LOCAL QUADRATIC CONVERGENCE OF SQP FOR ELLIPTIC
OPTIMAL CONTROL PROBLEMS WITH MIXED
CONTROL-STATE CONSTRAINTS

ROLAND GRIESSE, NATALIYA METLA, AND ARND RÖSCH

Abstract. Semilinear elliptic optimal control problems with pointwise control
and mixed control-state constraints are considered. Necessary and sufficient
optimality conditions are given. The equivalence of the SQP method and
Newton's method for a generalized equation is discussed. Local quadratic
convergence of the SQP method is proved.

1. Introduction

This paper is concerned with the local convergence analysis of the sequential qua-
dratic programming (SQP) method for the following class of semilinear optimal
control problems:

Minimize \(f(y, u) := \int_{\Omega} \phi(\xi, y(\xi), u(\xi)) \, d\xi \) \hspace{1cm} (P)

subject to \(u \in L^\infty(\Omega) \) and the elliptic state equation

\[
Ay + d(\xi, y) = u \quad \text{in } \Omega, \\
y = 0 \quad \text{on } \partial \Omega,
\]

as well as pointwise constraints

\[
u \geq 0 \quad \text{in } \Omega, \\
\varepsilon u + y \geq y_c \quad \text{in } \Omega.
\]

Here and throughout, \(\xi \) denotes points in the bounded domain \(\Omega \subset \mathbb{R}^N, N \in \{2, 3\} \),
which is convex or has a \(C^{1,1} \) boundary \(\partial \Omega \). In (1.1), \(A \) is an elliptic operator in
\(H^1_0(\Omega) \) specified below, and \(\varepsilon \) is a positive number. The bound \(y_c \) is a function in
\(L^\infty(\Omega) \).

Problems with mixed control-state constraints are important as Lavrentiev-type
regularizations of pointwise state-constrained problems [18–20], but they are also
interesting in their own right. Note that in addition to the mixed control-state
constraint, a pure control constraint is present on the same domain. Since problem
\((P)\) is nonconvex, different local minima may occur.

SQP methods have proved to be fast solution methods for nonlinear programming
problems. A large body of literature exists concerning the analysis of these methods
for finite-dimensional problems. For a convergence analysis in a general Banach
space setting with equality and inequality constraints, we refer to [2,3].

The main contribution of this paper is the proof of local quadratic convergence of
the SQP method, applied to \((P)\). To our knowledge, such convergence results in the

Date: May 6, 2009.
context of PDE-constrained optimization are so far only available for purely control-constrained problems [6, 11, 12, 26, 27, 29]. In the context of ordinary differential equations, the SQP method has been analyzed for instance in [5, 13, 15], even in the presence of mixed control-state constraints and pure state constraints. Following [2, 3], we exploit the equivalence between the SQP and the Lagrange-Newton methods, i.e., Newton’s method, applied to a generalized (set-valued) equation representing necessary conditions of optimality. We concentrate on specific issues arising due to the semilinear state equation, e.g., the careful choice of suitable function spaces. An important step is the verification of the so-called strong regularity of the generalized equation, which is made difficult by the simultaneous presence of pure control and mixed control-state constraints (1.2). The key idea was recently developed in [4], using ideas from [14].

We remark that strong regularity is known to be closely related to second-order sufficient conditions (SSC). For problems with pure control constraints, SSC are well understood and they are close to the necessary ones when so-called strongly active subsets are used, see, e.g., [27, 29, 30]. However, the situation is more difficult for problems with mixed control-state constraints [9, 22, 24] or even pure state constraints. In order to avoid a more technical discussion, we presently employ relatively strong SSC. We comment on the possibility of weakening these conditions in Section 8.

The material in this paper is organized as follows. In Section 2, we state our main assumptions and recall some properties about the state equation. Necessary and sufficient optimality conditions for problem (P) are stated in Section 3, and their reformulation as a generalized equation is given in Section 4. Section 5 addresses the equivalence of the SQP and Lagrange-Newton methods. Section 6 is devoted to the proof of strong regularity of the generalized equation. Finally, Section 7 completes the convergence analysis of the SQP method. A number of auxiliary results have been collected in the Appendix.

We denote by \(L^p(\Omega) \) and \(H^m(\Omega) \) the usual Lebesgue and Sobolev spaces [1], and \((\cdot, \cdot)\) is the scalar product in \(L^2(\Omega) \) or \([L^2(\Omega)]^N\), respectively. \(H^1_0(\Omega) \) is the subspace of \(H^1(\Omega) \) with zero boundary traces, and \(H^{-1}(\Omega) \) is its dual. The continuous embedding of a normed space \(X \) into a normed space \(Y \) is denoted by \(X \hookrightarrow Y \). Throughout, we denote by \(B^X_r(x) \) the open ball of radius \(r \) around \(x \), in the topology of \(X \). In particular, we write \(B^\infty_r(x) \) for the open ball with respect to the \(L^\infty(\Omega) \) norm. Throughout, \(c, c_1 \) etc. denote generic positive constants whose value may change from instance to instance.

2. Assumptions and Properties of the State Equation

The following assumptions (A1)–(A4) are taken to hold throughout the paper.

Assumption.

(A1) **Let** \(\Omega \) **be a bounded domain in** \(\mathbb{R}^N \), \(N \in \{2, 3\} \) **which is convex or has** \(C^{1,1} \) **boundary** \(\partial \Omega \). **The bound** \(y_c \) **is in** \(L^\infty(\Omega) \), **and** \(\varepsilon > 0 \).

(A2) **The operator** \(A : H^1_0(\Omega) \to H^{-1}(\Omega) \) **is defined as** \(A(y) = a[y, v] \), **where**

\[
a[y, v] = (\nabla v, A_0 \nabla y)_{H^1_0(\Omega), H^{-1}(\Omega)} + (cy, v).
\]

A_0 **is an** \(N \times N \) **matrix with Lipschitz continuous entries on** \(\overline{\Omega} \) **such that** \(\rho^\top A_0(\xi) \rho \geq m_0 |\rho|^2 \) **holds with some** \(m_0 > 0 \) **for all** \(\rho \in \mathbb{R}^N \) **and almost
Recall that a function L is Lipschitz continuous, see Lemma A.1. The necessity of using L as a state space, since

$$
\text{our choice when } Y \text{ is replaced by } H^1_0(\Omega) \text{ with some positive constants } \tilde{\tau} \text{ and } c. \text{ A simple example is } a[y, v] = (\nabla y, \nabla v), \text{ corresponding to } A = -\Delta.
$$

(A3) $d(\xi, y)$ belongs to the C^2-class of functions with respect to y for almost all $\xi \in \Omega$. Moreover, d_{yy} is assumed to be locally bounded and locally Lipschitz continuous function with respect to y, i.e., the following conditions hold true: there exists $K > 0$ such that

$$
|d(\xi, 0)| + |d_y(\xi, 0)| + |d_{yy}(\xi, 0)| \leq K_d,
$$

and for any $M > 0$, there exists $L_d(M) > 0$ such that

$$
|d_{yy}(\xi, y_1) - d_{yy}(\xi, y_2)| \leq L_d(M) |y_1 - y_2| \quad \text{a.e. in } \Omega
$$

for all $y_1, y_2 \in \mathbb{R}$ satisfying $|y_1|, |y_2| \leq M$.

Additionally $d_y(\xi, y) \geq 0$ a.e. in Ω, for all $y \in \mathbb{R}$.

(A4) The function $\phi = \phi(\xi, y, u)$ is measurable with respect to $\xi \in \Omega$ for each y and u, and of class C^2 with respect to y and u for almost all $\xi \in \Omega$. Moreover, the second derivatives are assumed to be locally bounded and locally Lipschitz continuous functions, i.e., the following conditions hold: there exist $K_y, K_u, K_{yu} > 0$ such that

$$
|\phi(\xi, 0, 0)| + |\phi_y(\xi, 0, 0)| + |\phi_{yy}(\xi, 0, 0)| \leq K_y, \quad |\phi_{yu}(\xi, 0, 0)| \leq K_{yu},
$$

$$
|\phi(\xi, 0, 0)| + |\phi_u(\xi, 0, 0)| + |\phi_{uu}(\xi, 0, 0)| \leq K_u.
$$

Moreover, for any $M > 0$, there exists $L_\phi(M) > 0$ such that

$$
|\phi_{yy}(\xi, y_1, u_1) - \phi_{yy}(\xi, y_2, u_2)| \leq L_\phi(M) \left(|y_1 - y_2| + |u_1 - u_2|\right),
$$

$$
|\phi_{yu}(\xi, y_1, u_1) - \phi_{yu}(\xi, y_2, u_2)| \leq L_\phi(M) \left(|y_1 - y_2| + |u_1 - u_2|\right),
$$

$$
|\phi_{uu}(\xi, y_1, u_1) - \phi_{uu}(\xi, y_2, u_2)| \leq L_\phi(M) \left(|y_1 - y_2| + |u_1 - u_2|\right)
$$

for all $y_i, u_i \in \mathbb{R}$ satisfying $|y_i|, |u_i| \leq M$, $i = 1, 2$.

In addition, $\phi_{uu}(\xi, y, u) \geq m > 0$ a.e. in Ω, for all $(y, u) \in \mathbb{R}^2$.

In the sequel, we will simply write $d(y)$ instead of $d(\xi, y)$ etc. As a consequence of (A3)–(A4), the Nemyckii operators $d(\cdot)$ and $\phi(\cdot)$ are twice continuously Fréchet differentiable with respect to the $L^\infty(\Omega)$ norms, and their derivatives are locally Lipschitz continuous, see Lemma A.1.

The necessity of using $L^\infty(\Omega)$ norms for general nonlinearities d and ϕ motivates our choice

$$
Y := H^2(\Omega) \cap H^1_0(\Omega)
$$

as a state space, since $Y \hookrightarrow L^\infty(\Omega)$.

Remark 2.1. In case Ω has only a Lipschitz boundary, our results remain true when Y is replaced by $H^1_0(\Omega) \cap L^\infty(\Omega)$.

Recall that a function $y \in H^1_0(\Omega) \cap L^\infty(\Omega)$ is called a weak solution of (1.1) with $u \in L^2(\Omega)$ if $a[y, v] + (d(y), v) = (u, v)$ holds for all $v \in H^1_0(\Omega)$.

Lemma 2.2. Under assumptions \((A1)-(A3)\) and for any given \(u \in L^2(\Omega)\), the semilinear equation \((1.1)\) possesses a unique weak solution \(y \in Y\). It satisfies the a priori estimate
\[
\|y\|_{H^1(\Omega)} + \|y\|_{L^\infty(\Omega)} \leq C_\Omega (\|u\|_{L^2(\Omega)} + 1)
\]
with a constant \(C_\Omega\) independent of \(u\).

Proof. The existence and uniqueness of a weak solution \(y \in H^1_0(\Omega) \cap L^\infty(\Omega)\) is a standard result [28, Theorem 4.8]. It satisfies
\[
\|y\|_{H^1(\Omega)} + \|y\|_{L^\infty(\Omega)} \leq C_\Omega (\|u\|_{L^2(\Omega)} + 1) =: M
\]
with some constant \(C_\Omega\) independent of \(u\). Lemma A.1 implies that \(d(y) \in L^\infty(\Omega)\).

Using the embedding \(L^\infty(\Omega) \hookrightarrow L^2(\Omega)\), we conclude that the difference \(u - d(y)\) belongs to \(L^2(\Omega)\). Owing to assumption \((A1)\), \(y \in H^2(\Omega)\), see for instance [10, Theorem 2.2.2.3].

We will frequently also need the corresponding result for the linearized equation
\[
Ay + d_y(\overline{y}) y = u \quad \text{in } \Omega,
\]
\[
y = 0 \quad \text{on } \partial \Omega.
\]

(2.1)

Lemma 2.3. Under assumptions \((A1)-(A3)\) and given \(\overline{y} \in L^\infty(\Omega)\), the linearized PDE \((2.1)\) possesses a unique weak solution \(y \in Y\) for any given \(u \in L^2(\Omega)\). It satisfies the a priori estimate
\[
\|y\|_{H^2(\Omega)} \leq C_\Omega(\overline{y}) \|u\|_{L^2(\Omega)}
\]
with a constant \(C_\Omega(\overline{y})\) independent of \(u\).

Proof. According to \((A3)\) and Lemma A.1, \(d_y(\overline{y})\) is a nonnegative coefficient in \(L^\infty(\Omega)\). The claim thus follows again from standard arguments, see, e.g., [10, Theorem 2.2.2.3].

Example. We briefly comment on the existence of optimal controls for \((P)\) in \(L^\infty(\Omega)\), which we will suppose in the sequel. For the general objective function above, the existence of an optimal control in \(L^2(\Omega)\) follows from the convexity assumption on \(\psi\) in \((A4)\), see [28, Theorem 4.13]. However, our theory requires \(u^*\) to belong to \(L^\infty(\Omega)\). Such a result typically follows from projection formulas, compare [25]. Projection formulas are derived from the first-order necessary optimality conditions, which in turn rely on the differentiability of the reduced objective. For general objective functions, this differentiability requires growth conditions.

The situation becomes easier for the following class of objective functions:
\[
f(y,u) = \int_{\Omega} \psi(\xi,y(\xi)) \, d\xi + \nu \frac{1}{2} \|u\|_{L^2(\Omega)}^2.
\]
The new function \(\psi\) is required to satisfy the same smoothness assumptions as in \((A4)\). Clearly, \(\phi_{uu} \equiv \nu > 0\) is satisfied. The reduced objective is twice differentiable \(w.r.t.\) \(L^2(\Omega)\). The existence of Lagrange multipliers \(\mu^*_i \in L^2(\Omega)\) follows even for \(u^* \in L^2(\Omega)\). Using the projection formula [8, proof of Theorem 6.4], one can show that \(u^*\) and the Lagrange multipliers belong in fact to \(L^\infty(\Omega)\). For examples of this type, all assumptions are satisfied, and only \(\text{(SSC)}\) and the separation assumption \((A6)\) remain to be verified.
3. Necessary and Sufficient Optimality Conditions

In this section, we introduce necessary and sufficient optimality conditions for problem (P). For convenience, we define the Lagrange functional

\[L : Y \times L^\infty(\Omega) \times Y \times L^\infty(\Omega) \times L^\infty(\Omega) \to \mathbb{R} \]

as

\[L(y, u, p, \mu_1, \mu_2) = f(y, u) + a[y, p] + (p, d(y) - u) - (\mu_1, u) - (\mu_2, \varepsilon u + y - y_c). \]

Here, \(\mu_1 \) and \(\mu_2 \) are Lagrange multipliers associated to the inequality constraints, and \(p \) is the adjoint state. The existence of regular Lagrange multipliers \(\mu_1, \mu_2 \in L^\infty(\Omega) \) was shown in [23, Theorem 7.3], which implies the following lemma:

Lemma 3.1. Suppose that \((y, u) \in Y \times L^\infty(\Omega)\) is a local optimal solution of (P). Then there exist regular Lagrange multipliers \(\mu_1, \mu_2 \in L^\infty(\Omega) \) and an adjoint state \(p \in Y \) such that the first-order necessary optimality conditions

\[
\begin{align*}
\mathcal{L}_y(y, u, p, \mu_1, \mu_2) &= 0, \\
\mathcal{L}_u(y, u, p, \mu_1, \mu_2) &= 0, \\
\mathcal{L}_p(y, u, p, \mu_1, \mu_2) &= 0, \\
\varepsilon u + y - y_c &\geq 0,
\end{align*}
\]

(\text{FON})

hold.

Remark 3.2.

1. (1) Note that due to the structure of the constraints, an additional regularity assumption such as the existence of a Slater point is not required.
2. (2) The Lagrange multipliers and adjoint state associated to a local optimal solution of (P) need not be unique if the active sets \(\{ \xi \in \Omega : u = 0 \} \) and \(\{ \xi \in \Omega : \varepsilon u + y - y_c = 0 \} \) intersect nontrivially, see [4, Remark 2.6]. This situation will be excluded by Assumption (A6) below.

Conditions (FON) are also stated in explicit form in (4.1) below. To guarantee that \(x = (y, u) \) with associated multipliers \(\lambda = (\mu_1, \mu_2, p) \) is a local solution of (P), we introduce the following second-order sufficient optimality condition (SSC):

There exists a constant \(\alpha > 0 \) such that

\[L_{xx}(x, \lambda)(\delta x, \delta x) \geq \alpha \| \delta x \|^2_{L^2(\Omega)} \]

(3.1)

for all \(\delta x = (\delta y, \delta u) \in Y \times L^\infty(\Omega) \) which satisfy the linearized equation

\[A\delta y + d_y(y) \delta y = \delta u \quad \text{in} \quad \Omega, \]

\[\delta y = 0 \quad \text{on} \quad \partial \Omega. \]

(3.2)

In (3.1), the Hessian of the Lagrange functional is given by

\[L_{xx}(x, \lambda)(\delta x, \delta x) := \int_\Omega \begin{pmatrix} \delta y \\ \delta u \end{pmatrix}^T \begin{pmatrix} \phi_{yy}(y, u) + d_{yy}(y) & \phi_{yu}(y, u) \\ \phi_{uy}(y, u) & \phi_{uu}(y, u) \end{pmatrix} \begin{pmatrix} \delta y \\ \delta u \end{pmatrix} d\xi. \]

For convenience, we will use the abbreviation

\[X := Y \times L^\infty(\Omega) = H^2(\Omega) \cap H^1_0(\Omega) \times L^\infty(\Omega) \]

in the sequel.

Assumption.

(A5) We assume that \(x^* = (y^*, u^*) \in X \), together with associated Lagrange multipliers \(\lambda^* = (p^*, \mu_1^*, \mu_2^*) \in Y \times [L^\infty(\Omega)]^2 \), satisfies both (FON) and (SSC).
As mentioned in the introduction, the second-order sufficient conditions can be weakened by taking into account strongly active subsets. However, this would make the discussion more technical. Nevertheless, we comment on this possibility in Section 8.

Definition 3.3.

(a) A pair \(x = (y, u) \in X \) is called an admissible point if it satisfies (1.1) and (1.2).

(b) A point \(\bar{x} \in X \) is called a strict local optimal solution in the sense of \(L^\infty(\Omega) \) if there exists \(\epsilon' > 0 \) such that the inequality \(f(\bar{x}) < f(x) \) holds for all admissible \(x \in X \setminus \{ \bar{x} \} \) with \(\|x - \bar{x}\|_{L^\infty(\Omega)} \leq \epsilon' \).

Theorem 3.4. Under Assumptions (A1)–(A5), there exists \(\beta > 0 \) and \(\epsilon' > 0 \) such that

\[
f(x) \geq f(x^*) + \beta \|x - x^*\|^2_{L^2(\Omega)}
\]

holds for all admissible \(x \in X \) with \(\|x - x^*\|_{L^\infty(\Omega)} \leq \epsilon' \). In particular, \(x^* \) is a strict local optimal solution in the sense of \(L^\infty(\Omega) \).

Proof. The proof can be done along the lines of [16, Theorem 3.5]. It has to observe the two-norm discrepancy principle and uses Lemma A.2. \(\square \)

4. Generalized Equation

We recall the necessary optimality conditions (FON) for problem (P), which read in explicit form

\[
\begin{aligned}
a[v, p] + (d_y(y)p, v) + (\phi_y(y, u), v) - (\mu_2, v) &= 0, \quad \forall v \in H^1_0(\Omega) \\
(\phi_u(y, u), v) - (p, v) - (\mu_1, v) - (\epsilon \mu_2, v) &= 0, \quad \forall v \in L^2(\Omega) \\
a[y, v] + (d(y), v) - (u, v) &= 0, \quad \forall v \in H^1_0(\Omega) \\
\mu_1 &\geq 0, \quad u \geq 0, \quad \mu_1 u = 0 \\
\mu_2 &\geq 0, \quad \epsilon u + y - y_0 \geq 0, \quad \mu_2 (\epsilon u + y - y_0) = 0 \\
\end{aligned}
\]

(4.1)

As was mentioned in the introduction, the local convergence analysis of SQP is based on its interpretation as Newton’s method for a generalized (set-valued) equation

\[
0 \in F(y, u, p, \mu_1, \mu_2) + N(y, u, p, \mu_1, \mu_2)
\]

equivalent to (4.1). We define

\[
K := \{ \mu \in L^\infty(\Omega) : \mu \geq 0 \quad \text{a.e. in } \Omega \},
\]

the cone of nonnegative functions in \(L^\infty(\Omega) \), and the dual cone \(N_1 : L^\infty(\Omega) \rightarrow P(L^\infty(\Omega)) \),

\[
N_1(\mu) := \begin{cases} \{ z \in L^\infty(\Omega) : (z, \mu - \nu) \geq 0 \quad \forall \nu \in K \} & \text{if } \mu \in K, \\
\emptyset & \text{if } \mu \notin K. \end{cases}
\]

Here \(P(L^\infty) \) denotes the power set of \(L^\infty(\Omega) \), i.e., the set of all subsets of \(L^\infty(\Omega) \). In (4.2), \(F \) contains the single-valued part of (4.1), i.e.,

\[
F(y, u, p, \mu_1, \mu_2) = \begin{pmatrix} A^* p + d_y(y)p + \phi_y(y, u) - \mu_2 \\
\phi_u(y, u) - p - \mu_1 - \epsilon \mu_2 \\
A y + d(y) - u \\
\epsilon u + y - y_0 \end{pmatrix}.
\]
Both A and its formal adjoint A^* are considered here as operators from Y to $L^2(\Omega)$, i.e., $Ay = -\text{div} (A_0 \nabla y) + cy$ and $A^*p = -\text{div} (A_0^T \nabla p) + cp$ hold. Moreover, N is the set-valued function

$$N(y, u, p, \mu_1, \mu_2) = \{0\} \times \{0\} \times \{0\} \times N_1(\mu_1), N_1(\mu_2)^\top.$$

Note that the generalized equation (4.2) is nonlinear, since it contains the nonlinear functions d, d_y, ϕ_y and ϕ_u.

Remark 4.1. Let

$$W := Y \times L^\infty(\Omega) \times Y \times L^\infty(\Omega) \times L^\infty(\Omega),$$

$$Z := L^2(\Omega) \times L^\infty(\Omega) \times L^2(\Omega) \times L^\infty(\Omega) \times L^\infty(\Omega).$$

Then $F : W \rightarrow Z$ and $N : W \rightarrow P(Z)$. Owing to Assumptions (A3) and (A4), F is continuously Fréchet differentiable with respect to the $L^\infty(\Omega)$ norms, see Lemma A.1.

Lemma 4.2. The first-order necessary conditions (4.1) and the generalized equation (4.2) are equivalent.

Proof. (4.2) ⇒ (4.1): This is immediate for the first three components. For the fourth component we have

$$-u \in N_1(\mu_1) \Rightarrow \mu_1 \in K \quad \text{and} \quad (-u, \mu_1 - \nu) \geq 0 \quad \text{for all } \nu \in K,$$

$$\Rightarrow \mu_1(\xi) \geq 0 \quad \text{and} \quad -u(\xi)(\mu_1(\xi) - \nu) \geq 0 \quad \text{for all } \nu \geq 0, \ a.e. \ in \ \Omega.$$

This implies

$$\mu_1(\xi) = 0 \Rightarrow u(\xi) \geq 0$$

$$\mu_1(\xi) > 0 \Rightarrow u(\xi) = 0,$$

which shows the first complementarity system in (4.1). The second follows analogously.

(4.1) ⇒ (4.2): This is again immediate for the first three components. From the first complementarity system in (4.1) we infer that

$$u(\xi) \nu \geq 0 \quad \text{for all } \nu \geq 0, \ a.e. \ in \ \Omega$$

$$\Rightarrow -u(\xi)(\mu_1(\xi) - \nu) \geq 0 \quad \text{for all } \nu \geq 0, \ a.e. \ in \ \Omega$$

$$\Rightarrow -(u, \mu_1 - \nu) \geq 0 \quad \text{for all } \nu \in K.$$

In view of $\mu_1 \in K$, this implies $-u \in N_1(\mu_1)$. Again, $-(\varepsilon u + y - y_c) \in N_1(\mu_2)$ follows analogously. \hfill \square

5. SQP Method

In this section we briefly recall the SQP (sequential quadratic programming) method for the solution of problem (P). We also discuss its equivalence with Newton’s method, applied to the generalized equation (4.2), which is often called the Lagrange-Newton approach. Throughout the rest of the paper we use the notation

$$w^k := (x^k, \lambda^k) = (y^k, u^k, p^k, \mu_1^k, \mu_2^k) \in W$$

to denote an iterate of either method. SQP methods break down the solution of (P) into a sequence of quadratic programming problems. At any given iterate w^k, one solves

$$\text{Minimize } f_x(x^k)(x - x^k) + \frac{1}{2} L_{xx}(x^k, \lambda^k)(x - x^k, x - x^k) \quad (QP_k)$$
subject to $x = (y, u) \in Y \times L^\infty(\Omega)$, the linear state equation
\[
Ay + d(y^k) + d_y(y^k)(y - y^k) = u \quad \text{in } \Omega,
\]
\[
y = 0 \quad \text{on } \partial \Omega,
\]
and inequality constraints
\[
u \geq 0 \quad \text{in } \Omega,
\]
\[
\varepsilon u + y - y_c \geq 0 \quad \text{in } \Omega.
\]
The solution (which needs to be shown to exist)
\[
x = (y, u) \in Y \times L^\infty(\Omega),
\]
together with the adjoint state and Lagrange multipliers
\[
\lambda = (p, \mu_1, \mu_2) \in Y \times L^\infty(\Omega) \times L^\infty(\Omega),
\]
will serve as the next iterate w^{k+1}.

Lemma 5.1. There exists $R > 0$ such that (\mathbf{QP}_k) has a unique global solution $x = (y, u) \in X$, provided that $(x^k, p^k) \in B_R^\infty(x^*, p^*)$.

Proof. We have to verify that the feasible set
\[
M^k := \{x = (y, u) \in Y \times L^2(\Omega) \text{ satisfying } (5.1) \text{ and } (5.2)\}.
\]
is nonempty. This follows from [4, Lemma 2.3] using $\delta_3 = -d(y^k) + d_y(y^k) y^k$, whose proof uses the maximum principle for the differential operator $Ay + d_y(y^k) y$. Lemma A.3 allows to show the uniform convexity of the objective. The existence of a unique global optimal solution now follows from standard arguments. \[\square\]

The solution (y, u) of (\mathbf{QP}_k) and its Lagrange multipliers (p, μ_1, μ_2) are characterized by the first order optimality system (compare [4, Lemma 2.5]):
\[
a[v, p] + (d_y(y^k) p, v) + (\phi_y(y^k, u^k), v) + (\phi_{yy}(y^k, u^k)(u - u^k), v) + (\phi_{yy}(y^k, u^k) + d_{yy}(y^k) p^k)(y - y^k), v) - (\mu_2, v) = 0, \quad \forall v \in H_0^1(\Omega)
\]
\[
(\phi_u(y^k, u^k), v) + (\phi_{uu}(y^k, u^k)(u - u^k), v) + (\phi_{uu}(y^k, u^k) - p, v) - (\mu_1, v) - (\varepsilon \mu_2, v) = 0, \quad \forall v \in L^2(\Omega)
\]
\[
a[y, v] + (d(y^k), v) + (d_y(y^k)(y - y^k), v) - (u, v) = 0, \quad \forall v \in H^1_0(\Omega)
\]
\[
\mu_1 \geq 0, \quad u \geq 0, \quad \mu_1 u = 0
\]
\[
\mu_2 \geq 0, \quad \varepsilon u + y - y_c \geq 0, \quad \mu_2(\varepsilon u + y - y_c) = 0 \quad \text{a.e. in } \Omega.
\]
Note that due to the convexity of the cost functional, (5.3) is both necessary and sufficient for optimality, provided that $(x^k, p^k) \in B_2^\infty(x^*, p^*)$.

Remark 5.2. The Lagrange multipliers (μ_1, μ_2) and the adjoint state p in (5.3) need not be unique, compare [4, Remark 2.6]. Non-uniqueness can occur only if μ_1 and μ_2 are simultaneously nonzero on a set of positive measure.

We recall for convenience the generalized equation (4.2),
\[
0 \in F(w) + N(w).
\]
Given the iterate w^k, Newton’s method yields the next iterate w^{k+1} as the solution of the linearized generalized equation
\[
0 \in F(w^k) + F'(w^k)(w - w^k) + N(w).
\]
Analogously to Lemma 4.2, one can show:

Lemma 5.3. System (5.3) and the linearized generalized equation (5.5) are equivalent.

6. Strong Regularity and Implicit Function Theorem

The local convergence analysis of Newton’s method (5.5) for the solution of (5.4) is based on a perturbation argument using

$$
\delta \in F(w^*) + F'(w^*)(w - w^*) + N(w),
$$

(6.1)

see for instance [3]. We briefly sketch it here to make the necessary auxiliary results more apparent. The main ingredient in the convergence proof is the strong regularity of (5.4), see Definition 6.1 and Theorem 6.4 below. This property implies that (6.1) has a locally unique solution \(w(\delta)\) for small \(\delta\), which depends Lipschitz continuously on \(\delta\).

The Newton step (5.5) can be equivalently expressed as

$$
\delta^{k+1} \in F(w^*) + F'(w^*)(w^k - w^*) + N(w^{k+1}),
$$

(6.2)

where

$$
\delta^{k+1} := F(w^*) - F(w^k) + F'(w^*)(w_k^{k+1} - w^*) - F'(w^k)(w_k^k - w^k).
$$

Since \(\delta^{k+1}\) itself depends on the unknown solution \(w_k^{k+1}\), we employ an implicit function theorem due to Dontchev [7, Theorem 2.4] to get existence of the Newton step (6.2) or (5.5), see Theorem 6.7. A straightforward estimate for \(\delta^{k+1}\) then implies the quadratic local convergence (Theorem 7.1). Throughout, the parameter \(\delta\) belongs to the image space of \(F_Z := L^2(\Omega) \times L^\infty(\Omega) \times L^2(\Omega) \times L^\infty(\Omega) \times L^\infty(\Omega)\), see Remark 4.1. Note that \(w^*\) is a solution of both (5.4) and (5.5) for \(w^k = w^*\).

Definition 6.1 (see [21]). The generalized equation (5.4) is called **strongly regular** at \(w^*\) if there exist radii \(r_1 > 0, r_2 > 0\) and a positive constant \(L_\delta\) such that for all perturbations \(\delta \in B_{r_1}(0)\), the following hold:

1. the linearized equation (6.1) has in \(B_{r_2}^{W}(w^*)\) a unique solution \(w_\delta = w(\delta)\)
2. \(w_\delta\) satisfies the Lipschitz condition

$$
\|w_\delta - w_\delta'\|_W \leq L_\delta \|\delta - \delta'\|_Z \quad \text{for all } \delta, \delta' \in B_{r_1}(0).
$$

The verification of strong regularity is based on the interpretation of (6.1) as the optimality system of the following QP problem, which depends on the perturbation \(\delta\):

Minimize \(f_x(x^*)(x - x^*) + \frac{1}{2} L_{xx}(x^*, \lambda^*)(x - x^*, x - x^*) \) \hspace{1cm} (LQP(\delta))

subject to \(x = (y, u) \in Y \times L^\infty(\Omega)\), the linear state equation

$$
Ay + d(y^*) + d_y(y^*)(y - y^*) = u + \delta_3 \quad \text{in } \Omega,
$$

$$
y = 0 \quad \text{on } \partial \Omega,
$$

(6.3)

and inequality constraints

$$
u \geq \delta_4 \quad \text{in } \Omega,
$$

$$
\varepsilon u + y - y_c \geq \delta_5 \quad \text{in } \Omega.
$$

(6.4)
As before, it is easy to check that the necessary optimality conditions of \((\text{LQP}(\delta)) \) are equivalent to (6.1).

Lemma 6.2. For any \(\delta \in \mathbb{Z} \), problem \((\text{LQP}(\delta)) \) possesses a unique global solution \(x_\delta = (y_\delta, u_\delta) \in X \). If \(\lambda_\delta = (p_\delta, \mu_1, \mu_2, \delta) \in Y \times L^\infty(\Omega) \times L^\infty(\Omega) \) are associated Lagrange multipliers, then \((x_\delta, \lambda_\delta) \) satisfies (6.1). On other hand, if any \((x_\delta, \lambda_\delta) \in W \) satisfies (6.1), then \(x_\delta \) is the unique global solution of \((\text{LQP}(\delta)) \), and \(\lambda_\delta \) are associated adjoint state and Lagrange multipliers.

Proof. For any given \(\delta \in \mathbb{Z} \), let us denote by \(M_\delta \) the set of all \(x = (y, u) \in Y \times L^2(\Omega) \) satisfying (6.3) and (6.4). Then \(M_\delta \) is nonempty (as can be shown along the lines of [4, Lemma 2.3]), convex and closed. Moreover, (A5) implies that the cost functional \(f_\delta(x) \) of \((\text{LQP}(\delta)) \) satisfies
\[
f_\delta(x) \geq \frac{\alpha}{2} \|x\|^2_{L^2(\Omega)} + \text{linear terms in } x
\]
for all \(x \) satisfying (6.3). As in the proof of Lemma 5.1, we conclude that \((\text{LQP}(\delta)) \) has a unique solution \(x_\delta = (y_\delta, u_\delta) \in X \).

Suppose that \(\lambda_\delta = (p_\delta, \mu_1, \mu_2, \delta) \in Y \times L^\infty(\Omega) \times L^\infty(\Omega) \) are associated Lagrange multipliers, i.e., the necessary optimality conditions of \((\text{LQP}(\delta)) \) are satisfied. As argued above, it is easy to check that then (6.1) holds. On the other hand, suppose that any \((x_\delta, \lambda_\delta) \in W \) satisfies (6.1), i.e., the necessary optimality conditions of \((\text{LQP}(\delta)) \). As \(f_\delta \) is strictly convex, these conditions are likewise sufficient for optimality, and the minimizer \(x_\delta \) is unique. \(\Box \)

The proof of Lipschitz stability of solutions for problems of type \((\text{LQP}(\delta)) \) has recently been achieved in [4]. The main difficulty consisted in overcoming the non-uniqueness of the associated adjoint state and Lagrange multipliers. We follow the same technique here.

Definition 6.3. Let \(\sigma > 0 \) be real number. We define two subsets of \(\Omega \),
\[
S_1^\sigma = \{ \xi \in \Omega : 0 \leq u^*(\xi) \leq \sigma \} \\
S_2^\sigma = \{ \xi \in \Omega : 0 \leq \varepsilon u^*(\xi) + y^*(\xi) - y_\varepsilon(\xi) \leq \sigma \},
\]
called the security sets of level \(\sigma \) for \((\mathcal{P}) \).

Assumption.
\((A6) \) We require that \(S_1^\sigma \cap S_2^\sigma = \emptyset \) for some fixed \(\sigma > 0 \).

From now on, we suppose \((A1) - (A6) \) to hold. Assumption \((A6) \) implies that the active sets
\[
A_1^\sigma = \{ \xi \in \Omega : u^*(\xi) = 0 \} \\
A_2^\sigma = \{ \xi \in \Omega : \varepsilon u^*(\xi) + y^*(\xi) - y_\varepsilon(\xi) = 0 \}
\]
are well separated. This in turn implies the uniqueness of the Lagrange multipliers and adjoint state \((p^*, \mu_1, \mu_2) \), see [4, Lemma 3.1]. Due to a continuity argument, the same conclusions hold for the solution and Lagrange multipliers of \((\text{LQP}(\delta)) \) for sufficiently small \(\delta \), as stated in the following theorem.

Theorem 6.4. There exist \(G > 0 \) and \(L_\delta > 0 \) such that \(\|\delta\|_\mathcal{Z} \leq G \sigma \) implies:

1. The Lagrange multipliers \(\lambda_\delta = (p_\delta, \mu_1, \mu_2, \delta) \) for \((\text{LQP}(\delta)) \) are unique.
2. For any such \(\delta \) and \(\delta' \), the corresponding solutions and Lagrange multipliers of \((\text{LQP}(\delta)) \) satisfy
\[
\|x_{\delta'} - x_\delta\|_{Y \times L^\infty(\Omega)} + \|\lambda_{\delta'} - \lambda_\delta\|_{Y \times L^\infty(\Omega) \times L^\infty(\Omega)} \leq L_\delta \|\delta' - \delta\|_\mathcal{Z}. \tag{6.5}
\]
The technique of proof was introduced in [4], using ideas of [14]. We only sketch the arguments and refer to the extended preprint [8, Theorem 6.4] for the complete proof. One considers an auxiliary problem where the inequality constraints are restricted to the disjoint security sets. For this problem, the adjoint variables are unique, and one can show a stability estimate w.r.t. L^2. Using a projection formula (compare [4, Lemma 2.7]), the stability estimate can be lifted to L^∞ for the Lagrange multipliers and the control. Finally, one shows that the solution and Lagrange multipliers (extended by zero outside the security sets) of the auxiliary problem coincides with the solution of $\text{(LQP}(\delta))$. A similar proof for a problem with quadratic objective function can be found in [9, Proposition 3.3].

Remark 6.5. Theorem 6.4, together with Lemma 6.2, proves the strong regularity of (5.4) at w^*.

In order to apply the implicit function theorem [7, Theorem 2.4], we verify the following Lipschitz property for F:

Lemma 6.6. For any radii $r_3 > 0$, $r_4 > 0$ there exists $L > 0$ such that for any $\eta_1, \eta_2 \in B_{r_3}^W(w^*)$ and for all $w \in B_{r_4}^W(w^*)$ there holds the Lipschitz condition

$$
\|F(\eta_1) + F'(\eta_1)(w - \eta_1) - F(\eta_2) - F'(\eta_2)(w - \eta_2)\|_2 \leq L \|\eta_1 - \eta_2\|_W.
$$

Proof. Let us denote $\eta_i = (y_i, u_i, p_i, \mu^i_1, \mu^i_2) \in B_{r_3}^W(w^*)$ and $w = (y, u, p, \mu_1, \mu_2) \in B_{r_4}^W(w^*)$, with $r_3, r_4 > 0$ arbitrary. A simple calculation shows

$$
F(\eta_1) + F'(\eta_1)(w - \eta_1) - F(\eta_2) - F'(\eta_2)(w - \eta_2) = (f_1(y_1, u_1, p_1) - f_1(y_2, u_2, p_2), f_2(y_1, u_1) - f_2(y_2, u_2), f_3(y_1) - f_3(y_2), 0, 0)^T,
$$

where

$$
f_1(y_i, u_i, p_i) = d_y(y_i)p + \phi_y(y_i, u_i) + [\phi_{yy}(y_i, u_i) + d_{yy}(y_i)p_i](y - y_i) + \phi_{yu}(y_i, u_i)(u - u_i),
$$

$$
f_2(y_i, u_i) = \phi_u(y_i, u_i) + \phi_{uy}(y_i, u_i)(y - y_i) + \phi_{uu}(y_i, u_i)(u - u_i),
$$

$$
f_3(y_i) = d(y_i) + d_y(y_i)(y - y_i).
$$

We consider only the Lipschitz condition for f_3, the rest follows analogously. Using the triangle inequality, we obtain

$$
\|f_3(y_1) - f_3(y_2)\|_{L^2(\Omega)} \leq \|d(y_1) - d(y_2)\|_{L^2(\Omega)} + \|d_y(y_1)(y_2 - y_1)\|_{L^2(\Omega)}
$$

$$
+ \|d_y(y_1) - d_y(y_2)\|_{L^2(\Omega)}\|y_2 - y_1\|_{L^2(\Omega)}.
$$

The properties of d, see Lemma A.1, imply that $\|d_y(y_1)\|_{L^\infty(\Omega)}$ is uniformly bounded for all $y_1 \in B_{r_3}^\infty(y^*)$. Moreover, $\|y - y_2\|_{L^2(\Omega)} \leq \|y - y^*\|_{L^2(\Omega)} + \|y^* - y_2\|_{L^2(\Omega)} \leq c(r_3 + r_4)$ holds. Together with the Lipschitz properties of d and d_y, see again Lemma A.1, we obtain

$$
\|f_3(y_1) - f_3(y_2)\|_{L^2(\Omega)} \leq L \|y_1 - y_2\|_{L^\infty(\Omega)}
$$

for some constant $L > 0$.

Now we apply Dontchev’s implicit function theorem [7, Theorem 2.4 and Remark 2.5]. Lemma 6.6 verifies assumption (i) of this theorem, and the strong regularity (Theorem 6.4 together with Lemma 6.2) corresponds to assumption (iii). We use this implicit function theorem to establish the solvability of the Newton step (5.5) or equivalently (6.2). It is not needed to show the quadratic order of convergence.
Theorem 6.7. There exist radii \(r_5 > 0, r_6 > 0 \) such that for any \(w^k \in B_r^W(w^*) \), there exists a solution \(w^{k+1} \in B_r^W(w^*) \) of (5.5), which is unique in this neighborhood.

7. Local Convergence Analysis of SQP

This section is devoted to the local quadratic convergence analysis of the SQP method. As was shown in Section 5, the SQP method is equivalent to Newton’s method (5.5), applied to the generalized equation (5.4). We recall the function spaces

\[
W := Y \times L^\infty(\Omega) \times Y \times L^\infty(\Omega) \times L^\infty(\Omega), \quad Y := H^2(\Omega) \cap H^1_0(\Omega)
\]

\[
Z := L^2(\Omega) \times L^\infty(\Omega) \times L^2(\Omega) \times L^\infty(\Omega) \times L^\infty(\Omega).
\]

Theorem 7.1. There exists a radius \(r > 0 \) and a constant \(C_{\text{SQP}} > 0 \) such that for each starting point \(w_0 \in B_r^W(w^*) \), every Newton step (5.5) has a unique solution in \(B_r^W(w^*) \). The generated sequence satisfies

\[
\|w^{k+1} - w^*\|_W \leq C_{\text{SQP}} \|w^k - w^*\|_W^2.
\]

Proof. The proof relies on standard arguments and we only sketch it here. We refer to the preprint [8, Theorem 7.1] for an extended version. Suppose that the iterate \(w^k \in B_r^W(w^*) \) is given. From Theorem 6.7, we infer the existence of a solution \(w^{k+1} \) of (5.5) which is unique in \(B_r^W(w^*) \). We recall that the definition

\[
\delta^{k+1} := F(w^*) - F(w^k) + F'(w^*)(w^{k+1} - w^*) - F'(w^k)(w^{k+1} - w^k).
\]

From Lemma 6.6 with \(\eta_1 := w^*, \eta_2 := w^k, \), \(\delta_3 := w^{k+1} + 1 \), and \(r_3 := r_5, r_4 := r_6 \), we get

\[
\|\delta^{k+1}\|_Z \leq L \|w^k - w^*\|_W < L r \leq G \sigma
\]

for \(r \leq G \sigma / L \), where \(L \) depends only on the radii. A straightforward estimate which uses the twice differentiability of \(F \) and the local Lipschitz continuity of \(F' \) shows that

\[
\|\delta^{k+1}\|_Z \leq c_1 \|w^k - w^*\|_W^2 + c_2 \|w^k - w^*\|_W \|w^{k+1} - w^*\|_W,
\]

holds where the constants depend only on the radius \(r_5 \). Now \(r \) can be chosen such that \(w^{k+1} \) remains in \(B_r^W(w^*) \). By means of Theorem 6.4 with \(\delta = 0 \) and \(\delta' = \delta^{k+1} \), and estimate (7.2), we find

\[
\|w^{k+1} - w^*\|_W \leq L_4 c_1 \|w^k - w^*\|_W^2 + c_2 L_4 r \|w^{k+1} - w^*\|_W
\]

and thus

\[
\|w^{k+1} - w^*\|_W \leq C_{\text{SQP}} \|w^k - w^*\|_W^2
\]

holds with \(C_{\text{SQP}} = \frac{L_4 c_1}{1 - c_2 L_4 r} \).

Clearly, Theorem 7.1 proves the local quadratic convergence of the SQP method. Recall that the iterates \(w^k \) are defined by means of Theorem 6.7, as locally unique solutions, Lagrange multipliers and adjoint states of \((\text{QP}_k)\). Indeed, we can now prove that \(w^{k+1} = (x^{k+1}, \lambda^{k+1}) \) is globally unique, provided that \(w^k \) is already sufficiently close to \(w^* \). For the primal variables \(x^{k+1} \), this was already shown in Lemma 5.1.

Corollary 7.2. There exists a radius \(r' > 0 \) such that \(w^k \in B_{r'}^W(w^*) \) implies that \((\text{QP}_k)\) has a unique global solution \(x^{k+1} \). The associated Lagrange multipliers and adjoint state \(\lambda^{k+1} = (\mu_1^{k+1}, \mu_2^{k+1}, \mu_3^{k+1}) \) are also unique. The iterate \(w^{k+1} \) lies again in \(B_{r'}^W(x^*, \lambda^*) \).
Proof. We first observe that Theorem 7.1 remains valid (with the same constant C_{SQP}) if r is taken to be smaller than chosen in the proof. Here, we set

$$r' = \min \left\{ \sigma, c_\infty + \varepsilon, R, r \right\},$$

where R and r are the radii from Lemma 5.1 and Theorem 7.1, respectively, and c_∞ is the embedding constant of $H^2(\Omega) \hookrightarrow L^\infty(\Omega)$.

Suppose that $u^k \in B^w_{\sigma}(w^*)$ holds. Then Lemma 5.1 implies that (QP) possesses a globally unique solution $x^{k+1} \in Y \times L^\infty(\Omega)$. The corresponding active sets are defined by

$${\cal A}^{k+1}_1 := \{ \xi \in \Omega : u^{k+1}(\xi) = 0 \}$$

$${\cal A}^{k+1}_2 := \{ \xi \in \Omega : \varepsilon u^{k+1}(\xi) + y^{k+1}(\xi) - \psi(\xi) = 0 \}.$$

We show that $A^{k+1}_1 \subseteq S^1_\sigma$ and $A^{k+1}_2 \subseteq S^2_\sigma$. For almost every $\xi \in A^{k+1}_1$, we have

$$u^*(\xi) = u^*(\xi) - u^{k+1}(\xi) \leq \|u^* - u^{k+1}\|_{L^\infty(\Omega)} \leq r' \leq \sigma,$$

since Theorem 7.1 implies that $u^{k+1} \in B^w_{\sigma}(w^*)$ and thus in particular $u^{k+1} \in B^w_{\sigma}(w^*)$. By the same argument, for almost every $\xi \in A^{k+1}_2$ we obtain

$$y^*(\xi) + \varepsilon u^*(\xi) - \psi(\xi) = y^*(\xi) + \varepsilon u^*(\xi) - y^{k+1}(\xi) - \varepsilon u^{k+1}(\xi) \leq \|y^* - y^{k+1}\|_{L^\infty(\Omega)} + \varepsilon \|u^* - u^{k+1}\|_{L^\infty(\Omega)} \leq (c_\infty + \varepsilon) r' \leq \sigma.$$

Owing to Assumption (A6), the active sets A^{k+1}_1 and A^{k+1}_2 are disjoint, and one can show as in [4, Lemma 3.1] that the Lagrange multipliers μ_1^{k+1}, μ_2^{k+1} and adjoint state p^{k+1} are unique. \square

8. Remark on Second-Order Sufficient Conditions

Finally, we comment on the possibility of weakening of the strong second-order sufficient conditions (SSC). It is enough to require the coercivity condition (3.1) on the critical subspace C_τ for some $\tau > 0$, defined by

$$C_\tau = \{ \delta x = (\delta y, \delta u) \in Y \times L^\infty(\Omega) \text{ which satisfy the linearized equation (3.2),}$$

$$\text{and } \delta u = 0 \text{ on } A_1^\tau, \quad \varepsilon \delta u + \delta y = 0 \text{ on } A_2^\tau \},$$

where

$$A_1^\tau = \{ \xi \in \Omega : \mu_1^\tau(\xi) \geq \tau \}, \quad A_2^\tau = \{ \xi \in \Omega : \mu_2^\tau(\xi) \geq \tau \}$$

are the strongly active subsets of level τ. It was shown in [20] for a quadratic objective that the quadratic growth (Theorem 3.4) continues to hold for these weaker conditions. The result can be extended for our more general objective function. A further necessary modification concerns the proof of strong regularity (Theorem 6.4). This can be done along the lines of [9, Proposition 3.3]. The remaining results carry over without change.

Appendix A. Auxiliary Results

In this appendix we collect some auxiliary results. We begin with a standard result for the Nemyckii operators $d(\cdot)$ and $\phi(\cdot)$ whose proof can be found, e.g., in [28, Lemma 4.10, Satz 4.20]. Throughout, we impose Assumptions (A1)-(A5).
Lemma A.1. The Nemyckii operator \(d(\cdot) \) maps \(L^\infty(\Omega) \) into \(L^\infty(\Omega) \) and it is twice continuously differentiable in these spaces. For arbitrary \(M > 0 \), the Lipschitz condition
\[
\|d_{yy}(y_1) - d_{yy}(y_2)\|_{L^\infty(\Omega)} \leq L_d(M) \|y_1 - y_2\|_{L^\infty(\Omega)}
\]
holds for all \(y_i \in L^\infty(\Omega) \) such that \(\|y_i\|_{L^\infty(\Omega)} \leq M, i = 1, 2 \). In particular,
\[
\|d_{yy}(y)\|_{L^\infty(\Omega)} \leq K_d + L_d(M)M
\]
holds for all \(y \in L^\infty(\Omega) \) such that \(\|y\|_{L^\infty(\Omega)} \leq M \). The same properties, with different constants, are valid for \(d_y(\cdot) \) and \(d(\cdot) \). Analogous results hold for \(\phi \) and its derivatives up to second-order, for all \((y, u) \in [L^\infty(\Omega)]^2 \) such that \(\|y_i\|_{L^\infty(\Omega)} + \|u_i\|_{L^\infty(\Omega)} \leq M \).

The remaining results address the coercivity of the second derivative of the Lagrangian, considered at different linearization points and for perturbed PDEs. Recall that \((x^*, \lambda^*) \in W \) satisfies the second-order sufficient conditions (SSC) with coercivity constant \(\alpha > 0 \), see (3.1).

Lemma A.2. There exists \(\varepsilon > 0 \) and \(\alpha' > 0 \) such that
\[
L_{xx}(x^*, \lambda^*)(x-x^*, x-x^*) \geq \alpha' \|x-x^*\|^2_{L^2(\Omega)^2}
\]
(A.1) holds for all \(x = (y, u) \in Y \times L^\infty(\Omega) \) which satisfy the semilinear PDE (1.1) and \(\|x-x^*\|_{L^\infty(\Omega)^2} \leq \varepsilon \).

Proof. Let \(x = (y, u) \) satisfy (1.1). We define \(\delta u = u - u^* \) and \(\delta x = (\delta y, \delta u) \in Y \times L^\infty(\Omega) \) by
\[
A \delta y + d_y(y^*) \delta y = \delta u \quad \text{on} \quad \Omega
\]
with homogeneous Dirichlet boundary conditions. Then the error \(e := y^* - y - \delta y \) satisfies the linear PDE
\[
A e + d_y(y^*) e = f \quad \text{on} \quad \Omega
\]
(A.2) with homogeneous Dirichlet boundary conditions and
\[
f := d(y) - d(y^*) - d_y(y^*)(y - y^*).\]

We estimate
\[
\|f\|_{L^2(\Omega)} = \left\| \int_0^1 \left[d_y(y^* + s(y - y^*)) - d_y(y^*) \right] ds \right\|_{L^2(\Omega)}
\]
\[
\quad \leq L \int_0^1 s ds \|y - y^*\|_{L^\infty(\Omega)} \|y - y^*\|_{L^2(\Omega)}
\]
\[
\quad \leq \frac{L}{2} \|y - y^*\|_{L^\infty(\Omega)} \left(\|\delta y\|_{L^2(\Omega)} + \|e\|_{L^2(\Omega)} \right).
\]
In view of Lemma A.1, \(d_y(y^*) \in L^\infty(\Omega) \) holds and it is a standard result that the unique solution \(e \) of (A.2) satisfies an a priori estimate
\[
\|e\|_{L^\infty(\Omega)} \leq c \|f\|_{L^2(\Omega)}.
\]
In view of the embedding \(L^\infty(\Omega) \hookrightarrow L^2(\Omega) \) we obtain
\[
\|e\|_{L^2(\Omega)} \leq c' \frac{L\varepsilon}{2} \left(\|\delta y\|_{L^2(\Omega)} + \|e\|_{L^2(\Omega)} \right).
\]
For sufficiently small \(\varepsilon > 0 \), we can absorb the last term in the left hand side and obtain
\[
\|e\|_{L^2(\Omega)} \leq c''(\varepsilon) \|\delta y\|_{L^2(\Omega)}
\]
where \(c''(\varepsilon) \downarrow 0 \) as \(\varepsilon \downarrow 0 \). A straightforward application of [17, Lemma 5.5] concludes the proof. \(\square \)
Lemma A.3. There exists $R > 0$ and $\alpha'' > 0$ such that
\[
\mathcal{L}_{xx}(x^k, \lambda^k)(x, x) \geq \alpha'' \| x \|^2_{L^2(\Omega)}^2
\]
holds for all $(y, u) \in Y \times L^2(\Omega)$:
\[
Ay + d_y(y^k) y = u \quad \text{in } \Omega
\]
\[
y = 0 \quad \text{on } \partial \Omega,
\]
provided that $\| x^k - x^* \|_{L^\infty(\Omega)}^2 + \| p^k - p^* \|_{L^\infty(\Omega)}^2 < R$.

Proof. Let (y, u) be an arbitrary pair satisfying (A.3) and define $\hat{y} \in Y$ as the unique solution of
\[
A \hat{y} + d_y(y^*) \hat{y} = u \quad \text{in } \Omega
\]
\[
\hat{y} = 0 \quad \text{on } \partial \Omega,
\]
for the same control u as above. Then $\delta y := y - \hat{y}$ satisfies
\[
A \delta y + d_y(y^*) \delta y = (d_y(y^*) - d_y(y^k)) y \quad \text{in } \Omega
\]
with homogeneous boundary conditions. A standard a priori estimate and the triangle inequality yield
\[
\| \delta y \|_{L^2(\Omega)} \leq \| d_y(y^*) - d_y(y^k) \|_{L^\infty(\Omega)} \| y \|_{L^2(\Omega)}
\]
\[
\leq \| d_y(y^*) - d_y(y^k) \|_{L^\infty(\Omega)} (\| \hat{y} \|_{L^2(\Omega)} + \| \delta y \|_{L^2(\Omega)}).
\]
Due to the Lipschitz property of $d_y(\cdot)$ with respect to $L^\infty(\Omega)$, there exists a function $c(R)$ tending to 0 as $R \to 0$, such that $\| d_y(y^*) - d_y(y^k) \|_{L^\infty(\Omega)} \leq c(R)$, provided that $\| y^k - y^* \|_{L^\infty(\Omega)} < R$. For sufficiently small R, the term $\| \delta y \|_{L^2(\Omega)}$ can be absorbed in the left hand side, and we obtain
\[
\| \delta y \|_{L^2(\Omega)} \leq c'(R) \| \hat{y} \|_{L^2(\Omega)},
\]
where $c'(R)$ has the same property as $c(R)$. Again, [17, Lemma 5.5] implies that there exists $\alpha_0 > 0$ and $R > 0$ such that
\[
\mathcal{L}_{xx}(x^*, \lambda^*)(x, x) \geq \alpha_0 \| x \|^2_{L^2(\Omega)}^2,
\]
provided that $\| y^k - y^* \|_{L^\infty(\Omega)} < R$.

Note that \mathcal{L}_{xx} depends only on x and the adjoint state p. Owing to its Lipschitz property, we further conclude that
\[
\mathcal{L}_{xx}(x^k, \lambda^k)(x, x) = \mathcal{L}_{xx}(x^*, \lambda^*)(x, x) + [\mathcal{L}_{xx}(x^k, \lambda^k) - \mathcal{L}_{xx}(x^*, \lambda^*)](x, x)
\]
\[
\geq \alpha_0 \| x \|^2_{L^2(\Omega)}^2 - L \| (x^k, p^k) - (x^*, p^*) \|^2_{L^\infty(\Omega)} \| x \|^2_{L^2(\Omega)}
\]
\[
\geq (\alpha_0 - L R) \| x \|^2_{L^2(\Omega)}^2 =: \alpha'' \| x \|^2_{L^2(\Omega)}^2,
\]
given that $(x^k, p^k) \in B^\infty_R(x^*, p^*)$ and $\| x^k - x^* \|_{L^\infty(\Omega)} + \| p^k - p^* \|_{L^\infty(\Omega)} < R$. For sufficiently small R, we obtain $\alpha'' > 0$, which completes the proof. \qed

Acknowledgement

This work was supported by the Austrian Science Fund FWF under project number P18056-N12.
REFERENCES

TU Chemnitz, Faculty of Mathematics, D–09107 Chemnitz, Germany

E-mail address: roland.griesse@mathematik.tu-chemnitz.de

Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenbergerstraße 69, A–4040 Linz, Austria

E-mail address: nataliya.metla@oeaw.ac.at

Universität Duisburg-Essen, Fachbereich Mathematik, Forsthausweg 2, D–47057 Duisburg, Germany

E-mail address: arnd.roesch@uni-due.de