Content Hotkeys
Research Group Numerical Mathematics (Partial Differential Equations)
Dr. Max Winkler

Dr. Max Winkler

+49 371 531 33097
+49 371 531 833097
Reichenhainer Str. 41, Office 616 (C47.616)
Anne-Kristin Glanzberg, Office 607, Phone +49 371 531 22500
Postal address:
TU Chemnitz, Faculty of Mathematics, 09107 Chemnitz, Germany
Office Hours:
any time when present
  • born in 1987 in Freital
  • 2006/2011, Study of Industrial Mathematics at Technische Universität Dresden
  • May 2011, Diploma in Industrial Mathematics
  • 2011-2017, research assistent at the University of the German federal armed forces and member of the international research training group IGDK Munich-Graz
  • June 2015, PhD at the UniBw München, advisor Thomas Apel
  • since July 2017, Academic assistent at TU Chemnitz, work group Numerical Mathematics (partial differential equations)

Submitted articles

  1. J. Pfefferer, M. Winkler:
    Finite element error estimates for normal derivatives on boundary concentrated meshes
    Preprint arXiv:1804.05723, April 2018
  2. T. Apel, J. Pfefferer, S. Rogovs, M. Winkler:
    L∞-error estimates for Neumann boundary value problems on graded meshes
    Preprint arXiv:1804.10904, April 2018

Journal articles

  1. Apel, T., Pfefferer, J., Winkler, M.:
    Error Estimates for the postprocessing approach applied to Neumann boundary control problems in polyhedral domains, accepted for publication,
    IMA J. Numer. Anal., 2017. [ Preprint ]
  2. Apel, T., Steinbach, O., Winkler, M.:
    Error Estimates for Neumann Boundary Control Problems with Energy Regularization,
    J. Numer. Math., 24(4):207-233, 2016. [ Preprint ]
  3. Apel, T., Pfefferer, J., Winkler, M.:
    Local Mesh Refinement for the Discretization of Neumann Boundary Control Problems on Polyhedra,
    Math. Methods Appl. Sci., 39(5):1206-1232, 2015. [ Preprint ]
  4. Apel, T., Lombardi, A. L., Winkler, M.:
    Anisotropic mesh refinement in polyhedral domains: error estimates with data in L2(Ω),
    ESAIM. Math. Model. Numer. Anal. 48(4): 1117-1145, 2014. [ Preprint ]
  5. Grossmann, C., Winkler, M.:
    Mesh-Independent Convergence of Penalty Methods Applied to Optimal Control with Partial Differential Equations,
    Optimization 62(5): 629-647, 2013. [ Preprint ]
  6. Grossmann, C., Winkler, M.:
    A Mesh-Independence Principle for Quadratic Penalties Applied to Semilinear Elliptic Boundary Control,
    Schedae Informaticae 21: 9-26, 2012. [ Preprint ]


  1. Diploma thesis: Strafmethoden für steuerbeschränkte Kontrollprobleme, TU Dresden, 2011.
  2. PhD thesis: Finite element error analysis for Neumann boundary control problems on polyhedral domains, UniBw München, 2015.