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functions
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Abstract. We present an extension of Fenchel’s duality theorem to nearly
convexity, giving weaker conditions under which it takes place. Instead of mini-
mizing the difference between a convex and a concave function, we minimize the
subtraction of a nearly concave function from a nearly convex one. The assertion
in the special case of Fenchel’s duality theorem that consists in minimizing the
difference between a convex function and a concave function pre-composed with
a linear transformation is also proven to remain valid when one considers nearly
convexity. We deliver an example where the Fenchel’s classical duality theorem
is not applicable, unlike the extension we have introduced, and an application
related to games theory.
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1 Introduction

A cornerstone in Optimization, Fenchel’s duality theorem ([21]) is one of the
most applied results in Convex Analysis. It asserts that under a certain condi-
tion, namely the existence of a common element in the relative interiors of the
effective domains of a convex and a concave function, respectively, both defined
over the n-dimensional real space, the infimal value of the difference between the
convex function and the concave one is actually equal to the maximal value of the
function obtained by subtracting the conjugate of the convex function from the
conjugate of the concave function. The minimization problem is usually called
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primal problem, while the maximization problem involving conjugate functions
is known as the Fenchel dual problem attached to the primal. The areas of
applicability for this basic result cover actually more than optimization and its
offsprings and relatives. The interested reader is referred to Rockafellar’s book
[21] for a first and consistent contact with this theorem and some of its essential
applications.

As Fenchel’s duality theorem is given for convex optimization problems, there
were many attempts to extend it in various directions, some of them proving
to be successful. We cite here three of them. Kanniappan has given in [16] a
Fenchel-type duality theorem for non-convex and non-differentiable maximization
problems, Beoni ([2]) extended Fenchel’s statement to fractional programming,
while Penot and Volle ([20]) considered it for quasiconvex problems. Our paper is
meant to present another extension of Fenchel’s duality theorem, this time for a
primal problem having as objective the difference between a nearly convex func-
tion and a nearly concave one. The nearly convex functions were introduced quite
recently by Aleman ([1]) (see, also, [5] and [17]) who called them p-convex, while
for the sets the concept of nearly convexity due to Green and Gustin ([11]) is
already older than half a century. Among the papers that have dealt with nearly
convex sets and functions let us mention [3], [4], [9], [15] and [18], the first and
the third presenting also some results concerning their applicability in optimiza-
tion, especially in duality. Within the last twenty years there has been published
a series of papers dealing with and extending this concept. Among these gen-
eralizations let us recall nearly S-convexlikeness and nearly S-subconvexlikeness
(see [6], [14] and [18]). Jeyakumar and Gwinner ([15]) have used this notions
and their properties in order to derive solvability theorems for general convexlike
inequality systems. Further applications in Lagrange duality, theorems of the
alternative and optimality conditions for optimization problems involving nearly
convex functions and sets (and their already mentioned extensions) were given
in [8] and [13].

Our aim is to reveal some sufficient conditions, weaker than those in [21],
that guarantee the equality between the infimal value of the objective function
of the primal problem as given in Theorem 31.1 in the mentioned book and
the supreme objective value of the Fenchel dual problem attached to it, which is
actually attained at some point in R"”. Because some authors cite Corollary 31.2.1
in [21] as Fenchel’s duality theorem, we have taken it into consideration, too. We
proved that its assertion holds under weaker conditions than the ones considered
in [21], namely, alongside the regularity condition, instead of f convex and closed
function and g concave and closed function we need just f nearly convex, g nearly
concave and the relative interiors of their epigraphs non-empty. When f is convex
and g concave the statement remains valid without assuming that these functions
are closed.

Let us now present some things regarding the way this paper is organized.
The next section is dedicated to some necessary preliminaries. The two theorems



we generalize, some notions we will use throughout the paper, notations and some
statements used later are presented. The third part of the paper contains the
main result and some remarks concerning the way it generalizes Fenchel’s results.
An example on which this extension is applicable is also delivered alongside an
application in games theory. We give in the fourth section an extension to the
case of Fenchel’s duality theorem where the concave function to be subtracted
is post-composed with a linear transformation, too. A short conclusive section
followed by the list of references close the paper.

2 Preliminaries

Because the notions of nearly convex sets and nearly convex/concave functions
are not so widely-known, we dedicate this section to familiarize the reader with
them and the most important results related to them that we will need further
within this paper. Other notions, notations and assertions concerning convex
sets and convex/concave functions required or mentioned later are also contained
inside this section, as well as the theorems to whose generalization this paper is
dedicated to.

As usual, R" denotes the n-dimensional real space for n € N and Q is the set
of all rational real numbers. Throughout this paper all the vectors are considered
as column vectors belonging to R”, unless otherwise specified. An upper index
T transposes a column vector into a row one and viceversa. The inner product
of two vectors x = (xl, ...,xk)T and y = (yl, e yk)T in the k-dimensional real

space is denoted by 27y = Zle x;y;. The closure of a certain set is distinguished
from the set itself by a preceding cl, the prefix aff denotes the affine hull of the
corresponding set, while to write the relative interior of a set we use the prefix ri.
If A:R"™ — R™ is a linear transformation, then by A* : R™ — R"™ we denote its
adjoint defined by (Az)Ty = 27 (A*y) Vr € R" Yy € R™. For some set X C R"
we use the well-known indicator function dx : R® — R = R U {400} defined by

Sx(w) = 0, ifre X,
M= oo, if v ¢ X.

For a convex function f : R®™ — R we consider the following notions and defini-
tions

+ effective domain: dom(f) = {z € R": f(z) < 400},
- epigraph: epi(f) = {(z,7) e R* xR : f(z) <r},
- f is proper: dom(f) # 0 and f(x) > —oo Vo € R",

- lower semi-continuous envelope: f : R® — R such that epi(f) = cl(epi(f)),



- conjugate function: f*:R" — R, f*(p) = sup {p’z — f(z)}.
zeR?

Similar notions are defined also for a concave function g : R® — R as follows (cf.

[21])
-+ effective domain: dom(g) = {z € R": g(z) > —oc},
- epigraph: epi(g) = {(x,r) eR"xR:g(x) > r},
- ¢ is proper: dom(g) # () and g(x) < 400 YV € R",
- upper semi-continuous envelope: g : R" — R such that epi(g) = cl(epi(g)),

- conjugate function: g* : R* — R, g*(p) = xienu{n [Tz — g(x)].
To avoid more intricate notations we denote all these notions in the same way
for both convex and concave functions, because the meaning arises always clearly
from the context. When necessary, we shall refer to them as ”convex” when
considered as for convex functions and ”concave” otherwise. Let us specify that
for the nearly convex functions these notions will be considered in the convex
sense, while for the nearly concave ones they are taken in the same way as for
concave functions.

Regarding the conjugate functions there is the famous Young-Fenchel inequal-
ity formulated below for a function f : R — R and its convex conjugate, respec-
tively for a function g : R® — R and its concave conjugate (cf. [21]),

f*(u) + f(z) > uTz > g*(u) + g(z) Yu,z € R™.

The two important results due to Fenchel to whose generalization this paper is
dedicated to follow. The first of them is referred to as Fenchel’s duality theorem
throughout the present paper.

Theorem 2.1. (Theorem 31.1 in [21]) Let f be a proper convez function on
R™ and let g be a proper concave function on R™. One has

inf [f(2) —g(z)] = sup {g"(v) — f*(v)}

CBER" UER"
if either of the following conditions is satisfied:

(a) ri(dom(f)) Nri(dom(g)) # 0;
(b) [ and g are closed, and ri(dom(f*)) Nri(dom(g*)) # 0.



Under (a) the supremum is attained at some wu, while under (b) the infimum is
attained at some x; if (a) and (b) both hold, the infimum and supremum are nec-
essarily finite.

Theorem 2.2. (Corollary 31.2.1 in [21]) Let f be a closed proper convex
function on R™, let g be a closed proper concave function on R™, and let A be a
linear transformation from R™ to R™. One has

inf [f(z) — g(Az)] = sup {g"(v) — f*(A™v)}

weRn veRM
if either of the following conditions is satisfied:
(a) there exists an x’ € ri(dom(f)) such that Az" € ri(dom(g));
(b) there ezists a u € ri(dom(g*)) such that A*u € ri(dom(f*)).

Under (a) the supremum is attained at some u, while under (b) the infimum is
attained at some x.

Let us recall now some other notions (cf. [3]) that play an important role
within this paper.

Definition 2.1. A set S C R” is called nearly convex if there is a con-
stant a € (0,1) such that for each x and y belonging to S it follows that
ar+(1—a)yeS.

The name "nearly convex” has been used in the literature also for other con-
cepts, but we followed the terminology used in some relevant optimization papers
(1], (9], (13, [151, 18], [19], [22]).

Obviously every convex set is nearly convex, while Q C R, for instance, is
nearly convex (with o = 1/2), but not a convex set.

Definition 2.2. A function f : R — R is said to be nearly convex when there
is an a € (0,1) such that for all z and y in dom(f) = {z € R : f(z) < +oo} we
have

floaz+ (1 —a)y) <af(x) +(1—-a)f(y).

Definition 2.3. A function g : R® — R is said to be nearly concave when
there is an o € (0, 1) such that for all z and y in dom(g) = {z € R" : g(z) > —oo}
we have

g(az+ (1 —a)y) > ag(z) + (1 - a)g(y).

Obviously, if the function f is nearly convex, then —f is nearly concave and
viceversa.



Remark 2.1. The nearly convex/concave functions have nearly convex effec-
tive domains.

Any convex function is also nearly convex, but there are nearly convex func-
tions that are not convex as is to be seen in the following.

Example 2.1. Let F' : R — R be any discontinuous solution of Cauchy’s
functional equation F(z +y) = F(x) + F(y) VYz,y € R. For each of these
functions, whose existence is guaranteed in [12], one has

F<x+y> _ F(z)+ F(y) Vi.y € R,

2 2

i.e. these functions are nearly convex. None of these functions is convex because
of the absence of continuity.

We need to introduce also some statements which are to be used later during
the proof of the main theorem and afterwards. For the reader’s convenience some
of them are given with proofs. This is not the case for the first of them, whose
proof is elementary, following minutely the one in the convex case.

Lemma 2.1. Consider the functions f, g : R" — R.

(a) f is nearly convex if and only if its convezr epigraph epi(f) = {(m,r) €
R*"x R : f(x) < 7“} s nearly convex.

(b) g is nearly concave if and only if its concave epigraph epi(g) = {(:v,r) €
R*" xR :g(x) > r} 18 nearly conver.

Lemma 2.2. ([8]) For a convex set C C R" and any set S C R™ satisfying
S C C we have 1ri(C) C S if and only if ri(C') = ri(S).

Proof. Assuming first ri(C)) C S to be true, we distinguish two cases. If
C is empty, then ri(C) = @ and S = () (being included into C). Therefore
ri(S) = 0 = ri(C). When C is not empty, then by Theorem 6.2 in [21] we have
ri(C) # 0 and aff(C') = aff(ri(C)) C aff(.5).

Since S C C' we have aff(S) C aff(C'), hence aff(S) = aff(C) = aff(ri(C)),
so ri(S) C ri(C) and ri(ri(C)) C ri(S). On the other hand, from [21] we have
ri(ri(C)) = 1i(C), followed by ri(C) C ri(S). Therefore ri(C) = ri(S).

Reversely, suppose ri(C) = ri(S). As ri(S) € S (by definition), it follows
ri(C) C S. O

Lemma 2.3. ([1]) For every nearly convex set S C R™ the following properties
are valid



(1) 1i(S) is convex (may be empty),
(i1) cl(S) is convex,

(iii) for every x € cl(S) and y € ri(S) we have tz + (1 — t)y € ri(S) for each
0<it<l1.

Remark 2.2 As every nearly convex which is also closed is actually convex, it
is obvious that every lower semi-continuous nearly convex function is a convex
(see Lemma 2.1).

Lemma 2.4. ([3]) Let S CR" be a nearly convex set. Then ri(S) # 0 if and
only if ri(cl(S)) C S.

Proof. Let us suppose first that ri(cl(S)) € S. As S C cl(9) it follows
that aff(ri(cl(5))) C aff(S) C aff(cl(S)). From Theorem 6.2 in [21] we know,
since cl(5) is convex, that aff(ri(cl(S))) = aff(cl(S)), so we deduce that aff(S) =
aff(cl(S)). By Lemma 2.3(iz) cl(S) is convex, so ri(cl(S)) is non-empty and convex
(cf. [21]). Therefore by Theorem 6.2 in [21] follows aff(cl(S)) = aff(ri(cl(S))),
hence aff(5) = aff(ri(cl(S))). Using the initial assumption in this proof it follows
ri(ri(cl(S))) C ri(.S), which leads to 0 # ri(cl(S)) C ri(S). Thus ri(S) # 0.

Now let us prove the reverse statement. Take an arbitrary element x €
ri(cl(S)). By definition, there is an € > 0 such that (x + B(0,¢)) Naff(cl(S)) C
cl(S), where B(0,¢) is the closed ball centered in 0 and with radius ¢ in R™.
Choosing an arbitrary element z’ € ri(S) and a t € (0,1) such that

t
1—-1

|z =2l <,

it follows that z := (1/(1 —t))x + (—t/(1 — t))2’ belongs to aff(cl(S)) and

—t t
Hz—x||:H '+ = _t||x—x’H <e.

t
T
1-—-1¢ 1—-1 1

Therefore z € cl(.S). Since 2’ € ri(S), Lemma 2.3(éi7) leads to x = ta’' 4+ (1—t)z €
ri(S) C S. O

Lemma 2.5. ([3]) For a non-empty nearly convex set S C R™, ri(S) # 0 if
and only if ri(S) = ri(cl(9)).

Proof. By Lemma 2.3(ii) cl(S) is convex, so Theorem 6.2 in [21] yields
(cl(S)) # 0. Assuming that ri(S) = ri(cl(S)), it becomes obvious that ri(S) #

ri

0



Within the proof of the previous lemma we have shown the following equiva-
lence

ri(S) # 0 < ri(cl(S)) C ri(S).

To prove the reverse inclusion in the right-hand side let us take an arbitrary
element = € ri(S). By definition, there is an € > 0 such that (x + B(0,¢)) N
aff(S) C S. Moreover by [21] aff(S) = aff(cl(S)) and S C cl(.S), therefore

(x 4+ B(0,¢)) Naff(cl(S)) C cl(9),

ie. x € ri(cl(S)). Hence ri(S) C ri(cl(S)) whenever ri(S) # (). The conclusion
arises naturally. O

3 The extension of Fenchel’s duality theorem

As said before, the importance of Fenchel’s duality theorem in convex analysis
and optimization is really huge. Let us briefly recall its content. For a proper
convex function f : R” — R and a proper concave one g : R” — R the infimal
value of the objective function of the convex optimization problem

(P) inf [f(2) - g()]

rER?

and the supreme objective value of its Fenchel dual problem
(P) s {g"(w) ~ £ ()}
ue n

are equal and the latter supremum is attained at some point © € R", provided
that

ri(dom(f)) Nri(dom(g)) # 0.

Remark 3.1. The Fenchel dual problem can be obtained also via the pertur-
bation theory described in [7].

Our intention is to weaken the conditions imposed in the book of Rockafellar
[21] without altering the conclusion. That is why we consider f nearly convex
and ¢ nearly concave, and not convex, respectively concave. We need also to
assume two additional conditions to be fulfilled, which are satisfied when f is
convex and g concave. But let us formulate and prove the main result in this

paper.

Theorem 3.1 Let f:R* — R be a proper nearly convex function and let
g : R" — R be a proper nearly concave function. If the following conditions are
simultaneously satisfied

(i) ri(dom(f)) Nri(dom(g)) # 0,



(ii) ri(epi(f)) # 0,
(iii) ri(epi(g)) # 0,

then one has

inf [f(z) — g(x)] = sup {g"(u) — [ (u)}

z€R™ ueR”™

and the supremum is attained at some u € R™.

Proof. According to Lemma 2.1, the set epi(f) is nearly convex, the same
property being valid for epi(g), too.
As ri(epi(f)) # 0, by Lemma 2.4 it follows ri(cl(epi(f))) € epi(f). On the

other hand, by Lemma 2.3(ii), the set epi(f) = cl(epi(f)) is closed and also
convex. Therefore f is a convex function and by Lemma 7.3 in [21] we have

ri(epi(f)) = {(:1:,7") : f(z) < 7,2 € ri(dom( ))} = ri(cl(epi(f))) C epi(f).

Take an x from ri(dom(f)). It follows that for all £ > 0 we have (z, f(z) +¢) €
ri(epi(f)) C epi(f), so f(z) < f(z)+e. Letting ¢ tend to 0 it follows f(z) < f(z)
Va € ri(dom(f)), which implies that f(x) = f(z) Va € ri(dom(f)).

Thus ri(dom(f)) C dom(f) and as dom(f) C dom(f), by Lemma 2.2 it follows
that ri(dom(f)) = ri(dom(f)).

As f is not identical 400 it follows that f is also not identical +o0o. Assume
now that there exists an 2/ € R" such that f(2') = —oo. The function f being
convex and lower semi-continuous we have that f(z) = —oo Vo € dom(f). But, as
f(z) = f(z) Vo € ri(dom(f)) and ri(dom(f)) # @, this contradicts the properness
of f. This proves that f is a proper function.

In a similar way, for g being the upper semi-continuous envelope of g we can
prove that g is a proper, concave and upper semi-continuous function with the
property that g(z) = g(x) Va € ri(dom(g)) and ri(dom(g)) = ri(dom(g)).

The assumption (7) implies that ri(dom(f)) Nri(dom(g)) # 0. Let us denote

now by o := ian [f(z) — g(x)]. It is obvious that a € [—oo,+00). Next we
we n
prove that o = ian [f(x) — g(x)]. Tt is obvious that o < ian [f(z) — g(x)].
rER? z€R™
Assume for the beginning that a € R. Given ¢ > 0, let y € R™ be such that

fy)—gly) <a+e

It is easy to see that y € dom(f) N dom(g). Let now be z € ri(dom(f)) N
ri(dom(g)). For all A € (0, 1] we have then (1—\)y+\z € ri(dom(f))Nri(dom(g)).
As f(z) — g(z) = f(z) — g(x) Vo € ri(dom(f)) Nri(dom(g)), it follows that

FIA=Ny+22) —g((1 =Ny +Az) = fF(1 =Ny +Az) —g((1 = Ny + Az) <

(1= N(f(») —9) + A(f(2) — 3(2)) =



FW) —g(y) + M(f(z) = fly) + 5(y) — 3(2)) VA € (0,1].

Choosing A € (0,1] such that A(f(z) — f(y) + g(y) — g(2)) < e, we obtain an

element 7 := (1 — \)y + Az € R such that f(Z) — ¢(%) < f(y) — g(y) + ¢ and

therefore ian [f(z) — g(2)] < f(y) — g(y) + € < a + 2¢. Letting ¢ converge to 0
reR™

it follows that igﬂ{n[f(x) —g(z)] = a.

Assume now that o = —oo. For any k > 1 there exists y, € R" such that

flye) — gyr) < =k — 1.

Let be again z € ri(dom(f)) Nri(dom(g)). As yx € dom(f) N dom(g), we get
(1 = Nyr + Az € ri(dom(f)) Nri(dom(g)) Vk > 1 and

FI=Nyr +22) = g((1 = Ny +A2) = F((1=Nyi +A2) = G((1 = Nyx + Az) <

(1= N(f ) — 9w) + A(f(2) — (=) =
Flyw) = g(yn) + MF(2) = flye) + 3ye) — 3(2)) YA €

Choosing Ax € (0,1] such that Ae(f(2) — f(ye) + g(yx) — g
an xp = (1 — A\p)yr + A\ez € R™ such that f(zx) — g(zr) <
—k Yk > 1. Therefore igﬂ{n[f(x) —g(z)] = —00 = a.

_ Applying Fenchel’s duality theorem (Theorem 31.1 in [21]) for the functions
f and g we have that

inf [f(z)—g(z)] = sup {(g)*(u) — ()" (u)}

z€eR™ uwERM

—~

0,1] Vk > 1.

1
)) < 1, we obtain
(k) = glyr) +1 <

k'ﬂ”z?

and the supremum is attained at some u € R". As the equalities f* = (f)* and
g* = (g)* are always fulfilled (cf. [21]) one has that

inf [f(z) —g(2)] = inf [f(z)—g(z)] = sup {g"(u) — f*(u)}

zeR™ z€R™ ucER”

and the supremum is attained at some u € R". 0

Remark 3.2. Even if it seems to be very strong, the condition (i) does not
always imply the other two conditions assumed in the hypothesis. Taking as
f a discontinuous solutions of Cauchy’s functional equation F' (cf. Example
2.1) which is nearly convex as proved within the previous section, we have that
dom(f) = R = ri(dom(f)), so (7) is fulfilled for any function g whose effective
domain has non-empty relative interior. Let us consider also ¢ = —F', which is
naturally a nearly concave function and ri(dom(g)) = R.

Assuming that ri(epi(f)) # 0, this would imply that f(z) = f(z) Vo €
ri(dom(f)). As R = dom(f) C dom(f) C R it follows dom(f) = R = ri(dom(f)),

so f = f,i.e. fis alower semi-continuous function, hence its epigraph is closed.

10



Being a nearly convex set whose closure is convex, it follows that epi(f) is convex,
thus f is also convex. This reveals the continuity of f, which contradicts what
has been proven in [12], thus the assumption on which this reasoning is based
turns out to be false, i.e. ri(epi(f)) = (). Therefore F is an example of a function
which satisfies (i), but does not meet (7).

Let us assume now that (ii7) is valid, i.e. ri(epi(g)) # (). We have

epi(g) = {(z,r) : r < g(x)} = {(z,r) : F(z) < —r}.

Let L : R? — R? be a linear transformation defined as L(z,r) = (x, —r) ¥(z,7) €
R2. Tt is easy to notice that L= = L and L(epi(g)) = epi(F). From (iii) follows
that (cf. Lemma 2.4) ri(cl(epi(g))) C epi(g), so L(ri(cl(epi(g)))) C L(epi(g)).
As cl(epi(g)) is convex (by Lemma 2.1 and Lemma 2.3(¢7)), by Theorem 6.6 in
[21] we get

ri (L(cl(epi(g)))) = L(xi(cl(epi(g)))) < Llepi(g)).

Because L(epi(g)) € L(cl(epi(g))) and due to the fact that L(cl(epi(g))) is convex,
by Lemma 2.2 follows

ri(L(epi(g))) = ri(L(cl(epi(g)))).

The set in the left-hand side is actually ri(epi(F')) which has been proven be-
fore to be empty, while in the right-hand side there is the relative interior of a
non-empty convex set, obviously non-empty. We have reached a contradiction,
so for g = —F (i) holds, but (#ii) does not. Therefore conditions (i) — (iii) are
all required in order to formulate a hypothesis sufficient to imply the assertions
of Theorem 3.1.

Remark 3.3. When the function f is proper convex (so also nearly convex) it
follows that epi(f) is convex and non-empty, so ri(epi(f)) # 0. Therefore in this
case the condition (i7) becomes redundant. The same applies when g is proper
concave, i.e. (i) is surely fulfilled. It is obvious that when both happen, i.e.
f is convex and g is concave, Theorem 3.1 becomes actually Fenchel’s duality
theorem. This sustains our claim that we have extended Fenchel’s statement to
nearly convexity.

Remark 3.4. Fenchel’s duality theorem contains a second part (Theorem
2.1(b)) where the condition (i) is replaced by the non-emptiness of the inter-
section of the relative interiors of f* and ¢g* provided that f and g were closed
functions. As (convex) closedness for functions means convexity plus lower semi-
continuity, let us consider f nearly convex and lower semi-continuous. Then
epi(f) is closed, so also convex (cf. Lemma 2.3(i7)), thus f is convex and also
closed. Analogously g becomes closed concave if it is supposed also upper semi-
continuous additionally to being nearly convex. Therefore we can conclude that
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this part of Fenchel’s theorem can be reformulated as follows, while its proof is
actually the one in book [21] .

Theorem 3.2 Let f : R” —>ER be a lower semi-continuous proper nearly
convex function and let g : R™ — R be an upper semi-continuous proper nearly
concave function. One has

inf [f(z) — g(z)] = sup {g"(u) — f*(u)},

z€R™ u€R”

provided that
ri(dom(f*)) Nri(dom(g*)) # 0,

where the infimum is attained at some x.

The best way to prove the usefulness of a generalization is to give an example
which cannot be properly treated by using the original statement, but is writable
as a special case of the extended assertion.

Example 3.1. Consider the sets

{513'1,.%'2 €R2 $1>0$2>0}U{Q?1, €R2ZSL’1€Q,Z’1ZO}
{01‘2 GR 1’26@,1‘220}

and
g = {(xl,mg) ER? x4+ ay < 3}U{(x1,x2) eR?: x1, 19 € Q, 21 + 79 :3}

and some real-valued functions defined on R?, f convex and ¢ concave. Both
F and G are nearly convex sets with o« = 1/2 playing the role of the constant
required in the definition, but not convex. We are interested in treating by
Fenchel duality the problem

Py, @) —e@)],
i.e. we would like to obtain the infimal objective value of (P;) by using the
conjugate functions of f and g. A Fenchel-type dual problem may be attached
to this problem, but the conditions under which the primal and the dual have
equal optimal objective values are not known to us as we cannot apply Fenchel’s
duality theorem because F N G is not convex. Let us define now the functions

~ = =z f(x)v xéf,
[ R =R, f(z) = {-1-00, otherwise,

and

' 9 - - g(:[‘), s E g7
‘R =R, g(z) = { +00, otherwise.

Nl
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The function f is clearly nearly convex (with constant 1/2), but not convex since
dom(f) = F is not convex. Analogously g is nearly concave, but not concave.
Therefore we are not yet in the situation to apply Fenchel’s duality theorem for

the problem .
inf [f(z) - g(z)],

zeR?

which is actually equivalent to (P;), but let us check whether the extension we
have given in Theorem 3.1 is applicable. Condition (i) in Theorem 3.1 is satisfied
in this case since

ri(dom(f)) Nri(dom(g)) = ri(F)Nri(G)
= (0,+00) x (0,+00) N {(z,y) € R*: z +y < 3},

which is non-empty since (1, 1), for instance, is contained in both sets.
Regarding the relative interiors of the epigraphs of f and g, it is not difficult to
check that ((1,1), f(1,1)+1) € int(epi(f)) = ri(epi(f)) and ((1,1),9(1,1)—1) €
int (epi(3)) = ri(epi(7)
Therefore the conditions (i7) and (¢i¢) in the hypothesis of Theorem 3.1 are
fulfilled for f and g, respectively. So we can apply the statement and we get that

it [f(@)— 9(@)] = inf [(z) - ()]

= sup {77(w) — fr(w)} = sup {g5(u) = fr(u)}

and the suprema are attained at some u € R™. Here we have used the conjugate
function of f regarding the set F defined as

fr:R* =R, fr(u)= 8161513 {uTx — f(:v)}

and the one of g regarding the set G,
¢ R R, g5(u) = inf {uTz — g(x)}
dg — N, gg(u) glcrelg {u T g(:v)}

Knowing the connections between Lagrange duality and games theory, we
give an application of our main result in the latter field opening the gate into the
direction of Fenchel duality.

Example 3.2. Consider a two-person zero-sum game, where D and C' are
the sets of strategies for the players I and II, respectively, and L : C' x D —
R is the so-called payoff-function. By (% := sup,.pinfecc L(c,d) and oF =
inf.cc supyep L(c,d) we denote the lower, respectively the upper values of the
game (C, D, L). As the minmax inequality

Y = supinf L(c,d) < inf sup L(c,d) = o*, (1)

deD c€C c€CgeD
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is always fulfilled, the challenge was to find weak conditions which guarantee
equality in the relation above. Nearly convexity and its generalizations played an
important role within, as [10], [18] or [19] show. Having an optimization problem
with geometrical and inequality constraints,

() inf v(z),
w(z)<0

where X C R™, w : R* — R* and v : R® — R, the Lagrangian attached to it is
L:X xRt - R, L(x,)\) = v(x) + ATw(z). The theorems mentioned above give
sufficient conditions under which the strong duality occurs between (P,) and its
Lagrange dual

D.) sup inf L(z,\) = sup inf + AT ,
(De) up il (,A) ;ggggx[v(x) w(z)]

which is nothing else than the equality in (1).
Coming to the problem treated in Theorem 3.1,

inf [f(z) — g(x)],

z€R™

one can define the Lagrangian attached to it by (cf. [7])
L:R"xR" =R, Llz,u) =u'z — g(x) — f*(u).

As
sup inf L(z,u) = sup [¢"(u) — f*(u)]

ueRn TER™ u€eR?

and
inf sup L(w,u) = inf [~g(z) + 7 (2)] < inf [f(2) - g(z)],

TER™ uER™ zeR™

under the hypotheses of Theorem 3.1 one has

max inf L(z,u) = max|g”(u) — f*(u)] = mf sup L(z,u) = inf [f(z) - g(x)].

The solution to the dual problem can be seen as an optimal strategy for the game
having this Lagrangian as payoff-function.

4 The case of post-composition with a linear
transformation

There is also another statement sometimes called Fenchel’s duality theorem. It
is given in [21] as Corollary 31.2.1, being also presented in our paper as Theorem
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2.2. We have extended this result for nearly convexity, too, as follows.

Theorem 4.1. Let f be a proper nearly convexr function on R™, let g be a
proper nearly concave function on R™, and let A be a linear transformation from
R™ to R™. If the following conditions are satisfied

(i) 3’ € ri(dom(f)) such that Az’ € ri(dom(g)),
(ii) vi(epi(f)) # 0,

(iii) ri(epi(g)) # 0,

then one has

inf [f(2) - g(Ax)] = sup {g"(v) — f*(A"0)}

TeR™ vER™

and the supremum is attained at some v € R™.

Proof. We apply the Theorem 3.1 for the functions
F.G:R"xR™ =R, F(z,y) = f(z) + OzerrAc=y} (T), G(z,y) = g(y),

which are easily verifiable as nearly convex, respectively nearly concave. We have
dom(F') = dom(f) x A(dom f) and dom(G) = R™ x dom(g). Now let us see if F
and G verify the conditions (i) — (¢i¢) in Theorem 3.1. We have

epi(F) = {(:U,y,r) ER"XR™XxR: Az =y and f(x) < r}.

We have by (i) that ri(dom(f)) # 0, thus, by Lemma 2.4, ri(cl(dom(f))) C
dom(f). By Theorem 6.6 in [21] one has

ri(A(cl(dom(f)))) = A(ri(cl(dom(f)))) € A(dom(f)),
while it is also true that A(dom(f)) C A(cl(dom(f))), so Lemma 2.2 yields
ri(A(dom f)) = ri(A(cl(dom(f)))). Applying again Theorem 6.6 in [21] and then
Lemma 2.5 we obtain
ri(A(dom f)) = ri(A(cl(dom(f)))) = A(ri(cl(dom(f)))) = A(ri(dom(f))),
so (i) implies that
(', Az') € (ri(dom(f)) x ri( dom(f )) N (R x ri(dom(g)))

= i (dom(f) x A(dom(f))) Nri (R" x dom(g))
= ri(dom(F)) Nri(dom(G)),

i.e. (7) in Theorem 3.1 is satisfied by F' and G. Consider now the linear transfor-
mation M : R" xR — R™ x R™ x R defined by M (z,r) = (x, Az, r). For any pair
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(x,7) € epi(f) we have M (x,r) = (x, Az,r) € epi(F), thus M (epi(f)) C epi(F).
On the other hand, for each triplet (z,y,r) € epi(F) we know that (z,7) € epl( )
and Az = y, so (z,y,7) = (z,Az,r) = M(z,r) € M(epi(f)). Therefore,
M (epi(f)) = epi(F). By (#) and Lemma 2.4 follows ri(cl(epi(f))) C epi(f).
Applying the transformation M to both sides, one gets,

M(ri(cl(epi(f)))) S M (epi(f)).
Because Lemma 2.3(ii) assures the convexity of cl(epi(f)), by Theorem 6.6 in
[21] follows M (ri(cl(epi(f)))) = ri(M (cl(epi(f)))). Consequently,
ri(M(cl(epi(f)))) € M(epi(f))-
Applying M to both sides of the obvious inclusion epi(f) C cl(epi(f)) we get

M (epi(f)) € M (cl(epi([))),

so we can apply Lemma 2.2 for the convex set M(cl(epi(f))) and its subset
M (epi(f)), obtaining

ri(M(cl(epi(f)))) = ri(M (epi(f)))-

The left-hand side term is non-empty (by Theorem 6.2 in [21]), while the set in
the right hand side is actually equal to ri(epi(F')), thus F' satisfies condition (i)
in Theorem 3.1.

Let us see what happens with the relative interior of epi(G). We have

epi(G) = {(z,y,r) eER"XR™" xR:r < G(z,y)}
= {(m,y,r)GR”mexR:rgg(y)}:R”xepi(g).

Asri(epi(g)) # 0, it follows that ri(epi(G)) # 0. We are allowed to apply Theorem
3.1 for F' and G. Consequently,

inf F(x,y) — G(x, = su G*(u,v) — F*(u,v
ot [FE) —Glap] = swp {0 (w) = F (. 0)}
and the supremum in the right-hand side is attained at some (u,v) € R® x R™.
Let us see what does this mean for f and g. Regarding the left-hand side of the
relation above we have
inf [F(Jf, y) - G(l’, y)] = Hlf [f(l') + 5{xER":AJ}:y} (l‘) - g(y)]

(z,y)€ER" xR™ (z,y)ER" xR™

= inf [f(z)— g(Az)].

xeR”

We calculate now the conjugate functions of F' and G, respectively. So we get

F*(UW ?)) = ( )S%p R {uTx + va - f(ZL‘) - 5{x€R”:Am=y} (I)}
z,y)ER™ XR™
= sup {u"z+v" (Az) — f(2)}
TER"
= sup {(u+ A)'w - f(2)} = f*(u+ A'v),
TER™
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G'(uv) = inf fulz+uTy—gly)] = { T ugo

(z,y)ER™ xR™ —o0, uF#0.
Therefore,
sup  {G*(u,v) — F*(u,v)} = sup  {g"(v) — f(u+ A")}
(u,v)ER™ xR™ (u,v) ER™XR™,
u=0
= sup {g*(v) — f*(A*v)},
veR™

so the assertion follows. O

Remark 4.1. When f is convex and proper and g is concave and proper it
follows that ri(epi(f)) # () and ri(epi(g)) # @ (cf. Remark 3.3). Hence it becomes
obvious that the assertion of Corollary 31.2.1 in [21] is valid under the condition
(a) ((7) here) without any closedness assumption concerning f or g . Let us re-
mind that in the mentioned book f and g are considered to be closed.

Remark 4.2. Since a nearly convex function that is also lower semi-continuous
is convex and closed we are allowed to say that the variant of Theorem 2.2 when
(b) is fulfilled may also be generalized by considering as hypothesis alongside the
mentioned condition (b) that f is a proper nearly convex function that is also
lower semi-continuous and g proper nearly concave and upper semi-continuous.
The assertion remains valid and the proof does not differ from the one suggested
in [21] as f turns out immediately to be closed convex and g closed concave.

Remark 4.3. One may notice that the assumption of nearly convexity applied
to f and of nearly concavity concerning g simultaneously does not require the
same nearly convexity constant to be attached to both of these functions.

5 Conclusions

Fenchel’s duality theorem is very famous and widely-used, stating that inf,cgn
[f(z) — g(z)] = sup,ep» {g7(v) — f*(v)} and that there is an u for which the
supremum in the right-hand side is attained when f is proper convex, g proper
concave and ri(dom(f)) Nri(dom(g)) # (. It was given for convex optimization
problems, but there may occur problems that are not convex, as the one presented
in the third section. This paper is dedicated to the generalization of Fenchel’s
duality for so-called nearly convex and nearly concave functions (see [1], [3],
[4], [11], [15], [18]). We have proved that Fenchel’s statement remains valid
under weaker conditions, i.e. when f is just proper nearly convex, g proper
nearly concave, ri(epi(f)) # 0 and ri(epi(g)) # 0, together with ri(dom(f)) N
ri(dom(g)) # 0. When f is proper and convex ri(epi(f)) is non-empty, as is
ri(epi(g)) when g is proper and concave, thus Fenchel’s duality theorem proves
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to be a special case of our statement. Some authors call also the result given in
the Corollary 31.2.1 in [21] Fenchel’s duality theorem. We have proved that it is
true under similar weaker conditions, too. Moreover, we noticed that when f is
convex and g concave as in [21], the assertion stands under the assumption of the
existence of an x’ € ri(dom(f)) such that Az’ € ri(dom(g)). But the closedness
assumptions regarding the functions f and ¢ as supposed in [21] is not necessary
as we have realized during our investigations. As the question concerning the
applicability of these new results arises naturally, we have provided a problem
which is not convex. So Fenchel’s duality theorem is not applicable, while the
generalization of Fenchel’s duality given in this paper is capable of pointing out
the strong duality. Relations between Fenchel duality for nearly convex functions
and two-person zero-sum games with generalized convex payoff-functions have
also been brought into attention.
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