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1 Introduction

A new class of complex-valued functions the scale of so-called Qp-spaces has been recently introduced
and studied intensively by several authors (see e.g. [AuLa], [AuTo], [AuXiZh]).
Let A = {z: |2z} < 1} be the complex unit disk. Then the well known Bloch space

B = {f: f analytic in A and B(f) = sup(1 — |2|)|f'(2)] < oo}
z€EA
and the Dirichlet space

D = {f: f analytic in A and /lf’(z)]zdmdy < o0}.
: A

are introduced. Applying the Mébius transform ,(z) = {#=%, which maps the unit disk A onto itself,
and the fundamental solution of the two-dimensional real Laplacian a function g(z,a) = In|i=2%| s

defined. Obviously, this function has a logarithmic singularity at a € A. Then the spaces

Qp = {f : f analytic in A and sup / If'(2)]*¢*(z,a)dzdy < oo}
acA
A



are defined. The idea of these Qp-spaces is to find a (continuous) scale of spaces with D and B, respec-
tively, “at the both end points” of the scale.
Indeed, a lot of essential results are already known as for instance

DCQ,CQqCBMOA 0<p<qg<1 [AuXiZh]

Qi1 = BMOA [AuXiZh]
Qpo=B Vp>1 [AuLa).

This means that the spaces Qp form a scale as desired and for special values of the scale parameter p
these spaces are connected with other known and important spaces of analytic functions. Another special
property of these spaces is the conformal invariance under Mébius transformations.

There are several attempts to generalize these ideas and the corresponding approach to higher dimensions
([0YZ1], [OYZ2], [CKP], [St]). Independently on method these approaches treat the case of the unit ball
in €" and not the case of the unit ball in R". Basic ideas are to replace the derivative f' by the complex
gradient of f and the measure drdy by a weighted measure dA(z) = mf[’é)—,,_,,—f, where dv stands for
the usual Lebesgue measure. Using an invariant Green’s function some results similar to the complex
one-dimensional case were proved. The most important results are that

Q,=B forl<p< n—’_‘i and Q; = BMOA(dB),

where OB is the surface of the unit ball in C". But, for p ¢ (2=, -2} all Qp-spaces are trivial, i.e., only
constant functions belong to Qp.

This is one of the reasons to look for other possibilities to generalize the complex (one-dimensional)
ideas. Furthermore, using the €"-approach it is impossible in principle to consider Qp-spaces in odd real
dimensions of the Euclidean space.

In this paper we study hypercomplex generalizations of Qp-spaces. Instead of holomorphic functions
in the unit disk we study hyperholomorphic functions f : R™ — Cly 1 (i.e., solutions of generalized
Cauchy-Riemann systems), which are a higher-dimensional generalization of holomorphic functions also
in the case of odd real dimensions of the Euclidean space. Such important function classes like the solu-
tions of the div — rot system are included in the theory of hyperholomorphic functions. These functions
can be considered in all real space dimensions.

With the generalized Cauchy-Rlemann operator D, its adpmt D, the hypercomplex M6bius transforma-
tion @q(z) = (a —z)(1 — az)~!, and a modified fundamental solutlon g of the real Laplacian we consider
generalized Qp-spaces defined by

Qp={feckerD: sup / D1 () (9(a(2)))?dz < 00).

a€B;(0
1()B

where Bj(0) stands for the unit ball in R™. This definition seems to be natural because
o It has a deep structural analogy with the complex (one-dimensional) definition.

o All the used items generalize definitions (analyticity, derivative, Mobius transformations and Green'’s
functions) from the complex one-dimensional case.

¢ The generalized Qp-spaces have analogous properties as the complex spaces.

To prove these analogous properties is the aim of this paper. We remark that for the case of functions
f: R* — H it is already known from [MS] that D may be interpreted as derivative. In this paper
we restrict us to the case n = 3, the lowest non-commutative case, as a model case of general Clifford
analysis. Moreover, we will identify the Clifford-Algebra Cfy » with the skew-field of quaternions. Thus
we consider functions f : R3 — H.
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3 Preliminaries

In what follows we will work in H, the skew field of quaternions. This means we can write each element
z € H in the form
z2=2zp+ 211+ 295 + 23k, 2z, €R,

where 1,1, j, k are the basis elements of H. For these elements we have the multiplication rules i? =
j2 = k2 = —1,ij = —ji = k,kj = —jk = i,ki = —ik = j. The conjugate element Z is given by
Z = zo — 211 — 22j — 23k and we have the property 2z = zz = ||2]|? = 2 + 2 + 22 + 22. Moreover, we can
identify each vector ¥ = (xo,Z1,z2) € R® with a quaternion z of the form

T :xo+$1i+$2j.

Also, in what follows we will work in B, (0) C R?, the unit ball in the real three-dimensional space. B (0)
is a bounded, simply connected domain with a C*°-boundary S (0). Moreover, we will consider functions
f defined on B;(0) with values in H. We now define the generalized Cauchy-Riemann operator by

of  .of  .of

PI = 500 " 00y Y on,

and it’s conjugate operator by
o0 _0f _of
Oxg 8:1:1 61;2
For these operators we have that R
DD = DD = A,
where Aj is the Laplacian for functions defined over domams in R3. The Cauchy-Riemann operator has
a right inverse of the form

1 )

4 |z —yf?
B1(0)

Tf(z)=— f(y)dBy,  x € Bi(0).

This operator acts continuously from W (B, (0)) into W¥+1(B;(0)), 1 < p < 00,k € NU {0} (see [GS1]).
Moreover, we need the following Cauchy-type integral operator:

Fsf0)= g [ E=Bhewiwias, aeBi0)

47 lz
5,(0)

where a(y) is the outward pointing normal vector to S;(0) at the point y. This operator is a continuous

mapping from WET/%(5,(0)) into WEt1(B1(0)), 1 < p < 00,k € N U {0} [GS1]. The above introduced
operators are connected by the well-known Borel-Pompeiu formula:

Fsf+TDf = f.

Functions belonging to ker D are called hyperholomorhic or regular functions. From the Borel-Pompeiu
formula we have the Cauchy formula

Fsf=f VfekerDnW./?(5,(0)).

For more information about these topics and general quaternionic analysis we refer to [GS1], [KS], [GS2],
and [Sud].



4 Definitions of some functional spaces

For |a| < 1 we will denote by
¢a(z) = (@~ z)(1 - az)™!

the Mdbius transform, which maps the unit ball onto itself. Furthermore, let

be the modified fundamental solution of the Laplacian in R? composed with our Mébius transform Ya(T).
Especially, we denote for all p > 0

g°(z,a) = 41’17rp (W:@_)-l - l)p.

Let f: B1(0) = H be a hyperholomorphic function. Then we can introduce the seminorms
o B(f) = sup,¢p, (o) (1 — [21*)*/?|Df (x)],
e Qu(f) = SUPge B, (0) fo(o) |5f(:1:)l2g”(z,a)de,

which lead to the following definitions:

Definition 4.1 The spatial (or three-dimensional) Bloch space B is the right H-module of all hyperholo-
morphic functions f : B1(0) = H with B(f) < oco.

Definition 4.2 The right H-module of all quaternion-valued functions f defined on the unit ball, which
are hyperholomorphic and satisfy Q,(f) < oo, is called Qp-space.

Remark 4.1 Because of the special structure of g(z,a) the seminorms Q,(f) make sense for p < 3 only.
Consequently, we will consider in this paper Qp-spaces for p < 3 only.

Obviously, these spaces are not Banach spaces. Nevertheless, if we consider a small neighbourhood of the
origin Ue, with an arbitrary but fixed € > 0, then we can'add the L;-norm of f over U, to our seminorms
and B as well as Qp will become Banach spaces. Because this additional term is independent of p we
will consider in the following only the spaces with the corresponding seminorm, but we have to keep in
mind, that all our results are also true in the case of the norm.

Definition 4.3 The right H-module of all quaternion-valued functions f defined on the unit ball, which
are hyperholomorphic and satisfy the condition

/ Df (2)]2dB, < o,
Bl(O)

is called spatial (or three-dimensional) Dirichlet space D.
Remark 4.2 Since g(z,a) is non-negative in B1(0) we have, obviously,

DcQ, 0<p<3.

5 Properties of Qp-spaces

In this section we will show that the Qp-spaces are in fact a scale of (with our additional term added
to the seminorm) Banach H-modules, which connects the spatial Dirichlet space with the spatial Bloch
space. For doing this we need several lemmas.



Lemma 5.1 Let f be hyperholomorphic in the unit ball. Then we have for all T < 1
[ IDs@)ds. > 4nr(D5(0),
$.(0)

where S, (0) is the surface of the ball B,.(0) with center at 0 and radius r.

Proof: Let f € ker D(B(0)) and S,(0) = 8B,(0). Then we know from Cauchy’s integral formula that

fly) = K(z -y)a(z)f(z)dSz,  Vy € B(0),
5,(0)

where K(z —y) = Eﬁy is the usual Cauchy kernel and a(z) the outward pointing normal vector at

— 4n

the point z. For the Cauchy kernel we have, for = € S,.(0),

1
47r?’

|K (z)| =
Now we have:

|D£(0)]

[ K@a@Df@)ds. < / |K (@) l|a(2)|| D (2)|dS.
5,(0) 5.(0)

1 P
= i /s,(o) D f(x)|dSs.

Lemma 5.2 Under the same conditions as in lemma 5.1 we have that for any fized R < 1

_ 4TR®
| 1ps@Pa > T Drop
Br(0)
holds.
Proof: We know from lemma 5.1 that forall r < R

2 .
_ 1 - 1 Df(z)]
DFOP < T </s,<o> |Df(m)|dSz> < Tt (/s,m) |Df(z)| dsz) (/s,m) dS)

1 = 2
_ ( [, , /P d&) ,

because [ s.(0) 45 = 47r?. If we multiply both sides by r? and integrate then we get

R R
DFO)? /0 rldr < é ( /0 /S o D f(z)2dS, dr) ,

3
=< [ pr@pas.,
Br(0)

or in other words

|D£(0)?

which leads to our statement.
|

Proposition 5.1 Let f be hyperholomorphic and 0 < p < 3, then we have

(1= a*)®}|Df(a)|® < 01/3 o |Df(z)|? (m - 1) dB,,

where the constant Cy does not depend on a and f.



Proof: Let R < 1 and U(a, R) = {z : |pa(z)| < R} be the pseudohyperbolic ball with radius R. Then

i L JDs@P (- 1)de¢ > [ Dfa (it - 1)de,

Z (% - l)p-/U(a,R) IDf (@) dB.

We begin with the estimation of

|Df()[?dB, = / |Df<<pa(z>)|2(,—_'—f‘%d31 =

U(a,R)
(1-1aP) / I e DI P =
Obviously, we have that ) .
> .
1 -az|> =~ (1+ R)?
Therefore,
Df (@B, > L=l2) / |2 D e, > G b gy
TN 08 = (1+R - z|3 ¥a (I+R3? 3 '
U(a,R)

If we replace this in (1), we get

— 2 _1__ _ p 47‘!’ (1 ) 3—p 13 = 9
/Bl(o) IDf () (I(pa(x)| 1) 4B 2 5 R (1= 1)’ IDf (@)
as well as

4 P
0~ oD@ < gt [, D5 (o =) de

Choosing a suitable R from this we derive our estimate

(1-[a?)*[Df (@) < Cy /

B4 (0)

y4
IDf@F (uoal(x)l - 1) 4B

]
Corollary 5.1 For 0 < p < 3 we have Qp C B.
This corollary means, that all Qp-spaces are subspaces of the Bloch space.

Proposition 5.2 If f is hyperholomorphic in B;1(0) and 2 < p < 3, then for all |a} < 1

| DrwPee s, < Jo)B(,
B;(0)

where J(p) = 4w fo Wdr is finite.

Proof: We know from the definition of B that (1 — |z|?)%/2|Df(z)] < B(f). We estimate as follows:

- . 1 (1= lpu(@)))?
/B,<o> D/ (@)l'g’(z,a)dB; < B (f)/m TP TP 202
: 1 ([P (1 fa)?
=B (f’/ (0 0= p@PP 2P T=agp 0o



Here, we used that the Jacobian determinant is
N
1 —az|s -

Now, using the equality
1-lpa(@))? _ 1-]af?

1-jz2 |1 — az|?
we come to our desired result.
1 (1= J=)? (1 = |a?)?
B(f) o) 4B, =
( Bio) (1 —lpa(@)?)®  fzlp 1 —azl® 7
1-— 4
=) [ Al g

B0y (1 — |z]?)3z|P

1

27
=B2(f / 3 — 1+r dr/ / SIH(,Dld(pzd(Pl = B2(f)J(p)

[

n

Theorem 5.1 Let f hyperholomorphic in the unit ball. Then the following conditions are equivalent:
1. feB.
2. Qp(f)<oo forall2<p<3.
3. Qp(f) < oo for some p > 2.

Proof: The implication (1. = 2.) follows from proposition 5.2. It is obvious that (2. = 3.). From
corollary 5.1 we have that 3. implies 1.
[ |

Theorem 5.1 means that all Qp-spaces for p > 2 coincide and are identical with the Bloch space.

6 Another characterization of Q,-spaces

In this section we will give another possibility to characterize Qp-spaces, which is often easier to handle.
Among others, this new characterization enables us to prove that the Qp-spaces are a scale of function
spaces with the Dirichlet space at one extreme point and the Bloch space on the other.

Lemma 6.1

|, o PF@PQ =B [ Ds)Po(e,0)d5.
B, (0)

1(0

We remember that g(z,0) = ul_; (]—i—T - 1), w3 = 4.

Here “~” means that there exist constants C} > 0,C3 > 0 (independent on f) such that

C’1/ |ﬁf(z)|2g(x,0)de < / |Df(z)|?(1 - |z|?)dB, < Cg/ |Df(z)|2g(z,0)dB;
B1(0)

B, (0) B1(0

Proof: In spherical coordinates what we need to prove is

leﬁ 1-r?)rid ~/1M2(E L (L) 2
|| @0 =yt [ @10 (7 1) e



where M2(Df,r) = [y f02" |Df(r,01,p2)|? sin p;dpadip,. This means we have to show that there exist
constants C;, Cz such that

Cl/ M2(Df, ) (r-r dr</ MZ(Df,r)(r? —7'4)d7‘<02/ M? Df,r)— (r—-rz)dr

Part a)
Let us choose C; = 2ws. Then we get

/1 MZ(Df,r)((r* - r*) = 2(r = r*))dr <0,
0

because
=t —2tr =) = (1 =r)r(r(r +1) - 2) <0Vr € [0,1]

and MZ(Df,r) > 0 Vr. This results in

1 _ 1 _ . B .
/ M3 (Df,r)(r? —r*)dr < 2/ M3(Df,r) (r—7*)dr = Zwa/ M2(Df, )" ~ " dr.
0 o A -
Part b)
Now, let us choose C; = 111—0“61, then we have to prove

2 _a_ Al . o (" v Al a2 4
/M2 Df,r) (r T 100(7‘ r))dr /0 M2(Df,r)(100(r r)—r+r®]dr>0

where ro = 1/10 is the solution of the equation r? — 74 — &(r — r?) = 0, 0 < r < 1 (This polynomial

has only the zeros —11/10,0,1/10,1). Then it is easy to see, because all integrands are positive, that

@ (P ort - L) ars [ MO (- - - )
MDfr(r —r——r—r)r+ ,T (r —r——r—r)r
6/10 100 1/10 2 100
6/10 , 11 \ 0 1 \ . 4
M;(Df, —r% = —(r - dr — M5(Df, —(r — - dr > 0,
0 X fr)(r T IOO(T r)) r 0 5( fr)(loo(r ré) —r +7‘) r
due to the fact, that the integral |, 6/1100 MZ(Df,r) (r? — r* — & (r — %)) dr is greater than the integral
1/10 MZ(Df,r) (&5(r —r?) — % + r*) dr. In particular we have Mzz(ﬁf, ) > Mzz(ﬁf, r2) for ry > 7y
(because Df is harmonic in B;(0) and belongs to Ly(B(0)) Vr < 1), r? — rf — L (ry — r?) > 8/100 for
all r; € [5/10,6/10], and 145 (re — r3) — r3 + 4 < 2/100 for all r; € [0, 1/10] This gives our statement.

Lemma 6.2

/ D (@) (1 - |2*)PdB, ~ / D7 ()" z,0)dB,
B;(0) B;(0)

with 1 < p < 2.99.

Proof: We have, again, in spherical coordinates:
b= b e 1 (1 P
/ M2(Df,r)(1 - r*)Pridr ~ / MZ(Df,r)= (— - 1) ridr,
0 0 Wz \T

where MZ(Df,r) is as in lemma 6.1. This means we have to show that there exist constants C; (p), C2(p)
such that

/ M;(Df,r) 5’( rTl = 1)Pridr < /le(ﬁf,r)(l—T2)"T2dr

IA

Cs / M2(Df,r) g( ~ 1)Pr2dr.



Part a)
Let C2(p) = 2PwE. Then

/1 MZ(Df,r)[(1 - r?)Pr? — 2P(r~1 — 1)Pr?)dr < 0
0

because MZ(Df,r) > 0Vr € [0,1] and (1 — r2)Pr? — 2(r=! — 1)Pr? = (1 — r)Pr2-P((1 + T)PrP — 2P) < 0
vr € [0,1].
From this we get

1 1 1
/ MZDf,r)(1 - r2)Pridr < / MZ(Df,r)(r' — 1)Pridr = Cz(p)/ MZ(Df, 7')—1‘[—,(1“_1 - 1)Pr2dy.
0 0 0 w3

Part b)

Let Ci(p) = (£5)" wi. We want to prove that

1 . 1 1 .
C’l(p)/O M2(Dj, r)w—g(r‘1 - 1)Pr2dr 5/0 MZ(Df,r)(1 — r3)Pr2dr.

This means we have to consider the integral

' 5} 117
/ M22(Df7 7') ,:(1 - 7'2)pT2 —_ 1007 (r'l — I)Pr2] dr.
0

This is equivalent to the integral

/0 1 M2(Df,r) [(1 —r)Pr2p ((1 +r)PrP — 110%)] dr.

The important term in this integral is

11?
—(1_ 2— Ppp _
k(r) = (1 —r)Pr?-? ((1 +r)Pr 1021’) .
It may be observed that k(r) < 0 for r € (0,1/10] with a “pole” at the origin if 2 —p < 0 and k(r) > 0
for r € [1/10, 1]. Especially, for r < 1/10 we have

2_p 117

1020’

‘(1 —r)Pr2-P [(1 +7)PrP — —li]
10%r

because of (1/107 + 1/10%?) — 117 /10" < 0.

This means we have to compare the integrals 01/10 M3 (f,r)r?~P X2 dr and f:/lloo ME(f,r)(1-r)Pr2—P[(1+

r)Pr? — 117 /10%|dr. For the first integral we get that it is smaller than Mgo—(,éﬂzi—p(l/w):‘“”. For
the second integral we have the estimate

6/10
MZ(f,7)(1 = r)Pr®=P[(1 + r)PrP — 117/10%")dr
5/10
6/10 11 111 4
> M2(£f,1/10) | —— 4+ ——=p — 3} p2-»
= Jsjo 2 (f /0)( 100+1007' 1‘) " Pdr
2 6/10
> M2 (f) 1/10)32p/ 7'2_pd'r
10%» 5/10
M3(f,1/10),, , 1 6P _5%-P
- 10%» 3—-p 10%-r

We remark that the infimum of — 55 + 111y — 73 5 32/100 for 5/10 < r < 6/10. Following the same lines
as in the proof (part b)) of lemma 6.1 we will get our estimate and our statement.
]



Theorem 6.1 Let f be hyperholomorphic in Bi(0). Then, for 1 < p < 2.99,

fEQpe sup / Df (@)1 - |0a(@)P)PdB, < oo.
a€B(0) J B,1(0)

On the first view, the condition p < 2.99 looks strange. But we have to keep in mind, that theorem 5.1
means, that all Qp-spaces for p > 2 are the same, so in fact this condition is only of technical nature.
Proof: Let us consider the equivalence

[ BI@PQ-lea@Prds. = /
B1(0)

|Df(z)|*¢"(z,a)dB,
B;1(0)

with g(z,a) = ul—a (le(x) - 1) and @,(r) = (a — z)(1 — az)~! the Mdbius-transform, which maps the

3
unit ball onto itself. After a change of variables w = ¢, (z) (the Jacobian determinant (':—:la%?z) has no
singularities) we get

1 |af?
|1 —aw?

)3dBw = [ PSP w0 (—1—‘—'“—'3—)3@«”.

11— awf?

[ Dsteatw)Pa- Py (
B;(0)

where D, means the Cauchy-Riemann-operator with respect to z. The problem here is, that D, f(z) is
hyperholomorphic, but after the change of variables D, f(pa(w)) is not hyperholomorphic. But we know
from [R] that ﬁ?ﬁ}ﬁz f(pa(w)) is again hyperholomorphic. We also refer to [Sud] who studied this
problem for the four-dimensional case already in 1979. Therefore, we get

1 1 1 P 1
wwzl—wz”-————_—dsz/ 1/)11)2—(———1) 4B,
/BI(O)I (@)1= ol o [ bl (o TETE

with Y(w) = ll‘__—ﬁ"ij’[gﬁz f(pa(w)) Again, this means we have to find constants C1(p) and Cz(p) with

(i—l)p;dB <[ Bl - wPr s
Wl ") vS oo 7

1 - aw|? —aw|2 "

<o [ Wk (i - 1),, Ll
=72 B.1(0) wy \ |wl [1—awl2™"

Obviously, we can set Cz(p) = 2Pw}. For the first estimate we choose C; (p) = w§(117/1007) and consider

the integral
1 11 1 11\?
e = | To0 7T ~ 165 1 - |w|®)?| dB,,
/Bl(o) )l Il—deZ[ <100|w| 100) + (1= wl%)

To get our estimate this integral has to be greater than or equal to zero. Similarly to the proof of
lemma 6.2 we get

1
P
ws

2
Ci(p) /B e

1 [ 1 1 11 \? 1,

- ree—— = e~ o 1 = |lw|?)P dB,,
/B(l/lo)(o) w) 11 —awl? | (100 |w 100) +( wl®) ]
1 [ 11 1 11 \? -

+/ ¢WV_—T—'—G—*~——O +(1 - |w?)?| dB,
B(s/m)(O)\Bu/m)(o)l | |1 —aw|? | 100 |w| 100 |w| |
1 [ 11 1 11 \? -

+/ "/)U))z——f —(———.——) +(1__ w2)p dBw
B(6/10)(0)\B(5/10)(0) l ( l |1 - aw|2 | 100 |w| 100 | | ]

1 11 1 11\?
v s s [ (o — 1)+ (= ol B >0
B1(0)\Bs/10)(0) | ( )| |1 - aw|2 100 |’U)| 100 N

where B,.(0) is the ball centred at zero with radius r. Obviously, the second and the fourth integral are
greater than zero. Therefore, it is sufficient to compare the first and the third integral. For the further

consideration it is necessary to estimate
1

11— aw|?

10



This can be done with the aid of the inequality
09<1~jw <1-lallw| =1 - |aw|| < |1~ aw|

in Bl/lO and
1 -aw| <1+|allw| <1+|w] <16

in Bg/10(0) \ Bs/10(0). Now, let us make a change of variables to spherical coordinates, which gives us

1/10 102 117
2 (1] -~ p\Pp2—P | PP
; M;(,r) oz (1-r)Pr (IOOP (1+47) r)drg
6/10 102 117
2 22 (] — p\Pyp2—p PP _
1o M3 (,1) 162(1 r)Pr ((1 +7)Pr lOOP) dr.

This can be verified in the same way as in the proof (partb)) of lemma 6.2. We only remark that for
1<p<2.99
102 ,_ 3
32— (6°7P — 5°7P) >

102
762 ¢ 92

92 -
[ ]
Our above theorem enables us now to state the same characterization also in the case of p<l.

Proposition 6.1 Let f be hyperholomorphic in B1(0). Then, for 0 < p<l1,

fEQp& sup / IDf(2)]2(1 - |¢a(z)]?)PdB, < oo.
a€B;(0) J By (0)

Proof:
“=>”
Let 0 < p < 1. Due to the following relationship

Y P e (231G W Y S SRR WPV
e S Tl (e =) =20tz

the assertion follows.
“¢:” _
We suppose that sup,¢pg, (o) fBl(O) [Df(z)(1 = |@a(2)]?)PdB, < oo for 0 < p < 1. Since

/ IDf(2)[*(1 - |pa(x)|*)dB, < / IDf(2)I*(1 - |pa(2)*)?dB; < 0o
B1(0) 0)

1

and theorem 6.1, we have

sup / D7 (2)?g(z, a)dB, < oo.
a€B1(0) J B1(0)

We split the integral into two parts,

/ |Df(z)*¢*(z,a)dB, = / |Df(z)|*¢"(z,a)dB,
B, (0) {lea(z)I< 5}
+ / Df(2)P g (z, a)dB,.
{lea(z)[>5}

It may be observed that

o

om0 = (-0 { 2 7] ool <

1
w3 \Ipa@)] <BU- lpu@)?) |pula)l > &

25
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Therefore,

/ Df(@)Pe?(z,a)dB; < / Df(2)Pg(z, a)dB,
{lea(x)I< 5} {lea(®)I< &}
< [ Di@Paadb,
B
and
/ Df(@)Po"(z,a)dB; < 25 / D5 (@)1 - |0a(@)*)PdB,
{lva(z)]> %} {lea(z)|>Z}
< 25 / B (@)1 - [¢a(z)[?)PdB,.
B1(0)
|

Using our alternative definition of Qp-spaces we will show, that the Qp-spaces are a scale of Banach
spaces.

Proposition 6.2 For 0 < p < ¢ we have: Qp C Qq.
Proof: Let f € Qp. Then
sup [ D@1 - lpa(w) By < oo
aEBl(O) Bl(o)
Because of (1 — |pa(2)|?)? > (1 — |pa(2)|?)? if |z| < 1 we have that
[ Di@Pa-le@rraB. < [ DI~ lpu@PPdBe.
B1(0) B (0)
Therefore,
sw [ D@ le@PrdE < sw [ BI@P - lpu@PdB..
0€B1(0) /B, (0) a€B1(0) J B (0)

This means f € Qq.
W1t is still an open problem if the inclusion Qp C Qq is a strict inclusion as in the complex case.
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