DIRECT AND INVERSE RESULTS IN VARIABLE HILBERT SCALES

PETER MATHE AND BERND HOFMANN

Abstract. Variable Hilbert scales are an important tool for the recent analysis of inverse problems in Hilbert spaces, as these constitute a way to describe smoothness of objects other than functions on domains. Previous analysis of such classes of Hilbert spaces focused on interpolation properties, which allows us to vary between such spaces. In the context of discretization of inverse problems, first results on approximation theoretic properties appeared. The present study is the first which aims at presenting such spaces in the context of approximation theory. The authors review and establish direct theorems and also provide inverse theorems, as such are common in approximation theory.

1. Introduction

In recent analysis of ill-posed linear operator equations \(Ax = y \) with bounded linear operators \(A : X \to Y \) mapping between Hilbert spaces \(X \) and \(Y \) smoothness in terms of general source conditions became attractive, see [14] and the more recent [2,7]. These general source conditions are closely related to classes of Hilbert spaces, which are called variable Hilbert scales. Such classes of Hilbert spaces might be also of interest without the context of inverse problems. They constitute analogs and extensions to Sobolev type classes of functions with bounded smoothness. For function classes of this type typical questions arise, and some of those are the objective of the present study. Precisely we shall discuss whether there are characteristics for the smoothness of an element \(x \in X \). Within the classical approximation theory such results are known as direct or Jackson-type theorems. Moreover, there exist inverse theorems that conclude from the behavior of certain characteristics to the smoothness of \(x \).

In contrast to the classical approximation theory here we do not deal with the approximation of smooth functions, and we use related concepts of smoothness assigned to elements in Hilbert space. As already mentioned smoothness will be given in terms of general source conditions. As useful characteristics we analyze two functions, one related to the degree of approximation, and one measuring the lack of some benchmark smoothness. The latter is of interest in the case when some source condition is satisfied only approximately, a situation first studied systematically in [4,6]. This leads to the notion of a distance function, and we shall use the modification as introduced in [7, Sect. 5]. Typical direct results assert that
smoothness yields approximability as well as a certain decay rate for the related distance function, see e.g., [13, Prop. 2] and [7, Thm. 5.9], respectively.

It is the goal of the present analysis to exhibit some converse results, extending special cases as studied in the literature, in particular [4, Rem. 1].

2. Notation and preliminary results

We shall assume that we are given a non-negative self-adjoint operator \(H : X \to X \), which in addition is compact and injective. Then it admits a singular value decomposition

\[
Hx = \sum_{j=1}^{\infty} s_j \langle x, u_j \rangle u_j, \quad x \in X,
\]

with (non-increasing) sequence \(s_1 \geq s_2 \geq \cdots > 0 \), and complete orthonormal system \(\{u_j, j = 1, 2, \ldots \} \subset X \). The singular values \(s_j \) are obtained as eigenvalues of the mapping \(H \), in particular we let \(a := \|H\| \).

If such analysis is dealt with linear operator equations \(Ax = y \) as in [7] and [15], then we can consider \(H = A^*A \) and \(\sqrt{s_j} \) are the singular values of \(A \). However, here we focus on pure approximation aspects and neither corresponding operator equations nor its regularization are under consideration.

As in [7] we call a function \(\varphi : [0, a] \to [0, \infty) \) an index function if it is continuous and strictly increasing with \(\varphi(0) = 0 \). An index function \(\varphi \) is said to obey a \(\Delta_2 \)-condition if there is \(C_2 < \infty \) for which \(\varphi(2t) \leq C_2 \varphi(t) \).

2.1. Hilbert scales related to general source conditions. Having fixed the operator \(H \) and any index function \(\psi \) we assign, using spectral calculus, the general source set by

\[
H_\psi := \{ x \in X, \quad x = \psi(H)v, \text{ for some } v \in X, \|v\| \leq 1 \}.
\]

An element \(x^\dagger \) is said to satisfy a general source condition, if

\[
x^\dagger \in H_\psi.
\]

We mention the following

Lemma 2.1 ([7, Lemma 2.8]). If \(H : X \to X \) is compact and \(\psi \) is an index function, then the set \(H_\psi \) is compact in \(X \).

As a consequence we may introduce the following scale of Hilbert spaces. We assign any index function \(\psi \) the space \(X^H_\psi \) which has the source set \(H_\psi \) as its unit ball. By Lemma 2.1 the resulting space is complete and carries a natural scalar product by assigning to any \(x, y \in X^H_\psi \) with (unique) source representation \(x = \psi(H)u, \ y = \psi(H)v \) the value

\[
\langle x, y \rangle_\psi := \langle u, v \rangle.
\]

In particular an element \(x \in X \) belongs to \(X^H_\psi \) if and only if \(\sum_{j=1}^{\infty} |\langle x, u_j \rangle|^2 / \psi^2(s_j) < \infty \). We agree to denote the corresponding norm in \(X^H_\psi \) by \(\| \cdot \|_\psi \). We mention that in this context Lemma 2.1 asserts that the spaces \(X^H_\psi \subset X \) are densely and compactly embedded.
2.2. Degree of approximation. We study approximation by a (nested) sequence \(\{X_n\}_{n \in \mathbb{N}} \) of finite dimensional subspaces of \(X \), where we normalize to \(\dim(X_n) = n \). We agree to call such a sequence an approximation scheme. In approximation theory there are various characteristics to describe the quality of an approximation scheme with respect to some smoothness class, and we introduce two of those next.

One way is to ask for the related best approximation of a given \(x^\dagger \in X \) by means of elements from \(X_n \), i.e., we consider the degree of approximation
\[
E_n(x^\dagger) := \| (I - P_n)x^\dagger \|,
\]
where \(P_n \) denotes the orthogonal projection onto the space \(X_n \). If \(P_n \) converge point-wise to the identity \(I : X \to X \) as \(n \to \infty \), then \(E_n(x^\dagger) \to 0 \) for each element \(x^\dagger \), and a fortiori for each compact subset \(M \subset X \). Convergence may not be uniform for \(k^nx^k \). But, by Lemma 2.1, rates of convergence can be expected uniformly for \(x^H \), which will yield a direct Theorem. Results of such type constitute part of classical approximation theory, and we refer the reader to [9, Chapt. 4 und 5].

The approximative power of finite dimensional subspaces with respect to some subset \(M \subset X \) may be measured in various ways, and we refer the reader to [21]. Here we shall restrict our consideration to ellipsoids, which are obtained as images of some linear mapping in Hilbert spaces: Specifically this holds for the sets \(H_\psi \):

In particular, we introduce the \(n \)-th Kolmogorov widths of the set \(H_\psi \) in the spaces \(X \) as
\[
d_n(H_\psi, X) := \inf_{\dim(Z) \leq n} \sup_{x \in H_\psi} \text{dist}(x, Z),
\]
where the infimum is taken over all at most \(n \)-dimensional subspaces \(Z \subset X \). For ellipsoids in Hilbert space these Kolmogorov widths coincide with the linear widths, given as
\[
a_n(H_\psi, X) = \inf_{\text{rank}(L) \leq n} \sup_{x \in H_\psi} \| x - Lx \|,
\]
this time \(L \) ranges among the linear mappings in \(X \) with rank at most \(n \). We close with the introduction of another quantity used in classical approximation theory, the Bernstein widths, see the formal introduction in [19] and [21]. For any \(H_\psi \subset X \) we let
\[
b_n(H_\psi, X) = \sup_{\dim(Z) \geq n+1} \inf_{0 \neq u \in Z \cap H_\psi} \frac{\| u \|}{\| u \|_\psi}.
\]

Remark 2.2. For ellipsoids in Hilbert spaces all \(n \)-widths coincide, see [21 Chapt. IV] or [20 Chapt. 11]. However, in general these \(n \)-widths may obey different asymptotics, and much effort was undertaken to establish precise asymptotics, and they reflect different aspects of approximation, see e.g. [21, 20, 18]. Thus, within the present context, any approximation scheme \(\{X_n\}_{n \in \mathbb{N}} \), which is suited for optimal linear approximation provides optimal behavior of the Bernstein widths. We postpone further discussion to § 2.4.

As mentioned above, the \(n \)-widths just introduced coincide and agree with the corresponding eigenvalues \(\lambda_{n+1}(\psi(H)) \) of the mapping \(\psi(H) \). Thus we state the following well known result.

Proposition 2.3 ([11, 20, 21]). Let \(\psi \) be any index function. Then
\[
a_n(H_\psi, X) = d_n(H_\psi, X) = b_n(H_\psi, X) = \psi(s_{n+1}), \quad n = 0, 1, 2, \ldots
\]
2.3. Approximate source conditions. As second indicator we use distance functions measuring for an element \(x^\dag \in X\) the violation of a benchmark smoothness characterized by the index function \(\varphi\). Having fixed \((H, \varphi)\) we assign any \(x^\dag \in X\) the distance function

\[
\rho_{x^\dag}(t) = \rho^{(H, \varphi)}_{x^\dag}(t) = \text{dist}(tx^\dag, H_\varphi).
\]

We recall the following result, similar to [7,Lemma 5.3].

Lemma 2.4. Suppose that

\[
\rho_{x^\dag}(t) \neq \mathcal{R}(\varphi(H)).
\]

Then the mapping \(t \mapsto \rho_{x^\dag}(t)\) is a convex index function. Moreover, also the mapping \(t \mapsto \rho_{x^\dag}(t)/t\) is an index function.

2.4. Bernstein- and Jackson-type inequalities. The following assumptions are “loosely” related to inequalities of Bernstein- and Jackson-type, where we refer to [9] for the classical context. Given an approximation scheme \(\{X_n\}_{n \in \mathbb{N}}\) we agree to denote the realized approximability with respect to the operator \(H\) by

\[
\eta_n := \|H(I - P_n)\colon X \to X\|, \quad n = 1, 2, \ldots,
\]

Typically this is known to us (up to constants). In view of the approximation numbers as introduced above we require the following

Assumption A.1. There is a constant \(C < \infty\) such that

\[
\eta_n \leq C s_{n+1}, \quad n = 1, 2, \ldots
\]

This assumption requires that the subspaces are of optimal order with respect to linear approximation, since by Proposition 2.3 we have \(s_{n+1} \leq \eta_n\).

The other assumption is related to the smoothness of the elements from \(X_n\), used for approximation. Within the classical context, when using trigonometric polynomials, this results in a norm bound of the derivative in terms of the degree of the polynomial, we refer to [9, Chapt. 3.2] for the Bernstein inequality in its original form. Assumptions of such type are frequently met in the analysis of projection methods for ill-posed problems in Hilbert scales, see [16] and [10], where this is called inverse property. Explicitly such assumptions were made in [12].

We start with the following observation. Suppose that \(\kappa\) is an index function. If \(\{X_n\}_{n \in \mathbb{N}}\) is an approximation scheme with \(X_n \subset X^H_\kappa\), then we assign the following measure of injectivity

\[
j(H_\kappa, X_n) := \inf_{0 \neq u \in X_n} \frac{||u||}{||u||_\kappa}, \quad n \in \mathbb{N}.
\]

By construction of the Bernstein widths from (2.6) we obtain

\[
\kappa(s_n) = s_n(J_\kappa: X^H_\kappa \to X) = b_{n-1}(H_\kappa, X) \geq j(H_\kappa, X_n), \quad n \in \mathbb{N}.
\]

The assumption to be made is that the deviation is only up to a constant.

Assumption A.2 (Bernstein-type inequality). Let \(\kappa\) be an index function and \(\{X_n\}_{n \in \mathbb{N}}\) be an approximation scheme such that \(X_n \subset X^H_\kappa, \quad n = 1, 2, \ldots\). The approximation scheme is said to obey a \((H, \kappa)\)-Bernstein inequality if there is a constant \(C_B \geq 1\) such that

\[
j(H_\kappa, X_n) \geq \frac{1}{C_B} \kappa(s_n), \quad n \in \mathbb{N}.
\]
We will extend this to “intermediate” smoothness by appropriate interpolation, and we recall the following variant of the interpolation inequality [13, Appendix A].

Proposition 2.5. Suppose that φ, ψ and κ are index functions arranged such that both the functions κ/φ and κ/ψ are such. If the composition

$$
t \mapsto \left(\frac{\kappa}{\varphi} \right)^2 \left(\left(\frac{\kappa}{\psi} \right)^{2^{-1}}(t) \right), \quad 0 < t \leq \frac{\kappa^2(a)}{\psi^2(a)}$$

is concave, then

$$
\left(\frac{\kappa}{\varphi} \right)^{-1} \left(\frac{\|x\|_\varphi}{\|x\|_\kappa} \right) \leq \left(\frac{\kappa}{\psi} \right)^{-1} \left(\frac{\|x\|_\psi}{\|x\|_\kappa} \right), \quad 0 \neq x \in X^H_\kappa.
$$

Corollary 2.6. Suppose that $\{X_n\}_{n \in \mathbb{N}}$ is an approximation scheme which obeys the (H, κ)-Bernstein inequality with constant C_B. If φ is another index function for which $t \mapsto t/\varphi^2((\kappa^2)^{-1}(t))$ is a concave index function, then $X^H_\varphi \subset X^H_\kappa$, and the approximation scheme also obeys the (H, φ)-Bernstein inequality with constant C_B. Precisely we have

$$
\|P_n u\|_\varphi \leq \frac{C_B}{\varphi(s_n)} \|P_n u\|_\kappa, \quad u \in X, \quad n = 1, 2, \ldots
$$

Proof. The interpolation inequality (2.14) provides us with

$$
\left(\frac{\kappa}{\varphi} \right)^{-1} \left(\frac{\|P_n u\|_\varphi}{\|P_n u\|_\kappa} \right) \leq \kappa^{-1} \left(\frac{\|P_n u\|_\varphi}{\|P_n u\|_\kappa} \right), \quad 0 \neq P_n u \in X^H_\kappa.
$$

Straight calculation yields

$$
\frac{\|P_n u\|_\varphi}{\|P_n u\|_\kappa} \geq \varphi \left(\kappa^{-1} \left(\frac{\|P_n u\|_\varphi}{\|P_n u\|_\kappa} \right) \right),
$$

and we need to bound the right hand side from below. To this end the assumption that $t \mapsto t/\varphi^2(t)$ is increasing implies for every $0 < c \leq 1$ that $c^2 t^2/\varphi^2((\kappa^2)^{-1}(c^2 t^2)) \leq t^2/\varphi^2((\kappa^2)^{-1}(t^2))$, which in turn yields

$$
\varphi(\kappa^{-1}(ct)) \geq c \varphi(\kappa^{-1}(t)).
$$

Assumption A2 gives $\|P_n u\|/\|P_n u\|_\kappa \geq \kappa(s_n)/C_B$, thus, using (2.16) we obtain

$$
\varphi \left(\kappa^{-1} \left(\|P_n u\|_\varphi/\|P_n u\|_\kappa \right) \right) \geq \varphi \left(\kappa^{-1} \left(\kappa(s_n)/C_B \right) \right) \geq \frac{\varphi(s_n)}{C_B},
$$

and the proof is complete. \qed

Remark 2.7. In case of monomial smoothness $\varphi(t) = t^\mu$, $\kappa(t) := t^\nu$ with $\mu < \nu$ the assumption that $t/\varphi^2((\kappa^2)^{-1}(t))$ concave, is automatically satisfied.
3. Relating Smoothness and approximability

Clearly, if \(x^\dagger \in H_\psi \) then the degree of approximation \(E_n(x^\dagger) \) of \(x^\dagger \) by the given scheme \(\{X_n\}_{n \in \mathbb{N}} \) is bounded by the supremum over all elements \(x \in H_\psi \), hence

\[
E_n(x^\dagger) \leq \sup_{\|x\|_\psi \leq 1} \text{dist}(x, X_n).
\]

The right-hand side above should be compared to the best possible approximation of elements \(x \in H_\psi \), precisely with its \((n + 1)\)st Kolmogorov width, compare (2.5). The question arises whether this extends to approximation with respect to the given scheme \(\{X_n\}_{n \in \mathbb{N}} \), other than some optimal. Indeed, this holds true for a variety of index functions, and we recall the following direct result from [13, Append. A, Cor. 2].

Proposition 3.1. Suppose that \(x^\dagger \in H_\psi \) for an index function \(\psi \), where the function \(t \mapsto \psi^2(\sqrt{t}) \) is assumed to be concave. Moreover let \(\eta_n \) be as in (2.9). Then

\[
E_n(x^\dagger) \leq \|I - P_n \cdot X^H_\psi \to X\| \leq \psi(\eta_n), \quad n = 1, 2, \ldots
\]

Therefore, to minimize this bound, we shall require that the given scheme \(\{X_n\}_{n \in \mathbb{N}} \) is almost as good as the best possible accuracy for approximating \(H \).

Corollary 3.2 (Jackson-type inequality). Suppose that the scheme \(\{X_n\}_{n \in \mathbb{N}} \) obeys Assumption A.1. If the function \(t \mapsto \psi^2(\sqrt{t}) \) is a concave index function and if \(x^\dagger \in H_\psi \) then

\[
E_n(x^\dagger) \leq C \psi(s_{n+1}), \quad n = 1, 2, \ldots
\]

Proof. This is obtained by simple calculation as follows. Suppose that (2.10) holds. Then, using the concavity we obtain

\[
\psi^2(\eta_n) = \psi^2(\sqrt{n^2}) \leq \psi^2(\sqrt{C^2 n^2}) \leq C^2 \psi^2(\sqrt{s_{n+1}}^2 + 1) = C^2 \psi^2(s_{n+1}).
\]

Taking square roots yields the bound (3.2) by Proposition 3.1. \(\square \)

Remark 3.3. The assumptions in Proposition 3.1 and Corollary 3.2 are fulfilled for the functions \(\psi(t) := t^\mu \), whenever \(0 < \mu \leq 1 \). If this is the case then \(E_n(x^\dagger) \leq Cs_{n+1}^\mu \), provided that \(x^\dagger \in H_\psi \).

We turn to discussing an inverse theorem related to the degree of approximation. First we recall the following technical

Lemma 3.4 (see e.g., [9, Chapt. 4.4, Lemma 1]). Suppose that \(f: [a, b] \to \mathbb{R}^+ \) is a non-increasing function. Then there is a constant \(M < \infty \) such that for every sequence \(a \leq u_k \leq u_{k+1} \leq \cdots \leq u_t \leq b \) with \(u_i/u_{i-1} \leq 2 \) it holds true that

\[
\sum_{i=k}^{t} f(u_i) \leq M \sum_{\frac{1}{2}u_k \leq n < u_t} \frac{f(n)}{n}.
\]

The main result in this section is the following
Theorem 3.5. Suppose that ψ is an index function which obeys a Δ_2-condition and is a valid upper bound for the degree of approximation, i.e., $E_n(x^\dagger) \leq \psi(s_{n+1})$. Assume further that the singular values of H are such that there is $1 \leq \gamma < \infty$ for which $s_{n}/s_{2n} \leq \gamma$, $n \in \mathbb{N}$.

If φ is any index function such that

1. the scheme $\{X_n\}_{n \in \mathbb{N}}$ obeys the (H, φ)-Bernstein inequality,
2. the function ψ/φ is an index function and
3. the the sum

$$\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{\psi}{\varphi} \right)(s_n) < \infty$$

is convergent,

then $x^\dagger \in X^H_\psi$.

Proof. Suppose that ψ has the properties as stated above. We shall show that the sequence $P_{2^n}x^\dagger$ is a Cauchy sequence in X^H_ψ, hence convergent to x^\dagger. This in turn ensures $x^\dagger \in X^H_\psi$.

Since (2.15) holds true for φ, we derive for every $m < n$ that

$$\|P_{2^m}x^\dagger - P_{2^n}x^\dagger\|_{\varphi} \leq \sum_{k=m}^{n-1} \|P_{2^{k+1}}x^\dagger - P_{2^k}x^\dagger\|_{\varphi} \leq CB \sum_{k=m}^{n-1} \frac{1}{\varphi(s_{2k+1})} \|P_{2^{k+1}}x^\dagger - P_{2^k}x^\dagger\|$$

$$\leq 2CB \sum_{k=m}^{n-1} \frac{1}{\varphi(s_{2k+1})} \|(I - P_{2^k})x^\dagger\| \leq 2CB \sum_{k=m}^{n-1} \frac{1}{\varphi(s_{2k+1})} E_{2k}(x^\dagger)$$

$$\leq 2CB \sum_{k=m}^{n-1} \frac{1}{\varphi(s_{2k+1})} \psi(s_{2k}) \leq 2CB \gamma \sum_{k=m}^{n-1} \frac{1}{\varphi(k)}(s_{2k+1})$$

Now we shall apply Lemma 3.3 with

$$\phi(k):=\left(\frac{\psi}{\varphi}\right)(s_k), \quad 2^m \leq k \leq 2^{n-1}, \quad \text{and} \quad u_i := 2^{i+1}, \quad i = m, \ldots, n - 1.$$

This provides us with the following bound

$$\sum_{k=m}^{n-1} \frac{1}{\varphi}(s_{2k+1}) \leq M \sum_{2^m \leq n \leq 2^{n-1}} \frac{1}{n} \left(\frac{\psi}{\varphi}\right)(s_n) \leq M \sum_{n \geq 2^m} \frac{1}{n} \left(\frac{\psi}{\varphi}\right)(s_n) \rightarrow 0,$$

by assumption (3.4), as $m \rightarrow \infty$. The proof is complete. \square

At a first glance the assumptions formulated in Theorem 3.5 look rather technical. Therefore it is worth-while to see them working in the context of monomials.

Example 3.6. Suppose that the singular values of H obey $s_n \asymp n^{-p}$ for some $p > 0$, and that Assumption A.2 holds true for some function $\kappa(t) := t^r$. Then this extends to the validity of (2.15) for each $\varphi(t) := t^\mu$, whenever $0 < \mu \leq r$. If the degree of approximation is bounded for $\varphi(t) := t^\nu$ for some $0 < \nu \leq r$, then $x^\dagger \in X^H_\psi$ for each $0 \leq \mu < \nu$, since in this case

$$\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{\psi}{\varphi}\right)(s_n) = \sum_{n=1}^{\infty} n^{-1-p(\nu-\mu)} < \infty,$$
whenever \(\nu - \mu > 0 \).

4. Relating Smoothness and distance functions

A major direct result for this indicator was established in \cite[Thm. 5.9]{7}, see also \cite[Proof of Thm. 1]{8}. We recall this here as Proposition 4.1.

We suppose that \(x, y \in H \), and that we consider the distance function

\[
\varrho_x(t) = \frac{(\varphi/y)(t)}{t} \quad \text{for all } 0 \leq t \leq a,
\]

then we can estimate

\[
(4.1) \quad \varrho_x(t) \leq \varphi \left(\left(\frac{\varphi}{\psi} \right)^{-1}(t) \right) \quad \text{for all } 0 \leq t \leq \frac{\varphi(a)}{\psi(a)}.
\]

The main inverse result is the following Theorem 4.2.

Let \(x^\dagger \in X \). Assume that there is some \(\varepsilon > 0 \) and an index function \(r(t), 0 \leq t \leq \varepsilon \), satisfying the inequality

\[
(4.2) \quad \varrho_x(t) \leq r(t), \quad 0 \leq t \leq \varepsilon.
\]

Then there is \(j_0 \in \mathbb{N} \) such that

\[
(4.3) \quad \left| \langle x^\dagger, u_j \rangle \right| \leq 2 \frac{\varphi(s_j)}{r^{-1}(\varphi(s_j))}, \quad j \geq j_0.
\]

Remark 4.3. We stress that necessarily the decay rate of the coefficients \(\left| \langle x^\dagger, u_j \rangle \right| \rightarrow 0 \) as \(j \rightarrow \infty \) is smaller than the rate for \(\varphi(s_j) \rightarrow 0 \), since \(r^{-1} \) is also an index function. Evidently due to formula (2.1) we have this rate

\[
(4.4) \quad \left| \langle x^\dagger, u_j \rangle \right| = O(\varphi(s_j)) \quad \text{as } j \rightarrow \infty
\]

whenever \(x^\dagger \) satisfies the benchmark source condition

\[
(4.5) \quad x^\dagger \in \mathcal{R}(\varphi(H)).
\]

Hence, this rate (4.4) can also be considered as an indicator for the corresponding smoothness of \(x^\dagger \). However, the use of a distance function \(\varrho_x \) with respect to \(\varphi \) is only justified if \(x^\dagger \) is not smooth enough, i.e., if it fails to satisfy a source condition (4.5).

Proof of Theorem 4.2. The proof will be based on tools from convex analysis. Given a convex set \(M \subset X \) we assign \(S(y, M) := \sup \left\{ \langle y, z \rangle, z \in M \right\}, \ y \in X \). We recall the following identity, see e.g. \cite[Chapt. 2.6, Thm. 1]{22}.

\[
(4.6) \quad \text{dist}(x, M) = \sup \left\{ \langle x, y \rangle - S(y, M), \quad \|y\| \leq 1 \right\}, \quad x \in X.
\]

We apply this with \(x := tx^\dagger \) and \(M := H_\varphi \) and obtain

\[
(4.7) \quad \varrho_{x^\dagger}(t) = \sup \left\{ t \langle x^\dagger, y \rangle - S(y, H_\varphi), \quad \|y\| \leq 1 \right\}.
\]

In particular this yields the inequality (a specific case of the Fenchel Young Inequality)

\[
(4.8) \quad t \langle x^\dagger, y \rangle \leq \varrho_{x^\dagger}(t) + S(y, H_\varphi), \quad \|y\| \leq 1, \ t > 0.
\]
Since H_φ is centrally symmetric this implies
\[\left| \langle x^\dagger, y \rangle \right| \leq \frac{1}{t} (\varrho_{x^\dagger}(t) + S(y, H_\varphi)) , \quad \|y\| \leq 1 , \ t > 0 . \]

Now, since $r(t) \geq \varrho_{x^\dagger}(t)$, $0 < t \leq \varepsilon$, this extends to
\[
\left| \langle x^\dagger, y \rangle \right| \leq \frac{1}{t} (r(t) + S(y, H_\varphi)) , \quad \|y\| \leq 1 , \ 0 < t \leq \varepsilon .
\]

Let j_0 be the smallest index with $\varphi(s_j) \leq r(\varepsilon)$. For any $j \geq j_0$ we use the bound (4.9) for $y := u_j$, the j-th singular function of H, to derive
\[
\left| \langle x^\dagger, u_j \rangle \right| \leq \frac{1}{t} (r(t) + S(u_j, H_\varphi)) = \frac{1}{t} (r(t) + \varphi(s_j)) , \quad 0 < t \leq \varepsilon .
\]

Balancing this bound with respect to t yields $t^* := r^{-1}(\varphi(s_j))$ and we obtain (4.3). The proof is complete. \hfill \Box

Remark 4.4. Notice that we used the Fenchel Young inequality from (4.8), only. The full strength of (4.6) was not needed. However, the representation (4.7) proved to be useful in [5], as it allowed to derive lower bounds for the distance function.

Theorem 4.2 does not necessarily yield the optimal smoothness of x^\dagger generated by an observed decay rate $r(t) \to 0$ as $t \to 0$ of the distance function ϱ_{x^\dagger}. There is a gap, which can be verified rather clear in case of the monomial (power-type) situation as follows.

Let $\varphi(t) = t^\nu$ with some $\nu > 0$ be the benchmark function for the distance function ϱ_{x^\dagger}. Proposition 4.1 yields, that for $x^\dagger \in X_\nu^H$ for $\psi(t) = t^\mu$ with $\mu < \nu$, the distance function can be bounded by $\varrho_{x^\dagger}(t) \leq t^{\nu/(\nu-\mu)}$, regardless of the behavior of the singular values of H.

On the other hand, if we have $\varrho_{x^\dagger}(t) \leq t^{\nu/(\nu-\mu)}$ for $0 < t \leq \varepsilon$, then Theorem 4.2 asserts that $\left| \langle x^\dagger, u_j \rangle \right| \leq 2s_j^\mu$ for sufficiently large integers j. If we now suppose that the singular values of H behave like $s_j \asymp j^{-p}$ for some $p > 0$, then we obtain for given $\alpha > 0$ that
\[
\sum_{j=1}^{\infty} \left| \langle x^\dagger, u_j \rangle \right|^2 s_j^{-\alpha} < \infty ,
\]
only if $2p(\mu - \alpha) > 1$. Thus, in this case Theorem 4.2 yields $x^\dagger \in X_{\mu^p}^H$ for all $\alpha < \mu - 1/(2p)$.

However, by recent results on distance functions, see [11, 12], and by well-known converse results from regularization theory, see e.g. [17], we find from $r(t) = C t^\mu$, $0 < \mu < \nu < \infty$ for sufficiently small $t > 0$ and $x^\dagger \notin \mathcal{R}(H^\nu) = X_{\nu^p}^H$ that the solution smoothness obeys $x^\dagger \in X_{\mu^p}^H$, for arbitrarily small $t > 0$.

The occurring smoothness gap depends on the decay rate $s_j \asymp j^{-p}$ of the singular values of H; it is smaller if p is larger, and it tightens as p tends to infinity.

5. **LOWER BOUNDS FOR DISTANCE FUNCTIONS**

Finally we pose the following question: Given $x^\dagger \in X$, can we get information about its distance function $\varrho_{x^\dagger}(t)$ with respect to some benchmark smoothness prescribed by the index function φ, without knowing the smoothness of x^\dagger relative to H? An answer would provide us with a further direct result complementary to Proposition 4.1.
One attempt would be using the identity (4.7). To obtain good lower bounds in this way one has to properly design elements y, related to t and x^\dagger as well as to the operator H. This approach was undertaken in [5], where it could be carried out successfully. However, some smart guess must be made and a careful analysis has to be done.

Here we shall propose a procedure which has its origin in the a posteriori choice of regularization parameters in inverse problems, and we refer to [14] for its first use in that context, and to [11] for the most recent formulation of the Lepskiĭ balancing principle. This will result in a lower bound, by just carrying out some iteration of some specific operator equation. As will be seen, by doing so we obtain an increasing function.

To be specific enough we shall exhibit this idea at an approach, related to Landweber iteration, because there it is most conveniently explained. So, let us choose some benchmark smoothness $\varphi(t) = t^p$ with $p > 0$ large enough and a parameter $\mu > 0$ such that $\mu \|H\| < 1$. Now fix the element $x^\dagger \in X$ and consider the sequence of iterates

$$
x_0 := \mu H x^\dagger, \\
x_k := x_{k-1} + \mu H (x^\dagger - x_{k-1}), \quad k = 1, 2, \ldots.
$$

This sequence has the following approximative property with respect to x^\dagger, see e.g. [7, Thm. 5.5].

$$
\|x^\dagger - x_k\| \leq \frac{1}{2} \left(\frac{2\gamma_p k^{-p}}{t} + \frac{2\varphi_x^{(H,\mu_p)}(t)}{t} \right).
$$

Remark 5.1. This bound is obtained for Landweber iteration, since, with the notation from [7], the constant $\gamma_1 = 1$ while $\gamma_p = (p/\mu e)^p$, is the constant in the qualification of that method, see e.g. [23, Chapt. 2.2].

Our subsequent analysis uses the terminology and results of [11]. We fix $t > 0$. Then we let $\Psi(k) := 2\gamma_p k^{-p}/t, \; k = 1, 2, \ldots$. This function is decreasing and it does not depend on (properties of) x^\dagger. Moreover, a function $\Phi(k)$ is called admissible, if together with $\Psi(k)$ it is suited for a bound like in (5.2). For technical reasons it must satisfy $\Phi(1) \leq \Psi(1)$. Hence the constant function $2\varphi_x^{(H,\mu_p)}(t)/t$ is admissible, if $0 < t \leq t_0$, where t_0 is determined from $t_0 \|x^\dagger\| + \varphi(a) \leq \gamma_p$. We now assign the positive integer

$$
\tilde{j} = \tilde{j}(t) := \max \left\{ l \in \mathbb{N} : \|x_m - x_l\| \leq 4\gamma_p \frac{m^{-p}}{t}, \text{ for all } m < l \right\}.
$$

For this choice of parameter \tilde{j} the following bound can be proved.

Theorem 5.2. Let the sequences x_k be as in (5.1). Given any $0 < t \leq t_0$ determine the corresponding \tilde{j} as in (5.3). Then

$$
\varphi^{(H,\mu_p)}(t) \geq \gamma_p(\tilde{j} + 1)^{-p}.
$$

Proof. Having fixed any value $t \leq t_0$, we can apply the Lepskiĭ principle. Thus with [11, Prop. 2] (and the notation from there) we let

$$
j_* := \max \left\{ \tilde{j} \in \mathbb{N} : \text{ there is admissible } \Phi \text{ for which } \Phi(\tilde{j}) \leq 2\gamma_p \tilde{j}^{-p}/t \right\},
$$
and obtain \(\tilde{j} \geq j_{**} \). Consequently, for the value \(\tilde{j} + 1 \), it holds true that \(2^{-\rho} (\tilde{j} + 1)^{-\rho}/t \leq \Phi(\tilde{j} + 1) \) for every admissible function. In particular this is true for \(2^{-\rho} (H;p)(t)/t \), which in turn yields \(5.2.4 \), and the proof is complete.

The above algorithm can be carried out for any value \(0 < t \leq t_0 \). If this is done for a decreasing sequence then we obtain a decreasing lower bound.

Corollary 5.3. If \(0 < s < t \leq t_0 \) then \(\tilde{j}(t) \leq \tilde{j}(s) \).

Proof. This is clear from the construction in \(5.3 \), since smaller values of \(t \) yield less restrictive upper bounds. □

Remark 5.4. From Lemma \(2.4 \) we even know that the function must be convex. So it would be nice to derive related properties for the lower bound.

As a consequence from Corollary \(5.3 \) we may proceed as follows. We design any decreasing sequence \(t_0 \geq t_1 > t_2 > \cdots > t_m \). For the first value \(t_1 \) the algorithm yields a choice \(n_1 := j(t_1) + 1 \). Then we continue for \(t_2 \) by checking \(5.3) \) starting from \(l := n_1 \) to obtain \(n_2 := j(t_2) + 1 \), and so forth. In this way we may lower bound the distance function \(\varrho_{x^1} \) at any fine grid.

References

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, 10117 Berlin, Germany

E-mail address: mathe@wias-berlin.de

Department of Mathematics, Chemnitz University of Technology, 09107 Chemnitz, Germany

E-mail address: hofmannb@mathematik.tu-chemnitz.de