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Abstract. The topic of the paper is the study of modified finite sections
of Toeplitz operators and their singular values. We prove the splitting property for
the singular values and consider two important consequences. We show that the
kernel dimension of a Fredholm Toeplitz operator with piecewise continuous matrix-
valued generating function can be extracted from the singular values behavior of the
modified sections. Secondly, we generalize the results on asymptotic Moore-Penrose
invertibility of Heinig and Hellinger to piecewise continuous generating functions.
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1. Introduction. Let PC denote the C*-algebra of all piecewise continuous
functions defined on the unit circle T := {z € C : |2|] = 1}, and let PCnxn be the
C*-algebra of all N x N matrices with entries from PC. We shall mainly deal with
the question of how the singular values of matrices A, approximating the Toeplitz
operator T'(a) acting on the space I% are distributed, where @ € PCnxn and the
operator T'(a) is supposed to be Fredholm. Of course one expects that the answer
depends strongly on the kind of the matrices A,,. There are many possible approx-
imations A,; here we restrict ourselves to the so-called modified finite sections. If
the approximations are the familiar finite sections T},(a), (which are square matrices)
the complete answer was obtained by S. Roch and the author in [R/S 2]. It was
shown that the set A, of the singular values of the finite sections T}, (a) of a Fredholm
Toeplitz operator is subject to the splitting property: We say that the singular values
(computed via A% A,) of a sequence (Ay) of k(n) x [(n) matrices A, have the splitting
property if there exist a sequence ¢, —* 0(c, 2> 0) and a number d > 0 such that

An C[0,cn]U[d,00) forall n,

and the singular values of A, are said to meet the k-splitting property if, in addition,
for all sufficiently large n exactly k singular values of A, lie in [0, ¢p].

The mentioned result reads now as follows: If T'(a) is Fredholm, a € PCnxn, then
the sequence (T,,(a)) has the k-splitting property with

k = dim ker T'(a) + dim ker T'(a),
where a(t) := a(1/t).

Thus, if we would know the number dim ker T'(é), then we would know the kernel
dimension of T(a) provided that we would be able to compute the set An N [0, cy).
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As a rule, we know the number dim ker T'(d) only in very special cases. So the
question arises whether the operator can be approximated by matrices Ay, such that
the splitting property still holds with some operator A instead of T(a) and such that
the kernel dimension of 4 is available. In other words, we try to design approximations
An to T(a) having prescribed properties. We shall show that the so-called modified
finite sections are good candidates for our aim. Besides we show that our approach
is intimely related to the approximation of the Moore-Penrose inverse of the Toeplitz
operator T'(a). In the course of the paper we do not only recover the results of
Heinig/Hellinger [H/H]) for Toeplitz operators T'(a) with a from the Wiener class
Wy xn, but extend them to operators T(a) with a € PCyxn. Notice that the
methods of [H/H] do not work in this more general situation. Our main tool is a C*-
algebra approach mainly developed by S. Roch and the author in the last years (see for
instance the book [H/R/S]). Let us mention two results proved in the Sections 3 and
4. Define block matrices Ty 0,r(a) and Ty r0(a) (whose entries are N x N-matrices)
by

Tnor(a) = (ai—j), 0€i<n,0<j<n~r,

Torola) =(ai—j), 0<i<n-r,0<j<n,

respectively, where a; (k € Z) are the Fourier coefficients of a € PCnyxn. The
following theorems are consequences of the main results obtained in Sections 3 and 4,

respectively.

Theorem 1.1. Let the Toeplitz operator T'(a) : 1%, — I3, be Fredholm, a € PCnxn.
Then the singular values of the sequence (T}, o,r(a)) enjoy the k-splitting property,
where k dependes on r. Moreover,

k = dimkerT'(a)
for r large enough.
Examples will be presented in an appendix.
In what folows, let AT denote the Moore-Penrose inverse of an operator A.
Theorem 1.2. Let T'(a) be Fredholm, a € PCnxn-

(a) ¥ T(a) is left invertible, then there is an ro such that the Moore-Penrose
inverses (T,t o,r(a)) converge strongly to T*(a) for all r > 1o as n goes to
infinity.

(b) If T'(a) is right invertible, then there is an r¢ such that the Moore-Penrose
inverses (T} o(a)) converge strongly to T*(a) for all r > ry as n goes to
infinity.

2. Toeplitz operators and the algebra generated by familiar finite sec-
tions. We shall see in Sectoin 3 that the sequences (Th, 0,r(a)) and (Ty r0(a)) can be
identifyed with some sequences of square matrices which belong to the algebra A gen-
erated by all sequences of familiar finite sections of Toeplitz operators with generating
functions from PCpnx . This observation already shows that it would certainly be of
importance to have as much knowledge on A as possible. Fortunately, the algebra A
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was intensively studied in the past. Here we merely recall definitions and some non-
trivial facts needed in what follows. Let [% denote the Hilbert space of all sequences
(z:)icz+, L+ := {k € Z : k > 0}, where z; € C" and

I (@) ll= (Z Il 2. ||2) <o

1=0
(|| z; || refers to the familiar euclidean norm in CcN)

Given an N x N matrix-valued function a € L$, y (where L means the essentially
bounded functions defined on T) denote the sequence of its Fourier coefficients by
(an)nez. The Toeplitz operator T'(a) : 13, — 1% is defined by (z;) > (yi), where

o0
Y= Za;_jx,- (ie 7).
Jj=0
The Toeplitz operator T'(a) with generating function a € L*°(T)nxn is bounded, that
is T(a) € £(i%) and moreover || T'(a) ||=|| a |l (see for instance [B/S 2]). Here, for

a Hilbert space H, we denote by £(#) the C*-algebra of all bounded linear operators
acting on M. Further, let X(#) stand for the closed two-sided ideal of all compact

operators. Now introduce operators P, and Wy on 1% by

Po(20,Z1,. .-y Zny---)

(Z0y--++Zn,0,...),
(2.1) Walzo s gme.) =

= zn,xn_l,...,Zo,O,...).
Obviously, P, W, € L(I%) and
P! =P, W:=P,.

In what follows we will identify operators acting on im Py or on 2 (N = 1) with their
matrix representation with respect to the standard basis of im P, or 2, respectively.
We proceed analogously in the case N > 1. Forn € Z* the (familiar) finite section
Tw(a) of T'(a) is defined by

Tn(a) := P,T(a)Py -
The finite section T, (a) is related to the operator Wn by
WnTn(a)Wn = Tn(d),
where & is defined by a(t) := a(1/t).
The matrix representation of Tp(a) is given by the finite block Toeplitz matrix
(ai—;)i=0

whereas the underlying matrix representation of T'(a) is given by the infinite Toeplitz
matrix

(ai—J)zj:O .
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Let 7 denote the collection of all operator sequences (Ap)nez+ with A, € L(im P,)
and

(22) ll (4n) Il:= sUp | An [|< co.

With the operations (4,) + (B,) := (4, + By), (An)(Br) := (AnBy), (4n)* = (A%)
and the norm (2.2), F actually becomes a C*-algebra. First of all, recall that a
sequence (A,) € F is called norm stable if the operators A, : im P, — im P, are
invertible for n large enough (say for n > n9) and

sup || A7 [I< o0
n>ng

If, in addition, 4,, converges strongly to some invertible operator A, then the sequence
(A,:l)kzno converges strongly to A~!. We shall write s-lim An = A if the sequence
Apn tends strongly to A. Let G denote the collection of all sequences (A,) € F with
l4n|| = 0. Clearly, G actually forms a closed two-sided ideal in .

Note the following

Proposition 2.1. (see [B/S 2] or [B/S 3]) (4,) € F is norm stable if and only if
the coset (A,) + G is invertible in the quotient algebra F/G.

Now consider the smallest C*-subalgebra 4 C F containing all sequences (Ty,(a))
with @ € PCxn. The algebra A has a lot of remarkable properties which will be of
decisive importance in studying the problems formulated in the introduction.

Proposition 2.2. ([B/S 2], [B/S 3]) Let K1,k € K(%),(Cyn) € G. Then
(2.3) (Bn) = (PnKan + WnK2Wn -+ Cn) € -A-
Moreover, all sequences of the form (2.3) form a closed two-sided ideal in A.

Proposition 2.3. ([B/S 2}, [B/S 3]) For each sequence (A,) € A there exist the
strong limits

Wi (An) = s-—limA4,,
W, (An) =

Moreover, Wy : A — L(1%) and W, : A — L(IZ) are *-homomorphisms that act as
follows:

Wi (Tn(a)) = T(a), W(Ta(a)) =T(@a),

Wi (By) = K, W, (Bn) = K3,
where (B,,) is the sequence (2.3).

Now we formulate a theorem, which is completely proved in (B/S 1] and [S 1]. This
theorem was, however, not explicitly stated there, but it is a direct consequence of
Theorems 1 and 2 in [B/S 1]. The first explicit formulation was published in [S 2].

Theorem 2.1. Let (4,) € A be arbitrarily given.
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(a) The sequence (A,) is norm stable if and only if the operators Wi(A,) and
Wy (Ay) are invertible.

(b) The operator Wi(A,) is a Fredholm operator, if and only if the operator
Wy (Ay) is a Fredholm operator.

We call a sequence (A,) € A a Fredholm sequence if W; (A,) is a Fredholm operator.

This theorem is a faregoing extension of classic results (see for instance [G/F]). It is
easy to see, that the mapping

smb : (An) » Wi(4n), W2(4r))

is a *-homomorphism of the C*-algebra A into the C*-algebra L3 := L(I}) & L(I%),
the direct sum of two copies of £(I%/), with norm || (B,C) ||= max{|| B ||,]| C |I}.
The image of A under this homomorphism is denoted by smb .A. The element smb
(Ay,) is called the stability symbol of (4,).

Theorem 2.2. [H/R/S], [S 2]) The algebras A/G and smb A are isometrically
isomorphic. The isomorphism is given by

(An) + G — smb (4,).

This theorem shows that A/G can be represented in a very nice way. Moreover, it says
that all properties of a sequence (A,) € A which do not depend on the first members
of (A,), should be stored in the operators Wi(4,) and Wz(A4,). In other words
the asymptotic properties of (4,) should be reflected in the mentioned operators.
The following theorem makes this precise for the asymptotic behavior of the singular
values.

Theorem 2.3. (see [H/R/S] or [R/S 1]) Let (A,) € A be a Fredholm sequence
and let A, denote the set of all singular values of A,,. Then (4,) is subject to the
k-splitting property with

k = dim ker Wi(A,) + dim ker Wh(4,,).

One can show, that the k-splitting property is also necessary for Wi (4,) being Fred-
holm (see [H/R/S]). We will make use of these theorems in the next sections.

3. Modified finite sections and the splitting property. For each multiindex
a=(ay,...,an), a; € Z*(i =1,...,N) and for each operator
A € L(I?) we define an operator A* € L(I%) by
diag (4%,...,A%V)

Further, let e; and e_; stand for the functions e;,e_; : T — T defined by £+ ¢ and
t — t~!, respectively. The Toeplitz operator T'(e;) : I2 — 12 will be also denoted by
V. Then it follows that V* = T'(e_;). Notice that for any multiindices o and § and
any function a € L{, n(T) the property

(3.1) VAT(@Ve =T (e’ilae;’)
is fulfilled. We shall also use the projections

(3.2) P, = diag (Payy---sPan) »
5



where Fy, is defined by (2.1) for N = 1. The multiindex (n,n,...,n) will also be
denoted by n. In each case the meaning will become clear from the context. Notice
also the relations (e, 8,-multiindices)

(3.3) V“P,g_: PaiaV®, PgV* = V**Pguq
and
(3.4) PgV® = PgV*Pg, V**Pg = PgV**Pg.

It is sufficient to prove these assertions in the case N = 1. Recall that the projection
Pm (m € Zt) can be written as Py, = I — V™V*™. Now it follows that

VkPm — Vk _ Vm+kv*m+ka — Pm+ka .
By taking the adjoint we get (3.3). The proof of (3.4) is also very simple.

In what follows we shall consider modified finite sections of the Toeplitz operator T'(a)
of the form

(3.5) | Tn,a,ﬁ(a) = Pn—aT(a)Pn-ﬁ )

where n = (n,...,n) and Pn_o(P,_g) is the zero operator if n — a (n — #) is not a
multiindex, that is if it has negative components. With help of (3.3) and (3.4) the
finite sections (3.5) can be rewritten (n —a >0, n — 8 > 0) as

(3.6) P oT(a)Pa_p = PaV**P,T(e=Sae;?)P,VPP,.

This simple observation is crucial: it shows that the sequence of the finite sections
(3.5) belongs to the algebra A for a € PCnyxn. In what follows we will identify (3.5)
with (3.6), which are square matrices and can be assumed to be extensions of the
matrices (3.5) by zeros. The following theorem is a direct consequence of Theorem

2.3.

Theorem 3.1. Let the Toeplitz operator T'(a) be Fredholm and a € PCyxy. Then
the singular values of (T, o 5(a)) meet the k-splitting property with

(3.7 k = dim ker T(a) + dim ker Ty (a),
where

Top(a) := VET(e2,aeP)V*8

Proof: It is easy to see that

Wi(Tha8(a)) = T(a) )
Wo(Tn,e5(a)) = Tapla).

Now it remains to apply Theorem 2.3.

We would like to employ this theorem in order to compute the kernel dimension of
a Fredholm Toeplitz operator T'(a) with a € PCnxxn. To this aim we introduce the
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notion of generalized factorization for p = 2 (see [L/S]): a right factorization in L3(T)
of a matrix function G : T — Cnxn is by definition a representation of the form

(3.8) G(t) = G-(A@R)G+(1),

where G¥! € H? (H? is the Hardy space), G e I, A(t) = diag (t*,...,t*), and
K1 > K2 > ... > Ky are integers. It is known, that the numbers «;, 7 = 1,2,..., N,
are uniquely determined if the representation (3.8) exists. They are called the right
partial indices. Analogously one defines a left factorization:

G(t) = G4 ()G (2),

where G4, G_ and Q fulfill the same conditions as above. Even if for a given matrix
function G a left and a right factorization exists, then the right and left partial indices
do not necessarily coincide. A simple but useful example is provided by the matrix

function
t 1
G(t) = ( 0 t-1 ) :

In fact, the left and right factorizations are given by

w0 = (1) Gn) GF)
(b%) (57) (15)

This circumstance causes difficulties in the theory of Toeplitz operators with matrix
valued generating functions. From the last example it follows that T'(G) is invert-
ible but T(G) is not (contrary to scalar valued generating functions). Clearly, if G
possesses a right (left) factorization, then G~! possesses a left (right) factorization,
too.

The following fact will be used in what follows (see [L/S]): If T'(a), @ € Ly n(T), is
Fredholm in 1%, then a possesses a right factorization and

N
dim ker T(a) = Zmax{-—n,-,o} .

i=1
Now we specify Theorem 3.1.
Theorem 3.2. Let T(a) be Fredholm, a € PCnxn. Then there is an 7o € Z4 such
that for all r := (r,...,r) > (ro,...,70) the operator T'(Ge]) has trivial kernel and

all statements of Theorem 3.1 with respect to the modified section Ty o,~(a) hold and
the kernel dimension of Tp,(a) equals N - r.

Proof: Theorem 3.1 ensures that the sequence (T}, 0,-(a)) has the k-splitting property
with

k = dimker T'(a) + dim ker Ty - (a) .
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Since T'(a) is Fredholm too, the function @ possesses a right factorization a(t) =
F_()A(t)Fy(t),A(t) = diag {t**,---,t*¥}and sy > 52 > - -+ > sn. Then there exists
a number ry such that for all multiindices r = (r,---,r) > (ro,---,70) the operator
T'(@e]) has trivial kernel. Indeed, take ro = max{—sy,---,—sn,0}. Obviously, def is
subject to the factorization

de] = F_AF,e] = F_AelFy,

and

N
dim ker T'(ae]) = Zmax{——s.' -r0}=0,r>1g.

i=1
Thus, dim ker ’f‘o,,(a) = dimker V*" = N -r, and we are done.

Remark 3.1. In order to compute the kernel dimension of T'(a) one has to determine
the singular values for Ty, ,r(a) lying in [0, ¢,] and to subtract N-r (n,r large enough).
How large r must be chosen? The following observation is useful: if r is replaced by
r + 1 and the number of singular values in the respective set [0, c,] increases exactly
by N then a correct r is found, that is r > ro. Indeed, if r < ro then the difference of
the kernel dimensions

(3.9) dim ker Tp r+1(a) — dim ker Ty -(a)
is less than NV because dim ker T'(Ge]) — dimker T'(Ge]*') > 0.

Remark 3.2. If the kernel dimensions of the operators T'(ae]) (r = (r,...,7)), can
be computed, then the right partial indices &; of a can also be computed.

Remark 3.3. The described procedure offers a way to compute the kernel dimension
of a Fredholm Toeplitz operator T'(a) with a € PCnxn. This might seem strange
because the kernel dimension of a Fredholm operator A is not stable under small
pertubations (it is however upper semi-continuous). Nevertheless the proposal method
of kernel computation is stable under small pertuabations. The reason is at least
the following: We compute the number of singular values of the related matrices
lying in [0, c,] (n large enough), that is something like the sum of kernel dimensions,
where the related singular values are far from the remaining part of the singular
values. More precisely, we have to show that for given € > 0 the singular values of

T 0,r(b),b € PCprxn, lie in the set [0, ¢, +€]U[d—¢€,00) if only ||T(a) — T'(b)|] is small
enough; moreover, we have to show that the number of the singular values of T, 0,r(b)
lying in [0, ¢,, + €] equals dim ker T'(a) + dim ker To,r(a). Further, the computation of
the singular values of Ty, o,-(b) leads again to computational errors. If they are small
enough, we will get the same statement as above. How one can see this?

First observe that the uniform limiting set of the sets A equals

A(a) = 8p (Wl ( n,0, r)wl (Tn 0 r)) b U Sp (W2 (Tn. 0 r)w2(Tn 1] r))

(3.10) sp (smb (Tno,)* smb (Tno, r))§

(see [R/S 2], Theorem 4.14).



If 0 ¢ A(a) there is nothing to prove. Indeed, the property 0 ¢ A(a) implies for a
Fredholm operator T'(a), a € PCnxn, the stability of (Twn,0,r) by Theorem 2.1. But
stability is stable under small pertubations; this is a direct consequence of Proposition
2.1. Suppose 0 € A(a). Then the point 0 is an isolated point in A(a) (by Proposition
4.2 below), moreover, the multiplicity of 0 equals

(3.11)dim ker (smb (Tn,o,r)* smb Tn,o,,)% = dim ker T'(a) + dim ker Ty .(a).

If we approximate the Toeplitz operator T'(a) (in the class of Toeplitz operators with
PCnxn generating functions), then if T'(b) is close enough to T'(a) the point 0 can split
into a finite number of points which lie in [0,€) N A(b), (¢ > 0 given and sufficiently
small), and their number (counted with respect to their multiplicity) equals again
(3.11) (see Theorem 6.27 (d) in [H/R/S]). Now one has to use Theorem 7.12 in
[H/R/S] (recall that A is a standard algebra in the sense of [H/R/S]). Hence, the
number of singular values of Ty, ,-(b) lying in [0, ¢, + €] equals again (3.7) for n large
enough. This shows that the descrlbed procedure is as stable as it can be.

Remark 3.4. Many programs such as Matlab use immediately the rectangular form
of the matrix Ty, 0, (a) (that is they drop down the r last columns consisting of zero ma-
trices) for computing the singular values. In this case the singular values of (Tn,0,r(a))
have the k-splitting property with

k = dim ker T'(a),

if r is large enough. The above mentioned criterion reads now as follows: a correct r
is found if (Ty,0,+(a)) and (Tn0,r+1(a)) have the same k-splitting property. This fact
is reflected in Theorem 1.1.

Remark 3.5. If K is compact and a € PCnxn, then the described methods can
also be used to compute dim ker (T(a) + K), where T(a) is Fredholm. One has only
additionally to take into account Proposition 2.2.

4. Asymptotic Moore-Penrose invertibility. The splitting property proved
in the last section is closely related to the asymptotic Moore-Penrose invertibility.
Let H be a Hilbert space and let us recall that an operator A € L(H) is called
Moore-Penrose invertible if there is an operator B € L(H) such that

(4.1) ABA=A,BAB=B,(AB)" = AB, (BA)" = BA.

It is well-known that an operator is Moore-Penrose invertible if and only if its range is
closed (such operators are also called normally solvable). Moreover, the operator B is
uniquely determined and will be called the Moore-Penrose inverse of A (also written
as B = A%). If A € L(H) is Moore-Penrose invertible, then A%y is the pseudosolution
of the equation Az = y, that is the element with smallest norm of all the elements z
for which || Az — y || is minimal.

We will heavily use the following (and well-known) characterization.
Proposition 4.1. The following statements are equivalent:

(i) The operator A € L(H) is Moore-Penrose invertible.
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(ii) The operator A*A + Pier a is invertible.
(iii) The operator AA* + Ber 4+ is invertible.
Moreover, if this is fulfilled then

AY = (A*A+ P aA) 1 A" = A" (AA” + Preeras) ™,
where Pjs denotes the orthogonal projection onto the closed subspace M C H.

Sketch of the proof: That (i) is equivalent to (ii) is proved for instance in [H/R/S].
The equivalence of (i) to (iii) can be proved analogously.

Via the axioms (4.1) one can define Moore-Penrose invertibility for elements in ar-
bitrary C*-algebras. Again, the Moore-Penrose inverse of a given element is unique
provided it exists, which can be easily seen by representing the C*-algebra as an
algebra of operators.

Notice the following result.
Proposition 4.2. (see [R/S 1], [H/R/S])

(i) An element a of a C*-algebra with identity is Moore-Penrose invertible if and
only if the element a*a is invertible or if 0 is an isolated point of the spectrum
of a*a. If this condition is fulfilled, then |[a¥|| = min(sp a*a\ {0}).

(ii) C*-subalgebras of C*-algebras with identity are inverse closed with respect
to Moore-Penrose invertibility, that is, if an element of a C*-subalgebra C of
a C*-algebra B has a Moore-Penrose inverse in B, then this Moore-Penrose
inverse necessarily belongs to C.

The C*-algebras to which we will apply this proposition are /G and some C*-
subalgebras of it (F and G are introduced in Section 2). A sequence (Ap) € F is said
Moore-Penrose stable if

sup || A7 [|< o0
n>1

(recall that A} exists for all n because dim im P, < o). We are mainly interested
in sequences belonging to A C F (A defined also in Section 2). It is not hard
to find examples of sequences (Tn(a)) for which (T} (a)) is not bounded, but T'(a)
is Fredholm. Moreover, for a € PC\ C (N = 1) the sequence (T+(a)) is not
bounded if T'(a) is Fredholm but not invertible (see [B/S 3)). If one allows modified
finite sections, the picture changes dramatically. We will use an approach which first
occured in [S 2] and study temporarily a weaker problem:

Theorem 4.1. (see [S 2] or [H/R/S]) The following assertions are equivalent for
a sequence (A,) € A:

(i) The operators Wi(Ar) and Wa(4y) are normally solvable (that is they have
closed range).
(ii) There is a sequence (By) € A such that

i AnBnA, - A, ||— 0, | BnAnBn — Bn |— 0,
|| (AnBn)* — AnBn Il— 0, (Bndn)* - BpAn ||— 0

as n —» 00.
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If one of the conditions is fulfilled then (By) is unique up to sequences in the ideal G
(even in F) and (B,) tends strongly to Wi (An).

If Wi(A,) (and therefore also W, (Ap)) is Fredholm, then the assertion is a conse-
quence of Theorem 2.2.

This theorem can be accomplished by the following Proposition.

Proposition 4.3. Let the situation be as in the preceding theorem, and let (4,) € A.
If the operator Wy (4y,) is Fredholm (therefore, Wsy(A,) is also Fredholm), then the
sequences (Dy), (D4),

D, = A;An + PnPkerWI(A,.)Pn + WnPkerwz(A..)Wn)
D:; = AnA:; + PnPkerwl(A;)Pn + WnPkeng(A;)Wna

belong to A and are stable, and the sequences (Bn), (B],) given by

Bn
By

DAL,

4.2 K
( ) AnD#

are subject to condition (ii) of Theorem 4.1 (whence, it follows that (Ba) — (B}) € G).
The proof can be carried out as the proof of Theorem 6.4 in [H/R/S].

Now one might think that the Moore-Penrose inverses A} for a Moore-Penrose stable
sequence (An) € A have something to do with the operators (4.2). Under some
additionally given conditions this is indeed the case. These conditions are summarized
in the next proposition which is a special case of a general statement (Proposition
6.5, Theorem 6.7 in [H/R/S]).

Proposition 4.4. Let (4,) € A and let Wi (4,) be Fredholm.
Set By := PnPrerwy(4n) P Cn = WnFierwy(4,)Wn-

(a) If ApBp = AnCp = 0 for n large enough and
(b) By, and C, are projections and B,Cr = 0 for n large enough,

then the sequence (Ayn) is Moore-Penrose stable and
Bier A = Bn + Cn
for n sufficiently large.

The connection of this result with the k-splitting property is almost obvious: We have
(n large enough)

dim ker A, = dim ker Wy (A,) + dim ker Wa(A,) .
This observation already implies the Moore-Penrose stability of (Ax).

Theroem 4.2. Let a € PCnxn and let the operator T'(a) be Fredholm. Consider
(Tn.ap(a)) € A with given multiindices a, 8- If there is an ng such that

(4.3) kerT(a) C im Pn, and ker T p(a) C im Pn,
11



or
kerT*(a) C im P,, and ker Ty g(a)* C im Py,,

then the sequence (T, q,8) is Moore-Penrose stable and (T,': «,8(@)) converges strongly
to T*(a). Moreover, for n > ng + o we have

Pkel'Tn,a,p(a) = PnPkerT(a)Pn + WnPker To.p(@) W,
Pker T;'a'p(a) = PnPketh (a)Pn + WﬂPker 'I-";'ﬁ(a)Wﬂ y

respectively.

Proof. We have to check the conditions (a) and (b) of Proposition 4.4. First consider
the case where the first condition in (4.3) is fulfilled.

(a): For n > ng + 8 we get
Tn,a.ﬁ(a)PnPkerT(a)Pn = Pn—aT(a)PkerT(a)Pn =0,
and

TnaWnbier VaT(e2, el V8 Wy, =

= Wa(WnTnapWnBier var(es 1ae‘,’)vw‘l)I’V =

= W (VoP,T (62180 PaV* P Pop yaries aetyvee ) Wn =

= Wa(VoPaT(e%,8¢8)V*B Py yries, 2etyves ) Wa -
Because the first condition of (4.3) is valid, the operator inside the brackets is zero
(notice that P,V*PP,, = PyPn V*# Py, = V*BP,, for n > ng). Thus (a) is fulfilled,
(b) is obvious, and the sequence (Ty,q,5(a)) is Moore-Penrose stable and the Moore-

Penrose inverses converge strongly to 7% (a). If the second condition is fulfilled in
(4.3) then (Tr’:;’ﬁ (a)) tends strongly to T**(a). Taking adjoints we get the claim.

Conjecture 4.1. Let T(a) be Fredholm, a € PCnxn, and the sequence (Ty,a,5(a))
be Moore-Penrose stable. Then one of the conditions (4.3) is fulfilled.

Remark 4.1. For N =1 and a = 8 = 0 this was proved by Heinig and Hellinger in
[H/H]. A more general conjecture is the following:

Conjecture 4.2. Let the first condition of Conjecture 4.1 be fulfilled. Then there is
an ng such that for n > ng

dim ker Ty o p(a) = max{y,7*},
where
~ = dim (im P,, NkerT(a)) + dim (im Pa, Nker VoT(e®,ae?)V*# )
and
+* = dim (im P Nker T*(a)) + dim (im Pr, Nker VAT* (2 1aeﬁ’)v"ﬂ') .

Next we describe a sufficiently large class of Fredholm operators, a € PCnxn, for
which ker T'(a) C im P, for some ng. Of course each left invertible Toeplitz operator

12



owns this property. If a is such that (a~!),, = 0 for all sufficiently large m (here (a™!),
denotes the jth Fourier coefficient of a~!), then T'(a) has the mentioned property, too.
This can be easily seen by factorization.

By specifying Theorem 4.2 we get the following theorem.
Theorem 4.3. Let a € PCnxn and T{a) be Fredholm.

(a) If T(a) is left invertible or (a=!), = O for m large enough, then there is ro
such that (T;L, o,r(a)) converges strongly to T*(a) for all r > ro.

(b) If T(a) is right invertible or (a~!)_m = 0 for m large enough, then there is a
ro such that (T,‘: r0(a)) converges strongly to T*(a) for all r > ro.

Proof. (a): If r is large enough then the kernel of T'(Ge[)V*" is contained in im
P,. Now it follows that the conditions of Theorem 4.3 are fulfilled, whence the claim

follows.
(b): Can be reduced to (a) by taking adjoints. The theorem is completely proved.

Remark 4.2. The same results are true if one replaces PCnyxny by QCnxn Or
more generally by PQCnxn. QC stands here for the algebra of all quasicontinuous
functions and PQC for the algebra of all piecewise quasicontinuous functions defined
on T. The reason is that all results of Section 2 again hold.

Remark 4.3. One can expect that analogous results are also true for further operator
classes and their approximations. This will be considered in a forthcoming paper.

5. Appendix. Here we present two examples which show that at least for smooth
generating functions the kernel dimension of Fredholm Toeplitz operators can be com-
puted effectively. These examples are given via a randomly chosen factors of the
Wiener-Hopf factorization:

10
) = 2 +3t+1+ 570 B4+ 3t 4272
ab = t+4 2+ 144171
_ {241 L t 0 t+3 ¢
- ¢! 1 0 ¢! t t+4
Therefore the kernel dimension of the Toeplitz operator T'(a) equals 1.
20
_ 22+ T+ 3+ 4t 72
at) = < t+3+t7! t2

t7l+2 3 t 0 t+3 0
t7r 1 0 t2 t 1/

Thus, T'(a) is Fredholm with dim ker T'(a) = 2.
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In Figures 1 - 4 we plotted the singular values s;(Th0,r(a)) versus 1 <n < 70 for the
generating functions a given in Examples 1° and 2° and for r = 0, 1, respectively. The
computations showed that in all cases d can be chosen about % The number of the
lower singular values which approach to zero cannot be seen because to the computer
they are equal zero.. However, the computer allows also to determine their number.

Example 1°.

14 T 1 1 T T T
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I ‘
i L

0 1 L Ll i
0 10 20 30 40 50 60 70
- Fig. 1 -

The computations show that the sequence (Tn0,0(a)) is subject to the 1-splitting
property.

The next figure is devoted to the case r = 1. In this case the sequence (Ty0,1(a)) is
subject to the 3-splitting property and we observe already stabilization in the sense of
the remark made after Theorem 3.2. Thus, the computations lead to dim ker T'(a) = 1
(Recall that N = 2).
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Example 2°.
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property, respectively. Thus, the deve

The examples show that the valu
generating functions are smooth. For N
is already proved in [B/S 3]. It would be of interest t
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a)) and (Tno,1(a)) have the 2- and 4-splitting
loped theory gives dim ker T(a) =2.

es ¢y, can be taken converging very fast to zero if the
— 1 and the familiar finite sections this result
o have a proof in the general

case.
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