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We study the Cauchy singular integral operator Swl on (—1,1), where |w| is
a generalized Jacobi weight. This operator is considered in pairs of weighted
spaces of continuous functions, where the weights v and v are generalized Jacobi
weights with nonnegative exponents such that |w| = u/v. We introduce a certain
polynomial approximation space which is well appropriated to serve as domain of
definition of Swil. A description of this space in terms of smoothness properties
shows that it can be viewed as a limit case of weighted Besov spaces of continuous
functions. We use our results to characterize those of the operators awl + Sbwl
and o !(awol + bSwol), o~' € b=, which act in certain pairs of Ditzian-Totik
type Besov spaces.

1 Introduction

In many mathematical models the Cauchy singular integral operator S appears. It is well-
known that S is bounded in Hélder-Zygmund spaces of functions defined on a closed (and
sufficiently smooth) curve (see [15], Chapter 2, §6, and [17], Section 6.25). But in the present
paper we treat the case of an open curve in which one has to be careful with the behaviour of
Sf at the endpoints of the curve. For the sake of simplicity we consider the interval (—1,1),
i.e., Sf is defined by

snw - [ 1

If f e LP(—1,1) with some p > 1, then (Sf)(z) exists for almost every x € (—1,1) ([15],

Chapter 2, §2). But in practice one often wants to know exactly for which points = the value

dt::hm(/“ QI R () dt), ve(-1,1).
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(Sf)(x) is defined. This requires knowledge about the continuity and the singularities of f.



A good candidate of a function space which represents the continuity points as well as the

singularities of its elements is the so-called weighted space of continuous functions
C, :={f :suppu — C such that fu € C:=C[-1,1]},

where u : [—1,1] — R is a given continuous function (the weight) with a support suppu :=
{z € [-1,1] : u(x) # 0} which is dense in [—1,1]. By fu € C we mean that fu possesses a
continuous extension on [—1, 1] (which is also denoted by fu). This implies that the elements
f of C, are continuous on supp u and that f may have singularities in the zeros of u. It is

clear that C,, endowed with the norm

1Al = [ full Cllgll = max {|g(z)[ : 2 € [-1,1]} ),

is a Banach space which is isometrically isomorphic to C.

From a certain point of view, the condition fu € C in the definition of C, is too
restrictive if u possesses zeros inside (—1,1): Why should we consider weighted spaces which
do not only depend on the absolute value of the weight u, but also on sign changes of u?
(For example, for u(x) =  and u(x) = ||, we get different spaces C, and Cj,.) For this
reason, we also introduce the following weighted space of piecewise continuous functions (by
piecewise continuous we mean continuous with possible exception of finitely many jumps),

which makes sense if u has only finitely many zeros:

PC. - { fisuppu — C: fu is piecewise continuous on [—1, 1]
u T

} , endowed with

with jumps only in the zeros of u
[ £l := sup { |(fu)(z)| : x € suppu } .

Obviously, this is a Banach space which does only depend on |u].
Unfortunately, the operator S is not bounded in C, or PC, (however we choose u).

For example, in case u = 1, the image of f =1 is an unbounded function:

| 1—
(1.1) / dt=In-— "

(t—x 1+z

So we have to restrict S onto a subspace of C,, to ensure that the images belong to PC,,. For
example, in case of a power weight u € CN{u : u(+1) = 0} (see below) with u=! € L', S'is
an endomorphism of the space of all f for which fu is Holder continuous and vanishes in all
zeros of u ([9], Section 9.10). In the present paper we will give a much bigger subspace of C,,
which may serve as domain of definition of .S, in the sense that S is a bounded operator from
this space into PC,, (or PCy, u some modified weight, if u(+1) # 0). The definition and
the properties of this space are given in Section 2 and the corresponding mapping properties

of S or, more general, Swl (w: some weight) are proved in Section 3. Of course, we are not

2



able to deal with arbitrary weights w and u: We will consider so-called power weights, i.e.,
w (or only |w|) and u are weights of the form

N

u(z) = H’SC—%

i=1

Y with —1 <z <...<zxzy <1 and o; #0.
For N = 0 this means u = 1 in agreement with the conventions [[,., . =1and > .., . = 0.
(In this sense, the weight u = 1 is also admitted if we speak, for example, about power

weights with positive exponents.) If z; = —1 and x5 = 1, then we also use the notation
v (x) = (1 —2)*(1 +2)° .

In case of a Jacobi weight, i.e., w = v with o, 3 > —1, it is known that the operator SwI
maps a certain subspace of C, (namely, the space C? which is defined in Section 2) into C,,
if u and v are Jacobi weights with nonnegative exponents such that
w = % vl eLl(~1,1), and (wv)(=1) = (w)(1) = 0.

This deep result is proved in [12]. In the present paper we will generalize this result to the case
of power weights |w| = u/v (and even generalized Jacobi weights). As consequence, we will
obtain criteria which ensure that operators of the type awl + SbwI and o~ (awol +bSwol),
o~ € b7MI, II: set of all polynomials, act between certain weighted (Ditzian-Totik type)
Besov spaces of continuous functions. These spaces can be defined in terms of polynomial
best approximation errors of their elements. For this reason, the approximation-theoretical
definition of the space C? from the next section will be very useful in the second part of the
paper. But first we have to consider Swl on C%. It turns out that this can be done with

the help of a nice characterization of C? in terms of smoothness properties of its elements.

2 The space C!

In all what follows, u(z) = [[, |z — z;

“i is a fixed power weight with exponents
a; >0 forall i=1,...,N.
Definition 2.1 For f € C,, we define the weighted polynomial best approximation errors
EN(f) = PiIel;In If = Pull. (n=0,1,...), where I, :=span{z": k=0,... ,n—1}.

(Especially, EY(f) = ||f|l..) The space C° is given by

CY .= {fGCu:||f]|u70::nZ:;igT(j3<oo}.

In case u =1 we write shortly E,(f) and C° instead of E*(f) and CP.
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C? is a so-called approximation space, i.e., a space of the type A(X,S;{X,}) =
{fe X {E(f;X,)} e S} (E(f; X,): best approximation errors w.r.t. to nested subspaces
X,, of a Banach space X; here: X = C,, X,, = II,). For C? the sequence space S =
'{1/(n+1)}) = {{a.}22 : {an/(n+ 1)} € 1'} does not fit into the classical concept
of approximation spaces, in which S = 19({(n + 1)*~(/9}) with s > 0 and 0 < ¢ < o0
([16]). Especially (in case of a Ditzian-Totik weight u € J%; see [7]), C? is different from the
weighted Besov spaces B3 (p,u) = A(Cy, I'({(n + 1)*7'}); {IL,}) (see [8]), since it appears
as the ”limit case” s — 0 of these spaces. (This is the reason for using the index 0 in the
notation CY.) However, from the general theory of approximation spaces A(X,S;{X,})
(which is well-known today; see [2], [1], [3], [4], [10]) one can conclude a lot of nice properties
of the space CC. For example, the following proposition holds true. (An easy proof can be

found in [12], Lemma 4.1.)

Proposition 2.2 C? is a Banach space and the set 11 = |JIL,, of all algebraic polynomials

is dense in CY .

Of course, the above definition of C? is only of theoretical interest as long as we do
not have a practical criterion to check whether a function f belongs to C% or not. But it
turns out that there exists a surprising and easy smoothness property which characterizes
the elements of C?. The present section is devoted to this characterization.

Let us first introduce some notation: In the sequel we shall denote by ¢ positive con-
stants that may have different values at different places. By ¢ # ¢(n, f,...) we will indicate
that ¢ is independent of n, f,... . If A and B are two nonnegative quantities, then A ~ B
means that there exists some constant ¢ > 0, independent of the variables under considera-
tion, such that ¢ 'A < B < cA.

In the proof of the following lemma we need the Schur type inequality

(2.1) I1P.|| < en?||Pollu, Po€Il, (v:=max2@lla; c+#c(n,P,))
([14], estimate (7.33)), which is also of own interest. (By [z] we denote the integer part of z.)

Lemma 2.3 There are constants ¢ > 0 and k € N (c # c(n, f), k # k(n, f)) such that, for
feC,andneN,

E,(fu) <c [E;;(f) + ”f”“] and

n

n

w(f) <c lEn(fu) + ”f”“} if (fu)(x;) =0 foralli.

Proof. The proof of the first assertion is left to the reader. (Use that the Hélder continuity of
wyields E,,(u) < em™* and that (2.1) implies E,, i1 (fu) < [|[(f—fo)ul|+cn?|| follul|u—un,|
for all f,, € II,, and all w,, € I1,; .)



Now, let N > 0 (for N = 0 we have nothing to prove), let us fix some £ = z; and set
a = a;. Then we may consider the power weight v(z) := u(x)/|x —&|*. The second assertion

is proved if we have shown that, with some constant k,

n

(2.2 Bh(f) < c [Eﬁ(fu/w 7 ”“] |

Indeed, we may apply this estimate with n! instead of n (I large enough) and for the term

E?/(fu/v) which now appears on the right hand side we use again the above estimate, but

(€7
)

with v instead of u and another x;. In this way it follows, with w(x) = v(x)/|z — z;

Eou(f) <c [Eg(fu/w) n %} '

Repeating this procedure we finally get the assertion. Now we prove (2.2). Set g(x) =
f(x)|z — & and define

Pu(x) = Py(z) = Po(§),  where P, €I, with [|g — Bl = E;(g) -

Then we have [P, (£)] = [P.(€) — g(§)] = Cl(P(§) — g(&)v(§)] (C = 1/v(£)) and, conse-
quently, [|P.(§) vl| < Clloll E5(g) = ¢ ER(g). Hence,

lg — ﬁnHv <cE;(g9) and ﬁn(é) =0.
Especially, Q,(z) := (z — €)' P,(z) is a polynomial of degree less than n — 1 and, by (2.1),

1Qull < en™OH (L= o Qull = en™ 0| B,

< en™ 0 g, = cnm 0 1L,
Moreover, we can write
P,v=Quru with r(z)=|z—¢&" “sign(z—¢).

Let us suppose, for a moment, that a < 1. Then r is Holder continuous with exponent

p:=1—a. Hence, E,(r) < cn™* and this implies
(2.3) Ey(r)<en™*.

Now we choose some natural number [ with [ > (max{2,v} +1)/p and some R,, € II,; with
|7 = Ryl|lw = E%(r). Then it follows

Ena(f) < Epo(f) < I(f — @nBa)ul
< [l(g = Po)oll + [|Qn(r — Ru)ul|
max{2,v}
n't n



and (2.2) is proved in case a < 1. This implies that the lemma is proved if a;; < 1 for all j.
Now we consider the case o; < 2 for all j. Then it turns out that the proof is the same with
one exception: For those a = «;, for which o € [1,2), the estimate (2.3) has to be proved
in a different way. For this aim, we choose some 1 < 1 such that « € [1,1+ 7). Then the
exponent of the weight o(z) = |z — &% lies in (0,1) and r(x)p(x) = |z — &' sign (z — &)
is Holder continuous with exponent 1 —n and vanishes in £&. Thus, we can use what we have

already proved:

. Irpll c
EP(r) <c [En(rp) + " } < .
This implies E¥(r) < ¢ Ef(r) < cn " with u = (1—n)/k. Similarly one can prove the lemma

in case maxa; < 3, then in case max «; < 4, and so on (induction).

Remark 2.4 The exact value of the constant «y in the Schur type inequality (2.1) is not
needed in the proof of Lemma 2.3. Therefore, it is worth to mention that, for bigger values

of v, (2.1) is neither surprising nor new. For example, the well-known estimate
1P| < el Pallepvizamz,yizems < en®™@ v B[, Py € oyr, n €N

(a, 6 >0, c# c(n, P,); see, e.q., [6], inequality (2.2) of Chapter 8) can be transformed onto
[Ti_1, z;] which yields (2.1) with v = max; 2q;.

Corollary 2.5 The closure clos, II of the set of all polynomials in the space C, is given by
clos, I = {f € C, : (fu)(z;) =0 for alli}.

Proof. In case u = 1 this is the well-known theorem of Weierstrafi. In case u # 1 we can use
Lemma 2.3: If (fu)(z;) = 0 for all ¢, then E".(f) tends to zero (since lim, .o E,(fu) = 0
in view of Weierstrafy’ theorem), i.e., f € clos, II. On the other hand, f € clos, I means
that fu is the uniform limit of weighted polynomials g = Pyu (P, € II). This implies

(fu)(x;) = 0 for all 4, since gg(z;) = 0 for all i. =

Now we are able to prove the main result of the present section, which asserts that the
elements f of C2 can be characterized with the help of the classical modulus of continuity
of g = fu. We recall that this modulus is defined by

w(g, h) = sup lg(x) —g(y)|, h>0.
x,ye[fl,l], |x7y\§h



Theorem 2.6 f € C, belongs to CY if and only if

! dh
(2.4) (fu)(z;) =0 for all i« and / w(fu,h) 5 <o
0
Moreover, the expression || f|[5 o := || fllu + fo w(fu,h) 9 defines an equivalent norm in CY.

Proof. The proof of the norm properties of |||y, is left to the reader. We need the

well-known equivalence

E(n) .
2. E(27) for all d E:[1
(2.5) ; . Z or all decreasing [1,00) — [0, 00)
(which follows from 7 ... =3"", Zi:;fl = Zij:}_l ...). (2.5) implies
>, E(n) 27" dh
LN E(27) —
> om0
e’} 2—j+1 1
dh dh
< E(1)+ Z/ E(hY) E(1) / E(WH) =  and
]:1 273 h 0 h
>, E(n) > odh &K r . dh /1 . dh
~ S E(Y = > Eh™)—= [ Eh")=—
> Z()/h_2/< 5= [ B

The substitution h = ¢/ shows that the last integral can be replaced by fol E(t™%) % where

6 is an arbitrary fixed positive number. So it follows

(2.6) Z % ~ E(1) —I—/O E(t_e)% for all decreasing E : [1,00) — [0, 00).
n=1

Now, let k be an arbitrary fixed natural number and let f € C,. If we set § = 1/k and

E(x) = L ](f), then it follows
n’C u ' u dt
(2.7) Z ~ EM(f) + E[ y(f) 5 forall feC,.
n=1

The right hand side does not depend on k. Consequently, the space CY does not change
(in the sense of equivalent norms) if we define its norm with E" (f) instead of E}(f).
Moreover, all elements f of C? satisfy (fu)(z;) =0 (i =1,...,N), since || f|lu.0 < oo implies
inf, EX(f) = lim, o EX(f) =0, ie., f € clos, IT (see Corollary 2.5). Together with Lemma
2.3 it follows

(2.8) f € CY if and only if fu € C°and (fu)(z;) =0 for all 4,



where the corresponding norms are equivalent. So it remains to consider the space C°,
i.e., to prove the assertion for v = 1. For this aim, let f € C and P, € II, such that
E.(f) =||f — Pu||- From Markov’s inequality it follows, for all n € N and all z,¢ € [—1, 1],

IA

|f(x) = fB)] [f(2) = Pa(@)| + [Pa(x) = Pa(t)] + [Pa(t) — f(2)]
< 2E.(f) + 1Pl lw — t] < 2E,(f) + n®||Pull |2 — 1

< 2E.(f) +20°||fll |z — 1]

N

For |z —t| <1 and n = [|z — ¢|~"/] we obtain

[ (x) = F(O)] < 2Bu_yvm(f) + 2|1 f]| |2 — t[/2.

Consequently, w(f,h) < 2Ej,-1/5(f) + 2||f||h*/? for all h € (0,1]. Together with (2.6)
(applied with E(z) = Ey(f) and 0 = 1/4) it follows

! dh ! dh
(29 Jettm G <z [ B 5 + a1 <clslo

Thus, the integral on the left hand side is finite if f belongs to C°. The counterdirection

follows from (2.6) and Jackson’s theorem:

(2.10) iE”TméciW’Tm~w(f,1)+/olw(f,h)d—;.

Obviously, (2.9) and (2.10) imply || f|lo ~ [|f]| + folw(f, h)%. .

The following corollary shows that, in many cases, the approximation space C° does

not change if we approximate with weighted polynomials instead of usual polynomials.

Corollary 2.7 Let v be a power weight with positive exponents and set

e - {f € Cui g = Yo T oo} ,

n+1

n=0

where E*(f; (v/u)Il,) = infp cn, || f — (v/u) Pyl . Then we have
C° N clos, (v/u)Il = C° N clos, IT

in the sense of equivalent norms. (Remark that, in view of Corollary 2.5, clos, (v/u)ll =
{f € C,: fu=0 in the zeros of v} and clos, Il = {f € C, : fu = 0 in the zeros of u}.)

Especially, C° = 62 if w and v have the same zeros.



Proof. Obviously, E“(f; (v/u)Il,) = E¥(fu/v), i.e., CO = {f : fu/v € C°} and 1fllno =

|| fu/v]|vo. Now the assertion follows from (2.8). =

Remark 2.8 Theorem 2.6 says that C° can be characterized with the help of C° (i.e., (2.8)
holds true) and that C° is nothing else than the well-known Dini space of all functions
f € C, those moduli of continuity are integrable w.r.t. dh/h. This is somewhat surprising,
since usually the classical modulus w(f, h) is not appropriated to characterize equivalently
the behaviour of the errors of best approximation by algebraic polynomials. For example,
the behaviour E,(f) = O(n™®) (s > 0 fized) cannot be formulated in terms of w(f,h). But
in Theorem 2.6 we do not consider such a classical order E,(f) = O(n™*): The condition
Yo En(f)/n < oo is much weaker and does not change if we replace E,(f) by E.x(f)
(k € N fized). This last fact is not given for classical behaviours, but it is used in the proof
of the theorem.

At the end of this section we want to point out that the classical modulus of continuity
is not the only modulus which is appropriated to characterize the elements of CY. For the
sake of simplicity, we restrict ourselves to the unweighted space C°. This is justified by (2.8).

It is well-known that, for p(z) = v/1 — 22, the ¢-modulus of smoothness

waﬁﬂzigﬂA%memhm,@@ﬂ@%=§]4V(2>f@+(g—@hw@)

k=0

(reN, DAL f)={z e (-1,1): r+£2p(x) € (—1,1)}) is well appropriated to characterize
the behaviour of polynomial best approximation errors. So it is not surprising that the

approximation space C° can be described in terms of w;( f,t):

1
d
(211) o~ 171+ [ i) G forall feC

([12], Theorem 2.3). This can be viewed as a corollary of Theorem 2.6: The right side of
(2.11) can be estimated by the corresponding expression with w(f,¢). This is a consequence
of Wi (f, 1) < cwy(f,t), t <to ([7], Theorem 4.1.3) and wi(f,t) < w(f,t) (since A, f(z) <
w(f,h)). The other part of the equivalence (2.11) follows from the Jackson type theorem

(212) En(f) < Cw;(fa n71> (n >N, € # c(n, f))

([7], Theorem 7.2.1) and (2.6). With the same arguments one can show that in (2.11) the
modulus w;( f,t) can be replaced by any other modulus of smoothness which satisfies a
Jackson type theorem (where even E,x(f), k € N fixed, may appear on the left hand side;
see (2.7)) and which is weaker than w(f,t).

We finish this section with a short consideration of more general weights w:

9



Remark 2.9 If u(z) = B(z)[[X, |z — =

real-valued function B € (), Cz;_1, 2], i.e.,

“i (r; € [-1,1], a; > 0) with some non-vanishing

B = BO X[-1,21) + Bl X[z1,22) + ...+ BN X[z 1] with Bl € CO and BZ 7é 0 on [—1, 1] s
then we have (in the sense of equivalent norms)

(2.13) CY = Cg/B ={feC,: fueC®and (fu)(x;) =0 for all i}.

u

If only u(x) = B(z)r(x) with some Holder continuous function r : [—1,1] — R satisfying
r(z) > [, |z — 2™ (0 < c#c(x)) and r(x;) = 0 for all i, then we have at least

(2.14) Cl=C'—{feC,: fuecC®and (fu)(x;) =0 for all i}.

("—" means continuous embedding.)

Proof. Obviously, u = Br is a continuous function with zeros in the points x; and the set
{feCy:(fu)(x;) =0for all i} is equal to {f € C, : (fu)(z;) = 0 for all i}. Only elements
of this set can belong to C? and C?, respectively, since f € CY (f € C?) implies E“(f) — 0
(E}(f) — 0) and, consequently, (fu)(z;) = 0 (see the proof of Corollary 2.5). Now, to prove
CY = CY, it remains to show ||f|luo ~ |[f]l-0 for all f € C, with (fu)(x;) = 0. But this

follows from || f||. ~ || f||» which implies E"(f) ~ Er(f). In view of (2.8), the second identity
of (2.13) holds true if we replace fu € C° by fu/B € C°. If we write

Ju fu Ju Ju

B — 5 X[-l= - Xz1,x - Xz d

B B, X[-1,21) T B, X[z1,22) T + Bx X[z 1] an
Ju Ju Ju

fu = BOE X[-1,z1) T BlE Xfzy,a2) £ oo F BNE X[z n,1]

and take into account that C° is a Banach algebra which is inversely closed in C (see [3],
Theorems 1 and 2, or use the characterization (2.4) of C° together with the estimates
w(fg.h) < lglw(f,h) + [ fllw(g,h) and wg™ k) < |lg]2w(g,h)), then it is casy to
prove that the assertions fu/B € C° and fu € C° (as well as the corresponding C°-
norms) are equivalent if (fu)(x;) = 0. (Remark that w(x;fu/B;, h) < w(fu/B;,h) and
w(x;Bifu/B,h) < w(B;fu/B,h).) To prove the embedding (2.14), we only have to remark
that Schur’s inequality (2.1) for the power weight Hf\il | —x;

“ implies the same inequality
for the weight r. Thus, the first assertion of Lemma 2.3 can be proved with r instead of a
power weight. In view of (2.7), this gives || fr]lo < ¢||fllro0 ~ ||f]luo for all f € C? = CY and
it remains to mention that, in the same way as above, ||fullo < c¢||fu/Bllo = c||fr]|o for all

fecCl
|
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3 The operator Swl on the space C!

In all what follows, u(z) = Hf\il |z — x;|* and v(z) = Hj\il |z —y;]% are power weights with

(3.1) a; >0 foralli and 0< ;<1 forallj.

(In other words: w,v € L*(—1,1) and v~! € L!'(—1,1).) Moreover, we fix a function

w : suppv — R with |w| = u/v which may change its sign in the zeros of u and v:

&%)

52 o) [T, [sign(z — 2)]" |z — x; _owlm) b € (1,2}

[T2, [sign(e — y))]7 |2 — | - w(2)

The following theorem is the main result of the present paper. It shows that Swl is a
bounded linear operator from C? into C, (shortly, Swl € £(C? C,)) if u vanishes in all
inner zeros of v and in those of the points +1 which are no zeros of v. In all other cases, C,

has to be replaced by some bigger space.

Theorem 3.1 Let u, v and w satisfy the above conditions. Then

0 o olz)
Swl € L(C, PCy), where 0(@) = 3 ST T + 2)) + (w0) (1) (1 = 2)]

Particularly, for f € CY, the Cauchy principle value integral (Swf)(x) exists in all x €
suppv. In the common zeros y of fu and v (especially, in all common zeros of u and v),

the limits lim,_,,(vSwf)(z) are zero.

The factors (uv)(£1) are introduced in v to indicate that In(1 F z) disappears if
(uv)(£1) = 0. If uwv does not vanish in 1, then v # v and one may ask for which functions
f € C0 the images Swf belong to PC, in spite of this. Moreover, it is of interest to know
whether all of the conditions (fu)(z;) = 0 which appear in

C'={feC,: fueC’and (fu)(x;) =0 for all i}

(see (2.8)) are really needed in Theorem 3.1. (If not, then C? can be replaced by a bigger

space.) The following corollary completely answers these questions.

Corollary 3.2 Let C%(w,) = {f € C(suppw,) : fw, € C°}, endowed with ||f||coqw,) =
| fwallo, and define the following subspaces of C°(w,,):

Ch(wa) ={f € C'(wd) : (fw.)(1) =0}, CL(wy) ={f € C'(wy) : (fw,)(~1) =0},
Cl(w,) = {f € COwy) : (fwu)(=1) = (fw.)(1) = 0} .

11



Moreover, denote by vT, v™, and v* those "logarithmic” modifications of v which vanish in
+1, —1, and £1, respectively, i.e.,
ot () = v(z) C(2) = v(z) 7
(z) 1+o(1)|In(1 — )] (=) 1+ o(=1)|In(1 + 2)|

o 2) = v()
14+ v(1) [In(1 — z)| + v(=1) [In(1 + z)|

Then Swl € L(C(w,),PC,x), Swl € L(C%(w,),PC,-), SwI € L(C° (w,),PCy+), and
Swl € L(C%(w,),PC,). Moreover, in all common zeros y of fw, and v (f € C°(w,)), the

limits lim,_,,(vSwf)(x) are zero.

Proof. This follows from the proof of Theorem 3.1. Alternatively, one also can conclude
it directly from Theorem 3.1: In view of (2.8), the assertions f € C°(w,), f € C%(wy),
f€C%(w,), and f € C%(w,) are equivalent to

fwn fuwn

1,0 0.1

fuwu

oLl

fw, € C°, € Cgl,o , € Cﬁm , and € CSM , respectively

(with corresponding equivalent norms). Hence, we only have to write

1 v [ fw, v fw, ot (fw
Swf:Sw—v (fwu) :SUJU (ULO) :Swv (U0’1> - Swv <UL1)

0

and to apply Theorem 3.1 with 1, v, v%!, and v*! instead of u.

Before we prove Theorem 3.1, we remark that the results also hold true for more general

weights w and u (for example, for generalized Jacobi weights):

Remark 3.3 Let w(z) = A(x)w(x)/wy(x), where A, wy,wsy : [—1,1] — R belong to C°,
M

wy; #0 a.e. on[—1,1] and |wy(z)| = H |z —y;|% = v(x) with y; € [-1,1], B; € (0,1).
j=1

Then the assertions of Corollary 3.2 remain true with wy instead of w,. (Together with
the embedding (2.14) this implies that, in case of a weight wi(x) = u(x) = B(x)r(z) as in

Remark 2.9, the assertions of Theorem 3.1 also remain true.)

Proof. Let f belong to one of the spaces C°(wy), C% (w;), C%(wq), or CY(wy). Then fuqA
belongs to the corresponding unweighted space C° CY, C°, or C%, where ||fw;Alj; <
|| fllcos) (since C° is a Banach algebra; see the proof of Remark 2.9). If we write Swf =
Swy ' (fwyA), then the assertion follows from Corollary 3.2, applied with 1 instead of w,. =
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Now we come to the proof of Theorem 3.1. First we mention that, in view of the
characterization (2.13) and the equality Swf = Sw; '(fw,), it is clear that we have to deal
with Sw; I on the unweighted space C° (or subspaces of it). For this, we use the following

decomposition of Sw;?!f:

oy swne = [ T g g [ 2 Da.

1 t—x

We will see that the first addend has better properties than the second one:

Lemma 3.4 Sw,'I — S(w;') - I € £(C" clos,IT). (clos,II is given in Corollary 2.5 and
Sw; T — S(w, ') - I denotes the operator which is defined by the first addend of (3.3).)
Proof. First we will show that, for all x € supp v,

(3.4) /_ 11 ft) = /) dt) .

t—x
For this, we may assume M > 0. Moreover, it is sufficient to deal with |z —y|™? (y € [-1,1]
and 3 € (0,1) fixed) instead of v™!(z), since

f(t) — fz)
t—=x

vTH(t)dt < cv” () (Ilfll + /1

-1

v @) ~ o — T =y

(Write the right hand side as a fraction or consider the cases x € I;, where I; are neighbor-
hoods of the points y; .) Thus, (3.4) is proved if we can show that, for z € [—1,1] \ {y},

on [ [{U=f 10-1) )

t— t—
For this aim, we first consider the case x > y. In this case, the left hand side of (3.5) can be

1
o
z+y
2

If y = —1, then I; vanishes. Otherwise we use that z —¢ > y — ¢ in the first integral:

1

oyl P dt < cla—y] (||f|| -/

-1

estimated by

y=5 ) () — )8 =t t—y|P
21| [/ W=7 +/ Uit
Y

-1 r—t —Lgy(y—l-l) r—1

f@t) = fx)

t —y) Pdt
|

=: 2| f[ [L + L] + s

Y252 (yt1)
I < / (y— 1) Pt < c(a —y)P
-1

In integral I, we have x —t > (z — y)/2 and it follows

T4y
2

12§2(1’—y)‘1/ [t =yl Pdt <c(z—y)".
y—F(y+1)

13



For t > (z +y)/2, (t — y) " can be estimated by 2°(x — y)=°. It follows
1 R

1 t—ux

dt .

Thus, (3.5) is proved in case z > y. If x < y, then one can proceed in a similar way or one
uses the substitution 7 = —¢ which makes it possible to apply what we have already proved

(with —z and —y instead of z and y). Now, (3.4) is proved. The last integral in (3.4) can

i< [felLlzd [,

1 |t_33| 1—g |h’
2
< 2/ R h < el
.

(see Theorem 2.6). So we have proved

be estimated as follows:

/1 ft) — f(=)

t—x

Swy 'l — S(w,1)- T € £(C°B,), where

3.6
(36) B, = {g : suppv — C such that ||g], = SUD supp v lg(x)v(x)| < oo} .

Now we remark that the first addend in (3.3) is a polynomial if f is a polynomial. Hence,
Sw; T — S(wy!) - I maps IT into II. Since IT is dense in C° (Proposition 2.2), it follows that

C? is mapped into the closure of II in B,, which is equal to clos, II.
|

To obtain properties of the second addend of (3.3) in case of a Jacobi weight v, we

need the following well-known result ([17], Theorem 9.9).

Proposition 3.5 Let a, 3 € (—1,1) \ {0} such that o+ 5 € {—1,0,1}. Then, the operator
(3.7) Anp = av®PT +bSv*PT  with a,b € R such that a —imb = ™
maps 1L, into 1, 4o4p for all n € N.

Now we are able to treat the last integral in (3.3) for weights v with only one zero:

Lemma 3.6 Lety € [—1,1] and 3 € (0,1) be fized and set v,(z) = |z — y|?. Moreover, let
wy(x) = [sign(z — y)* vy () (k € {1,2}). Then Sw,"' € PC,: . (vy is defined in Corollary
Proof. If y = 1, then w, = Cv, (C' = —1 or C = 1), vi = vy/[1+2°/In(1+ .)|], and we

may use Proposition 3.5 (with n = 1) to show that vy Sv;! is continuous on [0, 1]:

<1+x)’6/1wdt _ /1 (1+z)f—(1+¢)f dt +/1wdt

. t—=x 1 t—x (1—1¢)8 o, t—=
YA+a)f—(1+0)?  at (A_gsl)(x) a _
B /_1 t—ax 1—tp oy ),

14



In view of Lemma 3.4 and Proposition 3.5, the last term belongs to C,,. To prove the

continuity of v Sv; ! on [~1,0], we write

(1_I)/_1wdt:

1 t—x
Yl—2)—(1—1t) dt O ) L S R V(1 —a)tr
(3.8) /_1 )= (1_t)5+/_1 L dt+/_l—t_x dt
1 1 B (1 = )18 —x
:/1 (1itt)ﬁ+/1 (1=t t—(ml ) dt—i—(l—x)l_ﬂlni_’_x.

The right hand side, divided by 1+ 2°|In(1 + )], is continuous on [—1, 0] (Lemma 3.4 with
v = 1). Analogously one can prove the assertion in case y = —1. By the way, the sum of the
last two addends in (3.8) defines a function g(x) which is Hélder continuous with exponent
1 —fon [0,1] (see, e.g., [17], Remark 9.4). Hence, the absolute value |g(z) — g(1)| of (3.8)
can be estimated by ¢ (1 —z)!=# for z > 0. In this way one can prove the boundedness (but
not the continuity) of v Sv;! without using Proposition 3.5. Similar considerations also
lead to the boundedness of ’U;:Sw; Lin case y # +1. But we go another way, since we want
to prove that (v;tSw; D)(x) has no discontinuities, excepting a possible jump in z = y. For
this aim, let y € (—1,1) and write

/_1 W) g /_l wy () ~w, (@) dt +w (z) n "

1 t—x 1 t—x

The second addend is an element of PCvét and for the first addend we use the substitution

t—y=r(r—-y):

1 -1 -1 1-y . _
/ w, (t) — w, () g — wy_l(x) o= (sign7)*|7|7P —1 ir
-1 l—x _ 1ty T—1
T—y
1-y . _ _ 1-y _
=w'@) | [ (sign7)|7|™" —2(1+ 7)1 Y S e
! ~i -1 e T—1
T—y =y

The first integrand belongs to L'(R). Consequently, the first integral defines a continuous
function on R\ {y} for which the limits + — y+0 exist. The second integral can be computed

explicitly:
1—y _1l—y
==y 2(1 H-1_1q 1 T
/ P2+ dr = — |arctan7 + = In(1 + 72) ’
_lty T—1 2 e lty
r—y T—y
1 — )2 1 2 1-— 1
= —In (@—y) +{1+y) — arctan y_ arctan Y .
2 (z—yr+(1-y)? T -y T —y

Again we have a continuous function on R\ {y} for which the limits z — y 4 0 exist.
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We have seen that the last integral in the decomposition (3.3) of Sw, ' f (f € C°) may
contain logarithmic singularities in +1. The following lemma shows that such singularities

can be deleted by the factor f(z) if f has a zero in the corresponding point y = +1.

Lemma 3.7 For all f € C° and all x,y € [—1,1] with 0 < |z —y| <1 we have

vV 1z=yl dh

(39 o) = s@nle -yl <2 [* w1 G <elflo.

lz—yl
where ¢ # c(f, x,y).

Proof. We have [ Y p-1dp = |21n |z — y|| . Hence,

-yl
l#) — sl —al| < 20r 1 i) [* G <2 wy &

|z—y| z—y|

The second part of (3.9) follows from Theorem 2.6.

Now we have all tools which we need for the

Proof of Theorem 3.1. Let g € C? and write Swg = Sw, ' f with f := gw,. In view of
(2.13), we have f € C° ||fllo ~ ||g|luo, and f(z;) = 0 for all i. So it remains to prove the
assertions of Corollary 3.2 for the case w, = 1. This can be done with the help of (3.3): For

the first addend of this decomposition we have

Sw;lf — fSwU_1 € clos, I and ||Swv_1f — fSwv_le <c|lfllo

(Lemma 3.4). Especially, the product of this addend and v vanishes in all zeros of v (see

Corollary 2.5). We still have to prove

fSw;' € PC,+, where v* =v* v, 0", v corresponds to f € C? CY,C",Cl,
I fSw, o <cllfllo, and lim, ., (vfSw;!)(z) =0 for all zeros zq of f.

(3.10)

If w, = 1, then this follows from (1.1) and Lemma 3.7, taking into account that the second

term of (3.9) goes to zero for x — y (because of Theorem 2.6) and, consequently,

(3.11) 11121 f(@)In(1F2)=0 and ||fIn(1F .)|| <c]/fllo forall f € C° with f(£1) = 0.

Tr—

(Remark that, for example in case f(1) = 0, this limit relation (fS1)(1 —0) = 0 is in

accordance with our decomposition (3.3) in which the second term does not appear for
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z = 1.) Now we prove (3.10) in case M > 0. For this aim, set v;(z) = |z — y;|%, w;(z) =

[sign(z — y;)|™ v;(z), and write

o lsign(x — yi)|™ e — y;
wv_lzﬂ_i_.”_‘_g_M with gk(-T): ijék[ g( yj)] | yj|

wy (Y [Lialz =yl + o+ Tl o — g%
Then, the function Sw,! can be decomposed as follows:

[0 g S ([ SO gy [

k=1 1 -

From Lemma 3.4 it follows that the first integral belongs to C,, C C, for all k (since gy is
Lipschitz continuous). In view of Lemma 3.6, the second integral is an element of PCU;:.
This implies that its product with gi(x) belongs to PC,+, since gx(z) contains the factor
1 F x if £1 is a zero of v and y; # £1. Together with (3.11) it follows (3.10). It remains to
mention that, for example in case f(1) = 0, v(1) # 0, we get no problem with the value of
the integral (Sw;!f)(1): In this case the second addend in (3.3) does not appear for z = 1

and this is in accordance with the limit relation (fSw,*)(1 —0) = 0. =

We finish this section with two remarks about operators related to Swl.

Remark 3.8 Theorem 3.1 can be used to obtain mapping properties of Cauchy singular in-
tegral operators with kernels which have, in addition to the strong singularity on the diagonal
x =1, a finite number of further strong singularities on lines t = t;. For example, the oper-
ator St™'I (which may be defined by the sum of principle value integrals over [—|z /2], |x/2|]
and [—1,1]\ [—|z/2], |z /2|]) maps C% into C,. This follows from Corollary 3.2, applied to
the addends of the decomposition

1@&1( lmdt_/lmdt) _ (SH(@) = (8HO)
ot

,lt—xt_a: aqt—z x

Another operator which is closely connected with S is the Cauchy singular integral
operator Si, 5 on another interval [a,b] (—oo < a < b < 00):

t—=x

(S[a,b] f)(l’) =

a
Of course, all what we have proved until now can be transformed onto [a, b], i.e., the following
assertions hold true if w is a weight of the form (3.2), where w, and w, correspond to power
“ and v(z) = H]Ail |z — y;|% with x;,y; € R and «; > 0,
0 < f; < 1. (Remark that the restriction z;,y; € [a, ] is not necessary, since the differences

weights u(z) = [[~, |z —

between u, v, w,, w,, w and the corresponding products u*, v*, w;, w;, w* taken over 7, j with

z;,y; € |a,b] are factors which are non-zero and C* on [a, b].)
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(i) The approximation space C%[a, b] (or shortly C°[a,d] if u = 1), i.e.,
Cila, 0] == A(Cy[a, 0], I'({(n+1)7"}); {IL.})

(Cula,b] ={f € C({z € [a,] : u(z) # 0}) : fu € Cla,b]}, [fllufas = [lftllc@y) can
be defined equivalently by

Cla,b] = {f € C,[a,b] : fu € C°a,b] and (fu)(z;) = 0 for all z; € [a,b]}

={f € Cy,la,b] : fw, € C°a,b] and (fw,)(x;) =0 for all x; € [a,b]}
={f € C,la,b|: fol Wiap) (fu, h) k= dh < 0o and (fu)(z;) = 0 for all z; € [a, b]}.

In other words: Hf||cg[a,b] ~ |Ifullcojay ~ |[fwullcopy for all f € closc, gyl =

{f € Cula,b] : (fu)(z;) =0, z; € [a,b]} = {f € Cy,la,b] : (fw,)(x;) =0, z; € [a,b]}
and ||g]| o) ~ 9l + fi Wan (9. k) h~1dh.

(ii) Spywl € L(CYa,b], PCyla,b]), where PCsla,b] is defined similarly to PCy (only
[—1, 1] has to be replaced by [a, b]) and

¥(x) = vlz) .
1+ (uv)(a) | In(z — a)| + (uwv)(b) | In(b — )|

It seems to be natural that the image space PCja, b]
on [a,b]. But on the other hand, also for x & [a,b], (Sjy wf)(x) is well-defined (as a usual

Lebesgue integral). We will see that, in case (uv)(a) = (uv)(b) = 0, one can take a bigger

in assertion (ii) consists of functions

interval for the image space. For the sake of simplicity, we will restrict on subintervals
of [—1,1]. This makes it possible to use our standard notation and assumptions from the

beginning of this section and from Corollary 3.2.

Remark 3.9 Let —1 < a <b <1 and take u,v,w as in the beginning of this section.
(3.12) If (wv)(a) = (uv)(b) =0, then S ywl € L(Ca,b],PC,).

In the cases a = —1<b<1and -1 <a<b=1, (3.12) can be generalized:

If (wv)(b) = 0, then Si_1pwl € L(CL[—1,b],PC,-).

3.13
(3:13) If (wv)(a) = 0, then S wl € L(CYla,1],PC,+).

Proof. Let f € C%[a,b]. Then fw, € C%a,b] can be extended to a C’-function by setting
(fw,)(—1) =0 (if a > —1), (fw,)(1) =0 (if b < 1) and connecting (fw,)(—1) and (fw,)(a)
as well as (fw,)(b) and (fw,)(1) by lines. Obviously, this yields an extension f € C°(w,)
with [ fwallo < ¢f|f]

In other words, w(x) = sign(x — a) sign(x — b) w(z), and this means that w (or —w if b = 1)

coap]- Now we define w by w = —w on [a, b] and w = w on [—1,1]\ [a, b].
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is again a weight of the form (3.2), where only the signs have to be chosen different from
those of w. Now we write 2 Sj, ) wf = Swf — Swf and the assertions follow from Corollary
3.2, since fw, vanishesin 1ifb <1 oru(l) =0 andin —1if a > —1 or u(—1) = 0.

We mention that the above remark also leads to generalizations of Theorem 3.1 if we
transform [a, b] onto [—1, 1]. For example, the transformation [a,b] = [-1/2,1/2] — [-1,1],
[—1,1] — [—2,2] of (3.12) yields the following generalization in case (uv)(£1) = 0:

(3.14) If (uv)(—1) = (uv)(1) =0, then Swl € L(C?, PC,[-2,2]).

Of course, if u(—1) = u(1) = 0, then this is not surprising, since then f € C? can be
extended by zero to a C[—2, 2]-function, so that the result for Sj_, 4 can be applied. But
in case u(£1) # 0, (3.14) is a non-trivial corollary of Theorem 3.1.

4 Swl on spaces of piecewise C'-functions

Take the notation and assumptions of Section 3. In Remark 3.9 we have seen that the
possible sign changes in (3.2) can be used to consider Swl on piecewise CY-functions of the

form fxay (f € Cla,b]), where a and b are either endpoints of [—1,1] or zeros of v. (In

u

principle we can also consider zeros a or b of u. But, if for example u(a) = 0, then also
(fu)(a) = 0 for f € Cla,b], ie., fxapn € Co[—1,b].) This makes it possible to consider
Swl on piecewise CY-functions w.r.t. the partition

[—1,1] = [yo, i) U [yr, 92l U ... U lyar, Y1l s %o = —1, yuq1 =1
(i.e., with possible jumps in those zeros of v which are no zeros of u):

Proposition 4.1 Let PC?(yy,...,yar) be the space of all f : suppu\{y1,...,yn} — C with
M

f’( € Cg[yhyi-l-l}? 1=0,..., M, endowed with ||fHPCg(y1 ..... ) ZO Hf||cg[yi7yi+1]' Th€7’L,

YisYi+1)

(COly;, yir1] is defined before Remark 3.9.)

Proof. Write Swl = Zz’]\io Stysisa] wI and apply (3.12) (for all @ with (uv)(y;) = (wv)(yit1)

=0) and (3.13) (for i = 0 if (uv)(—1) # 0 and for ¢ = M if (uv)(1) # 0). =

As in the proof of Corollary 3.2 one can generalize (4.1) to the space

PC()(wu;yly--'ayM) = {f € C(Suppu\{y1’7yM}) : fwu € Pco(ybvyM)}
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(PC°(y1, .. .,ya) means the unweighted space of piecewise C°-functions with jumps in y;)
and its subspaces PC&(wu; Y1, yn), PCY (wusys, ... ynr), PCL(wu; 1, .., yn) (which
are defined in the same way as the corresponding spaces in Corollary 3.2). Thus, the as-
sertions of Corollary 3.2 remain true if we replace C°(w,), C%(w,), C%(w,), and CY (w,)
by the above spaces. (The second assertion remains true, since we may apply the Corollary
with wy, () [Tz, |v — vil* and v(2) [1,4 |2 — vi|* instead of w, and v if y = y; is a common
zero of fw, and v.)

Using this result, we are even able to deal with piecewise CY-functions having jumps
in arbitrary points (where we may restrict on inner points of [—1,1], since jumps in the

endpoints are not really jumps):

Proposition 4.2 Let —1 < & < ... < &, < 1 and let v(&,...,&n) be the “logarithmic”
modification of v which vanishes in all & (defined similarly to the modification v= = v(—1,1)
in Corollary 3.2). Then

Swl € L Pco<wu;§17'-"§m)7PCU(—I,gl,...,fm,1)> )

PCi(wu;fl,---,fm% Pcv(—l,ﬁl,-u,fm)) ’
PCQ(wu7£177£m)7 Pcv(él,---;gmal)) ’
PCi(wmgh-”agm)v Pcv(fl,..-,fm)> '

Proof. Let J denote the set of those indices ¢ for which v(;) # 0. We have already proved
Wu[lies |- = &I 0

i Iel(PC Wi &1y o ém), PC e (
willies| —&F (o) (@ 610 ) PO geyoon)

(since PCO(wy; &1, ..., &m) — PCY(wy [T, |- — &5y, - - -, yar)). Thus, the proposition is
proved, if we can show that v(&1,...,&n)Swf (f € PC%(wy;€1,...,&y)) is continuous in
neighborhoods N; of the points & (¢ € J), where the corresponding C(N;)-norm can be

Swl € L

Swl € L

Swl € L

Swl =8

estimated by the norm of f. (This is even more than the assertion of the proposition.)
For this aim, let ¢ € J and set h; = [(fw,)(& 4+ 0) — (fw,)(& — 0)] Jwy(&). Then, the first

addend of the decomposition
Swf = Sw (f —hi wilx[&vl]) + hi SX[&J]

belongs to PC(,UH )* (apply the first assertion of this proof with the space

jenty |- — &I
PCwy; &1, .. &1, vty - - -, Em) instead of PC®(wy; &1, ... ,&n)), where the norm in this
space can be estimated by the norm of f. This yields the corresponding assertions with
C(N;). The second addend, divided by 1+ |In|z — &, is also continuous on N;. This

follows from (Sx(e,17)(z) = In(1 —2) — In|z — &]. -
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5 The operator awl + Sbwl

In many applications equations of the type (al + SbI)f(+...) = g have to be solved,
where a, b, and ¢ are given functions on (—1,1) and f is looked for. For the numerical
solution of such equations, for example by projection methods, one may look for weighted
polynomials w P, as approximations of f, where w is an appropriated weight. (Later we will
see which weights are appropriated.) Equivalently, one can first transform the equation by
setting f = wfv and looking for f instead of f. Then the operator awl 4+ Sbwl appears
and unweighted polynomials P, are sought as approximations of f (This approach seems
to be better, since known results in the theory of approximation by polynomials are usually
formulated for unweighted polynomials.) A similar transformation leads to operators of the
type awgl + bSwol (wp: some weight) if the equation (al +bSI)f (4 ...) = g is considered.

In the following two sections we study the mapping properties of awl 4+ Sbwl and
awol + bSwyl (more precisely, o~ (awol + bSwel) with o= € b~ and wy = wp) in scales
of weighted approximation spaces of continuous functions, where we consider approximation
by unweighted polynomials (according to the above approach). The basis is the theory of

Sections 3 and 4. Hence, in all what follows we consider again some fixed weight w = w, /w,

of the form (3.2), i.e., w corresponds to power weights u(z) = Hfil |z — x;|* and v(z) =
Hj]\il |z — y;|% which satisfy (3.1).
For the coefficient functions a and b we give the following assumptions which have to

be satisfied in all what follows (without further mentioning):

N 1
(5.1) avte PCjia,..an) With {[zy,... 2n](2) = <1+Z‘ln|x—xi| ‘) ,
=1

(52)  bePC(wr,.... oy oy} \ {-11}),
where © is defined in Theorem 3.1 and PC°({x1,...,2x,v1,...,ya} \ {—1,1}) denotes the

space of all piecewise C°-functions with possible jumps in the inner zeros of uv. (The
exact definition of this space and its norm is given in Proposition 4.1.) We will see that
these assumptions ensure that all functions and all images of operators which we consider in
Sections 5 and 6 are well-defined and continuous on (=1, 1)\ {z1,...,2n,v1,...,yx}. In all
statements in which continuity in other points is claimed, this has to be understood in the
sense of limits.

In the present section we only consider the operator A := awl + Sbwl.
Proposition 5.1 A € L(C2, PCy).
Proof. The part awl of A belongs to L(C?, PCy), since fw,/l[x1,... ,zny] € C (f € C?)

vanishes in all z; (Lemma 3.7) and, consequently, the last factor on the right hand side of
’ﬁawf = (l[xlv s 7:EN] ;Jav_l) ' (vwgl) ' (fwu l['rla s 7:EN]_1)
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turns the jumps in z; of the first factor (which is piecewise continuous with possible jumps
in the zeros of uv) into zeros. Hence, awf € PCy and, obviously (by Lemma 3.7), |law f||; <
|| flluo- If we want to prove that also the second part Sbwl of A belongs to L(C2, PCy),
then, in view of (4.1), it remains to show that bI € L(C% PC?(yy,...,ya)). But this is
easy, since we can use again that jumps in z; are transformed into zeros if we multiply by
fu (f € CO): (bfu)(x;) = 0 for all i. Together with the algebra property of C°, this gives

the assertion (by similar considerations as in the proof of Remark 2.9). =

We will use this proposition to obtain mapping properties of the operator A, restricted

on the spaces of the following scale C}°, v > 0, § € R.

Definition 5.2 Let 0 < v < oo and § € R. The space C}° is defined by

C1o = {f € Cy: [fllune == sup E“(f) (n+1)"1n°(n+2) < oo} :

In other words: C7 is the approximation space A(Cy,1°({(n+1) In’(n+2)}); {IL,})
(see the considerations after Definition 2.1). Especially, C}° is a Banach space which is
compactly embedded into C? (see [2], Theorems 3.12 and 3.33). Moreover, it is well-known
(at least in case of a Jacobi weight u, but newer results also deal with power weights) that
C7° can be described in terms of smoothness properties of its elements. Of course, this fact
is of great practical importance, but in the present section we do not need it. Later (in
Section 7) we come back to this characterization.

We will see that a decomposition of A into a multiplication operator and an operator
which maps polynomials into polynomials is very useful. In case w, = 1 we will take the ana-
logue of (3.3), since in Section 3 we already made good experience with this decomposition. In
case w, Z 1 we cannot go back to this decomposition by writing Af = (aw, *+Sbw; ' I)(w,f),
since the nice property (2.13) of C% does not hold similarly for C)°. To obtain an appropri-

ated splitting of A in all cases, we introduce the monic polynomial p = p,, with the following

property:

|w/p| is a power weight with exponents in (—1,0], i.e

(5.3) L o - L ki
If jw(z)| =12, |* — z|* with p; € (ki — 1, k], then p(x) = [[,._, (z — 2;)".

Now, Af = awf + Sbwf can be written in the following form:

(A / FOR) = F@pe) o wld) g ey

t—:v p(t)
= (pAp™Y) 1] f) (2) + [(pAp~) - f] (@)

(5.4)
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The first operator A — (pAp~!) - I maps polynomials into polynomials. If we can show that
A — (pAp™) - T € L£(CY,B,) (B, is defined in (3.6)), then this implies A — (pAp™') - T €
L(CY0, C1~ 1), (Later we give the details.) First we prove A — (pAp~!) - I € L(C2, PCy),

which is (in view of Proposition 5.1) equivalent to the assertion of the following lemma.
Lemma 5.3 (pAp™')-I € L(C?, PCy).

Proof. We have (pAp™') - I = awl + (pSbwp~!) - I. The properties of

swr = (sizar’) ()

can be concluded from Proposition 4.2, applied with 1 and |p/w| instead of w, and w,:
Slw/p|l € L (PCO({xl, o N YU N {11}, PClwl -1, an s yM,l))- Thus,
Sbwp™ € PClpjw|(-1.01,.onwromyar1)- We remark that [p/w|(—1,21,...,2n5,y1,...,yum, 1)
= |p/w|(=1,21, ...,zN,1), since all y; € suppu are zeros of |p/w|. For the same reason,
lp/w|(=1,2z1, ...,xx,1) does not contain logarithmic terms w.r.t. £1 if v(+1) = 0 and
u(£1) # 0. It follows

wplzy, ..., zN]
1+ (uwo)(=1) [In(1 + .)| + (wv)(1) | In(1 — .)]

In other words: (w™'pSbwp™') - v™! € PCyqpy, .. zy)- Thus, for w'pSbwp™" we have the

- Sbwp™t € PC(x1,...,0N, Y1, Ynr) -

same continuity properties as for a, so that the assertion awl € £(CY PCj3) (see the proof

of Proposition 5.1) also holds for (pSbwp™?) - I. =

Proposition 5.1 and Lemma 5.3 imply A — (pAp™!)-I € L(C%, PC5). But we can even
prove that the images, multiplied by v (and not by v), are bounded:

(5.5) A—(pAp™") - T € L(CY,B,).

Indeed, if for example (uv)(1) # 0, then u ~ v ~ |w| ~ |p| ~ 1 on [1 — 2¢, 1] and f|[1_€ 1
(f € CY) can be extended to a C’-function fwith ﬁ[

positive and Holder continuous extension u of u)q

1o = 0 such that, with some

1-2¢,1]°

1fPllo = 1fu-p/illo < el fullo ~ || flluo

(since C? is a Banach algebra; see the proof of Remark 2.9). Thus, for z € [1 — (¢/2), 1], we

may estimate

L fp@) — fa)p(x) ,,, w(t)
‘/ e ‘“‘
(fp)(t) — (fp)(2)

2 [l w(t)
it / )~ U@l dr

1
SC/
1—¢

t—xo
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The first addend is bounded by ¢||fpllo < ¢ || flluo (see the proof of Lemma 3.4) and the
second by || f|l. (since | fw[(t) < |[f[luv™"(t) and |fp|(z) < c|ful(z) for € [1 - (¢/2),1]).
Hence, Af — (pAp™') - f is bounded in a neighborhood of 1 if (uv)(1) # 0 (analogously with
—1if (uv)(—1) # 0) and (5.5) is proved.

From (5.5) we can conclude A — (pAp~!) - I € L(C}°, C~1). For this, we only have
to apply the following lemma.

Lemma 5.4 Let k € Ny be fized and let B € L(C2,B,). If B(I1,)) C I,y for all n, then
B € L(C)°,Cx~Y) for all v > 0 and all § € R.

Proof. Let f € C}° and f, € I, such that E“(f) = ||f — fulla- The we have Bf, € Il
and, consequently,

EY(f— 1,
Bra(B) < IBG — flle< ey Bntl =)
(0] Eu

< c|lf = fallu }j—mﬂﬂzmmifl)

n—1
[ oy 1 1
+c u
(n+1)71n5(n+2)z +1 71 762 m+ 1)+ In’(m +2)
The first sum can be estimated by cIn(n+1) and the second sum by ¢ [(n + 1) In’(n + 2)] -
(use that (m + 1)°In°(m + 2) is increasing for m > mg). Thus, Bf € C, (since vBf, € C

converges uniformly to vBf) and

|Bflloqo-1~ [|Bflls+ igpl (m+1-— k)”ln‘s_l(m +2—-K)E(Bf) < c|lfllunys-
m=~k,k+1,...

(Use the substitution n = m — k in the supremum.)

Corollary 5.5 A — (pAp™1) -1 € L(C)°, CY°~Y) for ally > 0 and all § € R.

Proof. The assertion follows from (5.5) and Lemma 5.4, since (A — (pAp™') - I)(IT,) C

1L,
+degp—1 -
|

Remark 5.6 The coefficient function a does not appear in A — (pAp~') - I. One may ask
why we did not set a = 0 in the proof of A — (pAp~') -1 € L(C}°, CY°~1). The reason is
that indirectly the multiplication operator awl with a satisfying av=' € PG5y, 2y has
to be considered if we want to show (pSbwp™') - I € L(CY PC3) (see the proof of Lemma

5.8). Now one may ask why we do not allow av™"' € B3 ij1,....xn], Since all considerations

.....

are also possible if we replace weighted spaces of piecewise continuous functions by weighted
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spaces of bounded functions. The reason is that finally we want to obtain criteria which
ensure A € L(C)° CY271) (at least for some v,6), i.e. (pAp~t) -1 € L(C)?,C)°~1). But
the assumptions on b (which cannot be weakened, since we apply (4.1) in the proof of Propo-
sition 5.1) ensure (pSbwp™') - I € L(CY PCy), so that we must have awl € L(C2 PCy)
if A€ L(CY°,Cr°Y). Of course, awl € L(CY, PCy) is only possible if a is continuous on
(=L, D)\ A{x1,....,2N,y1,-..,Ym}, where the singularities of av/v in [{y;} U{£1}]\{z:} can
only be jumps. Hence, only in the points x; the assumptions on a can be slightly weakened.
For example, the existence of the one-sided limits of allxy,...,zN| in the points x; is not
necessary (see the proof of Proposition 5.1). However, to avoid difficult notation it seems to

be better not to weaken the assumptions on a (which are general enough in our opinion).

In the following main theorem of this section we state the meaning of Corollary 5.5 for
the validity of the mapping property A € £(C2?, C7°1), and we give a sufficient criterion
which implies this property.

Theorem 5.7 Let v > 0 and § € R be fized, and let p = p, be defined in (5.3). For
A =awl + Sbwl (a,b satisfying (5.1),(5.2)), the following assertions are equivalent:

(i) A€ L(C)?,Co7Y).
(i) (pAp~t) -1 € L(C?,CP°71).
A sufficient condition which ensures the validity of (i) (and (i)) is given by

(5.6) Aptecy!

lp/w|

Remark 5.8 In the proof of Lemma 5.3 we have seen that v 'Ap~! € PC w5z, on]
and that this property of Ap~' implies (pAp~t) - I € L(C}°,PCy). It seems to be natural
that the stronger mapping property (ii) can only be expected if the corresponding stronger
property (5.6) of Ap~' holds true. But, unfortunately, we are not able to prove this, i.e.,
the validity of the implication ”(ii)=(5.6)" is left as an open problem. Only in case u = 1
(i.e., v = |1/w| = |p/wl|) it is clear that (ii) implies (5.6). If we apply this with Ap~'I =
a(w/p)I + Sb(w/p)I instead of A, supposed that p/w is continuous (which ensures that w/p
is a weight of the form (3.2)), then we see:

If p/w e C, alw/p| € PC\% and b € PC° with jumps in the zeros of p/w, then

5.0) 1s satisfied if and only if Ap™ 1 € 1, Gl ).
fied if and only if Ap~'I € £(CT°,C15!

Ip/w]

This means that, under the above conditions, the implication ”(ii)=(5.6)" is equivalent to
the implication A € L(CY®, C191) = Ap~'I € L(C]?, CIZ?;R) 7. Now we get some doubts
with respect to the validity of 7(ii)=(5.6)" in case w #Z 1. (Instead of this, we think that
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L in which jumps in the zeros of u are

(i1) is equivalent to some smoothness property of Ap~
allowed.) However, it is remarkable that the weights w and v do not appear on the right hand
side of (5.6). This means that we have to check (5.6) if we want to find weights w which are
well-appropriated to transform the unweighted operator al + Sbl into a weighted operator
A = awl + Sbwl which has good properties in polynomial approximation spaces, independent

of the possible choices for the weights of these spaces.

Proof of Theorem 5.7. The equivalence of (i) and (ii) is already proved (Corollary 5.5) and
it remains to show that (5.6) implies (ii). For this, let f € C}° and take best approximations
fn €11, and g, € II,, of f and Ap~!, respectively, i.e.,

Ex(f) =If = falla and  EP(Ap~) = [[Ap™" = galljp/u) -
Then we obtain, for all n € N,
E;)nfleregp(prp_l) < H(prp_l - fnpgn)vH
1(f = fa)u - (p/w) Ap~H | + || fawe - (p/w)(Ap™" — gu)|

. I Nl
< ell(f = Faull + Ul w)(Ap™ = gn)ll < oo

IN

For n = 0 we have f,, = g, = 0 and the above estimate yields || fpAp~ ||, < ¢||f|l. - Now it is
easy to show that EY (fpAp™) < ¢ ||fllur.s (m+1)"7"In*°(m +2) for all m € NU{0} (since
Ep < Eop 14 degp for m € {2n — 1+ degp, 2n + degp}), i.e. (pAp~t) -1 € L(C)?°, CZ’J‘I)..

We finish this section with the consideration of some special cases in which (5.6) is
satisfied:

Proposition 5.9 Let v > 0 and 6 € R be fized. In all of the following cases, the operator
A is bounded from C}?° into C)° 1,

(i) A = Ayg = av®PI + Sbv*PI with constants a,b,«, 3 as in Proposition 3.5. (For

generalizations of this case we refer to [17], Section 9.5 and Theorem 9.9.)

(ii) b arbitrary (i.e., satisfying only (5.2)) and a = —w ™ 'pSbwp™'. (Remember that this a
satisfies (5.1); see the end of the proof of Lemma 5.3.)

(111) a and b such that

v,0—1
|p/wl

o "bwp !t € wa for some r >~ (orr=~1if§ <0), where p(zx):=+1— a2

awp~' € C and

FEspecially, a and b have to vanish in the zeros and jumps of p/w and b also in +1.
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. _ o—1 _ )
(iv) awp™ € Cyy/w and bwp "X-11] € Clw[—2,2].

T,S

Proof. In case (i) we have p = —sign(a)v™®, where r and s are 1 or 0 in dependence of
the sign 1 or —1 of « and f3, respectively. Hence, w/p = —sign(a) vP with @ = o — 7 and
5 =0B—s Ayz= —sign(«) (avaﬁl + bSvaﬁI) is again an operator as in Proposition 3.5,
where & + 3 = —1. Thus, Ap~! = A5l =0, ie, (5.6) is satisfied (and, even more, we have
a special case of situation (ii)).

The assumption in (ii) is only a reformulation of Ap~* = 0 (i.e., A is equal to the
operator A — (pAp~!) - I from Corollary 5.5).

To prove the assertion in case (iii), we first apply Corollary 5.5 in the non-weighted

case with |p/w| instead of w, and w,:

I+. ¥, v,0—1
I+ S € LT, Ol

(5.7) In

If we take into account that " In(1+ .)/(1— .) belongs to C~' € C7*~! ([7], Section 8.5),
then it is easy to prove that
1+ . Dbwp! 1+ V61

(5.8) bwp~ ' In = - " lan: € Clrul -

Moreover, the function ¢" belongs to C7° C C7° ([7], Section 8.5) and this implies bwp~! =
¢ - Tbwp~! € C5 . Hence, application of (5.7) to the function bwp yields, together
with (5.8), Sbwp™! € Crp’?;‘l. By assumption, the other part of Ap~! also belongs to Cfgf;ﬁ,
i.e., (5.6) is satisfied.
In case (iv) we only have to mention that, after a linear transformation [—1,1] —
[—2,2], (5.7) holds similarly for the singular integral operator Si_s 9 on [—2,2]. Thus,
2+ . 1+ S[_272] € E(C’y’(S

92 _ lp/wl

(5.9) In [~2,2], C1:9-'[~2,2])

lp/wl

and we get Sbwp™! = S_ogbwp ™t xj_11) € CE;;S;E (since In(2+ .)/(2 - .) € C®[-1,1]). .

Of course, the conditions in (iii) and (iv) are very restrictive and further investigations
are necessary to find weaker assumptions which imply (pAp~') -1 € L£(C}° C¥°~1). In
view of the length of this paper we give up further considerations in this direction. We only
mention that probably one cannot give much weaker assumptions on a and b if one wants
to prove the stronger assertion (5.6) without supposing any further connection between
the parts awp™ and Sbwp™' of Ap~' (as in (ii)). In other words: If the transformation
al +Sbl — awl+ Sbwl shall lead to an operator with good properties in pairs of polynomial

approximation spaces, where the upper bound for the parameter v of these spaces shall be

27



large, independent of the possible choices for the weights of these spaces, then one should
try to determine wp~! in such a way that the "bad parts” of awp~! and Sbwp~! disappear in

1= Ap~'. Now the question is, under which conditions on a and b is

the sum awp~! + Sbwp~
it possible to find such a weight wp™' (for which |wp™!| is an integrable power weight with
negative exponents)? In literature (see e.g., [17], Chapter 9) one often considers operators
with Holder continuous coefficients, for which it is possible to find an appropriated weight w
such that the weighted operator A maps polynomials into polynomials (see the next section
for more details). For such operators one can show that Ap~! € II, i.e. (5.6) holds for all
~v and 6. Maybe it is possible to generalize this known construction of the weight w to the
case of operators with piecewise Holder continuous coefficients. We leave this as an open

question.

6 The operator p !(awol + bSwol)

Take the notation and assumptions from the beginning of the preceding section and choose

some function ¢ : (=1,1)\ {z1,..., 2N, ¥1,---,ym} — C such that
P:=bo'cll and pv'eL!(-1,1).
Now we consider the operator
B = awl + PSwol = o *(awol + bSwol).
For example, we may take o = b, but in this case we get the operator
A= awl + Sbwl

which we have already studied. The operator B is of interest if one wants to study integral
equations in which an operator of the type awql +bSwyl, wy € L', appears. In this case one
can look for some p such that b/p € II and w = wy/p is a weight of the form (3.2). Then,
0 Y awoI + bSwyl) is our operator B. We remark that the operators

(6.1) acl + 77 1Sbol and acl + PSool = c (aogl + W_leO'OI)

with Holder continuous coefficients a, b : [—1, 1] — R (satisfying a®*+b* > 0) and appropriated
weight o = o(a,b) which are usually considered in literature (see [17], Chapter 9) fit in our
theory: For these operators we have o = v®%h with certain o, 3 € (—1,1) and some Holder
continuous function h # 0. Moreover, it is usually supposed that ¢~ 'v~1* =18 is a generalized
Jacobi weight. Particularly, c~'v~lel=I8l ¢ L', Thus, the operators in (6.1) correspond to A
and B if we take w = v*?, @ = ah, b= bh/m and p = c1h.
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If we look at the difference

(6.2) (a5 -8 - [ Pt) — Plo)

-1 t—x

o(t)w(t) f(t)dt,
which belongs to Il4egp for all f € C,, then it becomes clear that, for all v > 0 and J € R,
(6.3) B e £(CI°,C7Y if and only if A € £(C)°, C1OY).

(Remark that A — B € £L(C,, (Ilgegp, || -||)) and, hence, A — B € L(C,, C}?) for all v,4d.)
(6.3) means that we can use Theorem 5.7 to check whether B belongs to £(C}?, C7°~1).

Remark 6.1 If we do not suppose that P is a polynomial, but a continuous and suffi-
ciently smooth function, then usually (6.3) remains true up to a certain upper bound for
the value of v. For example, if o € L>®(—1,1), then, for fivzed f € C,, the right hand
side of (6.2) can be viewed as an operator Ay applied to P, and the proof of Lemma 3.4
shows that Ay € L(C°,B,) with ||As|| < c||f|lu. But Ay maps 11, into I1,, and it follows
As e L(CP%, Cro%Y) again with || Af|| < ¢||flla. This means that A—B € L(C,, CJo%~1)
if o e L°(—1,1) and P € CI™ i.e., in this case (6.3) is true for 0 < v < v and, if § < do,
also for v = .

7 Remarks and Generalizations

In the preceding sections we have studied the mapping properties of Cauchy singular integral
operators A = awl + Sbwl and B = o !(awol + bSwol), o~' € b~'1I, with an arbitrary
fixed weight w of the form

L

w(z) = H [sign(z — 2;)]"(x — )", 1<z <...<z, <1, g €{1,2}, p>-1

i=1
in pairs of approximation spaces based on C, and C,, respectively, where the power weights
u = |w,| € L®(—1,1) and v = |w,| € L®(—=1,1)N{v : v~ € L'(—1,1)} correspond to a
representation w = w, /w, of the type (3.2). (We remark that w has a jump in z; if g; =0
and n; = 1. In this case we have a(z;) = ((z;) in all admissible representations (3.2) of
w.) As singularities of the coefficient functions a and b we have admitted jumps (or even
logarithmic singularities for a). Unfortunately, the corresponding assumptions (5.1) and
(5.2) depend on u and v. In other words: In dependence on the singularities of a and b,
there are restrictions on the possible choices of the weights w, and w, in (3.2). One may
ask for mapping properties in pairs of spaces those weights do not satisfy these restrictions.
Thus, let us consider a representation (3.2) of w which corresponds to arbitrary fixed power
weights u(z) = Hf\il |lx — ;]* and v(x) = H]]Vil |z — y;|% satisfying (3.1), and let

(7.1) a € PCg, ¢n, bEPC (&, .., &r), where —1=¢ <& <. <ép=1

.....
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(without supposing any connection between the singularities & and the zeros of v and v).
Then it is clear that awl € L(C% PCye, . ¢n))s I € L(CL,PCwy;&y,...,ER)) (since

.....

-----

(7.2) A€ [’(C?u PCUZ[& ----- ERD .

Of course (since the continuity in z; of the part w,f of awf = (a/w,)w,f has to be
understood in the sense of the limit lim, ., (w,f)(z) = 0), we must mention that, from
now on, the images of operators have to be viewed as continuous functions on (—1,1) \
{z1,.. ., xny1, - UM, &1, - -+, ER Y (iie., only on this set they are well-defined) and if conti-
nuity in other points is stated, then this has to be understood in the sense of limits.

For the part awl of A we have more than (7.2):

aw

l[l’l,...,l’N]

(7.3)

.....

because of Lemma 3.7, even if only a € PCyy, ¢ (@1,..., 28, ¥1,-..,yn) (Which means,
by definition, al[y,...,&r] € PC(&, ..., &R, T1, - TN, Y1, -« -, Ynr)). If we apply this with
wplzy, ..., zn] Sbwp™! instead of a (p from (5.3)), taking into account that, by Proposi-
tion 4.2 (applied with 1 and |p/w| instead of w,, and w,; see also the proof of Lemma 5.3),

wpl[zy, ..., 2n] Sbwp™t € PCe,,. (@1, 2N, Y1, YM) S

77777

(7.4) A—(pAp™') - T € L(Cy, PCypey,.g5]) -

-----

As in Corollary 5.5 this implies

(7.5) A—(pAp™)-TeL(Cy’,Clt ) forall y>0 and € R.

Now we want to come back to the weight v in the image space. For this we remark that, for
some sufficiently small constant C' > 0 and for —1 =t <ty < ... <tg=1,01,...,06 >0
defined by

B it tj=uy

Ty == P ge ey y 5j: .
{t ts} =1{& Er}U{w ym} {0 it ()

the following estimate of the norm || P,v||, P, € II,, (n € N), holds true:

1Pl ~ max Pultion = )7 (= )7 g a0
< Cj:{nafé_lHPn(th — )5 (= )%l oty On-2;41—Cn-2
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(see [7], Theorem 8.4.8). On [t; +Cn~% t;.1 — Cn~?] we have l[&, ..., &) > ¢/In(n+1) and
v~ (tjgr — )% (. —t;)%. Hence,

1P| < cl|Puvlly, ... &Rl In(n+1) for P, €Il, and n € N.

(¢ # ¢(n, P,)). This implies that Cgl[& 77777 ¢z 18 continuously imbedded into C, (see [12], The-
orem 4.2 and Remark 4.3, or [2], Theorem 4.9). Now we apply Lemma 5.4 with v [[¢1, ..., &R]
instead of u and with the embedding operator B € L(C? Uer 5R],Cv). It follows that
CZ’Z‘?& ..... eq] 18 continuously imbedded into C~* for all v > 0 and § € R. Together with
(7.5) we obtain A— (pAp~t)-I € L(C)?,C7°~2) and similarly to Theorem 5.7 and assertion

(6.3) we get the following result:

Theorem 7.1 Let v > 0 and 0 € R be fized, and let p = p,, be defined in (5.3). For A =
awl+Sbwl and B = o' (awol +bSwol) with a,b satisfying (7.1) and o = b/P € vL'(—1,1)

(P € 11), the following assertions are equivalent:
(i) A e L(C}°, Cro72).
(ii) B € L(C)°, C°~2),
(iii) (pAp™) - I € £(CL?,CL52).
A sufficient condition which ensures the validity of (ii1) (and (i),(ii)) is given by

_ -
Ap~te C|ﬂ;/w|2-

Now we consider the question whether Theorems 5.7 and 7.1 can be generalized to
other scales of approximation spaces based on C, and C,, respectively. In other words:
We are looking for generalizations of Lemma 5.4 and of the implication ” Ap~! € C\pr;swl =
(pAp~1) - I € L(C}°, C%)". Generalizations of Lemma 5.4 can be obtained with the help
of the reiteration theorem for approximation spaces ([10], Theorem 6.2 and Corollaries 6.3,
6.4). Another way is described in [11] (even in a general framework in which C,, B,, and
I1,, can be replaced by arbitrary Banach spaces X, Y, and nested subspaces X,, C X NY):

Lemma 7.2 ([11], Theorem 2.3) Let B = {b,}2, be a sequence of positive numbers such

that, for some C,e > 0 and some nyg € N,

bus1 <Cb, (n€N) and {b,'In'*(n+2)}

[e.e] . .
s decreasing
n=ng

Moreover, let CB := A(C,,1°(B);{I1,}) (see the considerations after Definition 2.1) and
set B/log := {b,/In(n +2)}. The space C5 is continuously embedded into C° and

B e L£(C°,B,), B(Il,) C U,y (k: constant) imply B e L(CB,CB/1s) .
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(The last assertion follows from b, > cb,x and [11], estimate (2.2), which asserts that
B (Bf) <c| flles b, In(n + 2) for all n € N and all f € C§.)

Lemma 7.2 shows that Corollary 5.5 (which corresponds to b, = (n + 1)7In’(n + 2))
can be generalized to the pair (C5, cy/ log) if BB satisfies the above conditions. Thus, for such
B, the first part of Theorem 5.7 (and also (6.3)) remains true with £(C5, cy/ 8 instead of
L(C0, Cx9~1). If in addition by, < cb,, then, by a slight modification of the proof, also the

last assertion of Theorem 5.7 can be generalized. Let us summarize:

Theorem 7.3 Let B satisfy the assumptions of Lemma 7.2 and suppose that by, < cb,
for alln € N (c # ¢(n)). Moreover, let a,b satisfy the conditions (5.1),(5.2), and let
p = py be defined in (5.3). Then, for A = awl + Sbwl and B = o ' (awol + bSwol) with
0=0/P € vLY(—1,1) (P €11), the following assertions are equivalent:

(i) A€ L(CB C5/"e).
(ii) B € £(CB,C5/"®).
(iii) (pAp~') - I € L(CB,CE/8),
A sufficient condition which ensures the validity of (iii) (and (i),(ii)) is given by

_ B/ lo
Apte clp//wf.

Now we want to compare our results with the known result from [9], Section 9.10, in
which it is shown that, for any o € (0, 1) and any power weight p(x) = Hf;l |z — ;|7 with

—l=ti <ty <...<tg=1and a < <a+1 for all 7, the following result is true:

If a,b € PC(ty,...,tg) with a b

(tistiy1)’

(7.6) al +bS € L(HF(p), H (1)) and al + SbI € L(H§(n), Hy(1)), where
HE (1) = {f € Clsuppp) : fr € H*([=1,1]) and (fp)(t;) =0 for all i }.

) € H([t;,tiy1]), then

(tistiv

Here we denote by H*(I) the space of all functions on I which are Holder continuous with
exponent «. Obviously, al,bl € L(H{(n), Hy(p)) and so it is sufficient to deal with S

instead of al + bS and al + Sbl. First we will consider the weaker assertion

(77)  SeL(Hj(n).H(n)  (H(u) = {f € Clsuppp) : fu € H'([~1,1])}).

Since every f € Hf(u) can be written as f = >, f; with f; € H§(Jx—¢;"*) and f; = 0 outside
some closed neighborhood N(¢;) of ¢; which contains no other ¢;, this mapping property is

proved if one can show that, for p, () := |z —t|7, t =t; and v = ; fixed,
(7.8) S € L(H (1), B (1r)),  HG (1) = {f € H (1) : f = 0 outside N(t)}.
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With our theory it is not possible to obtain exactly this result, since we consider other pairs

of spaces. However, we are able to conclude ”almost” the same result: First we remark that,

obviously, Hf(p) is continuously embedded into LgS_, = {f : fprya € L=(=1,1)}
Together with j; S — Syl € L’(Lf}'ﬁ,_a,CZ’w__la) (see Remark 6.1; CZ’W__IQ = C»~1 with

U = Jiy—o) We obtain .S — Spl € LHS (1), C). After transformation onto

t,y—«a

[—2,2], taking into account that f € Iflg(um) implies frux-11] € H[=2,2], we get

f1,S — ST € LOHG (111), Lo a[-2,2]) .

t,y—«o

In [14], (7.27) and proof of (7.22), it is shown, for ¢ # £1, || P, fey—all ~ || Po(ttty—a+n*"7)|,
P, € 11,,, n € N. After transformation onto [—2, 2] it follows (since t # +2)

| Prllci-2,2 < en”™ || Py ptry—allcj-2,7  for P, € 1, and n € N.

(¢ # c(n, P,)). This implies that C7:_',[—2,2] is continuously imbedded into C"*[-2,2] C

He = :=H**([-1,1]) (2], Theorem 4.9 and [10], Example 6.5). Consequently,
peS — SpenT € L(HS (), HO ) .
From (5.9), applied with 1 instead of |p/w|, it follows Sy, I € E(ﬁé‘“(um), H*¢). Thus,
f1,S € L(HS (j11), HF) , ie, S € LIHS (1), H (11,))

which is weaker than (7.8). So we only get S € L(H§ (1), H*¢(u)) instead of (7.7). We can
also prove that, for f € HS(u), uSf vanishes in all ¢;: One can show that f € H§(u) implies
f € Hi(f), where fi(z) = [, |z — t;["** and 0 < § < a such that 3 —a + 6 < 1 for
all 4. (This is only needed if max~; > 1. Otherwise we can take 6 = a.) From (5.9), now
applied with f instead of [p/w|, it follows, with some n > 0, Sf = S|_2 9 fX[-11] € CZ’_l,
since, by Lemma 2.3, HJ(f) (considered as space of functions on [—2,2]: f — fx1.1)
is continuously embedded into CZ’O[—Q,Q] (n = 0/k). This implies (uSf)(t;) = 0 and,
consequently, (uSf)(t;) = 0 for all 7. (Alternatively, we can take ¢ < « and then this follows
from S € L(HS (1), H*~=(11)).) So we can conclude the following result, which is a little bit
weaker than (7.6):

al +bS, al + SbI € L(HS (1), Hy (1)) .

The reason for this loss of ¢ is that, in our theory, we consider £(C}? C7%71) instead
of L(C}?,C}°). Thus, a loss of one power of Inn for the convergence order of the best
approximation errors of the image functions is admitted. We conjecture that in reality we
have no such loss. In the following special case this is already known, but the proof is so

hard that, in the framework of this paper, we give up further considerations in this direction.
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Remark 7.4 ([13], Proof of Theorem 3.1) Let 5 € (0,1) and let A_g s be the operator
from Proposition 3.5. Then, foru = "% andv =v%°, A 55 € L(C}°,C)°) (v >0, € R).

A similar result is true for Ag _g.
We mention that in [13] it is proved more (end of the proof of [13], Theorem 3.1):
B3 (A ppf) <Y By, (f) for feCland neN (c#cn,f)).
i=0

We finish this paper with two remarks about the characterization of C}° (v >0, 6 € R, u
a power weight with positive exponents) in terms of smoothness properties of its elements.

For this aim, let » € N and define the modulus of smoothness
w (f,t)y = sup |[ul]

LB = s g

+ inf ||(f—P)U||C[—1,—1+4r2t2] + inf 1(f = P)ullcp-s2ez)

+ Z lnf || f P)UHC[JUZ 4rt,x;+4rt]

11)

[—14+4r2R21—-4r2h2]\ U  (z,—4rh, xi+4rh))
z;€(—1,1)

([5]). Here we denote by A} f the r-th central difference of f (i.e., (A} f)(x) = (Anf)(z) :=
fla+2)—fla=2), AL f == Ap(A)71f) for r > 1), and A} f means that, in (A f)(x), h has to
be replaced by hep(z), where o(z) := /1 — 22. For h > (2r) ' we set [—1+4r2h?, 1—4r?h?] =
0 and | . |lc@ = 0.

Remark 7.5 ([5], Theorem 3.1) f € C, belongs to C)° if and only if, for some arbitrary
fized r >y, wi(f,t)u < ct? In"°(14t7Y) for all t € (0,1]. Moreover, the expression

wo(f3t)u
| flle + sup M In’(1+t71)
te(0,1] t

defines an equivalent norm in CJ°.

One can also use properties of derivatives of f to estimate the behaviour of E¥(f):

Remark 7.6 ([5], Corollary 3.1) Let o; & {1,...,7} for all x; € (—1,1) and let [ €
CrV((=1,1) \ {z1,...,ax}) N CO*D((=1,1)), where s := min {r, ming, 1 1))} and

CEV((-1,1)) = C((-L, 1)\ {z1,...,an}). If fV € ACie((—1,1) \ {z1,...,2n}) and,
in case s <r, fU77D € ACp((—1,1)), then

Ex(f) < en™ jnf (|[(f = P)ul| + I(f® = PO)oull)  for all n € N

(c # c(n, f)). Here we denote by AC\,.(M) the set of all functions which are absolutely

continuous on every compact interval I C M.
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