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Abstract: This paper deals with the characterizations of solutions for vector
equilibrium problems by means of conjugate duality. In order to introduce set-
valued mappings depending on the data, but not on the solution sets of vector
equilibrium problems we use Fenchel duality. By this approach we obtain
also some gap functions for the so-called weak vector variational inequality
problems.
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1 Introduction

In analogy to the scalar case, vector equilibrium problems can be considered as a
general form of vector variational inequalities, vector optimization and equilibrium
problems (cf. [3]). Therefore some results established for these special cases have
been extended to vector equilibrium problems. By generalizing the similar concept
in the scalar case (see [7]), gap functions for vector variational inequalities proposed
first in [10]. Moreover, by using set-valued mappings as a generalization of the
scalar case (cf. [6] and [9]) and by extending the gap functions for vector varia-
tional inequalities, variational principles for vector equilibrium problems have been
investigated (see [4] and [5]).

Recently, in the scalar case, the construction of gap functions for variational in-
equalities and equilibrium problems have been associated to Lagrange and conjugate
duality (see [1], [2], [12] and [14]). On the other hand, by introducing some new
concepts of conjugate maps and set-valued subgradients, based on Pareto efficiency
and also weak orderings, conjugate duality theory in vector optimization has been
developed by Tanino and Sawaragi (see [17], [20] and [22]).

In this paper we focus on the construction of set-valued mappings on the basis
of the so-called Fenchel duality which allow us to propose new variational principles
for vector equilibrium problems.

Let us describe the contents of the paper. As preliminaries, first we present
some notions and results regarding conjugate duality in vector optimization based
on weak orderings. In Section 3, by using a special perturbation function, we state
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the so-called Fenchel dual problem for vector optimization. Section 4 is devoted to
variational principles for vector equilibrium problems. Under certain assumptions,
in order to characterize the solutions for vector equilibrium problems, set-valued
mappings on the basis of Fenchel duality depending on the data, but not on the
solution sets of vector equilibrium problems, are introduced. Finally, by applying
the obtained results for vector equilibrium problems, we investigate gap functions
for the so-called weak vector variational inequalities.

2 Mathematical preliminaries

Let Y be a real topological vector space partially ordered by a pointed closed convex
cone C' with a nonempty interior int C in Y. For any &, u € Y, we use the following
ordering relations:

E<p & p—€ed;
E<pu & p—E€€int C
Egp & p—E¢int C.

The relations >, > and ¥ are defined similarly. Let us now introduce the weak
maximum and weak supremum of a set Z in the space Y induced by adding to Y’
two imaginary points +o0o and —oo. We suppose that —co < y < 400 for y € Y.
Moreover, we use the following conventions

(£oo)+y=y+ (o) =docforally €Y, (£oo)+ (Foo)= oo,
A(o0) = o0 for A > 0 and A(d00) = Foo for A < 0.

The sum +00 + (—00) is not considered, since we can avoid it.
For a given set Z C Y, we define the set A(Z) of all points above Z and the set
B(Z) of all points below Z by

A(Z) = {y €Y|y >y forsomey € Z}

and .
B(Z) = {y €Y|y<y for somey € Z},

respectively. Clearly A(Z) CY U{+o0} and B(Z) CY U{—o0}.

Definition 2.1 A4 point § € Y is said to be a weak mazimal point of Z C Y if
Y€ Z andy ¢ B(Z), that is, if y € Z and there is no y' € Z such that § < y/'.

The set of all weak maximal points of Z is called the weak maximum of Z and
is denoted by WMax Z.

Definition 2.2 A point § € Y is said to be a weak supremal point of Z C Y if
v ¢ B(Z) and B({y}) C B(Z), that is, if there is no y € Z such that § < y and if
the relation y' < y implies the existence of some y € Z such that y' < y.



The set of all weak supremal points of Z is called the weak supremum of Z and
is denoted by WSup Z. Remark that WMax Z = Z N WSup Z. Moreover it holds
~WMax(—Z) = WMinZ and — WSup(—Z) = WInfZ, where a weak minimum
and a weak infimum can be defined analogously to the maximum and supremum,
respectively. For more properties of these sets we refer to [21] and [22].

Now we give some definitions of the conjugate mapping and the subgradient of a
set-valued mapping based on the weak supremum and the weak maximum of a set.
Let X be another real topological vector space and let £(X,Y) be the space of all
linear continuous operators from X to Y. For z € X and [ € L(X,Y), (I, z) denotes
the value of [ at .

Definition 2.3 (see [22]) Let G : X = Y be a set-valued mapping.
(i) A set-valued mapping G* : L(X,Y) 3 Y defined by
G*(T) = WSup | J [(T, z) — G(m)], for T € L(X,Y)

reX

is called the conjugate mapping of G.
(ii) A set-valued mapping G** : X 3'Y defined by

G™*(z) = WSup U [(T, T) — G*(T)], forxe X

Tel(X,Y)

is called the biconjugate mapping of G.

(i) T € L(X,Y) is said to be a subgradient of the set-valued mapping G at (zo; yo)
if yo € G(zo) and

(T, z0) — yo € WMaz | | (T, 2) - G()].

The set of all subgradients of G at (zo;y0) is called the subdifferential of G at
(z0; ¥o) and is denoted by 0G(zo; yo). If 0G(z0;10) # @ for every yo € G(x), then
G is said to be subdifferentiable at x,.

We describe now the conjugate duality theory in vector optimization introduced
and investigated in [22]. Let X and Y be real topological vector spaces. Assume
that Y is the extended space of Y and h is a function from X to ¥ U {+o0}. We
consider the vector optimization problem

(P)  Whf{h(z)|z € X).

Let U be another real topological vector space, the so-called perturbation space. Let
®: X xU — Y U{+00} be a perturbation function such that

®(z,0) = h(z), Vz € X.
Then the perturbed problem is
(P.) WInf{@(x,uH x € X},

where u € U is the so-called perturbation variable.
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Definition 2.4 The set-valued mapping W : U 3'Y defined by
W(u) = WInf(P,) = WInf{CI)(x,u)| z€ X}
is called the value mapping of (P).
It is clear that WInf(P) = W(0). The conjugate mapping of ® is
O*(T,A) = WSup{(T,x) + (A, u) — P(z,u)|z€ X, ue U}
for T € L(X,Y) and A € L(U,Y). Then
—-®*(0,A) = —WSup{(A,u) —d(z,u)|ze X, ue U}
= WInf{@(m,u) —(Au)|ze X, ue U}.
A dual problem to (P) can be defined as follows

(D)  Wsw |J [—(I)*(O,A)].

AEL(UY)

Since A — —®*(0,A) is a set-valued mapping, the dual problem is not an usual
vector optimization problem.

Proposition 2.1 [22, Proposition 5.1] (Weak duality)
For any z € X and A € L(U,Y) it holds

®(z,0) ¢ B‘( — 30, A)).

Definition 2.5 [22, Definition 5.2]
The primal problem (P) is said to be stable if the value mapping W is subdifferen-
tiable at 0.

Theorem 2.1 [22, Theorem 5.1], [18, Theorem 3.1]
If the problem (P) is stable, then

WInf(P) = WSup(D) = WMax(D).

Let us notice that the conjugate duality for set-valued vector optimization prob-
lems bas been investigated in [18]. Moreover, some stability criteria in association
to this duality theory can be found in [18], [19] and [22].

3 Fenchel duality for vector optimization

This section is devoted to the presentation of a special perturbation function which
allows us to state the so-called Fenchel duality. Let the spaces X and Y be the same
as in Section 2. Assume that h is a function from X to Y U {400} and G € X. We
consider the constrained vector optimization problem

(P,) Winf{h(z)| z € G}.
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Let us choose the perturbation space U = X and introduce the perturbation function
®: X xX —YU{+oo} defined by

| Mz +u), ifzegd;
O(z,u) = { +00, otherwise.

Then the perturbed problems turns out to be

(P.) WInf{@(w,u)| ze X}.

To verify the next assertion we use the following trivial properties.

Remark 3.1 Let g : X — Y be a function and Z C X. The following assertions
are true:

(i) For any y € Y it holds
{9(z) +ylz € Z} = {g(z)l z € Z} +y;

(i) For any set A CY it holds

U +9@)] =4+ [J{g@)}.

reZ z€Z

Proposition 3.1 Let T € L(X,Y). Then
*(0,T) = WSup{h*(T) +{-(T,z)| z € G}}
Proof: Let T € £(X,Y) be fixed. By definition

®*(0,T) = WSup{(T,u) — ®(z,u)| z € X,u € X}
= WSup{(T,u) — h(z + u)| z € G,u € X}.

Setting @ := z + u, by applying Remark 3.1 and Proposition 2.6 in [22], we obtain
that

®*(0,T) = WSup {{<T, @) — h(@)| @ € X} + {—(T,z)| z € G}}
= WSup { WSup{(T, @) — h(8)| @ € X} +{~(T,z)| = € G}}
= WSup {h*(T) +{(T,0)| z e G}}.

Consequently, we can state the dual problem as follows

(D.) WSup U WInf{ —h(T)+ {(T,z)| z € G}}

TeL(X,Y)



Proposition 3.2 (Weak duality)
For anyx € G and T € L(X,Y) it holds

h(z) ¢ B( 0 T)).
Proposition 3.3 If the primal problem is stable, then
WInf(P.) = WSup(D.) = WMax(D,).

Remark 8.2 According to Proposition 2.6 in [22], we can use for ®*(0,T) the
following equivalent formulations

®*(0,T) = WSup {{(T, W) — h(u)| u € X} + {~(T,z)| z € G}}
= WSup{h*(T)+{—(T,w)| T € G}}
= WSup {h*(T) + WSup{—(T,z)| z € G}}

The following result deals with the stability of the problem (P.), if the objective
function has the form h(z) = (C,z), C € L(X,Y).

Proposition 3.4 Let C € L(X,Y) and the objective function h : X 3Y be defined
by h(z) = (C,z). Then the problem (P.) is stable.

Proof: Let W : X =3 Y be the value mapping defined by

W(y) = Wnf{®(z,y)| z € X}
— WIn{(C,z +9)] 7 € G} = (C,9) + WInf{(C, )] @ € G},
Let z € W(0) be fixed. Then OW(0; z) # 0 means that 3T € £(X,Y) such that (see
Definition 2.3(iii))
—z € WMax |_J [(T,y) - W(y)]. (3.1)

yeXx

One can notice that

WMax |_J [(T,y) — W(y)] € WSup | J (T, y) - W(y)] = W*(T).
yeX yeX
Let us show that (3.1) holds. By applying Remark 3.1, we have
WH(T) = Wsup [ JUT,y) — W(y)]

yeX

= WSup U (T,y) — {C,y) — WInf{(C, z)| = € G}]

- wsup{ — WInf{(C,z)| z € G} + {{T — C,9)| y € X}}.

Taking T = C, in view of Corollary 2.3 in [22], one has

W*(C) = WSupWSup{—(C,z)| z € G}
= WSup{—(C,z)| z € G} = — WInf{(C, z)| z € G} = —W(0).
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This means that Vz € W(0), it holds —z € W*(C'). On the other hand, as (C,0)—2z €
U [(C,y) — W(y)], it follows that

yeX

—z € WMax | J[(C,y) — W(y)]-

yeX

In other words, W is subdifferentiable at 0. O

4 Variational principles for vector equilibrium
problems

Let X and Y be real topological vector spaces. Assume that K is a nonempty convex
set in X and f : K x K — Y is a bifunction such that f(z,z) =0, Vo € K. We
consider the vector equilibrium problem which consists in finding z € K such that

(VEP) flz,y) £0, Vy € K.

By KP? we denote the solution set of (VEP). We say that a variational principle
(see [4]) holds for (VEP) if there exists a set-valued map G : K =3 Y, depending on
the data of (VEP), but not on its solution set such that the solution set of (V EP)
coincides with the solution set of the following vector optimization problem

(Pg) WMin | ] G(z).

zeK

(Pg) is nothing else than the problem of finding zy € K such that
G(z0) N"WMin || G(z) # .

‘€K

Remark that variational principles for (V EP) have been investigated in [4] and
[5]. Moreover, in the scalar case in [2], by using the Fenchel duality in scalar op-
timization, some new gap functions for equilibrium problems have been obtained.
This section aims to show how a similar approach can be extended to vector equilib-
rium problems. For this reason, we use the Fenchel duality discussed in the previous
section.

It is clear that z € K is a solution to (VEP) if and only if 0 is a weak minimal
point of the set {f(Z,y)| y € K}. Let us consider for a fixed z € K the following
vector optimization problem

(PVEP: 1) WInf{f(a:,y)|y€K}.

Redefining

7oy _ ) flzy), if(z,y) € K xK;
fley) = { +o0, otherwise;

and setting it in (D,), the corresponding Fenchel dual turns out to be

(D Wsip | Wit {{Fla) — (o)l v € X} + ()] v € K3
TeL(X,Y)

= Wsup |J Wht{{f(e,y) = (T.9)ly € K} + () y € K} }.

TeL(X,Y)



In view of Proposition 2.6 in [22], the dual becomes

(DVEP; z) WSup U WInf{ — k(T 2) +{(T,y)| vy € K}}7
TeL(X,Y)

where f3(T;z) is defined by f%(T;z) = WSup{(T,y) — f(z,y)| y € K}. For any
z € K, we introduce the following mapping

we) = U [-90,7),

TeL(X,Y)

where ®5(0,T; z) = WSup {f,*((T; z)+{—(T,y)| vy € K}} Consequently we obtain
that

@) = U [~ W {filli0) +{~(T,9)l y € K} }]

TeL(X,Y)

- U Wf{-fi@i2) + (Mo y € K}
)

TeL(X,Y

= U wWnt{{f@@y) —(Ty)lye K} + (Tl ye K} .

TeL(X,Y)

We consider the following optimization problem

(Py) WSup U Yp().

zeK

Lemma 4.1 For any z € K, if z € y,(x), then z # 0.

Proof: Let z € K be fixed and

zep@= |J Wi{{fz,y) - (Tylye K} +{(Ty)lye K.
TeL(X,Y)

Then, 3T € £(X,Y) such that

2 € Wnf {{f(e,) - M)l v € K} + {(T.w)| v € K} }.

We assume that z > 0. This relation can be rewritten as

z> f(z,2) — (T,z) + (T,z),
and this leads to a contradiction. a
Theorem 4.1 Let the problem (PVEF; z) be stable for each x € KP. Then
(i) & € K is a solution to (VEP) if and only if 0 € v,(Z);
(i) K? C K?, where K? denotes the solution set of (Py).

Proof:



(i) If z € K is a solution to (V EP), then by Proposition 3.3 it holds
0 € WInf(PVEF; ) = WMax(DVEF,; 7).
Whence

0e WMax | WInf{ — T8+ {(T,y)| y € K}}.
TeL(X)Y)

Consequently, 0 € v,(Z). Let us now assume that

0e@ = | Wht{-/i(T,3)+(Ty)l y € K}
TeL(X,Y)
= U wnt{{f@y) - Tnlye K}
TeL(X,Y)

+ {Tylye K}
Therefore, 3T € L£(X,Y) such that

0e Wit {{£(z,4) - T,9)l y € K} + {(T,)| y € K}}.
Assume that 0 ¢ WInf{f(Z,y)| y € K}. Then it is clear that
0 ¢ WMin{f(Z,y)| y € K}.

Hence Jy' € K such that f(Z,y) < 0 or, equivalently f(z,y') — (T,y') +
(T,y") <0, which leads to a contradiction.

(ii) Let Z € K?. In view of (i), we have 0 € 7,(z). On the other hand, by Lemma
4.1, for any = € K, if 2 € yp(z), then 2z ¥ 0. Therefore, from 2z € |J 7,(x)

zeK
follows 2z # 0. This means that
0 € WMax U Yp(z) € WSup U Yp().
T€EK TeK
Whence z € K. O

Remark 4.1 Taking instead of f the bifunction f: X x X — Y U {+00}, the
mapping v, can be rewritten as

w@) = U Wt{{fz,y) - (o)l ye X} +{(Toy)l y € K} }.
TelL(X,Y)

One can easy verify that Lemma 4.1 and Theorem 4.1 still holds in this case. This
results will be used later for applications.

Remark 4.2 Let X = R™ and Y = RP. Then a linear continuous operator T €
L(R",RP) can be identified with a p x n matrix. Moreover, let us assume that p = 1.
Then for a given set Z C R, we have (cf. [21])



7€ WSupZ if and only if g >y, Vy € Z and if y’ <y, then Jy € Z such that
Yy <.
In other words, WSup Z is reduced to the usual concept of the supremum of a set
7 in R. Assume that ¢ : X x X — RU {+oc} is a bifunction satisfying ¢(z,z) =
0, V& € K. We can consider the equilibrium problem which consists in finding z € K
such that
(EP)  o(z,y) 20,Vy € K,

which is a special case of (VEP). Taking ¢ instead of f in (DVEP;z), the dual
becomes

(DEP; 7) sup inf { {p(z,y) — Tyl y € X} + {Ty| y € K} }

TeRIxn

B Tzllégn { ;g)f({(’o(w’ y) — Ty} + ;g{ Ty}

= sup {—wy(w,T) +y1g1f{Ty},

Te]Ran
where @y (z,T) := sup{T y — o(z,y)} is the conjugate function of f with respect to

the variable y for a ﬁxed z. In this case, we can define the gap function for (EP) as
follows:

FPP(e) i= —o(DP*2) = inf {y(,T) +supl-Tul},

TeRIXn yGK

where v(DPF; z) is the optimal objective value of (DEF; z). This is nothing else than
the gap function introduced in [2].

Ezample 4.1 Let u: X — Y U {+oc} be a given function. For the bifunction
f:dom ux X — Y U{+oo} defined by flz,y) = u(y) — u(z), where dom u :=
{r € X| u(z) € Y}. We assume that K x K € dom f. Then (VEP) is reduced to
the vector optimization problem of finding € K such that

(Pu) Flz,y) = uly) —u(z) £ 0, Vy € K.

For any = € K, 7, turns out to be

@) = —u@) + ) Wht{{u) ~ ()l y € X} + {Tw) v € K} |

TeL(X,Y)
Assuming the stability of (P,), by Proposition 3.3, it holds

WInf(P,) = WSup(D,) = WMax(D,), (4.1)

where (D,) is the Fenchel dual problem to (Py ).
Let Z € K be a solution to (P,). From (4.1) follows

u@ e |J Wint{{uy) — (Tl ye X} +{(Ty) v K} |

TeL(X,Y)

In other words 0 € 3,(Z). The inverse implication follows analogously (see the proof
of Theorem 4.1). On the other hand, by Proposition 3.3 and Proposition 2.6 in
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[22], one has WSup U ¥,(z) = {0}. If Z € K solves (P,), then as shown before,

zeK
0 € Ap(Z). This means that K? C K?. In other words, the assertions of Theorem 4.1

are fulfilled.

Ezample 4.2 (see [19]) Let X =R, ¥ = R? and C' = R}. Let the vector-valued
function ¢; : R — R?* U {400} be given by

| (z,0), ifzel0,1],
o1(z) = { 400, otherwise.

Introducing the bifunction f; : R? —» R? U {+co} as

()_ ()’ lf(a )Te[o’l]x[ovl]a
filz,9) = { ﬁlog, o othxergvise,

we consider the vector equilibrium problem of finding x € K = [0, 1] such that

(VEPR) fi(z,y) = v1(y) — wi(z) £ 0, Vy € K.

According to 7,, we have

W@ = | Wht{{e0) - ei@) — Tyl ye K+ {Ty)ly e K} }.

TeL(R,R?)

This can be written as (see Remark 3.2)

(@) = @) - | Wsw{{{Ty) - 1)l v € K}
TeL(R,R2)

+ {~(Ty)ly € K}

= —p(z) — U WSup { WSup{(T,y) —v1(y)| y € K}
TeL(R,R?)

+ WSup{—(T,y)| y € K}}.

Notice that the linear continuous operator T' € L(R,R?) has the form T = (a, 8) €
R2. Using the notations

Vi(T): = WSup{(T,y) —¢1(y)| y € K} = WSup{(a — 1,8)y| y € [0,1]},
PYo(T) : = WSup{—(T,y)| y € K} = WSup{(~a, -B)y| y € [0, 1]},

let us find for any T = (o, 8) € L(R,R?) how the sets ¢ (T), ¥o(T) and WSup{y(T)
+19(T)} are looking,.

(i) f a > 1and B > 0, then

n(T) = {(z,9)"eR?| (z=a—-1, y<BV(y=46 z<a-1)},
Po(T) = {(z, )" €R} (z=0,y<0)V(y=0, 2<0)}.

Whence WSup{91(T) + ¢¥o(T)} = 91 (T).
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(ii) If @ > 1 and B < 0, then

0 (T) = {(x,y)T€R2| (z=a-1,y<B)V(y=0, z <0)

% (yzo/jl:z:, 0<z<a-1)}

bo(T) = {(z,y)T €R? (z=0,y<0)V(y=-F v<-0q)
B

V (yzax, —a<z<0)}

Consequently, we have

WSup{y1(T) + wg(T)}={(:c,y)TeR2| (z=a-1, y<p)
Y (yz—ﬁ,xg—oz)v(y:g:c, —a<z<0)

V (yza?_lz, 0<z<a-1}

If « = 1 and B < 0, then we can easy see that

WSup{vi(T) + o(T)} = {(z,y)" €R*| (z=0, y<0)

vV (y= -0, xS—a)\/(yzgw, —~a<z<0)}

(iii) f 0 < @ < 1 and B > 0, then

() = {(@y)" €R)(z=0,y<0) V(=40 z<a=-1)
v (==
y__

bo(T) = {(z,y)T €RY (=0, y<0)V(y=0, z<0)}.

193,a—1§a:§0)},

As a consequence, one has WSup{t:(T)+¢2(T)} = 91 (7). If additional, or = 0
and B > 0, then it holds

WSup{¢r(T) + v2(T)} = {(z,9)" €R*| (z=0, y<0)

vV (y=0, xSa—l)V(yzaﬁ

lac, a—1<z<0)}.

(iv) f 0 < a <1 and B <0, then

(1) = {(z,y)" €R} (z=0, y<0)V(y=0, z<0)},
o(T) = {(z,n)" €R* (z=0,y<0)V(y=-5, =< —0a)
\Y (y———g-:v, —a<z<0)}

Hence WSup{t1(T) + ¢o(T)} = tho(T). Moreover, if =0 and § <0, then it
holds

WSup{y1(T) + v2(T)} {(z,y)" €R* (z=0, y <)

vV (y=-0, z<0)}
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(v) f @ <0and B >0, then
Ui(T) = {(z,9)" €R’ (z=0,y<0)V(y=4, s <a—1)
v y=—Loa a1z <0,
$a(T) = {(z,y)" €R (z=-a, y<-B)V(y=0, z<0)

Vv (yzgm, 0<z<—a)}
Consequently, we get
WSup{y1(T) + (1)} = {(z,9)" €R*| (z = —a, y < —0)
vV (y =0, xSa—l)V(y:aﬁlx, a—1<z<0)

v (y=§x, 0<z< —a)}.

(vi) If @ < 0 and 8 < 0, then
w(T) = {(z,»)" €R’| (z=0, y<O)V(y=0, z <0),
() = {=y" R (z=-a y<—p)V(y=-, < -a)}.
In conclusion, we have WSup{y1(T) + 12(T)} = 1o(T).

Summarizing all above cases, we obtain the complete description of v, .

It is well known that (V E P) is closely related to the so-called dual vector equilibrium
problem of finding x € K such that

(DVEP) fly,z) #0, Vy € K.

In the same way as before, we can obtain similar results for (DVEP) Indeed, let
us denote by K* the solution set of (DV EP). We mention that Z € K is a solution
to (DVEP) if and only if 0 is a weak maximal point of the set {fly,2)| y € K}.
For any x € K we consider the vector optimization problem

(PPYEF ) WSup{f(y,2)| y € K}
= —WInf{—f(y,z)| y € K}.

In other words, we can reduce (PPVEF; 1) to the following vector optimization prob-
lem

(PPVEPiz)  Wnf{~f(y,2)| y € K}.

By using the extended function

_f(yaz)’ if (1.7y) € K x K:
~+00, otherwise,

Fla,y) =
the Fenchel dual to (PPYEP; 1) turns out to be

(DY) WSup | Wint {{Fle.) - (A1)l y € X} + {{A,3)] y € K} }
AeL(X,Y)

= WSup | Wint{{~f(s.2) - (A9}l y € K} + {{A,5)| y € K} }.
AEL(X,)Y)
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Whence for £ € K we can define the following mapping

va(z) = U (0, A; x),

AeL(X,Y)
where ®3(0, A;z) = WSup { {£(y2) + (A, )| y € K} + {~(A, )| y € K} }.

To the problem (DV EP) can be associated the following set-valued vector opti-
mization problem

(D,) Winf U ~va(T).

zeK

Lemma 4.2 For any z € K, if 2 € v4(x), then z £ 0.

Proof: Let z € K be fixed and
rem@ = U WSup{{f(s, )+ (hu)l v e K} +{-(Ap)l y € K} }.

A€L(X,Y)

Consequently, IA € £(X,Y) such that

2 e WSup { {f(5,2) + (K, )| v € K} + {~(R,y)| v € K}}.
Let z < 0. In other words
2 < flz,z) + (A, z) — (A, z).
This contradicts the fact that z is a weak supremal element of the set {{ fly,z) +
Kol ye Ky +{-(K o)y e K} }. D

Theorem 4.2 Let the problem (PPVEP; 1) be stable for each € K% Then
(i) T € K is a solution to (DV EP) if and only if 0 € va(T);
(i) K% C K¢, where K¢ denotes the solution set of (D).
Proof:
(i) Let ¥ € K be a solution to (DV EP). Then, by Proposition 3.3, it follows that
0 € WSup(PPVEP: 5) = — Wnf(BPY PP, %) = — WMax(DPVEP; ).

Therefore

oewMin |J Wsup{{/(u,®)+ (A w)lyeK}+{-(Aylyek}}.
A€L(X,Y)

In other words, we have 0 € v4(%). Let now 0 € v4(). Then, 3A e L(X,Y)
such that

0€ WSup { {/(5,7) + (K,v)l y € K} + {~K,p)l y € K} }.

If 0 ¢ WSup(PPVEP; %), then 0 ¢ WMax(PPVPP; 7). Whence 3y € K such
that f(¥,Z) > 0,1e. f(¥,T)+{A,¥)—(A,¥) > 0, which leads to a contradiction.
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(ii) Let Z € K? Taking into account (i), one has 0 € v4(Z). By Lemma 4.2 we
obtain that

0 € WMin U va(x) € Winf U va(z).
€K zeK

This means T € K, if. O

__ Remark 4.3 As mentioned in Remark 4.1, choosing instead of 4 the bifunction
f: X xX —>Y U{+o0}, we can define the following mapping

Fulw) = WSup {{F(y,2) + (A,9)| y € X} +{-(A\, 1)l v € K} }.

Under (generalized) convexity and monotonicity assumptions, the relations between
the solution sets of (VEP) and (DV EP) have been investigated in [5] and [15].
Whence, under the assumptions considered in these papers, the mapping «4 can be
related to the problem (VEP). Before doing this, let us recall some definitions and
results.

Definition 4.1 [5, Definition 2.1]
A function f: K x K —Y 1is called

(i) monotone if, for all z,y € K, we have
f(z,y) + fy,z) < 0;

(ii) pseudomonotone if, for all x,y € K, we have

f(z,y) £0 implies f(y,x) # 0,

or, equivalently,
f(z,y) >0 implies f(y,z) < 0.

Definition 4.2 [5, ¢f. Definition 2.2/
A function h: K — 'Y is called:

(i) quasiconvez if, for all o € Y, the set L(a) = {z € K| h(z) < a} is convez;

(1) explicitly quasiconvex if h is quasiconvez and, for all z,y € K such that h{x) <
h(y), we have

h(z) < h(y), forallzz=tx+ (1 —t)y andt € (0,1);

(iii) hemicontinuous if, for any z,y € K and t € [0,1], the mapping t — h(tz +
(1 —t)y) is continuous at 0.

Proposition 4.1 [5, Proposition 2.1]
Let K be a nonempty convex subset of a Hausdorff topological vector space X and
let f: K x K —Y be a bifunction such that f(z,z) =0, Vz € K.

(i) If f is pseudomonotone, then K? C K¢;

(i) If f(z,-) is explicitly quasiconvex and f(-,y) is hemicontinuous for allz,y € K,
then K¢ C KP.
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By Theorem 4.2 and Proposition 4.1 we can easy verify the following assertion.

Proposition 4.2 Let all the assumptions of Proposition 4.1 and Theorem 4.2 be
fulfilled. Then

(i) T € K is a solution to (VEP) if and only if 0 € v4(T);
(i) KP C K4,

5 Gap functions for weak vector variational in-
equalities

This section deals with the construction of gap functions for the so-called weak
vector variational inequalities. Therefore we apply the results for vector equilibrium
problems in the previous section. As before, let X and Y be real topological spaces.
Assume that K is a closed and convex subset of X and F : X — £(X,Y) is a given
mapping. The weak vector variational inequality consists in finding z € K such
that

(WVVI) (F(z),y —z) £ 0, Yy € K.

Definition 5.1 [10, Definition 5(ii)]
A set-valued mapping ¥ : X =3'Y is said to be a gap function for the problem
(WVVI) if it satisfies the following conditions

(i) 0 € ¥(x) if and only if z € K solves (WVVI);
(i) 0 % ¢(y), Vy € K.

It is clear that Z € K is a solution to (WV V) if and only if 0 is a weak minimal
point of the set {(F(Z),y — Z)| y € K}. Let us consider the vector optimization
problem:

(PWVVL ) WInf{{F(z),y — z)| y € K}.

Taking for any z € K, f(z,y) := (F(z),y — z) in 7, we suggest the following map
for (WVVI)

d(a) := |J WSup {{((T,9) — (Fe),y — )| y € X} + {~(T.u)l y € K} }

TeL(X,Y)

= U Wsup {{(T — F(e), )l y € X} + {~(T9)| y € K} } + {F(a). ).
TeL(X,Y)

Theorem 5.1 v, is a gap function for the problem (WVVI).

Proof:

(i) Since (F(z),y—z) is a linear mapping with respect to y, one can apply Propo-
sition 3.4. Consequently, for any = € K the problem (PWVVZ; 1) is stable. For

f(z,y) = (F(x),y — z), the first condition in the definition of a gap function
follows from Theorem 4.1(i).
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(i) By Lemma 4.1, for any y € K and any z € —¢,(y), one has z ¥ 0. Conse-
quently, we have 0 ¥ ¢,(y), Yy € K. O

The relations between (WVVI) and the so-called Minty vector variational in-
equality have been investigated by several authors (see [13], [15], [24] and [25]). Here
we consider the Minty weak vector variational inequality consists in finding z € K
such that

(MWVVI)  (F(y),z—y) #0, Vy € K.

Likewise in Section 4, (MW VVI) can be related to the following vector optimization
problem:

(P z)  WInf{(F(y),y — 2)| y € K}
in the sense that x € K is a solution to (MWVVI) if and only if 0 is a weak minimal

point of the set {(F(y),y — z)| y € K}. Taking f(z,y) := (F(z),y — z) in 4, we
can introduce the following mapping

vala) = |J Wsup {{(F(v),z — 1) + (A,9)| y € X} + {~(A,p)| y € K} }.
AcL(X,Y)

From Theorem 4.2(i) and Lemma 4.2 follows the following assertion.

Theorem 5.2 Let the problem (PMWVYVI. 1) be stable for any solution x € K to
(MWVVI). Then 14 is a gap function for the problem (MWVVI).

Under certain assumptions the mapping 14 is also a gap function for (WVVI).
Let us recall first the following definitions.

Definition 5.2 [25] Let F : K — L(X,Y) be a given function.

(i) F is weakly C-pseudomonotone on K if for each z,y € K, we have
(F(z),y —z) £ 0 implies (F(y),z~y) #0;

(i) F is v-hemicontinuous if for each x,y € K and t € [0, 1], the mapping t
(F(zx+t(y —z)),y — x) is continuous at 0.

Proposition 5.1 [25, Lemma 2.1]

Let X, Y be Banach spaces and let K be a nonempty convex subset of X. As-
sume that a function F : K — L(X,Y) is weakly C-pseudomonotone on K and
v-hemicontinuous. Then x € K is a solution to (WVVI) if and only if it is also a
solution to (MWVVI).

As a consequence, we can easy verify the following assertion.

Proposition 5.2 Let the assumptions of Theorem 5.2 and Proposition 5.1 be ful-
filled. Then 14 is a gap function for (WVVI).
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