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Abstract

Let K be a convex body in a Minkowski plane, i.e., in a two-dimensional
real Banach space. The Minkowskian thickness of K is the minimal possible
Minkowskian distance between two points of K lying in different parallel sup-
porting lines of that convex body. Let X be the class of planar convex bodies
having a given Minkowskian thickness, say one, and least possible area. We
prove that each body K from X is necessarily a triangle or a quadrilateral.
Furthermore, under certain conditions involving the Minkowskian unit ball,
the class X' consists only of triangles. The result of P4l [BF74, §10], stating
that in Euclidean case x is the class of equilateral triangles with altitudes of
length one, is obtained as a simple consequence of our main theorem.

MSC (2000): 52A21, 52A10, 52A38

1 Convex bodies in the Euclidean space

By E%, d > 2, we denote the d-dimensional Euclidean space with origin o0 and norm
|.|. Length and volume in E? are denoted by 1 and V, respectively. The abbrevi-
ations cl, bd, int, and conv stand for closure, boundary, interior, and convex hull,
respectively. A set K C ¢ is said to be a convex body if it is convex, compact and
has non-empty interior, cf. [BF74] and [Sch93]. A chord [P1,p2], P1,p2 € bd K, of K
is called an affine diameter if there exist two different parallel supporting hyper-
planes H; and H, of K with p, € H, and p2 € H,. Let u be a variable in E?\{o}.
Then with K we associate the following functions of © and sets depending on v :

rk(u) :=max{a € R: au € K} (radius function),

hy(u) := max {(z,u) : € K} (support function),
H(K,u):={z € E*: (r,u) = hx(u)}  (supporting hyperplane at direction u),
F(K,u):=H(K,u)NK (face at direction u).

For a point z € bd K the normal cone of K at z is defined by
N(K,z):={ueE*\{o}:z ¢ H(K,u)} U {o}.

If o € int K, then the convex body K* = {ueE*: hg(u) < 1} is called the polar
body of K (or the dual body of K). Using the definition of the polar body one can
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obtain the well-known equalities rx- (u)hg(u) = 1 (v € E*\{o}) and K** = K. The
following proposition follows from basic properties of the duality transformation,
see [Sch93, Section 1.6]. The proof of its first part is more or less straightforward,
and the second part follows directly from the first one.

Proposition 1. Let K be a convex body with o € int K. We consider a direction
v € E*\{o} and the boundary point p of K with radius vector of direction v. Let u be
an outward Euclidean normal of K at p, and N be the normal cone of K at p. Then

(i) the vector v is the outward Euclidean normal of K* at the boundary point q of
K* with radius vector of direction u,

(ii) the set N Nbd K* is the face of K* at direction v.
g

The convex body DK := K + (=K) is called the difference body of K. The width
function wi (u) := hpg(u) = hg(u) + kg (—u) and the maximal chord-length function
lk(u) == rpk(u) yield analytical representations of the so-called one-dimensional
cross-section measures of K, cf. [Mar94] and [Gar95]. If v is a unit vector, then
wg (u) is the distance between two different supporting hyperplanes of K with Eu-
clidean normal u, and Ik (u) is the length of the affine diameter of K having direc-
tion u.

2 Selected topics from Minkowski spaces

A finite dimensional real Banach space is called a Minkowski space, cf. the mono-
graph [Tho96] and the surveys [MSWO01] and [MS]. If B C E¢ is a convex body
centered at the origin, then by AM?(B) we denote the Minkowski space with unit
ball B. The norm in M%(B) is denoted by | . l. The body B + p, where o > 0 and
p € M*(B), is called the Minkowskian ball of radius o centered at p. Let ug denote
the Minkowskian length in A1%(B). The volume in M?(B) can be defined exactly as
in E?, for the justification see [Tho96, Section 1.4].

Given a convex body K in M?(B) and a vector u ranging over E¢ \{o}, we in-
troduce the Minkowskian width function wgk,p(u) = wg(u)/hp(u) and the Min-
kowskian maximal chord-length function | k,B(w) == lg(u)/rp(u) of the body K. The
Minkowskian diameter diamp(K) := max {l|lz — y||s: z,y € K} of K is equal to the
maximum of both wg p(u) and lk,B(u), cf. [Ave03, Theorem 2]. Analogously, the
minima of wg, p(u) and lx 5(u) are equal and called Minkowskian thickness Ap(K)
of K, cf. [Ave03, Theorem 3]. It is not hard to show that the Minkowskian thickness
of K is equal to the Minkowskian inradius of DK , see [Ave03, Theorem 3], i.e.,

AB(K):maX{a>0:aB§DK}. (1)

Let B; and B, be two convex bodies centered at the origin. In view of (1), we easily
see that the inclusion B, C B, implies the inequality Ap, (K) > Ap,(K), where K
is an arbitrary convex body.

A triangle T is said to be equilateral in a Minkowski plane M?(B) if all its sides
have the same length in A1%(B). It can be shown that for every direction u there
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exists an equilateral triangle in A42(B) with a side parallel to u. Obviously, if T
is an equilateral triangle in A%(B) with sides of Minkowskian length one, then
all vertices of the hexagon DT lie in bd B and all sides of DT have Minkowskian
length one.

A d-dimensional convex body K is said to be of constant width A > 0 in M4(B)
if for any direction u € E%\{o} we have wk p(u) = )\, cf. [CG83], [HM93, Section 5]
and [MS, Section 2]. Equivalently, the latter condition can be given as the equality
DK = A-B.If T C M?*B) is a Minkowskian equilateral triangle with sides of
Minkowskian length A > 0, then the intersection Wg(T) of three Minkowskian
balls of radius A centered at the vertices of T is called a Minkowskian Reuleaux
triangle. One can express the area of W (T) by the areas of T and B as follows:

V(Wa(T)) = /\;V(B) —2V/(T). 2)

It turns out that a convex body K of constant Minkowskian width in AM2(B) is a
Minkowskian Reuleaux triangle if there exist boundary points p;, p2, p3 of K such
that the chords [p;, p), [p2, p3], and [ps, p;] are affine diameters of K.

The Minkowskian analogue of the classical Blaschke-Lebesgue Theorem states
that every planar convex body of given constant width in M?(B) and least possi-
ble area is necessarily a Reuleaux triangle in AM2(B), for the proof see [Ohm52],
[Cha66] and [Tho96, Theorem 4.2.8].

A d-dimensional convex body K is called reduced in M%(B) if it does not prop-
erly contain a convex body of the same thickness in Af¢ (B), cf. the papers [Las90]
and [LM] containing general results on reduced bodies in Euclidean and Min-
kowski spaces. Let B be a d-dimensional convex polytope with vertices +be, k €
{1,2,...,n}, n € N, and K be a Minkowskian reduced body in A2(B) having Min-
kowskian thickness one. Then

choanI,'c, (3)
k=1

where I is a suitable translate of [o, 8], cf. [LM, Corollary 1]. Suppose B is a
parallelogram. Then, using the above statement, we can show that K is a reduced
body in M?(B) with Ap(K) = 1if and only if K = conv(I; U L), where I, and I, are
intersecting translates of the diagonals of B. One can easily verify that the area of
any such K is equal to the area of B.

The isoperimetrix B in a Minkowski plane M?(B) is the polar body of B rotated
by the angle I about the origin. The Minkowskian height of a triangle T C M?(B)
with respect to its side 7 is the value wr p(u), where v is the Euclidean normal of I.
The following theorem gives a characterization of Minkowskian reduced triangles,
see [Ave, Theorem 7] and [CG85, Section 6].

Theorem 2. Let M?(B) be an arbitrary Minkowski plane. Then a triangle T is
reduced in M?(B) if and only if T has equal heights in M?(B) or, equivalently, T is
equilateral in M?(B). O

If B and B are homothetic convex bodies, then bd B is called a Radon curve,
and the corresponding Minkowski plane A%(B) is said to be a Radon plane, see
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[Tho96, Section 4.7]. Clearly, the Euclidean plane is a special Radon plane. The
difference body of a triangle is said to be an affine regular hexagon. The boundary
of any affine regular hexagon is a Radon curve, implying that the polar body of any
affine regular hexagon is also an affine regular hexagon. From Theorem 2 we can
see that in any Radon plane the classes of Minkowskian equilateral triangles and
Minkowskian reduced triangles coincide.

Let p, ¢ be points in a Minkowski space M?(B). Then the set

[p.qls = {z € MUB):llp~dllz = lp— =l|z + |lz - qll 5}

is called the d-segment connecting p with q. A set X C M?(B) is said to be d-convex
if and only if for any p,q € X the d-segment [p,q]p lies in X. The smallest (with
respect to inclusion) d-convex set containing a given set X C M?(B) is called a
d-convex hull of X and denoted by convp(X). The following theorem gives a charac-
terization of those Minkowski planes where the unit Minkowskian ball is d-convex,
cf. [BMS97, Theorem 11.4].

Theorem 3. Let M*(B) be an arbitrary Minkowski plane. Then we have conv g (B) =
B if and only if B for any line | supporting B at a smooth boundary point the line
parallel to | and passing through the origin intersects bd B at extreme boundary
points of B. a

Using Proposition 1, we can obtain the following. If a line ! supports B at a
smooth point, then the line parallel to [ and passing through the origin intersects
bd B at extreme points. Consequently, in view of Theorem 3, for Radon planes
M?(B) we have convg(B) = B.

3 The results

Let M%(B) be an arbitrary Minkowski space. By X (B) we denote the class of con-
vex bodies in M%(B) having Minkowskian thickness one and least possible vol-
ume. Trivially, the homothetical copies of convex bodies from X (B) correspond to
the equality case in the geometric inequality V(K) > o(B) - A B(K)4, where a(B) is
the volume of convex bodies from x(B). We cite the books [BF74, §10], [JB56, §6],
[BZ80], and [Tho96, Sections 4.4 and 4.5, where various geometric inequalities in
Minkowski and Euclidean spaces are discussed. If M¢?(B) is the Euclidean plane
(i.e., d = 2 and B is an ellipse), then X(B) is the class of equilateral triangles with
altitudes of length one, which is proved by Pal in [P4l21] and also, in another way,
below in this paper. For A14(B) being the Euclidean space with d > 3, no elements
from x(B) are known, but see [Hei78] for a related discussion. The following theo-
rem gives a complete description of x(B) in the important case when d = 2 and B
is a hexagon.

Theorem 4. Let B C E? be a convex hexagon with vertices +b;, j € {1,2,3}, and let
I; == [0, b;]. Then the following statements hold.

(i) For some k € {1,2,3} there exists a triangle T which contains a translate of
Iy and whose two sides are translates of the remaining two segments I;, j €

{1,2,3}\ {¥}.



(i) A convex body K belongs to x (B) if and only if for some k € {1,2, 3} the body
K is the convex hull of two intersecting translates of I;, j € {1,2,3}\ {k}, and
some translate of I}, is contained in K.

Proof. Without loss of generality we assume that b1, b, as well as by, b3 are neigh-
boring vertices of B. First we prove (i). Let us introduce the affine regular hexagon
B' := conv{+tb;, +b,, £b,} with b3 := by — by. If B C B, see Fig. 1, then the triangle
conv{o, b1, by} contains a translate of I;. Otherwise, the line aff{bs, b3} or the line
aff{bs, —b,} supports B’, see Fig. 2. In the first case the triangle conv{o, b3, —b, } con-
tains a translate of I, while in the latter case the triangle conv{o, by, b3} contains a
translate of I;.

Figure 1 Figure 2

Next we prove (ii). First we verify the sufficiency. Let I ; be a translate of I;, j €
{1,2, 3}. Suppose that for some k ¢ {1,2, 3} the convex body K := conv Uje(1,2,3)\ (k} 1]
contains I; and the two segments I 5 7 €1{1,2,3}\ {k}, intersect. It suffices to show
that V(K) < V(R) for any reduced body R in M?(B) with Ag(R) = 1. By (3) we
have R = conv Uie{1,2,3) I}, where I} is a translate of I, j € {1, 2,3}. But then we
obtain V(K) = V(COHV Uj€{1,2,3}\{k}l_;') S V(COHV Uj€{1,2,3}\{k}lj/'l) S V(R)

For showing the necessity, let & € {1,2,3}, a triangle T be as in (i), and K be
an arbitrary body from X(B). Of course, K is reduced in M?(B) and therefore,
in view of (3), it is represented by K = conv Uie{1,2,3}j, where I} is a translate of
I;, j € {1,2,3}. Consequently,

VK)2V(conv | ) 1) >v(D). (4)
JE{1,2,31\{k)

We notice that Ap(T") = 1, which can be verified by (1). But since K € X(B), the
area of T' cannot be strictly less than the area of K. Thus the three quantities in-
volved in (4) are equal. But then the equality V(K ) = V(conv Ujeqr 2,30 (13 ;) implies
that /; C K, while the equality V (conv Ujet,23n (k3 4;) = V(T) implies that the two
segments I7, j € {1,2,3}\ {k}, intersect. ]

The following lemma shows how to transform a Reuleaux triangle K in M?(B)
with B := DK to a convex body K’ such that B C B’ := DK’ and K’ is a Reuleaux
triangle in M?(B’). The main part of this lemma was proven in [KH53, Lemma 2].
We extend this proof from [KH53] by adding a characterization of the equality case
in (5).

Lemma 5. Let T be an equilateral triangle in a Minkowski plane M?(B) having
Minkowskian side length one. Suppose B # DT, i.e, some side I of the affine regular
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hexagon H := DT is not contained in bd B. Let qi, q; be the vertices of H not lying in
IU(=I), and u € E?\{o} be a direction of a line supporting B at q,. We introduce the
line | := aff{q,, ¢;} and the halfplane I+ bounded by | and containing I. Let us choose
an a € R\{0} such that I' := I+auintersects bd BNI*, and we introduce the triangle
T' := conv({o}UI') and the convex body B’ := conv(BUDT"), see Fig. 3. Furthermore,
let Si, k € {0,1,2}, be three compact, convex sets with Sy US; US, =1T N (B \int H)
and g € Sy for k € {1,2}. Then for the convex bodies K := Wg(T) and K' := Wp(T")
we have Ap(K') =1and

V(K" < V(K), (5)

with equality if and only if S, is a triangle, and for k € {1,2} the set Sy is a segment
or a triangle with one side parallel to u, see Fig. 4.

2 o j S
8, D
U U
a1 o q2 q1 o q2
Figure 3 Figure 4

Proof The equality Ap(K’) = 1 is a direct consequence of (1). Let us prove (5). The
set [TNcl(B'\ B) is the union of two compact sets P;, i € {1, 2}, with disjoint interiors
and P,N S; # 0. By p;, i € {1,2}, we denote the endpoint of I with {p;} = ,N1I.
Then p. := p; + au are the endpoints of I'. The segment J; := [p;, p}] splits P; into two
compact sets P;; and P,,. We have

L) -vB) = 3 VB, < Y V() ©

i,j=1,2 ij=1

where T;; := conv P, i,j € {1,2}. Clearly, T;; is a triangle with side J;. Let v
denote the Euclidean unit vector orthogonal to u. Then we have

Z wT” ) < wp(v) = 2wp(v), N

5,j=1

see Fig. 3. Since V(T;;) = Lwr, (v)u(J;) and V(P) = wp(v)u(J;), we can rewrite (7)

as Zl =12 V(Tij) < V(P). The latter together with (6) yields that 3(V(B') -V (B)) <

V(P). But the area of P can be expressed by the obvious formula V(P) =2(V(T") -
V(T)). Thus, :(V(B') — V(B)) < 2(V(T") — V(T)), which implies

[y

@

V(K) 2 Zv(B) - 2V(T') < sV(B) - 2V(T) 2 V(K)

l\DIr—l
(3]



and yields (5). Equality in (5) is attained if and only if it is attained in both (6) and
(7). Obviously, the latter is equivalent to the conditions on the sets Sk given in the
statement of the lemma, see also Fig. 4. a

The following theorem is the main result of our paper.
Theorem 6. Let M*(B) be an arbitrary Minkowski plane. Then
(1) the class X (B) necessarily contains triangles;

(ii) the elements of X (B) distinct from triangles (if they exist) are necessarily quadri-
laterals;

(iii) the class x(B) contains quadrilaterals if and only if for some boundary point
z of B*, which belongs to an open segment lying in bd B*, the faces of bd B*
parallel to [0, z] are strictly longer than [0, z], see Fig. 8.

Proof. 1. First we prove that any convex body from X (B) is necessarily a triangle or
a quadrilateral showing by this (ii). For this we consider an arbitrary planar convex
body K with Ap(K) = 1 and single out the cases when we can find a convex body
K' (which is different in each of these cases) with Ap(K') > 1 and V(K') < V(K).
The latter shows that in such cases K does not belong to x(B). In the remaining
cases K turns out to be a quadrilateral or a triangle.

If K is not a Reuleaux triangle in M?(By) with By := DK, then by the Minkow-
skian analogue of the Blaschke-Lebesgue Theorem K cannot have minimal area in
the class of bodies having constant Minkowskian width one in M?(By). Hence there
exists some planar convex body K’ of constant Minkowskian width one in M?(By)
with strictly smaller area than V(K). Using the equality DK’ = DK and (1) we get
that Ap(K') = Ap(K) = 1. From now on let K be a Reuleaux triangle in A%(B,),
i.e., K = Wpy(T) for some triangle T equilateral in M?(By). The set K \ int T is the
union of three compact, convex sets Sy, k € {1,2,3}.

If for some k € {1,2,3} the set S is neither a triangle nor a segment, then
by Lemma 5 applied for the Reuleaux triangle K in the Minkowski plane M?(By)
there exists a planar convex body K’ with V (K') < V(K) and Ap,(K') = Apy(K) =
1. For Ap(K') we have Ap(K') > Ap,(K') = 1 (see the remark after Formula (D).

Now suppose that for any k € {1, 2, 3} the set Sy is either a triangle or a segment.
Then B, is a polygon with at least 4 and at most 12 vertices. Further on, we consider
the following cases.

Case 1: All three sets S, are segments. Then K is a triangle.

Case 2: Precisely two sets Sy are segments. Then K is a quadrilateral.

Case 3: Precisely one set S, say S, is a segment. If the intersection point p of S,
and S is not a vertex of K, then K is a quadrilateral. Otherwise, let us denote by
u the direction of a line supporting K precisely at the point p. Applying Lemma 5
for K (with u in Lemma 5 chosen as above) we come to a convex body K’ with
V(K') < V(K) and Ag,(K") = Ap,(K). The estimate Ap(K') > 11is then obtained in
the same way as before.

Case 4: None of the sets Sy is a segment. If some vertex pof DT is also a vertex of
DK, then we can choose a direction u of a line supporting DK precisely at p. Then,
applying Lemma 5 for K (with » in Lemma 5 chosen as here), we find a convex
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body K’ with V(K') < V(K) and Ap(K') > Ap(K). Otherwise (i.e., no vertex of DT
is a vertex of DK) the convex body DK is a hexagon or a parallelogram. If under
the latter assumption K has more than four vertices, then by Theorem 4 applied
for the Minkowski plane AM?(B;) we can find a triangle K’ with V(K') < V(K) and
Agy(K') = Ap,(K). The latter yields in the usual way that Ap(K) > 1.

Summarizing we see that the area of a planar convex body K with Ap(K) =1
was not minimized only in the cases when K is a polygon with at most 4 vertices,
which yields Part (ii) of our theorem.

II. Meanwhile we have shown the following. Let K be a convex body from X (B).
Then K is a Reuleaux triangle in M?(By) with B, := DK i.e., K = Wg,(T) for some
triangle T equilateral in M?(By). Furthermore, for every triangle T as above at
least two vertices of T' are also vertices of K (to verify this, see Cases 1-4). We can
even show that there exists an equilateral triangle 7" in M?(B,) with K = Wy (T")
and ext 7" C ext K. If K is a triangle then the above statement is trivial. Therefore,
suppose that K is a quadrilateral and consider a triangle T := conv{pi, p2, p3}, p; €
M3(By) (i = 1,2), with K = Wg,(T), {p2,p3} C ext K and p; ¢ ext K. Let I be the
side of K containing p,. It turns out that I is parallel to [ps, ps], since otherwise
[p1, p3] or [ps, p3] would not be an affine diameter of K. But then for any point p from
I both [p, p,] and [p, p;] are affine diameters of K. Consequently 7" := conv{p, p2, ps},
where p] is an endpoint of 7, is a triangle whose existence we wanted to verify.

=y : /r\ b
T [

Figure 5 Figure 6 Figure 7 Figure 8

III. Now we will prove (iii). Let us start with the necessity. Suppose X' (B)
contains quadrilaterals and K| be an arbitrary quadrilateral from x'(B). Let By :=
DKy, and T be an equilateral triangle in M?2(B,) with W (T) = K, and extT C
ext Ko. Let Iy := [ag, bg) and I := [a,b] be diagonals of the quadrilateral K, such
that b ¢ T. It turns out that the boundary points ¢y := by — ag and ¢ := b — a of By
belong to B. Arguing by contradiction, we assume first that ¢ ¢ B. Then some line
parallel to I and lying between I, and b can cut off a small piece from K, containing
b such that we get some other convex body of the same Minkowskian thickness
and strictly smaller area, a contradiction. Now let us prove that ¢y € B. Suppose
the contrary, i.e., ¢y ¢ B. Let u € E%\{o} be the direction of a line supporting B,
precisely at ¢y. Then we fix an o € R\ {0} such that the segment I, := I, + au passes
through b. Trivially, T := conv(l; U I) is a triangle whose area is equal to the area
of Ky. Furthermore, the affine regular hexagon B; := DT; contains B, see Fig. 7.
From our construction it is clear that bd B; \ {£c} and B are disjoint. Therefore,
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taking some segment I, G I;, whose length is sufficiently close to the length of I,
we obtain a triangle conv(l, U I) with the same Minkowskian thickness as K, and
strictly smaller area, a contradiction. Thus we see that the boundary points +c,
and +c of By belong to B, see Fig. 6.

Since ¢, is a boundary point of both B and B,, we have r5(c,) = 75, (co) or, equiv-
alently, hp-(co) = hp;(co). The latter means that the supporting hyperplanes of B*
and Bj at direction ¢, coincide. Furthermore, taking into account the inclusion
B C B and the relation ¢, € bd B; N bd B we get the following strict inclusion of
normal cones: N (B, cy) & N(B, ¢), see Fig. 7. Therefore, applying Proposition 1(ii)
we come to the strict inclusion F(B},c,) G F(B*,¢). Clearly, F(B?,c) is a side of
the hexagon B;. Let v be the Euclidean outward normal of B, at c. It is not hard to
see that v € int N(B, ¢). Consequently, by Proposition 1 we have that z := Tg: (v)v
is a vertex of Bf lying in the relative interior of F(B*,¢). Since the hexagon B} is
affine regular, the segments [0, z] and F(B}, ¢o) have the same length and direction,
which yields the necessity in (iii).

IV. Now let us prove the sufficiency in (iii). Suppose that a boundary point z
of B* belongs to an open segment J; lying in bd B* and for the Euclidean normal
¢o € bd B of the vector = the segment F(B*, c,) is strictly longer than [o,z]. Let J,
be a segment lying in the relative interior of F(B*, ¢o) and having the same length
as [0,z] and ¢ € bd B be the Euclidean normal of J;. We consider the affine regular
hexagon B, being the dual body of conv({z, —z}UJ,U(—J;)). By assumptions we get
that the points +c, are vertices of By, the vector z is a side normal of By, and the
boundaries of B and B, intersect precisely at points +c;, +c. Furthermore, using
Proposition 1 it is not hard to derive the following relations:

N(B(),C()) C intN(B,Co)U{O}, (8)
z € intN(B,c). 9

We consider a triangle T, with DT, = B,. Let I, be the side of T, with the Euclidean
normal z, and a be the vertex of Tj not lying in I,. Further on, let b be a point from
I, such that the segment I := [, b] has the same direction and the same length as
[0, c]. We also choose a direction u of a line supporting B, precisely at c;. In view of
(8) and (9) it is possible to find a segment the segment I; := I, + au, o € R \ {0},
such that the difference body B, of the quadrilateral kK; := conv(I; U I) contains
B. It turns out that that the quadrilateral K, belongs to x'(B), since its area is
not larger than the area of any Minkowskian reduced body K ¢ M?(B) having
Minkowskian thickness one. Indeed, let I} and I’ be the affine diameters of K
parallel to I, and I, respectively. Of course, up(l;) < pe(ly) and pp(J) < up(J').
But then V(K,) < V(conv(fj U J')) < V(K'), and the sufficiency is verified.

V. It turns out that (i) follows directly from the derivations given above. Indeed,
(i) states that all elements of X (B) distinct from triangles are necessarily quadri-
laterals. But in the proof of (iii), taking a quadrilateral K, from X (B), we construct
a triangle K; which also belongs to x(B). Consequently, x(B) cannot consist only
of quadrilaterals and has to contain some triangles. ad

Further on, we wish to enumerate several simple properties of B which imply
that x(B) consists only of triangles but which are not equivalent to the condition
that all elements X’(B) are triangles. Namely, using Theorems 6(iii) and 3 we get
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the following. Let a planar convex body B, which is centered at the origin, possess
at least one of the following properties: (i) convg-(B*) = B*; (ii) B has at most two
non-smooth boundary points; (iii) bd B is a Radon curve. Then X (B) consists only
of triangles.

As a consequence of Theorem 2 and the previous statement we obtain that if
M?(B) is the Euclidean plane (i.e., B is an ellipse) then X(B) is precisely the class
of equilateral triangles in M?*(B) with heights of length one. 1t is, however, an open
question whether the converse implication holds.
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