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Abstract

We discuss the efficient implementation of model reduction methods such as modal
truncation, balanced truncation, and other balancing-related truncation techniques, em-
ploying the idea of spectral projection. Mostly, we will be concerned with the sign function
method which serves as the major computational tool of most of the discussed algorithms
for computing reduced-order models. Implementations for large-scale problems based on
parallelization or formatted arithmetic will also be discussed. This chapter can also serve
as a tutorial on Gramian-based model reduction using spectral projection methods.

1 Introduction

Consider the linear, time-invariant (LTI) system

ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t) + Du(t), t ≥ 0,

(1)

where A ∈ R
n×n is the state matrix, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m, and x0 ∈ R
n is the

initial state of the system. Here, n is the order (or state-space dimension) of the system. The
associated transfer function matrix (TFM) obtained from taking Laplace transforms in (1)
and assuming x0 = 0 is

G(s) = C(sI − A)−1B + D. (2)

In model reduction we are faced with the problem of finding a reduced-order LTI system,

˙̂x(t) = Âx̂(t) + B̂û(t), t > 0 x̂(0) = x̂0,

ŷ(t) = Ĉx̂(t) + D̂û(t), t ≥ 0,
(3)

of order r, r ≪ n, and associated TFM Ĝ(s) = Ĉ(sI − Â)−1B̂ + D̂ which approximates G(s).
Model reduction of discrete-time LTI systems can be formulated in an analogous manner; see,
e.g., [OA01]. Most of the methods and approaches discussed here carry over to the discrete-
time setting as well. Here, we will focus our attention on the continuous-time setting, the
discrete-time case being discussed in detail in [BQQ03a].

Balancing-related model reduction methods are based on finding an appropriate coor-
dinate system for the state-space in which the chosen Gramian matrices of the system are
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diagonal and equal. In the simplest case of balanced truncation, the controllability Gramian
Wc and the observability Gramian Wo are used. These Gramians are given by the solutions
of the two dual Lyapunov equations

AWc + WcA
T + BBT = 0, AT Wo + WoA + CT C = 0. (4)

After changing to the coordinate system giving rise to diagonal Gramians with positive de-
creasing diagonal entries, which are called the Hankel singular values (HSVs) of the system,
the reduced-order model is obtained by truncating the states corresponding to the n − r
smallest HSVs.

Balanced truncation and its relatives such as singular perturbation approximation, stochas-
tic truncation, etc., are the most popular model reduction techniques used in control theory.
The advantages of these methods, guaranteed preservation of several system properties like
stability and passivity, as well as the existence of computable error bounds that permit an
adaptive selection of the order of the reduced-order model, are unmatched by any other
approach. However, thus far, in many other engineering disciplines the use of balanced trun-
cation and other related methods has not been considered feasible due to its computational
complexity. Quite often, these disciplines have a preferred model reduction technique as
modal analysis and Guyan reduction in structural dynamics, proper orthogonal decomposi-
tion (POD) in computational fluid dynamics, Padé and Padé-like approximation techniques
based on Krylov subspace methods in circuit simulation and microsystem technology, etc. A
goal of this tutorial is to convince the reader that balanced truncation and its relatives are
viable alternatives in many of these areas if efficient algorithms from numerical linear algebra
are employed and/or basic level parallel computing facilities are available.

The ideas presented in this paper are part of an ongoing effort to facilitate the use of
balancing-related model reduction methods in large-scale problems arising in the control of
partial differential equations, the simulation of VLSI and ULSI circuits, the generation of com-
pact models in microsystems, and other engineering disciplines. This effort mainly involves
breaking the O(n2) memory and O(n3) flops (floating-point arithmetic operations) barriers.
Several issues related to this challenge are addressed in this paper. By working with (approx-
imations of) the full-rank factors of the system Gramians rather than using Cholesky factors
as in previous balanced truncation algorithms, the complexity of all remaining calculations
following the computation of the factors of the Gramians usually only grows linearly with
the dimension of the state-space. This idea is pursued in several approaches that essentially
only differ in the way the factors of the Gramians are computed. Approximation methods
suitable for sparse systems based mainly on Smith- and ADI-type methods are discussed in
Chapters [GL05] and [MS05]. These allow the computation of the factors at a computational
cost and a memory requirement proportional to the number of nonzeros in A. Thus, im-
plementations of balanced truncation based on these ideas are in the same complexity class
as Padé-approximation and POD. In this chapter, we focus on the computation of full-rank
factors of the Gramians by the sign function method which is based on spectral projection
techniques. This does not lead immediately to a reduced overall complexity of the induced
balanced truncation algorithm as we deal with general dense systems. However, for special
classes of dense problems, a linear-polylogarithmic complexity can be achieved by employing
hierarchical matrix structures and the related formatted arithmetic. For the general case,
the O(n2) memory and O(n3) flops complexity remains, but the resulting algorithms are per-
fectly suited for parallel computations and are highly efficient on current desktops or clusters
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of workstations. Provided efficient parallel computational kernels for the necessary linear
algebra operations are available, balanced truncation can be applied to systems with state-
space dimension n = O(104) and dense A-matrix on commodity clusters. By re-using these
efficient parallel kernels for computing reduced-order models with a sign function-based im-
plementation of balanced truncation, the application of many other related model reduction
methods to large-scale, dense systems becomes feasible. We briefly describe some of the re-
lated techniques in this chapter, particularly we discuss sign function-based implementations
of the following methods:

– balanced truncation,

– singular perturbation approximation,

– optimal Hankel norm approximation,

– balanced stochastic truncation, and

– truncation methods based on positive real, bounded real, and LQG balancing,

for stable systems. Using a specialized algorithm for the additive decomposition of transfer
functions, again based on spectral projection techniques, all the above balancing-related model
reduction techniques can also be applied to unstable systems. At this point, we would also
like to mention that the same ideas can be applied to balanced truncation for descriptor
systems, as described in Chapter [MS05]—for preliminary results see [BQQ04c]—but we will
not elaborate on this as this is mostly work in progress.

This paper is organized as follows. In Section 2 we provide the necessary background
from system and realization theory. Spectral projection, which is the basis for many of the
methods described in this chapter, is presented in Section 3. Model reduction methods for
stable systems of the form (1) based on these ideas are described in Section 4, where we also
include modal truncation for historical reasons. The basic ideas needed to apply balanced
truncation and its relatives to large-scale systems are summarized in Section 5. Conclusions
and open problems are given in Section 6.

Throughout this paper, we will use In for the identity matrix in R
n×n and I for the

identity when the order is obvious from the context, Λ (A) will denote the spectrum of the
matrix A. Usually, capital letters will be used for matrices; lower case letters will stand for
vectors with the exception of t denoting time, and i, j, k, m, n, p, r, s employed for integers
such as indices and dimensions; Greek letters will be used for other scalars; and calligraphic
letters will indicate vector and function spaces. Without further explanation, Π will always
denote a permutation matrix of a suitable dimension, usually resulting from row or column
pivoting in factorization algorithms. The left and right (open) complex half planes will be
denoted by C

− and C
+, respectively, and we will write  for

√
−1.

2 System-Theoretic Background

In this section, we introduce some basic notation and properties of LTI systems used through-
out this paper. More detailed introductions to LTI systems can be found in many textbooks
[GL95, Son98, ZDG96] or handbooks [Lev96, Mut99]. We essentially follow these references
here without further citations, but many other sources can be used for a good overview on
the subjects covered in this section.
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2.1 Linear Systems, Frequency Domain, and Norms

An LTI system is (Lyapunov or exponentially) stable if all its poles are in the left half plane.
Sufficient for this is that A is stable (or Hurwitz ), i.e., the spectrum of A, denoted by Λ (A),
satisfies Λ (A) ⊂ C

−. It should be noted that the relation between the controllability and
observability Gramians of an LTI system and the solutions of the Lyapunov equations in (4)
only holds if A is stable.

The particular model imposed by (1), given by a differential equation describing the
behavior of the states x and an algebraic equation describing the outputs y is called a state-
space representation. Alternatively, the relation between inputs and outputs can also be
described in the frequency domain by an algebraic expression. Applying the Laplace transform
to the two equations in (1), and denoting the transformed arguments as x(s), y(s), u(s) where
s is the Laplace variable, we obtain

sx(s) − x(0) = Ax(s) + Bu(s),

y(s) = Cx(s) + Du(s).

By solving for x(s) in the first equation and inserting this into the second equation, we obtain

y(s) =
(
C(sIn − A)−1B + D

)
u(s) + C(sIn − A)−1x0.

For a zero initial state, the relation between inputs and outputs is therefore completely de-
scribed by the transfer function

G(s) := C(sIn − A)−1B + D. (5)

Many interesting characteristics of an LTI system are obtained by evaluating G(s) on the
positive imaginary axis, that is, setting s = ω. In this context, ω can be interpreted as the
operating frequency of the LTI system.

A stable transfer function defines a mapping

G : L2 → L2 : u → y = Gu (6)

where the two function spaces denoted by L2 are actually different spaces and should more
appropriately be denoted by L2(C

m) and L2(C
p), respectively. As the dimension of the

underlying spaces will always be clear from the context, i.e., the dimension of the transfer
function matrix G(s) or the dimension of input and output spaces, we allow ourselves the more
sloppy notation used in (6). The function space L2 contains the square integrable functions in
the frequency domain, obtained via the Laplace transform of the square integrable functions
in the time domain, usually denoted as L2(−∞,∞). The L2-functions that are analytic in
the open right half plane C

+ form the Hardy space H2. Note that H2 is a closed subspace
of L2. Under the Laplace transform L2 and H2 are isometric isomorphic to L2(−∞,∞) and
L2[0,∞), respectively. (This is essentially the Paley-Wiener Theorem which is the Laplace
transform analog of Parseval’s identity for the Fourier transform.) Therefore it is clear that the
frequency domain spaces H2 and L2 can be endowed with the corresponding norms from their
time domain counterparts. Due to this isometry, our notation will not distinguish between
norms for the different spaces so that we will denote by ‖f‖2 the induced 2-norm on any of
the spaces L2(−∞,∞), L2, L2[0,∞), and H2. Using the definition (6), it is therefore possible
to define an operator norm for G by

‖G‖ := sup
‖u‖2≤1

‖Gu‖2.
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It turns out that this operator norm equals the L∞-norm of the transfer function G, which
for rational transfer functions can be defined as

‖G‖∞ := sup
ω∈R

σmax(G(ω)). (7)

The p × m-matrix-valued functions G for which ‖G‖∞ is bounded, i.e., those essentially
bounded on the imaginary axis, form the function space L∞. The subset of L∞ containing all
p × m-matrix-valued functions that are analytical and bounded in C

+ form the Hardy space
H∞. As a consequence of the maximum modulus theorem, H∞ functions must be bounded
on the imaginary axis so that the essential supremum in (7) simplifies to a supremum for
rational functions G. Thus, the H∞-norm of the rational transfer function G ∈ H∞ can be
defined as

‖G‖∞ := sup
ω∈R

σmax(G(ω)). (8)

A fact that will be of major importance throughout this paper is that the transfer function
of a stable LTI system is rational with no poles in the closed right-half plane. Thus, G ∈ H∞
for all stable LTI systems.

Although the notation is somewhat misleading, the H∞-norm is the 2-induced operator
norm. Hence the sub-multiplicativity condition

‖y‖2 ≤ ‖G‖∞‖u‖2 (9)

holds. This inequality implies an important way to tackle the model reduction problem:
suppose the original system and the reduced-order model (3) are driven by the same input
function u ∈ H2, so that

y(s) = G(s)u(s), ŷ(s) = Ĝ(s)u(s),

where Ĝ is the transfer function corresponding to (3); then we obtain the error bound

‖y − ŷ‖2 ≤ ‖G − Ĝ‖∞‖u‖2. (10)

Due to the aforementioned Paley-Wiener theorem, this bound holds in the frequency domain
and the time domain. Therefore a goal of model reduction is to compute the reduced-order
model so that ‖G − Ĝ‖∞ is smaller than a given tolerance threshold.

2.2 Balanced Realizations

A realization of an LTI system is the set of the four matrices

(A, B, C, D) ∈ R
n×n × R

n×m × R
p×n × R

p×m

corresponding to (1). In general, an LTI system has infinitely many realizations as its transfer
function is invariant under state-space transformations,

T :

{
x → Tx,

(A, B, C, D) → (TAT−1, TB, CT−1, D),
(11)

as the simple calculation

D + (CT−1)(sI − TAT−1)−1(TB) = C(sIn − A)−1B + D = G(s)
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demonstrates. But this is not the only non-uniqueness associated to LTI system representa-
tions. Any addition of states that does not influence the input-output relation, meaning that
for the same input u the same output y is achieved, leads to a realization of the same LTI
system. Two simple examples are

d

dt

[
x
x1

]
=

[
A 0

0 A1

] [
x
x1

]
+

[
B
B1

]
u(t), y(t) =

[
C 0

] [
x
x1

]
+ Du(t),

d

dt

[
x
x2

]
=

[
A 0

0 A2

] [
x
x2

]
+

[
B
0

]
u(t), y(t) =

[
C C2

] [
x
x2

]
+ Du(t),

for arbitrary matrices Aj ∈ R
nj×nj , j = 1, 2, B1 ∈ R

n1×m, C2 ∈ R
p×n2 and any n1, n2 ∈ N.

An easy calculation shows that both of these systems have the same transfer function G(s)
as (1) so that

(A, B, C, D),

([
A 0

0 A1

]
,

[
B
B1

]
,
[

C 0
]
, D

)
,

([
A 0

0 A2

]
,

[
B
0

]
,
[

C C2

]
, D

)

are both realizations of the same LTI system described by the transfer function G(s) in (5).
Therefore, the order n of a system can be arbitrarily enlarged without changing the input-
output mapping. On the other hand, for each system there exists a unique minimal number of
states which is necessary to describe the input-output behavior completely. This number n̂ is
called the McMillan degree of the system. A minimal realization is a realization (Â, B̂, Ĉ, D̂)
of the system with order n̂. Note that only the McMillan degree is unique; any state-space
transformation (11) leads to another minimal realization of the same system. Finding a
minimal realization for a given system can be considered as a first step of model reduction
as redundant (non-minimal) states are removed from the system. Sometimes this is part of
a model reduction procedure, e.g. optimal Hankel norm approximation, and can be achieved
via balanced truncation.

Although realizations are highly non-unique, stable LTI systems have a set of invari-
ants with respect to state-space transformations that provide a good motivation for finding
reduced-order models. From Lyapunov stability theory (see, e.g., [LT85, Chapter 13]) it is
clear that for stable A, the Lyapunov equations in (4) have unique positive semidefinite solu-
tions Wc and Wo. These solutions define the controllability Gramian (Wc) and observability
Gramian (Wo) of the system. If Wc is positive definite, then the system is controllable and if
Wo is positive definite, the system is observable. Controllability plus observability is equiva-
lent to minimality of the system so that for minimal systems, all eigenvalues of the product
WcWo are strictly positive real numbers. The square roots of these eigenvalues, denoted in
decreasing order by

σ1 ≥ σ2 ≥ . . . ≥ σn > 0,

are known as the Hankel singular values (HSVs) of the LTI system and are invariants of the
system: let

(Â, B̂, Ĉ, D) = (TAT−1, TB, CT−1, D)

be the transformed realization with associated controllability Lyapunov equation

0 = ÂŴc + ŴcÂ
T + B̂B̂T = TAT−1Ŵc + ŴcT

−T AT T T + TBBT T T .
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This is equivalent to

0 = A(T−1ŴcT
−T ) + (T−1ŴcT

−T )AT + BBT .

The uniqueness of the solution of the Lyapunov equation (see, e.g., [LT85]) implies that
Ŵc = TWcT

T and, analogously, Ŵo = T−T WoT
−1. Therefore,

ŴcŴo = TWcWoT
−1,

showing that Λ (ŴcŴo) = Λ (WcWo) = {σ2
1, . . . , σ

2
n}. Note that extending the state-space

by non-minimal states only adds HSVs of magnitude equal to zero, while the non-zero HSVs
remain unchanged.

An important (and name-inducing) type of realizations are balanced realizations. A real-
ization (A, B, C, D) is called balanced iff

Wc = Wo =




σ1

. . .

σn


 ;

that is, the controllability and observability Gramians are diagonal and equal with the decreas-
ing HSVs on their respective diagonal entries. For a minimal realization there always exists
a balancing state-space transformation of the form (11) with nonsingular matrix Tb ∈ R

n×n;
for non-minimal systems the Gramians can also be transformed into diagonal matrices with
the leading n̂ × n̂ submatrices equal to diag(σ1, . . . , σn̂), and

ŴcŴo = diag(σ2
1, . . . , σ

2
n̂, 0, . . . , 0);

see, e.g., [TP87]. Using a balanced realization obtained via the transformation matrix Tb, the
HSVs allow an energy interpretation of the states; see also [Van00] for a nice treatment of
this subject. Specifically, the minimal energy needed to reach x0 is

inf
u∈L2(−∞,0]

x(0)=x0

∫ 0

−∞
u(t)T u(t) dt = (x0)T W−1

c x0 = (x̂0)T Ŵ−1
c x̂0 =

n∑

k=1

1

σk
x̂2

k,

where x̂0 :=




x̂1
...

x̂n


 = Tbx

0; hence small HSVs correspond to states that are difficult to

reach. The output energy resulting from an initial state x0 and u(t) ≡ 0 for t > 0 is given by

‖y‖2
2 =

∫ ∞

0
y(t)T y(t) dt = xT

0 Wox0 = (x̂0)T Ŵox̂
0. =

n∑

k=1

σkx̂
2
j ;

hence large HSVs correspond to the states containing most of the energy in the system. The
energy transfer from past inputs to future outputs can be computed via

E := sup
u∈L2(−∞,0]

x(0)=x0

‖y‖2
2

0∫
−∞

u(t)T u(t) dt

=
(x0)T Wox

0

(x0)T W−1
c x0

=
(x̄0)T W

1
2

c WoW
1
2

c x̄0

(x̄0)T x̄0
,
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where x̄0 := W
− 1

2
c x0. Thus, the HSVs (Λ (WcWo))

1
2 =

(
Λ (W

1
2

c WoW
1
2

c )

) 1
2

measure how much

the states are involved in the energy transfer from inputs to outputs.
In summary, it seems reasonable to obtain a reduced-order model by removing the least

controllable states, keeping the states containing the major part of the system energy as these
are the ones which are most involved in the energy transfer from inputs to outputs—that is,
keeping the states corresponding to the largest HSVs. This is exactly the idea of balanced
truncation, to be outlined in Section 4.2.

3 Spectral Projection Methods

In this section we will give the necessary background on spectral projection methods and
the related computational tools leading to easy-to-implement and easy-to-parallelize iterative
methods. These iterative methods will form the backbone of all the model reduction methods
discussed in the next section.

3.1 Spectral Projectors

First, we give some fundamental definitions and properties of projection matrices.

Definition 3.1 A matrix P ∈ R
n×n is a projector (onto a subspace S ⊂ R

n) if range (P ) = S
and P 2 = P .

Definition 3.2 Let Z ∈ R
n×n with Λ (Z) = Λ1 ∪ Λ2, Λ1 ∩ Λ2 = ∅, and let S1 be the (right)

Z-invariant subspace corresponding to Λ1. Then a projector onto S1 is called a spectral
projector.

From this definition we obtain the following properties of spectral projectors.

Lemma 3.3 Let Z ∈ R
n×n be as in Definition 3.2, and let P ∈ R

n×n be a spectral projector
onto the right Z-invariant subspace corresponding to Λ1. Then

a) rank (P ) = |Λ1| =: k,

b) range (P ) = range (ZP ),

c) ker(P ) = range (I − P ), range (P ) = ker(I − P ),

d) I − P is a spectral projector onto the right Z-invariant subspace corresponding to Λ2.

Given a spectral projector P we can compute an orthogonal basis for the corresponding
Z-invariant subspace S1 and a spectral or block decomposition of Z in the following way: let

P = QRΠ, R =

[
R11 R12

0 0

]
=


 @


 , R11 ∈ R

k×k,

be a QR decomposition with column pivoting (or a rank-revealing QR decomposition (RRQR))
[GV96] where Π is a permutation matrix. Then the first k columns of Q form an orthonormal
basis for S1 and we can transform Z to block-triangular form

Z̃ := QT ZQ =

[
Z11 Z12

0 Z22

]
, (12)
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where Λ (Z11) = Λ1, Λ (Z22) = Λ2.
The block decomposition given in (12) will prove very useful in what follows.

3.2 The Sign Function Method

Consider a matrix Z ∈ R
n×n with no eigenvalues on the imaginary axis, that is, Λ (Z)∩R = ∅,

and let Z = S
[

J−

0
0

J+

]
S−1 be its Jordan decomposition. Here, the Jordan blocks in J− ∈

R
k×k and J+ ∈ R

(n−k)×(n−k) contain, respectively, the stable and unstable parts of Λ (Z).

The matrix sign function of Z is defined as sign (Z) := S
[
−Ik

0
0

In−k

]
S−1. Note that sign (Z)

is unique and independent of the order of the eigenvalues in the Jordan decomposition of Z,
see, e.g., [LR95]. Many other definitions of the sign function can be given; see [KL95] for
an overview. Some important properties of the matrix sign function are summarized in the
following lemma.

Lemma 3.4 Let Z ∈ R
n×n with Λ (Z) ∩ R = ∅. Then:

a) (sign (Z))2 = In, i.e., sign (Z) is a square root of the identity matrix;

b) sign
(
T−1ZT

)
= T−1 sign (Z) T for all nonsingular T ∈ R

n×n;

c) sign
(
ZT

)
= sign (Z)T .

d) Let p+ and p− be the numbers of eigenvalues of Z with positive and negative real part,
respectively. Then

p+ =
1

2
(n + tr (sign (Z))), p− =

1

2
(n − tr (sign (Z))).

(Here, tr (M) denotes the trace of the matrix M .)

e) Let Z be stable, then
sign (Z) = −In, sign (−Z) = In.

Applying Newton’s root-finding iteration to Z2 = In, where the starting point is chosen as
Z, we obtain the Newton iteration for the matrix sign function:

Z0 ← Z, Zj+1 ← 1

2
(Zj + Z−1

j ), j = 0, 1, 2, . . . . (13)

Under the given assumptions, the sequence {Zj}∞j=0 converges with an ultimately quadratic
convergence rate and

sign (Z) = lim
j→∞

Zj ;

see [Rob80]. As the initial convergence may be slow, the use of acceleration techniques is
recommended. There are several acceleration schemes proposed in the literature, a thorough
discussion can be found in [KL92], and a survey and comparison of different schemes is given in
[BD93]. For accelerating (13), in each step Zj is replaced by 1

γj
Zj , where the most prominent

choices for γj are briefly discussed in the sequel.
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Determinantal scaling [Bye87]: here,

γj = |det (Zj)|
1
n .

This choice minimizes the distance of the geometric mean of the eigenvalues of Zj from
1. Note that the determinant det (Zj) is a by-product of the computations required to
implement (13).

Norm scaling [Hig86]: here

cj =

√
‖Zj‖2

‖Z−1
j ‖2

,

which has certain minimization properties in the context of computing polar decompo-
sitions. It is also beneficial regarding rounding errors as it equalizes the norms of the
two addends in the finite-norm calculation ( 1

γj
Zj) + ( 1

γj
Zj)

−1.

Approximate norm scaling: as the spectral norm is expensive to calculate, it is suggested
in [Hig86, KL92] to approximate this norm by the Frobenius norm or to use the bound
(see, e.g., [GV96])

‖Zj‖2 ≤
√

‖Zj‖1‖Zj‖∞. (14)

Numerical experiments and partial analytic considerations [BQQ04d] suggest that norm scal-
ing is to be preferred in the situations most frequently encountered in the sign function-based
calculations discussed in the following; see also Example 3.6 below. Moreover, the Frobenius
norm approximation usually yields a better approximation than the one given by (14). As the
computation of the Frobenius norm parallelizes very well, we will mostly use the Frobenius
norm scaling in the algorithms based on (13).

There are also plenty of other iterative schemes for computing the sign function; many
of those have good properties regarding convergence and parallelization (see [KL95] for an
overview). Nevertheless, the basic Newton iteration (13) appears to yield the most robust
implementation and the fastest execution times, both in serial and parallel implementations.
Implementing (13) only requires computing matrix sums and inverses using LU factorization
or Gauß-Jordan elimination. These operations are efficiently implemented in many software
packages for serial and parallel computations; efficient parallelization of the matrix sign func-
tion has been reported, e.g., in [BDD+97, HQSW00].

Computations based on the matrix sign function can be considered as spectral projection
methods as they usually involve

P− :=
1

2
(In − sign (Z)), (15)

which is a spectral projector onto the stable Z-invariant subspace. Also, P+ := (In +
sign (Z))/2 is a spectral projector onto the Z-invariant subspace corresponding to the eigen-
values in the open right half plane. But note that P− and P+ are not orthogonal projectors,
but skew projectors along the complementary Z-invariant subspace.

Remark 3.5 The matrix sign function is criticized for several reasons, the most prominent
one being the need to compute an explicit inverse in each step. Of course, it is undefined
for matrices with purely imaginary eigenvalues and hence suffers from numerical problems
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in the presence of eigenvalues close to the imaginary axis. But numerical instabilities basi-
cally only show up if there exist eigenvalues with imaginary parts of magnitude less than the
square root of the machine precision. Hence, significant problems can be expected in double
precision arithmetic (as used in Matlab) for imaginary parts of magnitude less than 10−8.
(A thorough numerical analysis requires the condition of the stable subspace which is given
by the reciprocal of the separation of stable and anti-stable invariant subspaces, though—the
distance of eigenvalues to the imaginary axis is only an upper bound for the separation!) For-
tunately, in the control applications considered here, poles are usually further apart from the
imaginary axis. On the other hand, if we have no problems with the spectral dichotomy, then
the sign function method solves a problem that is usually better conditioned than the Schur
vector approach as it only separates the stable from the anti-stable subspace while the Schur
vector method essentially requires to separate n subspaces from each other. For a thorough
analysis of sign function-based computation of invariant subspaces, see [BD98, BHM97]. The
difference in the conditioning of the Schur form and a block triangular form (as computed by
the sign function) is discussed in [KMP01]. Moreover, in the applications considered here,
mostly cond (sign (Z)) = 1 as Z is stable or anti-stable, hence the computation of sign (Z)
itself is a well-conditioned problem!

Therefore, counter to intuition, it should not be surprising that often, results computed by
the sign function method are more accurate than those obtained by using Schur-type decom-
positions; see, e.g., [BQ99].

Example 3.6 A typical convergence history (based on ‖Zj − sign (Z) ‖F ) is displayed in Fig-
ure 1, showing the fast quadratic convergence rate. Here, we computed the sign function of
a dense matrix A coming from transforming a generalized state-space system (the n = 1357
case of the steel cooling problem described in Chapter [BS05] of this book) to standard state-
space form. We compare the determinantal scaling and the Frobenius norm scaling. Here, the
eigenvalue of A closest to R is ≈ 6.7 ·10−6 and the eigenvalue of largest magnitude is ≈ −5.8.
Therefore the condition of A is about 106. Obviously, norm scaling performs much better for
this example. This is a typical behavior for problems with real spectrum. The computations
were done using Matlab 7.0.1 on a Intel Pentium M processor at 1.4 GHz with 512 MBytes
of RAM.

3.3 Solving Linear Matrix Equations with the Sign Function Method

In 1971, Roberts [Rob80] introduced the matrix sign function and showed how to solve
Sylvester and Lyapunov equations. This was re-discovered several times; see [BD75, DB76,
HMW77]. We will briefly review the method for Sylvester equations and will then discuss
some improvements useful for model reduction applications.

Consider the Sylvester equation

AX + XB + W = 0, A ∈ R
n×n, B ∈ R

m×m, W ∈ R
n×m, (16)

with Λ (A)∩Λ (−B) = ∅. The latter assumption is equivalent to (16) having a unique solution
[LT85]. Let X ∈ R

n×m be this unique solution. Then the straightforward calculation

[
In 0

X Im

] [
A 0

W −B

] [
In 0

−X Im

]
=

[
A 0

0 −B

]
(17)

11
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Figure 1: Example 3.6, convergence history for sign (Z) using (13).

reveals that the columns of
[

In

−X∗

]
span the invariant subspace of Z :=

[
A
W

0
−B

]
corresponding

to Λ (A). In principle, this subspace, and after an appropriate change of basis, also the solution
matrix X, can be computed from a spectral projector onto this Z-invariant subspace. The
sign function is an appropriate tool for this whenever A, B are stable as in this case, P− from
(15) is the required spectral projector. A closer inspection of (13) applied to Z shows that we
do not even have to form P− in this case, as the solution can be directly read off the matrix
sign (Z): using (17) and Lemma 3.4 reveals that

sign (Z) = sign

([
A 0

W −B

])
=

[
−In 0

2X Im

]

so that the solution of (16) is given as the lower left block of the limit of (13), divided by 2.
Moreover, the block-triangular structure of Z allows to decouple (13) as

A0 ← A, B0 ← B, W0 ← W,
for j = 0, 1, 2, . . .

Aj+1 ← 1

2γj

(
Aj + γ2

j A−1
j

)
,

Bj+1 ← 1

2γj

(
Bj + γ2

j B−1
j

)
,

Wj+1 ← 1

2γj

(
Wj + γ2

j A−1
j WjB

−1
j

)
.

(18)

so that X∗ = 1
2 limj→∞ Wj . As A, B are assumed to be stable, Aj tends to −In and Bj tends

to −Im so that we can base a stopping criterion on

max{‖Aj + In‖, ‖Bj + Im‖} < τ, (19)

where τ is an error tolerance and ‖ . ‖ is an appropriate matrix norm.
For Lyapunov equations

AX + XAT + W = 0, A ∈ R
n×n, W = W T ∈ R

n×n, (20)

12



we simply replace B by AT in defining Z. Assuming again stability of A, and observing that
the iteration for Bj in (18) is redundant (see also Lemma 3.4 c)), the sign function method
for Lyapunov equation becomes

A0 ← A, W0 ← W,
for j = 0, 1, 2, . . .

Aj+1 ← 1

2γj

(
Aj + γ2

j A−1
j

)
,

Wj+1 ← 1

2γj

(
Wj + γ2

j A−1
j WjA

−T
j

)
.

(21)

with X∗ = 1
2 limj→∞ Wj . Here, a reasonable stopping criterion is given by ‖Aj + In‖ < τ ,

see (19).

If we consider the Lyapunov equations (4) defining the controllability and observability
Gramians of stable LTI systems, we observe the following facts which will be of importance
for an efficient implementation of (21) in the context of model reduction:

1. The right-hand side is given in factored form, that is, W = BBT or W = CT C, and
hence semidefinite. Thus, X is positive semidefinite [LT85], and can therefore also be
factored as X = SST . A possibility here is a Cholesky factorization.

2. Usually, the number of states in (1) is much larger than the number of inputs and
outputs, that is, n ≫ m, p. In many cases, this yields a solution matrix with rapidly
decaying eigenvalues so that its numerical rank is small; see [ASZ02, Gra04, Pen00] for
partial explanations of this fact. Figure 2 demonstrates this behavior for the control-
lability Gramian of a random stable LTI system with n = 500, m = 10, and stability
margin (minimum distance of Λ (A) to R) ≈ 0.055. Hence, if nε is the numerical rank
of X, then there is a matrix Sε ∈ R

n×nε so that X ≈ SεS
T
ε at the level of machine

accuracy.
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Figure 2: Eigenvalue decay rate for the controllability Gramian of a random LTI system with
n = 500, m = 10, and stability margin ≈ 0.055.

The second observation also serves as the basic idea of most algorithms for large-scale Lya-
punov equations; see [Pen00, AS01] as well as Chapters [GL05] and [MS05]. Storing Sε is
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much cheaper than storing X or S as instead of n2 only n ·nε real numbers need to be stored.
In the example used above to illustrate the eigenvalue decay, this leads already to a reduction
factor of about 10 for storing the solution of the controllability Gramian; in Example 3.6 this
factor is close to 100 so that 99% of the storage is saved. We will make use of this fact in the
method proposed for solving (4).

For the derivation of the proposed implementation of the sign function method for comput-
ing system Gramians, we will use the Lyapunov equation defining the observability Gramian,

AT Y + Y A + CT C = 0.

Re-writing the iteration for Wj in (21), we obtain with W0 = CT
0 C0 := CT C:

Wj+1 =
1

2γj

(
Wj + γ2

j A−T
j WjA

−1
j

)
=

1

2γj

[
Cj

γjCjA
−1
j

]T [
Cj

γjCjA
−1
j

]
.

Thus, in order to compute a factor R of Y = RT R we can instead directly iterate on the
factors:

C0 ← C, Cj+1 ← 1√
2γj

[
Cj

γjCjA
−1
j

]
. (22)

A problem with this iteration is that the number of columns in Cj doubles in each iteration
step so that after j ≥ log2

n
p steps, the required workspace for Cj becomes even larger than

n2. There are several ways to limit this workspace. The first one, initially suggested in
[LA93], works with an n × n-matrix, sets C0 to the Cholesky factor of CT C, computes a

QR factorization of

[
Cj

γjCjA−1
j

]
in each iteration, and uses its R-factor as next Cj-iterate. A

slightly cheaper version of this is given in [BQ99], where (22) is used as long as j ≤ log2
n
p and

only then starts computing QR factorizations in each step. In both cases, it can be shown
that limj→∞ Cj is a Cholesky factor of the solution Y of (20).

In order to exploit the second observation from above, in [BQ99] it is suggested to keep
the number of rows in Cj less than or equal to the (numerical) rank of Y by computing in
each iteration step a rank-revealing QR factorization

1√
2γj

[
Cj

γjCjA
−1
j

]
= Uj+1

[
Rj+1 Tj+1

0 Sj+1

]
Πj+1, (23)

where Rj+1 ∈ R
pj+1×pj+1 is nonsingular, pj+1 = rank

([
Cj

γjCjA−1
j

])
, and ‖Sj+1‖2 is “small

enough” (with respect to a given tolerance threshold for determining the numerical rank) to
safely set Sj+1 = 0. Then, the next iterate becomes

Cj+1 ← [ Rj+1 Tj+1 ]Πj+1, (24)

and 1√
2
limj→∞ Cj is a (numerical) full-rank factor of the solution Y of (20).

The criterion that will be used to select the tolerance threshold for ‖Sj+1‖2 is based on
the following considerations. Let

M =

[
M1 M2

E1 E2

]
, M̃ =

[
M1 M2

]
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so that MT M and M̃T M̃ are approximations to a positive semidefinite matrix K ∈ R
n×n.

Assume
‖Ej‖2 ≤ √

ε‖M‖2, j = 1, 2,

for some 0 < ε < 1. Then

K − MT M = K −
[

MT
1 ET

1

MT
2 ET

2

] [
M1 M2

E1 E2

]

= K − M̃T M̃ −
[

ET
1 E1 ET

1 E2

ET
2 E1 ET

2 E2

]

If M is a reasonable approximation with ‖M‖2
2 ≈ ‖K‖2, then the relative error of the two

approximations satisfies

‖K − M̃T M̃‖2

‖K‖2

<≈ ‖K − MT M‖2

‖K‖2
+ O(ε). (25)

If ε ∼ u, where u is the machine precision, this shows that neglecting the blocks E1, E2 in
the factor of the approximation to K yields a relative error of size O(u) which is negligible in
the presence of roundoff errors. Therefore, in our calculations we choose the numerical rank
with respect to ε =

√
u.

Example 3.7 For the same random LTI system as used in the illustration of the eigenvalue
decay in Figure 2, we computed a numerical full-rank factor of the controllability Gramian.
The computed rank is 31, and 10 iterations are needed to achieve convergence in the sign
function based iteration. Figure 3 shows the development of pj = rank (Cj) during the it-
eration. Comparing (24) with the currently best available implementation of Hammarling’s
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Figure 3: Example 3.7, number of columns in Cj in the full-rank iteration composed of (22),
(23), and (24).

method [Ham82] for computing the Cholesky factor of the solution of a Lyapunov equation,
contained in the SLICOT library [BMS+99], we note that the sign function-based method
(pure Matlab code) required 4.69 sec. while the SLICOT function (compiled and optimized
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Algorithm 1 Coupled Newton Iteration for Dual Lyapunov Equations.

INPUT: Realization (A, B, C) ∈ R
n×n × R

n×m × R
p×n of an LTI system, tolerances τ1 for

convergence of (21) and τ2 for rank detection.
OUTPUT: Numerical full-rank factors of the controllability and observability Gramians of

the LTI system such that Wc = ST S, Wo = RT R.
1: while ‖A + In‖1 > τ1 do
2: Use the LU decomposition or the Gauß-Jordan elimination to compute A−1.

3: Set γ :=
√

‖A‖F

‖A−1‖F
and Z := γA−1.

4: Compute a rank-revealing LQ factorization

1√
2γ

[
B ZB

]
=: Π

[
L 0

T S

]
Q

with ‖S‖2 ≤ τ2‖ 1√
2γ

[
B ZB

]
‖2.

5: Set B := Π

[
R
T

]
.

6: Compute a rank-revealing QR factorization

1√
2γ

[
C

CZ

]
=: Q

[
R T

0 S

]
Π

with ‖S‖2 ≤ τ2‖ 1√
2γ

[
C

CZ

]
‖2.

7: Set C := Π
[

R T
]
.

8: Set A := 1
2( 1

γ A + Z).
9: end while

10: Set S := BT , R := C.

Fortran 77 code, called via a mex file from Matlab) needed 7.75 sec., both computed using
Matlab 7.0.1 on a Intel Pentium M processor at 1.4 GHz with 512 MBytes of RAM. The
computed relative residuals

‖AX + XAT + BBT ‖F

2‖A‖F ‖X‖F + ‖BBT ‖F

are comparable, 4.6 · 10−17 for the sign function method and 3.1 · 10−17 for Hammarling’s
method.

It is already observed in [LL96] that the two sign function iterations needed to solve
both equations in (4) can be coupled as they contain essentially the same iteration for the
Aj-matrices (the iterates are transposes of each other), hence only one of them is needed.
This was generalized and combined with the full-rank iteration (24) in [BCQ98, BQQ00a].
The resulting sign function-based ”spectral projection method” for computing (numerical)
full-rank factors of the controllability and observability Gramians of the LTI system (1) is
summarized in Algorithm 1.
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Algorithm 2 Sign Function-based Spectral Projection Method for Block-Diagonalization.

INPUT: Z ∈ R
n×n with Λ (Z) ∩ R = ∅.

OUTPUT: U ∈ R
n×n nonsingular such that

U−1ZU =

[
Z11

Z22

]
, Λ (Z11) = Λ (Z) ∩ C

−, Λ (Z22) = Λ (Z) ∩ C
+.

1: Compute sign (Z) using (13).
2: Compute a rank-revealing QR factorization

In − sign (Z) =: URΠ.

3: Block-triangularize A as in (12); that is, set

Z := UT ZU =:

[
Z11 Z12

0 Z22

]
.

4: Solve the Sylvester equation Z11Y − Y Z22 + Z12 = 0 using (18).
{Note: Z11,−Z22 are stable!}

5: Set

Z :=

[
Ik −Y

0 In−k

] [
Z11 Z12

0 Z22

] [
Ik Y

0 In−k

]
=

[
Z11

Z22

]
, U := U

[
Ik Y

0 In−k

]
.

3.4 Block-Diagonalization

In the last section we used the block-diagonalization properties of the sign function method to
derive an algorithm for solving linear matrix equations. This feature will also turn out to be
useful for other problems such as modal truncation and model reduction of unstable systems.
The important equation in this context is (17), which allows us to eliminate the off-diagonal
block of a block-triangular matrix by solving a Sylvester equation.

A spectral projection method for the block-diagonalization of a matrix Z having no eigen-
values on the imaginary axis is summarized in Algorithm 2. In case of purely imaginary
eigenvalues, it can still be used if applied to Z + αIn, where α ∈ R is an appropriate spectral
shift which is not the real part of an eigenvalue of Z. Note that the computed transformation
matrix is not orthogonal, but its first n columns are orthonormal.

4 Model Reduction Using Spectral Projection Methods

4.1 Modal Truncation

Modal truncation is probably one of the oldest model reduction techniques [Dav66, Mar66].
In some engineering disciplines, modified versions are still in use, mainly in structural dynam-
ics. In particular, the model reduction method in [CB68] and its relatives, called nowadays
substructuring methods, which combine the modal analysis with a static compensation follow-
ing Guyan [Guy68], are frequently used. We will not elaborate on these type of methods, but
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will only focus on the basic principles of modal truncation and how it can be implemented
using spectral projection ideas.

The basic idea of modal truncation is to project the dynamics of the LTI system (1)
onto an A-invariant subspace corresponding to the dominant modes of the system (poles of
G(s), eigenvalues of A that are not canceled by zeros). In structural dynamics software as
ANSYS [ANS] or Nastran [MSC], usually an eigenvector basis of the chosen modal subspace
is used. Employing the block-diagonalization abilities of the sign function method described
in Subsection 3.4, it is easy to derive a spectral projection method for modal truncation. This
was first observed by Roberts in his original paper on the matrix sign function [Rob80]. It
has the advantage that we avoid a possible ill-conditioning in the eigenvector basis.

An obvious, though certainly not always optimal, choice of dominant modes is to select
those eigenvalues of A having nonnegative or small negative real parts. Basically, these
eigenvalues dominate the long-term dynamics of the solution of the linear ordinary differential
equation describing the dynamics of (1)—solution components corresponding to large negative
real parts decay rapidly and mostly play a less important (negligible) role in vibration analysis
or control design. This viewpoint is rather naive as it neither takes into account the transient
behavior of the dynamical system nor the oscillations caused by large imaginary parts or the
sensitivity of the eigenvalues with respect to small perturbations. Nevertheless, this approach
is often successful when A comes from an FEM analysis of an elliptic operator such as those
arising in linear elasticity or heat transfer processes.

An advantage of modal truncation is that the poles of the reduced-order system are also
poles of the original system. This is important in applications such as vibration analysis since
the modes correspond to the resonance frequencies of the original system; the most important
resonances are thus retained in the reduced-order model.

In the sequel we will use the naive mode selection criterion described above in order to
derive a simple implementation of modal truncation employing a spectral projector. The
approach, essentially already contained in the original work by Roberts [Rob80], is based on
selecting a stability margin α > 0, which determines the maximum modulus of the real parts of
the modes to be preserved in the reduced-order model. Now, the eigenvalues of A+αIn are the
eigenvalues of A, shifted by α to the right. That is, all eigenvalues with stability margin less
than α become unstable eigenvalues of A + αIn. Then, applying the sign function to A + αIn

yields the spectral projector 1
2(In + sign (A + αIn)) onto the unstable invariant subspace of

A+αIn which equals the A-invariant subspace corresponding to the modes that are dominant
with respect to the given stability margin. Block-triangularization of A using (12), followed
by block-diagonalization based on (17) give rise to the modal truncation implementation
outlined in Algorithm 3. In principle, Algorithm 2 could also be used here, but the variant
in Algorithm 3 is adapted to the needs of modal truncation and slightly cheaper.

The error of modal truncation can easily be quantified. It follows immediately that

G(s) − Ĝ(s) = C2(sI − A22)
−1B2;

see also (42) below or [GL95, Lemma 9.2.1]. As A22, B2, C2 are readily available, the L2-
error for the outputs or H∞-error for the transfer function (see (10)) is computable. For
diagonalizable A22, we obtain the upper bound

‖G − Ĝ‖∞ ≤ cond2 (T ) ‖C2‖2‖B2‖2
1

minλ∈Λ (A22) |Re(λ)| , (26)
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Algorithm 3 Spectral Projection Method for Modal Truncation.

INPUT: Realization (A, B, C, D) ∈ R
n×n × R

n×m × R
p×n × R

p×m of an LTI system (1); a
stability margin α > 0, α 6= Re(λ) for all λ ∈ Λ (A).

OUTPUT: Realization (Â, B̂, Ĉ, D̂) of a reduced-order model.
1: Compute S := sign (A + αIn).
2: Compute a rank-revealing QR factorization S =: QRΠ.
3: Compute (see (12))

QT AQ =:

[
A11 A12

0 A22

]
, QT B =:

[
B1

B2

]
, CQ =:

[
C1

C2

]
.

4: Solve the Sylvester equation (A11 − βIk)Y − Y (A22 − βIk) + A12 = 0 using (18). {Note:
If A is stable, β = 0 can be chosen; otherwise set

β ≥ max
λ∈Λ (A11)∩C+

(Re(λ)),

e.g., β = 2‖A11‖F .}
5: The reduced-order model is then

Â := A11, B̂ := B1 − Y B2, Ĉ := C1, D̂ := D.

where T−1A22T = D is the spectral decomposition of A22 and cond2 (T ) is the spectral norm
condition number of its eigenvector matrix T .

As mentioned at the beginning of this section, several extensions and modifications of
modal truncation are possible. In particular, static compensation can account for the steady-
state error inherent in the reduced-order model; see, e.g., [Föl94] for an elaborate variant.
This is related to singular perturbation approximation; see also subsection 4.3 below.

4.2 Balanced Truncation

The basic idea of balanced truncation is to compute a balanced realization

(TAT−1, TB, CT−1, D) =

([
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[

C1 C2

]
, D

)
, (27)

where A11 ∈ R
r×r, B1 ∈ R

r×m, C1 ∈ R
p×r, with r less than the McMillan degree n̂ of the

system, and then to use as the reduced-order model the truncated realization

(Â, B̂, Ĉ, D̂) = (A11, B1, C1, D). (28)

This idea dates essentially back to [Moo81, MR76]. Collecting results from [Moo81, Glo84,
TP87], the following result summarizes the properties of balanced truncation.

Proposition 4.1 Let (A, B, C, D) be a realization of a stable LTI system with McMillan
degree n̂ and transfer function G(s) and let (Â, B̂, Ĉ, D̂) with associated transfer function Ĝ
be computed as in (27)–(28). Then the following holds:
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a) The reduced-order system Ĝ is balanced, minimal, and stable. Its Gramians are

P̂ = Q̂ = Σ̂ =




σ1

. . .

σr


 .

b) The absolute error bound

‖G − Ĝ‖∞ ≤ 2
n̂∑

k=r+1

σk. (29)

holds.

c) If r = n̂, then (28) is a minimal realization of G and G = Ĝ.

Of particular importance is the error bound (29) as it allows an adaptive choice of the order
of the reduced-order model based on a prescribed tolerance threshold for the approximation
quality. (The error bound (29) can be improved in the presence of Hankel singular values with
multiplicity greater than one—they need to appear only once in the sum on the right-hand
side.)

It is easy to check that for a controllable and observable (minimal) system, i.e., a system
with nonsingular Gramians, the matrix

T = Σ
1
2 UT R−T (30)

provides a balancing state-space transformation. Here Wc = RT R and RWoR
T = UΣ2UT is

a singular value decomposition. A nice observation in [LHPW87, TP87] allows us to compute
(28) also for non-minimal systems without the need to compute the full matrix T . The first
part of this observation is that for Wo = ST S,

S−T (WcWo)S
T = (SRT )(SRT )T = (UΣV T )(V ΣUT ) = UΣ2UT

so that U,Σ can be computed from an SVD of SRT ,

SRT =
[

U1 U2

] [
Σ1 0
0 Σ2

] [
V T

1

V T
2

]
, Σ1 = diag(σ1, . . . , σr). (31)

The second part needed is the fact that computing

Tl = Σ
−1/2
1 V T

1 R, Tr = ST U1Σ
−1/2
1 , (32)

and
Â := TlATr, B̂ := TlB, Ĉ := CTr (33)

is equivalent to first computing a minimal realization of (1), then balancing the system as in
(27) with T as in (30), and finally truncating the balanced realization as in (28). In particular,
the realizations obtained in (28) and (33) are the same, Tl contains the first r rows of T and
Tr the first r columns of T−1—those parts of T needed to compute A11, B1, C1 in (27). Also
note that the product TrTl is a projector onto an r-dimensional subspace of the state-space
and model reduction via (33) can therefore be seen as projecting the dynamics of the system
onto this subspace.
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Algorithm 4 Spectral Projection Method for Balanced Truncation.

INPUT: Realization (A, B, C, D) ∈ R
n×n × R

n×m × R
p×n × R

p×m of an LTI system (1); a
tolerance τ for the absolute approximation error or the order r of the reduced-order model.

OUTPUT: Stable reduced-order model, error bound δ.
1: Compute full-rank factors S,R of the system Gramians using Algorithm 1.
2: Compute the SVD

SRT =:
[

U1 U2

]
[

Σ1

Σ2

] [
V T

1

V T
2

]
,

such that Σ1 ∈ R
r×r is diagonal with the r largest Hankel singular values in decreasing

order on its diagonal. Here r is either the fixed order provided on input or chosen as
minimal integer such that 2

∑n̂
j=r+1 σj ≤ τ .

3: Set Tl := Σ
−1/2
1 V T

1 R, Tr = ST U1Σ
−1/2
1 .

4: Compute the reduced-order model,

Â := TlATr, B̂ := TlB, Ĉ := CTr, D̂ := D,

and the error bound δ := 2
∑n̂

j=r+1 σj .

The algorithm resulting from (33) is often referred to as the SR method for balanced
truncation. In [LHPW87, TP87] and all textbooks treating balanced truncation, S and R
are assumed to be the (square, triangular) Cholesky factors of the system Gramians. In
[BQQ00a] it is shown that everything derived so far remains true if full-rank factors of the
system Gramians are used instead of Cholesky factors. This yields a much more efficient
implementation of balanced truncation whenever n̂ ≪ n (numerically). Low numerical rank
of the Gramians usually signifies a rapid decay of their eigenvalues, as shown in Figure 3,
and implies a rapid decay of the Hankel singular values. The resulting algorithm, derived in
[BQQ00a], is summarized in Algorithm 4.

It is often stated that balanced truncation is not suitable for large-scale problems as it
requires the solution of two Lyapunov equations, followed by an SVD, and that both steps
require O(n2) storage and O(n3) flops. This is not true for Algorithm 4 although it does
not completely break the O(n2) storage and O(n3) flops barriers. In Subsection 5.2 it will be
shown that by reducing the complexity of the first stage of Algorithm 4 down to O(n·q(log n)),
where q is a quadratic or cubic polynomial, it is possible to break this curse of dimensionality
for certain problem classes.

An analysis of Algorithm 4 reveals the following: assume that A is a full matrix with no
further structure to be exploited, and define

nco := max{rank (S) , rank (R)} ≪ n,

where by abuse of notation “rank” denotes the numerical rank of the factors of the Gramians.
Then the storage requirements and computational cost are as follows:

1. The solution of the dual Lyapunov equations splits into three separate iterations:

(a) The iteration for Aj requires the inversion of a full matrix and thus needs O(n2)
storage and O(n3) flops.
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(b) The iterations for Bj and Cj need an additional O(n · nco) storage, all com-
putations can be performed in O(n2nco) flops. The n2 part in the complexity
comes from applying A−1

j using either forward and backward substitution or ma-
trix multiplication—if this can be achieved in a cheaper way as in Subsection 5.2,
the complexity reduces to O(n · n2

co).

2. Computing the SVD of SRT only needs O(n2
co) workspace and O(n · nco) flops and

therefore does not contribute significantly to the cost of the algorithm.

3. The computation of the ROM via (32) and (33) requires O(r2) additional workspace
and O(nncor + n2r) flops where the n2 part corresponds to the cost of matrix-vector
multiplication with A and is not present if this is cheaper than the usual 2n2 flops.

An even more detailed analysis shows that the implementation of the SR method of balanced
truncation outlined in Algorithm 4 can be significantly faster than the one using Hammarling’s
method for computing Cholesky factors of the Gramians as used in SLICOT [BMS+99, Var01]
and Matlab; see [BQQ00a]. It is important to remember that if A has a structure that allows
to store A in less than O(n2), to solve linear systems in less than O(n3) and to do matrix-
vector multiplication in less than O(n2), the complexity of Algorithm 4 is less than O(n2) in
storage and O(n3) in computing time!

If the original system is highly unbalanced (and hence, the state-space transformation
matrix T in (27) is ill-conditioned), the balancing-free square-root (BFSR) balanced truncation
algorithm suggested in [Var91] may provide a more accurate reduced-order model in the
presence of rounding errors. It combines the SR implementation from [LHPW87, TP87] with
the balancing-free model reduction approach in [SC89]. The BFSR algorithm only differs
from the SR implementation in the procedure to obtain Tl and Tr from the SVD (31) of
SRT , and in that the reduced-order model is not balanced. The main idea is that in order
to compute the reduced-order model it is sufficient to use orthogonal bases for range (Tl) and
range (Tr). These can be obtained from the following two QR factorizations:

ST U1 = [P1 P2]

[
R̂
0

]
, RT V1 = [Q1 Q2]

[
R̄
0

]
, (34)

where P1, Q1 ∈ R
n×r have orthonormal columns, and R̂, R̄ ∈ R

r×r are upper triangular. The
reduced-order system is then given by (33) with

Tl = (QT
1 P1)

−1QT
1 , Tr = P1, (35)

where the (QT
1 P1)

−1 factor is needed to preserve the projector property of TrTl.
The absolute error of a realization of order r computed by the BFSR implementation of

balanced truncation satisfies the same upper bound (29) as the reduced-order model computed
by the SR version.

4.2.1 Numerical Experiments

We compare modal truncation, implemented as Matlab function modaltrunc following Al-
gorithm 3 and balanced truncation, implemented as Matlab function btsr following Algo-
rithm 4 for some of the benchmark examples presented in Part II of this book. The Matlab
codes are available from
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http://www.tu-chemnitz.de/∼benner/software.php

In the comparison we included several Matlab implementations of balanced truncation based
on using the Bartels-Stewart or Hammarling’s method for computing the system Gramians:

– the SLICOT [BMS+99] implementation of balanced truncation, called via a mex-function
from the Matlab function bta [Var01],

– the Matlab Control Toolbox (Version 6.1 (R14SP1)) function balreal followed by
modred,

– the Matlab Robust Control Toolbox (Version 3.0 (R14SP1)) function balmr.

The examples that we chose to compare the methods are:

ex-rand This is Example 3.7 from above.

rail1357 This is the steel cooling example described in Chapter [BS05]. Here, we chose the
smallest of the provided test sets with n = 1357.

filter2D This is the optical tunable filter example described in Chapter [HBZ05]. For the
comparison, we chose the 2D problem — the 3D problem is well beyond the scope of
the discussed implementations of modal or balanced truncation.

iss-II This is a model of the extended service module of the International Space Station, for
details see Chapter [CV05].

(For a more complete comparison of balanced truncation based on Algorithm 4 and the
SLICOT model reduction routines see [BQQ03b].)

The frequency response errors for the chosen examples are shown in Figure 4. For the
implementations of balanced truncation, we only plotted the error curve for btsr as the
graphs produced by the other implementations are not distinguishable with the exception
of filter2D where the Robust Control Toolbox function yields a somewhat bigger error for
high frequencies (still satisfying the error bound (29)). Note that the frequency response error
here is measured as the pointwise absolute error

‖G(jω) − Ĝ(jω)‖2 = σmax

(
G(jω) − Ĝ(jω)

)
,

where ‖.‖2 is the spectral norm (matrix 2-norm).
From Figure 4 it is obvious that for equal order of the reduced-order model, modal trun-

cation usually gives a much worse approximation than balanced truncation. Note that the
order r of the reduced-order models was selected based on the reduced-order model computed
via Algorithm 3 for a specific, problem-dependent stability margin α. We chose α = 244 for
ex-rand, α = 0.01 for rail1357, α = 5 · 103 for filter2D, and α = 0.005 for iss-II. That
is, the reduced-order models computed by balanced truncation used a fixed order rather than
an adaptive selection of the order based on (29).

The computation times obtained using Matlab 7.0.1 on a Intel Pentium M processor at
1.4 GHz with 512 MBytes of RAM are given in Table 1.

Some peculiarities we found in the results:
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Figure 4: Frequency response (pointwise absolute) error for the Examples ex-rand,
rail1357, filter2D, iss-II.

– the error bound (29) for ex-rand as computed by the Robust Control Toolbox function
is 2.2·10−2; this compares unfavorably to the correct bound 4.9·10−5, returned correctly
by the other implementations of balanced truncation. Similarly, for filter2D, the
Robust Control Toolbox function computes an error bound 10, 000 times larger than
the other routines and the actual error. This suggests that the smaller Hankel singular
values computed by balmr are very incorrect.

– The behavior for the first 3 examples regarding computing time is very much consistent
while the iss-II example differs significantly. The reason is that the sign function does
converge very slowly for this particular example and the full-rank factorization computed
reveals a very high numerical rank of the Gramians (roughly n/2). This results in fairly
expensive QR factorizations at later stages of the iteration in Algorithm 1.

Altogether, spectral projection-based balanced truncation is a viable alternative to other
balanced truncation implementations in Matlab. If the Gramians have low numerical rank,
the execution times are generally much smaller than for approaches based on solving the
Lyapunov equations (4) employing Hammarling’s method. On the other hand, Algorithm 4
suffers much from a high numerical rank of the Gramians due to high execution times of
Algorithm 1 in that case. The accuracy of all implementations is basically the same for
all investigated examples—an observation in accordance to the tests reported in [BQQ00a,
BQQ03b]. Moreover, the efficiency of Algorithm 4 allows an easy and highly scalable parallel
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Modal Trunc. Balanced Truncation
Example Alg. 3 Alg. 4 SLICOT balreal/modred balmr

ex-rand 11.36 5.35 14.24 21.44 34.78

rail1357 203.80 101.78 241.44 370.56 633.25

filter2D 353.27 152.85 567.46 351.26 953.54

iss-II 399.65 1402.13 247.21 683.72 421.69

Table 1: CPU times needed in the comparison of modal truncation and different balanced
truncation implementations for the chosen examples.

implementation in contrast to versions based on Hammarling’s method, see Subsection 5.1.
Thus, much larger problems can be tackled using a spectral projection-based approach.

4.3 Balancing-Related Methods

4.3.1 Singular Perturbation Approximation

In some situations, a reduced-order model with perfect matching of the transfer function at s =
0 is desired. In technical terms, this means that the DC gain is perfectly reproduced. In state-
space, this can be interpreted as zero steady-state error. In general this can not be achieved
by balanced truncation which performs particularly well at high frequencies (ω → ∞), with a
perfect match at ω = ∞. However, DC gain preservation is achieved by singular perturbation
approximation (SPA), which proceeds as follows: let (Ã, B̃, C̃, D) denote a minimal realization
of the LTI system (1), and partition

Ã =

[
A11 A12

A21 A22

]
, B̃ =

[
B1

B2

]
, C̃ = [ C1 C2],

according to the desired size r of the reduced-order model, that is, A11 ∈ R
r×r, B1 ∈ R

r×m,
and C1 ∈ R

p×r. Then the SPA reduced-order model is obtained by the following formulae
[LA86]:

Â := A11 + A12A
−1
22 A21, B̂ := B1 + A12A

−1
22 B2,

Ĉ := C1 + C2A
−1
22 A21, D̂ := D + C2A

−1
22 B2.

(36)

The resulting reduced-order model satisfies the absolute error bound in (29).
When computing the minimal realization with Algorithm 4 or its balancing-free variant,

followed by (36), we can consider the resulting model reduction algorithm as a spectral projec-
tion method for SPA. Further details regarding the parallelization of this implementation of
SPA, together with several numerical examples demonstrating its performance, can be found
in [BQQ00b].

4.3.2 Cross-Gramian Methods

In some situations, the product WcWo of the system Gramians is the square root of the
solution of the Sylvester equation

AWco + WcoA + BC = 0. (37)

The solution Wco of (37) is called the cross-Gramian of the system (1). Of course, for (37)
to be well-defined, the system must be square, i.e., p = m. Then we have W 2

co = WcWo if
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• the system is symmetric, which is trivially the case if A = AT and C = BT (in that
case, both equations in (4) equal (37)) [FN84a];

• the system is a single-input/single-output (SISO) system, i.e., p = m = 1 [FN84b].

In both cases, instead of solving (4) it is possible to use (37). Also note that the cross-
Gramian carries information of the LTI system and its internally balanced realization if it
is not the product of the controllability and observability Gramian and can still be used for
model reduction; see [Ald91, FN84b]. The computation of a reduced-order model from the
cross-Gramian is based on computing the dominant Wco-invariant subspace which can again
be achieved using (13) and (12) applied to a shifted version of Wco.

For p, m ≪ n, a factorized version of (18) can be used to solve (37). This again can reduce
significantly both the work space needed for saving the cross-Gramian and the computation
time in case Wco is of low numerical rank; for details see [Ben04]. Also note that the Bj-
iterates in (18) need not be computed as they equal the Aj ’s. This further reduces the
computational cost of this approach significantly.

4.3.3 Stochastic Truncation

We assume here that 0 < p ≤ m, rank (D) = p, which implies that G(s) must not be strictly
proper. For strictly proper systems, the method can be applied introducing an ǫ-regularization
by adding an artificial matrix D = [ǫIp 0] [Glo86].

Balanced stochastic truncation (BST) is a model reduction method based on truncating
a balanced stochastic realization. Such a realization is obtained as follows; see [Gre88] for
details. Define the power spectrum Φ(s) = G(s)GT (−s), and let W be a square minimum
phase right spectral factor of Φ, satisfying Φ(s) = W T (−s)W (s). As D has full row rank,
E := DDT is positive definite, and a minimal state-space realization (AW , BW , CW , DW ) of
W is given by (see [And67a, And67b])

AW := A, BW := BDT + WcC
T ,

CW := E− 1
2 (C − BT

W XW ), DW := E
1
2 ,

where Wc = ST S is the controllability Gramian defined in (4), while XW is the observability
Gramian of W (s) obtained as the stabilizing solution of the algebraic Riccati equation (ARE)

F T X + XF + XBW E−1BT
W X + CT E−1C = 0, (38)

with F := A − BW E−1C. Here, XW is symmetric positive (semi-)definite and thus admits a
decomposition XW = RT R. If a reduced-order model is computed from an SVD of SRT as
in balanced truncation, then the reduced-order model (Â, B̂, Ĉ, D̂) is stochastically balanced.
That is, the Gramians Ŵc, X̂W of the reduced-order model satisfy

Ŵc = diag (σ1, . . . , σr) = X̂W , (39)

where 1 = σ1 ≥ σ2 ≥ . . . ≥ σr > 0. The BST reduced-order model satisfies the following
relative error bound:

σr+1 ≤ ‖∆r‖∞ ≤
n∏

j=r+1

1 + σj

1 − σj
− 1, (40)

26



where G∆r = G − Ĝ. From that we obtain

‖G − Ĝ‖∞
‖G‖∞

≤
n∏

j=r+1

1 + σj

1 − σj
− 1. (41)

Therefore, BST is also a member of the class of relative error methods which aim at minimizing
‖∆r‖ for some system norm.

Implementing BST based on spectral projection methods differs in several ways from the
versions proposed in [SC88, VF93], though they are mathematically equivalent. Specifically,
the Lyapunov equation for Wc is solved using the sign function iteration described in sub-
section 3.3, from which we obtain a full-rank factorization Wc = ST S. The same approach
is used to compute a full-rank factor R of XW from a stabilizing approximation X̃W to XW

using the technique described in [Var99]: let D =
[
D̂T 0

]
U be an LQ decomposition of D.

Note that D̂ ∈ R
p×p is a square, nonsingular matrix as D has full row rank. Now set

HW := D̂−T C, B̂W := BW D̂−1, Ĉ := (HW − B̂T
W X).

Then the ARE (38) is equivalent to AT X +XA+ ĈT Ĉ = 0. Using a computed approximation
X̃W of XW to form Ĉ, the Cholesky or full-rank factor R of XW can be computed directly
from the Lyapunov equation

A(RT R) + (RT R)A + ĈT Ĉ = 0.

The approximation X̃W is obtained by solving (38) using Newton’s method with exact line
search as described in [Ben97] with the sign function method used for solving the Lyapunov
equations in each Newton step; see [BQQ01] for details. The Lyapunov equation for R is
solved using the sign function iteration from subsection 3.3.

4.3.4 Further Riccati-Based Truncation Methods

There is a variety of other balanced truncation methods for different choices of Gramians to
be balanced; see, e.g., [GA03, Obe91]. Important methods are

positive-real balancing: here, passivity is preserved in the reduced-order model which is
an important task in circuit simulation;

bounded-real balancing: preserves the H∞ gain of the system and is therefore useful for
robust control design;

LQG balancing: a closed-loop model reduction technique that preserves closed-loop perfor-
mance in an LQG design.

In all these methods, the Gramians are solutions of two dual Riccati equations of a similar
structure as the stochastic truncation ARE (38). The computation of full-rank factors of
the system Gramians can proceed in an analogous manner as in BST, and the subsequent
computation of the reduced-order system is analogous to the SR or BFSR method for bal-
anced truncation. Therefore, implementations of these model reduction approaches with the
computational approaches described so far can also be considered as spectral projection meth-
ods. The parallelization of model reduction based on positive-real balancing is described in
[BQQ04b]; numerical results demonstrating the accuracy of the reduced-order models and
the parallel performance can also be found there.
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4.4 Unstable Systems

Model reduction for unstable systems can be performed in several ways. One idea is based
on the fact that unstable poles are usually important for the dynamics of the system, hence
they should be preserved. This can be achieved via an additive decomposition of the transfer
function as

G(s) = G−(s) + G+(s),

with G−(s) stable, G+(s) unstable, applying balanced truncation to G− to obtain Ĝ−, and
setting

Ĝ(s) := Ĝ−(s) + G+(s),

thereby preserving the unstable part of the system. Such a procedure can be implemented
using the spectral projection methods for block-diagonalization and balanced truncation: first,
apply Algorithm 2 to A and set

Ã := U−1AU =

[
A11 0

0 A22

]
,

B̃ := U−1B =:

[
B1

B2

]
, C̃ := CU =: [C1 C2 ] , D̃ := D.

This yields the desired additive decomposition as follows:

G(s) = C(sI − A)−1B + D = C̃(sI − Ã)−1B̃ + D̃

=
[

C1 C2

]
[

(sIk − A11)
−1

(sIn−k − A22)
−1

] [
B1

B2

]
+ D (42)

=
{
C1(sIk − A11)

−1B1 + D
}

+
{
C2(sIn−k − A22)

−1B2

}

=: G−(s) + G+(s).

Then apply Algorithm 4 to G− and obtain the reduced order model by adding the transfer
functions of the stable reduced and the unstable unreduced parts as summarized above. This
approach is described in more detail in [BCQQ04] where also some numerical examples are
given. An extension of this approach using balancing for appropriately defined Gramians of
unstable systems is discussed in [ZSW99]. This approach can also be implemented using sign
function-based spectral projection techniques similar to the ones used so far.

Alternative model reduction techniques for unstable systems based on coprime factoriza-
tion of the transfer function and application of balanced truncation to the stable coprime
factors are surveyed in [Var01]. Of course, the spectral projection-based balanced truncation
algorithm described in Section 4.2 could be used for this purpose. The computation of spec-
tral factorizations of transfer functions purely based on spectral projection methods requires
further investigation, though.

4.5 Optimal Hankel Norm Approximation

BT and SPA model reduction methods aim at minimizing the H∞-norm of the error system
G−Ĝ. However, they usually do not succeed in finding an optimal approximation; see [AA02].
If a best approximation is desired, a different option is to use the Hankel norm of a stable
rational transfer function, defined by

‖G‖H := σ1(G), (43)
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where σ1(G) is the largest Hankel singular value of G. Note that ‖G‖H is only a semi-norm
on the Hardy space H∞ as ‖G‖H = 0 does not imply G ≡ 0. However, semi-norms are often
easier to minimize than norms. In particular, using the Hankel norm it is possible to compute
a best order-r approximation to a given transfer function in H∞. It is shown in [Glo84] that
a reduced-order transfer function Ĝ of order r can be computed that minimizes the Hankel
norm of the approximation error in the following sense:

‖G − Ĝ‖H = σr+1 ≤ ‖G − G̃‖H

for all stable transfer functions G̃ of McMillan degree less than or equal to r. Moreover, there
are explicit formulae to compute such a realization of Ĝ. That is, we can compute a best
approximation of the system for a given McMillan degree of the reduced-order model which
is usually not possible for other system norms such as the H2- or H∞-norms.

The derivation of a realization of Ĝ is quite involved, see, e.g., [Glo84, ZDG96]. Here, we
only describe the essential computational tools required in an implementation of the HNA
method.

The computation of a realization (Â, B̂, Ĉ, D̂) of the reduced-order model essentially con-
sists of four steps.

In the first step, a balanced minimal realization of G is computed. This can be done using
the SR version of the BT method as given in Algorithm 4. Next a transfer function

G̃(s) = C̃(sI − Ã)−1B̃ + D̃

with the same McMillan degree as the original system (1) is computed as follows: first, the
order r of the reduced-order model is chosen such that the Hankel singular values of G satisfy

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σr+k > σr+k+1 ≥ . . . ≥ σn̂ > 0, k ≥ 1.

Then, by applying appropriate permutations, the minimal balanced realization of G is re-
ordered such that the Gramians become

[
Σ̌

σr+1Ik

]
.

In a third step, the resulting balanced realization given by Ǎ, B̌, Č, Ď is partitioned according
to the partitioning of the Gramians, that is,

Ǎ =

[
A11 A12

A21 A22

]
, B̌ =

[
B1

B2

]
, Č = [ C1 C2],

where A11 ∈ R
n−k×n−k, B1 ∈ R

n−k×m, C1 ∈ R
p×n−k. Then the following formulae define a

realization of G̃:
Ã = Γ−1(σ2

r+1A
T
11 + Σ̌A11Σ̌ + σr+1C

T
1 UBT

1 ),

B̃ = Γ−1(Σ̌B1 − σr+1C
T
1 U),

C̃ = C1Σ̌ − σr+1UBT
1 ,

D̃ = D + σr+1U.

(44)

Here, U := (CT
2 )†B2, where M † denotes the pseudoinverse of M , and Γ := Σ̌2 − σ2

r+1In−k.
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Finally, we compute an additive decomposition of G̃ such that G̃(s) = G̃−(s) + G̃+(s)
where G̃− is stable and G̃+ is anti-stable. For this additive decomposition we use exactly
the same algorithm described in the last subsection. Then Ĝ := G̃− is an optimal r-th order
Hankel norm approximation of G.

Thus, the main computational tasks of a spectral projection implementation of optimal
Hankel norm approximation is a combination of Algorithm 4, the formulae (44), and Algo-
rithm 2; see [BQQ04a] for further details.

5 Application to Large-Scale Systems

5.1 Parallelization

Model reduction algorithms based on spectral projection methods are composed of basic
matrix computations such as solving linear systems, matrix products, and QR factorizations.
Efficient parallel routines for all these matrix computations are provided in linear algebra
libraries for distributed memory computers such as PLAPACK and ScaLAPACK [BCC+97,
van97]. The use of these libraries enhances both the reliability and portability of the model
reduction routines. The performance will depend on the efficiency of the underlying serial
and parallel computational linear algebra libraries and the communication routines.

Here we will employ the ScaLAPACK parallel library [BCC+97]. This is a freely available
library that implements parallel versions of many of the kernels in LAPACK [ABB+99], using
the message-passing paradigm. ScaLAPACK is based on the PBLAS (a parallel version of the
serial BLAS) for computation and BLACS for communication. The BLACS can be ported
to any (serial and) parallel architecture with an implementation of the MPI or the PVM
libraries [GBD+94, GLS94].

In ScaLAPACK the computations are performed by a logical grid of np = pr×pc processes.
The processes are mapped onto the physical processors, depending on the available number
of these. All data (matrices) have to be distributed among the process grid prior to the
invocation of a ScaLAPACK routine. It is the user’s responsibility to perform this data
distribution. Specifically, in ScaLAPACK the matrices are partitioned into mb × nb blocks
and these blocks are then distributed (and stored) among the processes in column-major order
(see [BCC+97] for details).

Using the kernels in ScaLAPACK, we have implemented a library for model reduction of
LTI systems, PLiCMR1, in Fortran 77. The library contains a few driver routines for model
reduction and several computational routines for the solution of related equations in control.
The functionality and naming convention of the parallel routines closely follow analogous
routines from SLICOT. As part of PLiCMR, three parallel driver routines are provided for
absolute error model reduction, two parallel driver routines for relative error model reduction,
and an expert driver routine capable of performing any of the previous functions on stable
and unstable systems. Table 2 lists all the driver routines. The driver routines are based
on several computational routines included in PLiCMR and listed in Table 3. Note that
the missing routines in the discrete-time case are available in the Parallel Library in
Control (PLiC) [BQQ99], but are not needed in the PLiCMR codes for model reduction
of discrete-time systems.

1Available from http://spine.act.uji.es/∼plicmr.html.
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Purpose Routine

Expert driver pab09mr

SR/BFSR BT alg. pab09ax

SR/BFSR SPA alg. pab09bx

HNA alg. pab09cx

SR/BFSR BST alg. pab09hx

Continuous-time Discrete-time

SR/BFSR PRBT alg. pab09px –

Table 2: Driver routines in PLiCMR.

Purpose Routine

Solve dual Lyapunov equations and compute HSV pab09ah

Compute Tl, Tr from SR formulae pab09as

Compute Tl, Tr from BFSR formulae pab09aw

Obtain reduced-order model from Tl, Tr pab09at

Spectral division by sign function pmb05rd

Factorize TFM into stable/unstable parts ptb01kd

Continuous-time Discrete-time

ARE solver pdgecrny –
Sylvester solver psb04md –
Lyapunov solver pdgeclnw –

Lyapunov solver (for the full-rank factor) pdgeclnc –
Dual Lyapunov/Stein solver psb03odc psb03odd

Table 3: Computational routines in PLiCMR.

A more detailed introduction to PLiCMR and numerical results showing the model re-
duction abilities of the implemented methods and their parallel performance can be found in
[BQQ03b].

5.2 Data-Sparse Implementation of the Sign Function Method

The key to a balanced truncation implementation based on Algorithm 4 with reduced complex-
ity lies in reducing the complexity of storing A and of performing the required computations
with A. Recall that the solution of the Lyapunov equation

AT X + XA + CT C = 0 (45)

(or its dual in (4)) with the sign function method (21) involves the inversion, addition and mul-
tiplication of n×n matrices. Using an approximation of A in H-matrix format [GH03, GHK03]
and formatted H-matrix arithmetic, the complexity of storing A and the aforementioned com-
putations reduces to O(n log2 n).

We will briefly describe this approach in the following; for more details and numerical
examples see [BB04].

Hierarchical (H-)matrices are a data-sparse approximation of large, dense matrices arising
from the discretization of non-local integral operators occurring in the boundary element
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method or as inverses of FEM discretized elliptic differential operators, but can also be used
to represent FEM matrices directly.

Important properties of H-matrices are:

• only few data are needed for the representation of the matrix,

• matrix-vector multiplication can be performed in almost linear complexity (O(n log n)),

• sums, products, inverses of H-matrices are of “almost” linear complexity.

The basic construction principle of H-matrices can be described as follows: consider matrices
over a product index set I × I and partition I × I by an H-tree TI×I , where a problem
dependent admissibility condition is used to decide whether a block t × s ⊂ I × I allows for
a low rank approximation of this block.

Definition 5.1 [GH03] The set of hierarchical matrices is defined by

H(TI×I , k) := {M ∈ R
I×I | rank (M |t×s) ≤ k for all

admissible leaves t × s of TI×I}.

Submatrices of M ∈ H(TI×I , k) corresponding to inadmissible leaves are stored as dense
blocks whereas those corresponding to admissible leaves are stored in factorized form as rank-
k matrices, called Rk-format. Figure 5 shows the H-matrix representation with k = 4 of the
stiffness matrix of the FEM discretization for a 2D heat equation with distributed control and
isolation boundary conditions using linear elements on a uniform mesh, resulting in n = 1024.

Figure 5: H-matrix representation of stiffness matrix for 2D heat equation with distributed
control and isolation boundary conditions. Here n = 1024 and k = 4.

The formatted arithmetic for H-matrices is not a usual arithmetic as H(TI×I , k) is not
a linear subspace of R

I×I , hence sums, products, and inverses of H-matrices need to be
projected into H(TI×I , k). In short, the operations needed here are
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Formatted addition (⊕) with complexity NH⊕H = O(nk2 log n)); the computed H-matrix
is the best approximation ( with respect to the Frobenius-norm) in H(TI×I , k) of the
sum of two H-matrices.

Formatted multiplication (⊙) with complexity NH⊙H = O(nk2 log2 n);

Formatted inversion (Ĩnv) with complexity NH, fInv
= O(nk2 log2 n).

For the complexity results, some technical assumptions on the H-tree TI×I are needed.
The sign function iteration (21) for (45) using formatted H-matrix arithmetic with AH

denoting the H-matrix representation in H(TI×I , k) then becomes

A0 ← AH, C0 ← C,
for j = 0, 1, 2, . . .

Aj+1 ← 1

2γj

(
Aj ⊕ γ2

j Ĩnv(Aj)
)

,

C̃j+1 ← 1

2
√

γj

[
Cj , γjCj ⊙ Ĩnv(Aj)

]
,

Cj+1 ← R-factor of RRQR as in (24).

(46)

Using this method for solving the Lyapunov equations in the first step of Algorithm 4, we
obtain an implementation of balanced truncation requiring only O(nconk log2 n) storage and
O(rncok

2n log2 n) flops. Work on this topic is in progress, first numerical results reported in
[BB04] are promising that this approach will lend itself to efficient model reduction methods
for the control of parabolic partial differential equations.

6 Conclusions and Open Problems

Spectral projection methods, in particular those based on the matrix sign function, provide an
easy-to-use and easy-to-implement framework for many model reduction techniques. Using
the implementations suggested here, balanced truncation and related methods can easily be
applied to systems of order O(103) on desktop computers, of order O(104) using parallel
programming models, and to more or less unlimited orders if sparse implementations based
on matrix compression techniques and formatted arithmetic can be used.

Further investigations could lead to a combination of spectral projection methods based on
the sign function with wavelet techniques for the discretization of partial differential equations.

Open problems are the derivation of error bounds for several balancing-related techniques
that allow an adaptive choice of the order of the reduced-order model for a given tolerance
threshold. This would be particulary important for positive-real balancing as this technique
could be very useful in circuit simulation and microsystem technology. The extension of
the Riccati-based truncation techniques related to stochastic, positive-real, bounded-real,
and LQG balancing to descriptor systems is another topic for further investigations, both
theoretically and computationally.
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