TECHNISCHE UNIVERSITAT
CHEMNITZ

Relations between Perron—Frobenius

results for matrix pencils

V. Mehrmann, D. D. Olesky,
T. X. T. Phan, P. van den Driessche

Preprint 97-20

Fakultét flir Mathematik



Relations between Perron-Frobenius results for matrix pencils

V. Mehrmann

Fakultat fiir Mathematik

TU Chemnitz

D-09107 Chemnitz, FR Germany.
mehrmann@mathematik.tu-chemnitz.de

and

D.D. Olesky *

Department of Computer Science
University of Victoria

Victoria, B.C. Canada V8W 3P6
dolesky@csr.csc.uvic.ca.

and

T.X.T. Phan

Department of Mathematics and Statistics
University of Victoria

Victoria, B.C. Canada VW 3P4
dphan@smart.math.uvic.ca

and

P. van den Driessche *

Department of Mathematics and Statistics
Universsty of Victoria

Victoria, B.C. Canada V8W $P4
pvdd@smart.math. uvic. ca.

Dedicated to Ludwig Elsner on the occasion of his 60th birthday.

*This research was partially supported by an NSERC Research grant and the Uni-
versity of Victoria Committee on Faculty Research and Travel.



ABSTRACT

Two different generalizations of the Perron-Frobenius theory to the matrix
pencil Az = ABz are discussed, and their relationships are studied. In one
generalization, which was motivated by economics, the main assumption is that
(B — A)7!A is nonnegative. In the second generalization, the main assumption
is that there exists a matrix X > 0 such that A = BX. The equivalence of
these two assumptions when B is nonsingular is considered. For p( |IB~'4)) < 1,
a complete characterization, involving a condition on the digraph of B~'A, is
proved. It is conjectured that the characterization holds for p(B~'A) < 1, and
partial results are given for this case.

Keywords. nonnegative matrix, generalized eigenvalue problem, digraph, spec-
tral radius.

AMS subject classification. 15A48, 15A22, 05C50, 15A18.

1. Introduction

In a recent paper {1] a new generalization of the theorem of Perron and
Frobenius to matrix pencils was introduced. For a generalized eigenvalue
problem

Az = ABz (1.1)

with B — A nonsingular and (B — A)~!A (entrywise) nonnegative and
irreducible, it was shown that there exists A € (0, 1) and a positive vector z
such that Az = ABz. An analysis of the reducible case was also given. The
eigenvalue ) associated with the nonnegative eigenvector is the maximum
real eigenvalue in (0, 1). This eigenvalue is

p((B - 4)714)

p(A,B) = 1+p((B —A)—IA)’ (12)

where for a matrix Z, p(Z) := max {|A] | Zz = Az} is the classical spec-
tral radius of Z. This result generalizes Perron-Frobenius results for ma-
trix pencils under assumptions motivated by economic models in [7] and
[15], but it differs substantially from another generalization of the Perron-
Frobenius theory to matrix pencils developed in [11].

The main result of [11, Th. 4.1} states (using a theorem of the alterna-
tive) that if

(BTy >0 implies ATy > 0) or (1.3)
({y| BTy >0} #£ 0 and BTy > 0 implies ATy > 0),

then there exists a nonnegative eigenvector for (1.1) corresponding to a
nonnegative eigenvalue A. If furthermore either A or B has full column



3

rank, then this nonnegative A is equal to the spectral radius of A relative
to B defined as

p(Ap) = { sup{|\| | Az = ABz} ifan eigenvalue of Az = ABz exists,
—00 otherwise.
(1.4)
Neither of these two extensions of the Perron-Frobenius theorem is a
generalization of the other, as demonstrated by the following examples.

1 -1 0 -1

EXaMPLE1l. IfA = ~1 9 and B = [ 10 ], then both con-

ditions of (1.3) are satisfied and p(Ap) = 2.4142. However, the analysis in
(1] is not applicable since (B—A)~1A = [ __1;2 :i ] is not nonmegative;

in particular, p(A, B) is not defined.

~1/4 1/2
1/2 1/8

] is nonnegative and p(A, B) = 0.8921. However, the

EXAMPLE 2. Let A = [
[0.0370 0.5926

] and B = I. Then (B—A)~'A =

0.5926 0.4815
analysis in [11] is not applicable, since neither part of (1.3) holds when
¥ > 0 and 2y; < y;. But p(Ap) is defined and equals 0.5965.

These examples demonstrate that the values p(Ag) and p(A, B) may
differ, and it may also happen (see [1, Ex. 3.7]) that there exist eigenvalues
of (1.1) of larger modulus than p(4, B), while this clearly cannot happen
for p(Ap). Another major difference is that the results of [11] also extend
to rectangular pencils, while [1] makes sense only for square pencils.

It is therefore natural to study the exact relationship between the
two generalizations. In [11], it is shown that the first condition in (1.3)
is equivalent to the existence of X > 0 such that A = BX. Thus,
if one considers square pencils and assumes that B-! exists, then the
main assumption of [11} is that of the classical Perron-Frobenius theo-
rem, ie., Z := B7'A > 0, while the main assumption of [1] is that
(B=A)y"'A=(I-B'A)"'B A= (I-2)"'Z > 0. Soin the sim-
plest possible case, the relationship between the two generalizations should
become apparent when the equivalence

I-2)1'2>0 <= Z>0 (1.5)

holds. In particular, in this case p(Z) = p(B~'A) is equal to p(Ap) and
as is easy to see and already mentioned in [1], also equal to p(A4, B}). Note
that p(A, B) is always less than one, so p(Z) < 1 is a necessary assumption
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for the equality of p(A, B) and p(Ap).

Thus, it is an important step in the analysis of the relationship of the
two Perron-Frobenius generalizations to study under which conditions the
equivalence (1.5) holds. One direction of this equivalence is immediate if

p(Z) < 1.
PRoPOSITION 3. If p(Z) < 1, then Z > 0 implies that (I - Z)~'Z > 0.

Proof. As Z is a nonnegative matrix with p(Z) < 1, the matrix [ — Z
is an M-matrix. Thus (I — Z)~! > 0 (see, e.g., [2, p. 137]) and hence the
product (I — 2)"'Z>0. 0O

Observe that the other direction in Proposition 3 is not true in general,
as shown in Example 2.

The main topic of this paper is the study of the reverse direction in
Proposition 3. In Section 3, we give a complete characterization under the
assumption p(|Z|) < 1. Here |Z| denotes the entrywise absolute value of Z.
We conjecture that the same characterization also holds in the case p(Z) <
1, but we have a proof only in some special cases, which are discussed in
Section 4. Concluding comments are given in Section 5.

2. Notation and Preliminaries

To study the backwards 1mphcat|on in (1.5) we need some concepts from
graph theory.

If Z € R™", then entries of Z are denoted by z;;, and we denote by
Z(#1,42,...,ir) the submatrix of Z obtained by deleting rows and columns
t1,42,...,4. If Z is a block partitioned matrix, then Z;; denotes a block
submatrix of Z. However, for example, (I — Z);; is used to denote either
an entry or a block submatrix of  — Z, where I is the identity matrix. Let
D(Z) be the weighted digraph associated with Z, i.e., D(Z) has vertex set
{1,2,...,n} and an edge from i to j weighted as z;; iff z;; # 0. Walks,
(simple) directed paths, cycles and cycle products in D(Z) are defined in
the usual way; see, e.g., [13]. In particular D(Z) has a 1-cycle at vertex i
iff z;; # 0. Except for 1-cycles, the paths and cycles in D(I — Z) are the
same as those in D(Z).

DEFINITION 4. We say that D(Z) is edge unique if, for all vertices i, j
with an edge from i to j, this edge is the unique directed path from vertex
i to vertex j in D(Z).

Note that this definition allows i = 7, and if there is a 1-cycle at vertex
¢, then edge uniqueness implies that the strongly connected component
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of D(Z) containing vertex i is of order 1. We remark that a unipathic
digraph with no 1-cycles is edge unique; see, e.g., [12, 14]. In general, an
edge unique digraph is neither unipathic nor acyclic.

For any Z € R™", there exists a permutation matrix P so that PZPT
is in Frobenius normal form, i.e.,

Znu Zya - Zik

r Zaz - Doy
PzpT = o, (2.1)

0 Zkk

where Z,, is square and irreducible for 1 < s < k. Note that any 1 x 1
matrix is irreducible. The blocks Z,, correspond to the strongly connected
components of D(Z); see, e.g., [3, p. 58].

We are interested in the nonnegativity of (I — Z)~!'Z, where I — Z is
assumed to be nonsingular. Since (I — Z)~'Z > 0 precisely when I -
PZPT)-1PZPT > 0, we assume w.lo.g. that Z is in Frobenius normal
form (2.1) and we have the following lemma.

LEMMA 5. Assume that Z is in Frobenius normal form (2.1) and that
I — Z 1s nonsingular. Then (I — Z)~'Z has (I - Z,5)"'2,, as the s-
th diagonal block for 1 < s < k, and for any off diagonal entry ((I —
Z2)'2)y =01 - Z)'-‘j1 Joralli#j.

Proof.  The first statement can be verified by block multiplication. For
the second statement, let @ = I —Z. Then (I- 2Z)~12Z = Q=1 - I, whereas
(I - Z)~' = Q7. Thus the two matrices agree off the main diagonal. 0O

3. The case p(|Z]) < 1

In this section we describe necessary and sufficient conditions for Z >0to
be equivalent to (/—Z)~!Z > 0. We study this equivalence in the case that
p(1Z]) < 1. Since the logical structure of the result is quite complicated,
we break it into separate theorems.

THEOREM 6. Let Z € R™" with p(|Z]) < 1 and D(Z) edge unique.
Then (I — Z)~'Z > 0 implies that Z > 0.

Proof.  Since p(|Z]) < 1 and p(Z) < p(|Z]) [8, Th. 8.1.18], [9, p. 49}, it
follows that p(Z) < 1. So I — Z is positive stable, i.e., has all eigenvalues
in the right half plane. Hence I — Z is nonsingular and det(I - 2) > 0.
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The matrix |Z| is nonnegative, and thus by the Perron-Frobenius theorem
(see, e.g., [8]), p(1Z(i, 7)) < p(1Z]). Hence

p(2(i,5)) < p(12(3, 9)]) < 1,

and
det(I — Z(i, j)) = det{(I — Z)(4,4)) > 0.

Consider an entry z;; # 0 with i # j. Then by [13, Cor. 9.1] the matrix

entry N
U-2); = (—1)(—2,.].)det((i(elt(—1 f)g)u))’

since edge uniqueness means that the edge from 7 to j is the unique path
from vertex ¢ to vertex j. By Lemma 5 and the positivity of both determi-
nants, ((I—2)~12);; = az;j where a > 0. By assumption ((I-2)"'Z2);; >
0, and thus z;; > 0 (since z;; # 0). If z;; # 0, then edge uniqueness and
Lemma 5 imply that zl—i';:; > 0 and p(Z) < 1 implies that 1 — z;; > 0,
giving z;; > 0. Thus all nonzero entries of Z are positive. 0

The following is the converse of Proposition 3 and Theorem 6.

THEOREM 7. For a fized digraph D, let Zp = {Z € R™" | D(Z) =
D and p(|Z|) < 1}. If the equivalence (I —Z)™'Z > 0 <= Z > 0) holds
for all Z € Zp, then D is edge unique.

Proof. We prove the contrapositive: There exists Z 2 0 with p(|Z]) <
1 and D(Z) not edge unique having (I — Z)™'Z > 0. Considering the

irreducible case first, let Z be irreducible. Then D(Z) is strongly con-
nected, but is assumed not edge unique. Let D(Z) be a strongly connected
subgraph of D(Z) on n vertices that is edge unique and let Z be an appro-
priately scaled adjacency matrix so that p(Z) < 1. Let Z be the matrix
that has a 1 in each entry where the adjacency matrices of D(Z) and D(Z)
differ and zeros elsewhere. For sufficiently small € > 0, set Z = Z — €Z so
that p(]Z]) < 1. Notice that Z > 0 but Z ¥ 0. Since D(Z) = D(Z), D(Z)
is not edge unique. Now, as p(|Z|) < 1 implies p(Z) < 1, the Neumann
expansion gives

I-2)'z2 = 2+2*+2°+.-.
(Z-€Z)+(Z-€2) +(Z—€Z)>+---
= (Z4+Z224+2%+--)4+0()

= (I-2)"'Z+40()

i

since p(Z) < 1. But (Z9);; is equal to the sum of all walks from i to j
of length g in D(Z). Consider vertices i and j (not necessarily distinct).
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As Z is irreducible, for each pair 1, j, there exists a path from ¢ to j of
some length, say h. Since Z > 0, each path product in D(Z) is positive
so (Z"),-j > 0. Because only zero and positive terms occur in the sum,
this implies ((1 — Z)‘IZ),-J- > 0. Thus (I — Z)~1Z is a positive matrix.
Therefore, for ¢ sufficiently small, (I — 2)-1Z > 0.

Now consider the reducible case. Let Z be reducible and w.lo.g. as-
sume D(Z) is weakly connected and in Frobenius normal form as in (2.1).
Also assume that D(Z) is not edge unique. Let Z be a submatrix of 2
constructed as follows. For 1 < s < k, diagonal blocks Z,, are constructed
as in the irreducible case. Initialize Z,q = |Z,,| for all p # ¢. For each
block Z~pq, p < ¢, that contains more than one nonzero entry, redefine qu
by deleting all but one nonzero entry. If there now exists an edge and a
path between blocks p and ¢ in D(Z ), then redefine qu to be the zero
matrix. Then D(Z) is weakly connected and edge unique. For ¢ > 0, set
Z = Z — ¢Z where Z is the matrix that has a 1 in each entry where the ad-
jacency matrices of D(Z) and D(Z) differ and zeros elsewhere. Now Z >0
but Z # 0. By block multiplication, it can be verified that the P, q block

vanishes if p > ¢, while for p < ¢ we have

((1 - Z)—IZ)PQ = Z (I— Zf‘l,"l)_lz"l,":(l_Z"z,"n)_l x
p=ri<-<rm=q

Z"n."a o 'Z"m—ly"m(l - Z"m,"m)_l'

For the diagonal blocks, either (I — z,,,,)-lz,:,, =(I - Z,,,,)-IZ,,,,, or as in
the irreducible case, (I — Z,,)"1Z,, = (I - Zpp) "1 Zpp + O(e). Forp< g,
using the Sherman-Morrison-Woodbury formula (see, e.g., [8, p. 19))

((I=2)"'2),, = Z I=2e v ) 20, ea(I = 2,y 0,) x

p=r1<rak - <r;=q

Z;'z,"a ”.Z"m—l.rm(l_ Zrm;rm)—l +O(€)' (31)

For fixed p < ¢, either ((I — 2)~'Z),; = 0 or, as D(Z) is edge unique,
exactly one summand in the summation in (3.1) is nonzero. In the latter
case, this summand is a positive matrix because Z,, ,, n20ifry <ryyg
and (I - Z,,)‘l >0 forall1<s <k (since Z,, in nonnegative, irreducible
and has p(Z,,) < 1). Using the continuity of the spectral radius (see, e.g.,
[5, 6]), for all € sufficiently small (I — Z)~!Z),, > 0 and p(IZ])<1. O
The construction in Theorem 7 is illustrated in the following example.
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Figure 1: D(Z) of Exam];le 8

ExAMPLE 8. Let Z be a fixed matrix with D(Z) as shown in Figure 1.
Clearly D(Z) is not edge unique. Following the proof given in Theorem 7,

- -

0 - 09 0 0 0 0 0 0 0
09 0 0 0 — 0 — 0 0 0

0 09 0 9 0 0 0 0 0 0

0 0 0 0 09 0 0 0 0 0

= . o 0o 009 0 = 0 0 6 1
Z=Z-<Z=1 9 9 0 0 0 0 07 0 0 0
0 0 0 0 0 0 0 — 07 0

O 0 0 0 0 0 07 0 0 0

0 0 0 0 0 07 0 07 0 0

0 0 0 0 0 0 0 0 0 05

where € > 0. Setting ¢ = 0.1 gives p(|Z|) = 0.9333 < 1 and (I-2)~'Z > 0.
Note that Z # 0.

We end this section by collecting together the results of Proposition 3,
and Theorems 6 and 7.

THEOREM 9. For a fired digraph D, let Zp = {Z € R™" | D(Z2) =
D and p(|Z]|) < 1}. Then the following are equivalent:
G) (I-2)"1Z2>0 <= Z>0 forall Z € Zp.
(ii) D is edge unique.

To illustrate the logic of Theorem 9, consider the following example.



_10 1/2 10 1/2 _
EXAMPLE 10. Let A; = 1 _1/4], A = 1 1/4] and B = 1.
Thus Z, = Ay, Z3 = Ay and p(|21]) = p(]Z2]) = 0.8431. Also, (r -
2/3 2/3 2 2
Zl)‘lZl = [ 4§3 1;3 ] and (I - Zz)_lZ2 = [ 4 3 ] Here D(Zl) =~

D(Z>) is not edge unique, and note that the equivalence in (i) of Theorem 9
holds for Zs but not for Z;.

4. The case p(Z) < 1

In this section, we consider the equivalence of (i) and (ii) in Theorem 9
when the spectral radius condition is relaxed to p(Z) < 1. For this case we
have already one direction given in Proposition 3. For the other direction
we have the following partial result.

THEOREM 11. If p(Z) < 1, D(Z) is edge unique and has all cycle prod-
ucts positive, then (I — Z)~1Z > 0 implies that Z > 0.

Proof. If D(Z) has all cycle products positive, then each irreducible
block Z,,,1 < s < k, is signature similar to |Z,,|; see, e.g., [4]. Since
p(2) = max kp(Z,,), it follows that p(|Z[) = p(Z) (see also [9, p. 50])

o=

and the result follows from Theorem 6. 0

We conjecture that the positive cycle condition in Theorem 11 is not
required; thus we have the following (cf. Th. 9).

CoNJECTURE 12.  For a fixed digraph D, let 2, = {Z € R"" | D(Z)
D and p(Z) < 1}. Then the following are equivalent:

(i) I-2)"'Z220 <> Z>0forall Z € 2.
(i) D is edge unique.

Note that if under our stated conditions on Z, (I — Z)~'Z, and D(2),
we have that p(Z) < 1 implies that p()Z|) < 1, then Conjecture 12 follows
from Theorem 9; we conjecture that this implication holds.

We now give two additional results in which a digraph condition is given
that is sufficient (but not necessary) for the equivalence (i) of Conjecture 12
to hold.
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THEOREM 13. If p(Z) < 1,D(Z) is edge unique, and each edge in D(Z)
has at least one incident verter with outdegree or indegree exactly 1, then
(I - Z)='Z > 0 implies that Z > 0.

Proof. Consider z;; # 0 where 2;; is an entry in an off-diagonal block
Zpq of (2.1). Then

-1 _ #jdet((I = 2)(i,)))
I-2)5' = =72

by [13], since D(Z) is edge unique. As i and j are in different irreducible
blocks, Zp, and Zyq respectively,

zij det((1 — Zpp)(i)) det (1 — Zqq) (7))

-2 = det(T = 2) AL et =2
213 det((] = Zpp)(0)) det(( = Zgg) () -
det(f — Zpp) det(] ~ Zgq)
= z;(I- pr)i—il(l - qu)j-jl’

by using the adjoint formula for each inverse. But (I — Z,,)~! > I, from
the proof of Lemma 5, thus (I — Z),T'j1 = ((I = 2)712);; > 0 implies that
Zij > 0.

If z;; # 0, then as in the proof of Theorem 6, z;; > 0. It suffices now
to consider an irreducible block of order > 2. Suppose that vertex j has

indegree 1, and z;; # 0, where z;; belongs to an irreducible block Z,, and
t # j. Then

(F=2)7'2)i; =) _(I - 2)7'a;
1
where the summation is over the rows (and columns) in Z,,. By the
assumed conditions on D(Z), this sum has only one term, namely (I —
Z);lz;. But (I - 2);' > 1, thus (I — Z)~'Z > 0 implies that z; > 0.
Similarly, if vertex ¢ has outdegree 1 and z;; # 0, then

(Z(I1-2)); = Z.‘j(I—VZ)J-'jl.

Since Z(I — 2)~' = (I — Z2)"'Z > 0, this implies that z;; > 0. Hence
Z>0. 0

Recall that vertex i is a cut verter if D(Z) — {i{} has more weakly
connected components than D(Z). We define a leaf cycle in D(Z) as a
cycle with exactly one cut vertex. If D(Z) is edge unique, then each edge
on a leaf cycle satisfies the extra digraph condition of Theorem 13. By the
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method in the proof of Theorem 13, if p(Z) < 1 and (I — Z)~1Z > 0, then
zij > 0 when edge 1, j lies on a leaf cycle of D(Z). Thus, under the stated
conditions, each leaf cycle has positive cycle product.

THEOREM 14. If p(Z) < 1,D(Z) is edge unique and has no cycle of
length greater than 2, then (I — Z)='Z > 0 implies that Z > 0.

Proof.  Firstly, consider the case when Z is irreducible, thus I — Z
is irreducible. The assumption (I — Z)~'Z > 0 and Lemma 5 imply that
(I-Z)~! > 0. Also, the assumption p(Z) < 1implies that I — Z is positive
stable. Since D(Z) is assumed to have 2 as the length of it longest cycle,
I — Z is an M-matrix by [10, Th. 2]. Hence Z > 0.

When Z is reducible, take it in Frobenius normal form (2.1) with k > 2.
Lemma 5 and the above proof show that all entries in the diagonal blocks
Zss are nonnegative. Consider zij # 0 where z;; is an entry in an off-
diagonal block Z,,. The first part of the proof of Theorem 13 shows that
z;>0. 0O

We conclude this section by using positivity of leaf cycles in two exam-
ples for which the conjecture is true.

EXAMPLE 15. Let Z be a fixed matrix with p(Z) < 1 and D(Z) a cycle
of length t with leaf cycles of any length attached to at most ¢t —1 vertices on
the cycle. Note that D(Z) is edge unique. Assuming that (I-2)"'z >0,
the entries of Z corresponding to leaf cycle edges can be proved positive by
the method in Theorem 13 (see the discussion above Theorem 14). For the
cycle of length ¢, assume w.l.o.g. that vertices 1,2,...,¢ lie on the cycle in
that order, with vertex 1 having indegree 1. Consider the matrix entry

((I-2)""2)n
(- Z)i"lzu
det(f - 2)
(1) (=z12)(—223) - - - (=z—1,4) 21 det (I — Z)(1,2,.. ., 1))
(det(T = 2))?

by {13]. Here det((/—2Z)(1,2,...,t)) = 1, since removing vertices 1,2,...,t
breaks every cycle in D(Z). Thus ((I — Z)~'Z),; > 0 implies that the ¢-
cycle product is positive. Thus by Theorem 11, Z > 0.

EXAMPLE 16. Let Z € R™" be a fixed matrix with p(Z) < 1 and
D(Z) as in Figure 2, and note that D(Z) is edge unique. Assuming that
(I —2)1Z > 0, as in Example 15 the entries of Z corresponding to the



12

Figure 2: D(Z) of Example 16

3 leaf cycles can be shown positive. From the proof of Lemma 5, (I —
Z)~'Z > 0 implies that (I — Z)~1 > I. The inequalities on the entries
(I—Z)gal > 1and (I—Z);i1 > 1 imply that (1 —212223231), (1 —245255264)
and (1 — 278z89297) are either all less than 1 or all greater than 1. Since
|det Z| = 1212223231 245 256 264278 289 297| < 1, each of the above 3 terms must
lie in (0,1). Now the inequalities (I — 2)~'2)37 > 0, (I - 2)'Z)74 > 0
and ((I — 2)~12)43 > 0, respectively, give 237 > 0, 274 > 0, and 243 > 0.
Thus Z > 0. .

5. Concluding comments

Direct consequences of the previous results are the following corollaries
that give sufficient conditions so that both generalizations of the Perron-
Frobenius theorem lead to the same spectral radius.

COROLLARY 17. Let A,B € R™" and suppose that B and B — A are

nonsingular. Assume further that Z = B~ A is nonnegative and p(Z) < 1.
Then p(A, B) = p(AB).

Proof. By Proposition 3, under the given assumptions Z > 0 implies
that (I - Z)~'Z > 0, and hence (B~ A)~'A4 > 0. Thus p(A, B) as in (1.2)
is defined and

I
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where p = p((B — A)~'A). Also, there exists a nonnegative vector z such
that
(B—A)"'Az = pz,

which (see [1]) is equivalent to

I

Az =
z 1+p

Bz,

from which it follows that p(Ag) = T4y also. O

COROLLARY 18. Let A, B € R™" and suppose that B and B — A are
nonsingular. Assume further that (I — Z)~'Z is nonnegative, where Z =
B~1A, that p(|Z|) < 1 and that D(Z) is edge unique. Then p(A,B) =
p(AB).

Proof. By Theorem 6, under the given assumptions, Z > 0. Thus by
the proof of Corollary 17, p(A, B) = p(Ag). 0O

Note that if Conjecture 12 is true, the assumption p(|Z|) < 1 in Corol-
lary 18 can be replaced by p(Z) < 1.

Finally, it should be noted that the results in [1} can be easily generalized
by introducing scaling parameters. If positive a, 8 exist such that B —a A
is nonsingular and (8B — aA)~!A is nonnegative, then analogous results
are obtained by replacing p(Z) < 1 by p(Z) < g and p(A, B) by

_ — _Bol(BB — ad)")A)
papl A B) = 1 (BB = ad)D)A)’
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