order and the
conclusion follows. U
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