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Abstract

In this paper, we study mathematical properties of a generalized bivariate Ornstein-
Uhlenbeck model for financial assets. Originally introduced by Lo and Wang, this
model possesses a stochastic drift term which influences the statistical properties of
the asset in the real (observable) world. Furthermore, we generalize the model with
respect to a time-dependent (but still non-random) volatility function.

Although it is well-known, that drift terms — under weak regularity conditions —
do not affect the behaviour of the asset in the risk-neutral world and consequently the
Black-Scholes option pricing formula holds true, it makes sense to point out that these
regularity conditions are fulfilled in the present model and that option pricing can be
treated in analogy to the Black-Scholes case.
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1 Introduction

We consider the price P, of a financial asset during the time interval [0,7]. By p; the
logarithm of the asset price is denoted, p; = InP,. The basis for the model which is
analysed in this paper forms the Bivariate Trending Ornstein-Uhlenbeck model of Lo and
Wang, introduced in [3]. The logarithm of the asset price p; is assumed to have a linear
deterministic trend pt. Then it is convenient to introduce the process

¢t =Py — KL, (1.1)
and to consider the stochastic properties of the centered (detrended) log-price process g;.

Uncertainty is modelled by means of a complete filtered probability space (2, F,P). Addi-
tionally, we consider a filtration (ft)te[o 7) satisfying the usual conditions (see for instance
[4]). The Bivariate Trending Ornstein-Uhlenbeck model of Lo and Wang assumes that g;
satisfies the following pair of stochastic differential equations,

th = — (’th - )\Xt) dt + O'thq

1.2
dX, = —BX,dt + ox AW, (1.2)

where y >0, A>0,8>0,0 >0, u € R and ox > 0 are real-valued parameters, the initial
conditions go = ¢;, Xo = cx hold and W9 and WX are correlated Wiener processes with
correlation coefficient s, i. e. E (WIW/X) = st.

As a motivation for considering this model Lo and Wang argue that empirical observations

have indicated that the returns r; = In (%) show certain correlation patterns, which
means that the classical Black-Scholes model is inappropriate for describing the price process
of these assets. For a detailed discussion and further properties it is referred to [3]. In this
paper, the aim consists only in the description of the mathematical properties, namely in
the explicit solution of the defining stochastic differential equations and in the problem of

pricing European call options written on a corresponding asset.

The process X; which influences the stochastic drift component of ¢; is some underlying
process, which may also be relevant for other assets. It should be noted, that if one is not
able to observe it, one could also consider a scaled version Xt = iXt‘ This process Xt
satisfies the stochastlc differential equation

dX, = —fX,dt +1dW[X

with initial condition Xo = ¢x 1= icx. Thus, setting P Aox the process q; could also
be described by '

dg; = — (’yqt - S\)A(t) dt + o dW{

. R (1.3)
dX; = —BX.dt + 1dW}X

with initial conditions gy = ¢, and Xo = Cx.

However, in this paper we consider the model in the form (1.2). We restrict our considera-
tions to the case of independent Wiener processes W7 and W#, i.e. 3¢ = 0. On the other
hand with respect to several effects in option pricing we are interested in a more general be-
haviour of the asset prices with respect to the risk neutral measure as the constant volatility
coefficient o would admit. Therefore we generalise this model inasmuch as we allow the
volatility o to be time-dependent (but still non-random).
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Furthermore, in order to allow a scaling of the prices (which plays the role of adjusting
the monetary unit) we introduce an additive constant d to g;. Obviously, this leads to a
multiplication of the asset prices by exp(d).

Summarising, the model which is in the focus of this paper is described by

Model 1.1 We assume that the detrended log-price process
@ :=InP —ut—d (1.4)
of a tradable financial asset satisfies

dgy = — (vq: — AXy) dt + o(t) AW/

1.5
dX, = —BX,dt + ox dW;X . (1.5)

with u,d € R, v > 0, A > 0, # > 0 and a time-dependent, continuous volatility function
o(t) with o(t) > 0,0 < t <T. The initial values gy = ¢ and Xy = cx are assumed to be
stochastic variables with finite second order moments, i.e.,

]Ec§<oo and Ec% < 00.

Furthermore, we assume the vector (¢, cx )T, which contains the initial values of the processes
¢ and X, and the Wiener processes W9, W to be mutually independent.

Using Itos Lemma it can be easily shown that under the assumptions of Model 1.1 the price

process itself satisfies the stochastic differential equation

o?(t)
2

dP, = (—fylnthL’yutwL'yd—!-)\Xt-F,u—l- )Bdt+a(t)Ptde, (1.6)

with initial condition Fy = exp(d + ¢,) .

2 Solution of the stochastic differential equation

As model 1.1 leads to a system of linear stochastic differential equations, the solution can
easily be derived. This will be done in this section, we will prove the existence and uniqueness
of the solutions ¢; and Xy, ¢t € [0,T] of (1.5). To do this, we combine the processes g; and
X, into an R?-dimensional random process Y; and the independent Wiener processes W4
and WX into a 2-dimensional Wiener process W, i. e., we set

N _ Wtq
Y, = (Xt> and W, = (th) .

Thus, the system (1.5) attains the form

4y, = (_07 i >Y;dt+ <"(()t) U(L) aw, (21)

with initial value Yy = ¢ := (¢, ex)7, which is a linear stochastic equation in the narrow
sense (cf. [1][p. 128 ff.]). Note, that the matrix-valued function B : [0,T] — R2*2, defined

N by = (0 0)
’ 0 ox/’
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is measurable and bounded on [0,7]. Thus, Theorem 8.1.5 of [1] implies that for every
initial value ¢ there exists a unique solution Y; of (2.1).

Furthermore, Corollary 8.2.4 of [1] states that this solution is given by
t
Y, =ette+ / et =)4B(s) dW, (2.2)
0

where we have introduced the notation

— (= A
i= (74
In order to compute the exponential of the matrix A it is necessary to consider the two cases

v # B and v = [ separately.

1. For 7 # f the matrix A can be diagonalised, i.e., there exists an invertible matrix p
such that D = P! A P is a diagonal matrix. Indeed, the matrix

(1 A ) 1 1
P_<O ’)"5) has the inverse P —(0

2|
=1 |>
™ =
S—

and it holds

_ p- _(— 0
D=P 1AP_(O —ﬁ)'

Thus, e can be computed by €4 = Pe'® P~! and we obtain

wao (7 BT

0 e Pt

Therefore, the solution Y; of (2.1) is given by

e (e B,

0 e Bt

. t [o=v(t=3) v_iﬂ_(e—ﬂ(t—s)_e—v(t—s)) a(s) 0 IV
0 O e_ﬂ(t_s) O O-X s

Thus, the processes ¢; and X, are given by

N A
v—p3

t
+ / o(s)e V=) dW2
0

)\ ] t
q: =e e, (e —e ™) ex + ox / [e"g(t_s) — e g X
0

v=8

1
X, =e Plex + UX/ e Pl=3) qwX
0

2. For the situation 7 = § the matrix A is a multiple of a 2 x 2 Jordan block. Thus, the
exponential can be easily computed and it holds

ca_ [eT e
=\ o e |-
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Therefore, in this situation the solution Y; of (2.1) is given by

e~ Ate™t Llem9) At —5)e DN [(o(s) 0
Y;_( 0 e 1 >C+/0 ( 0 e~ (t=s) ( 0 ox W,

Thus, the processes ¢; and X; are given by

t t
g =€ g+ Me ex + doy / (t — s)e™ =) gWwX + / o(s) e %) gy e
0 0

t
X;=eTex + O'X/ e Vt=9) de .
0

T

Clearly, if ¢ = (¢; cx)" is normally distributed (or non-random) the vector process (g, X;)T

is Gaussian.

3 Pricing of European Call Options

We consider now an European vanilla call option C with strike K and expiry 7, i. e.,
C := max{Pr — K,0}. We are interested in the fair price of this option at the time point
t € [0,7]. As in the Black-Scholes model, besides the tradable asset of Model 1.1 a bond,
whose price process is given by B; = exp(rt) shall exist.

We introduce the Black-Scholes function Ugg as follows.

Definition 3.1 3
For parameters P > 0, K >0, 7 >0, 7 > 0 and s > 0 the Black-Scholes function is defined

as .
PO(dy) — Ke ™ ®(dy) ifs>0

UBS(P, K,r,71,8) = (3.1)

max (]5 — Ke™ ™, O) ifs=0

with

In (%) +r7+ 3
\/E 3

In (3.1) ® denotes the distribution function of the standard normal distribution.

d12: d2:=d1‘—\/g.

Furthermore we set
t
S(t) = / Awydu  teo,T].
0

It is well-known that the option price formula derived from the Black-Scholes model is
unaffected by the drift term of the underlying asset. As long as the logarithm of the price
process of the underlying satisfies the stochastic differential equation

dln P, = p(-)dt + o(t) dWs,




the fair price of a European call option with payoff max{Pr— K,0} at maturity T at a time
point ¢ € [0, 7] is given by

C(t, P) = Ugs (P, K,r, T — 1, S(T) — 5(t)) . (3.2)

While in the Black-Scholes model p is assumed to be a constant it is well-known that u(:)
can be a stochastic process, depending on P, itself as well as on other stochastic influences,
which fulfil mild regularity conditions. In the remaining part of this section we show that
in the considered Model 1.1 the fair option price is indeed given by (3.2).

In general, the initial values o = ¢, and Xo = cx are assumed to be stochastic variables.
For the sake of simplicity here we restrict to the case where ¢, and cx are deterministic
quantities, which are chosen to be zero. It should be mentioned, that as X is in general
not observable the assumption about Xj is a slight restriction of the model. However, the
following considerations can be generalised straightforwardly to the case of stochastic initial
conditions. Moreover, we concentrate to the fair option price at time point ¢ = 0. The
generalization to times ¢t € [0,T] is also straightforward.

In a first step, we show that there exists an admissible self-financing strategy duplicating the
call option. The existence of such a strategy can be shown under very general assumptions,
for instance as long as the asset price is modelled by

dPt :O'(t)Ptthq+PtdZt

where o(t) is a continuous function and Z; is a continuous random process of zero square
variation, possibly dependent on P, fulfilling weak regularity conditions. For details see [5].

For our Model 1.1 we consider the function C € C([0,T] x (0,00)) NC?([0,T) x (0,00))
defined by

In %—H‘(T—t)-k% foz(s) ds - In %-{*T(T—t)—% fa2(s) ds
z® et — KemT-99 — t<T
C(t, .’L') = \/fcr2(s) ds \/fcf?(s)ds
t t
max(z — K, 0) t=T

= Ugs (‘T’K7T7T _t7S(T) - S(t)) .
We consider the trading strategy consisting at time ¢ of
Ay = Cz(t, Pt)

shares of the asset and
bt = e_rt (C(t, P)t) — PtCz(t, Pt))

units of the bond. Then the processes a; and b, possess continuous realisations, which
implies

T T
/ |bs| dt < 00 a.s. and / la;P,)?dt < 00 a.s.
0 0
Concerning the wealth process V (¢, P;), defined by
V(t, Pt) = atPt + bt exp(rt)

6



it yields
= C(t, Pt) .

It can be shown by elementary considerations that V(t,P;) > 0 holds. Obviously, the
trading strategy has a.s. the same final value V(T, Pr) as the call option which is to valuate.

Applying It6’s Lemma we obtain
t t
V(t, P) =V (0, R) +/ Cy(s, Ps)ds +/ Cy(s, P;) dP,
0 0

1 t

+ 5/ Caa(s, Ps)P2o?(s) ds .
0

On the other hand it can be derived easily that C(¢, z) fulfils the Black-Scholes differential

equation

C,+ %x202(t)0m +rzC, —rC =0

and consequently
t
V(t, P) =V(0, ) —|—/ Cyi(s, Ps)dP,
0
t
+/ 7 (C(s, Ps) — PsCy(s, P,)) ds
0

1 t
=V(0,Po)+/ anPs—i—/ T bsexp(rs)ds,
0

0
which proves that the considered trading strategy is self-financing.

It is important to remark that the hedging strategy (at, be)icjo ) is even adapted to the
filtration (ﬂp)te[o 7] (the augmented filtration generated by the process P). From this fact
it follows that in order to perform the hedging strategy at the time point ¢ it is not necessary
to know the value of X,.

By finding the hedging strategy, the main work for calculating the fair option price is done.
From easy non-arbitrage arguments one usually concludes that this fair price is the value of
the hedging strategy, i.e., the fair option price at time ¢ is equal to C(t, P;), which would
prove our assertion. However, a more careful consideration has to take into account the fact
that even in the classical Black-Scholes model there are still some pathological strategies
(namely the so-called suicide strategies) which make things complicated. To be precise, in
many situations there exists self-financing admissible strategies with arbitrary starting value
Vo>0and Vp =0a.s.

For this reason, the fair option price of an attainable claim at time ¢ = 0 has to be defined
as

Co ;= inf { z 2> 0 : there exists an admissible self-financing duplication (33
- . 3.3
strategy (@, b;) for the option with aoPy + by = x} )

In order to check that our strategy (ay, b;) considered above leads to the correct option price,
l.e,

Cp = C(O, Po) (34)
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it is sufficient to show that its discounted wealth process e "'V (¢, P;) follows a martingale
with respect to a martingale measure Q equivalent to PP (i.e., a measure Q under which the
discounted asset price process e " P, follows a martingale). To prove the latter statement
let us assume for the moment that we have found such a measure. Clearly, Definition (3.3)
implies co < agPy + bp. On the other hand it is easy to show that the discounted wealth
process of any admissible self-financing duplication strategy (@, b,) is a non-negative local
martingale and consequently a supermartingale. This leads to

a()PO + 50 Z EQ (G_TT (&TPT -+ ETGTT))
= EQ (e'TTC)
= EQ (G_TT (aTPT + bTGTT))
= agFy + by

for all admissible self-financing strategies (&t, Bt) and therefore cg > agFp + by, which leads
to ¢y = aopo + bo.

It remains to show that there exists an equivalent martingale measure and that the dis-
counted trading strategy introduced at the beginning of this section is a martingale with
respect to this measure.

For this we define the stochastic process

{ 1 t
Z; = exp (—/ o, dW, — 5/ ag ds)
0 0

- —ype b+ A+ AX A+ T —r
) o) -

If it is possible to show that Z; is a martingale, then by Girsanovs Theorem

with

O .

(3.5)

t
W =W/ +/ o, ds
0
and
WX =w}
form a two-dimensional Wiener process with respect to the measure Q defined by

Q(A) =E(14Zr) (A€ Fr).

To check that Z, is a martingale it is sufficient to show that the Novikov condition

1 (T
Eexp (—2—/ aids) < o0
0

is fulfilled. In [2][Chapter 6.2] it is shown that in case of Gaussian processes a; with

sup E|loy| < o0 and sup D?ay < 00
t<T t<T

Novikovs condition holds true. From the considerations of Section 2 it is clear that the
process y; defined in (3.5) is such a Gaussian process.
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Under the measure Q the asset price has the dynamics

dP, = rP,dt + o(t)P, dW]

which implies 3
d(eP,) = o(t)e P, dW{
and clearly Q is a (not the unique one) martingale measure.

Finally, it remains to show that the discounted value process e "V} is a honest Q-martingale.
From the self-financing property it follows easily

d(eV;) = —re "V, dt + e dV,
= —re "a; P dt — re e dt + e "ay AP, + re b dt
=a,d (e P,) = a;0(t)e " P, dW{,

which shows that eV, is a local Q-martingale. A continuous non-negative local martingale
is always a supermartingale. Performing an elementary calculation (which is the same as
done during the calculation of the classical Black-Scholes formula using the expectation in
the risk neutral world) one gets

Ege ™"Vr =V,

which proves that e "V is a honest martingale. Thus, the fair option price at time ¢t = 0 is
given by (3.4). The proof of this property was the aim of this section.
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