Dr. Max Winkler
Academic Counselor in the Research Group Numerical Mathematics (Partial Differential Equations) (Prof. Dr. Roland Herzog)
Phone:
+49 371 531 33097
Fax:
+49 371 531 833097
Office:
Reichenhainer Str. 41, Office 616 (C47.616)
e-mail:
ORCID:
Scholar:
Secretary:
Anne-Kristin Glanzberg, Office 607, Phone +49 371 531 22500
Postal address:
TU Chemnitz, Faculty of Mathematics, 09107 Chemnitz, Germany
Office Hours:
any time when present
- born in 1987 in Freital
- 2006/2011, Study of Industrial Mathematics at Technische Universität Dresden
- May 2011, Diploma in Industrial Mathematics
- 2011-2017, research assistent at the University of the German federal armed forces and member of the international research training group IGDK Munich-Graz
- June 2015, PhD at the UniBw München, advisor Thomas Apel
- since July 2017, Academic assistent at TU Chemnitz, work group Numerical Mathematics (partial differential equations)
- Summer term 2020, Substitute professor at Leibniz University Hannover
Current semester: Summer term 2021
Former semesters
Winter term 2020/2021
Summer term 2020
Temporary professorship at Leibniz-Universität Hannover- Mathematics II für life sciences and geology
- Computeralgebra
- Discontinuous Galerkin methods
Winter term 2019/2020
- Exercise for the lecture Introduction to Optimization
- Exercise for the lecture Statistics for economists
Summer term 2019
Winter term 2018/2019
Summer term 2018
- Übung zur Vorlesung Numerik partieller Differentialgleichungen
- Übung zur Vorlesung Mathematik II (für IF, ET, Ph)
Winter term 2017/18
Submitted articles
- Herzog, R., Pietschmann, J., Winkler, M.:
Optimal Control of Hughes' Model for Pedestrian Flow via Local Attraction
Preprint arXiv:2011.03580, November 2020 - Stoll, M., Winkler, M.:
Optimization of a partial differential equation on a complex network
Preprint arXiv:1907.07806, July 2019
Journal articles
- Blechschmidt J, Herzog, R., Winkler, M.:
Error estimation for second-order PDEs in non-variational form
Numerical Methods for Partial Differential Equations, published electronically, 2020
[Article | Preprint arXiv:1909.12676] - Winkler, M.:
Error estimates for the finite element approximation of bilinear boundary control problems
Computational Optimization and Applications 76(1):155-199, 2020
[ Preprint arXiv:1901.03612 ] - Winkler, M.:
Error estimates for variational normal derivatives and Dirichlet control problems with energy regularization
Numerische Mathematik 144:413–445, 2020
[ Preprint arXiv:1808.01171 ] - Pfefferer, J., Winkler, M.:
Finite element error estimates for normal derivatives on boundary concentrated meshes
SIAM J. Numer. Anal. 57(5):2043-2073, 2019
[ Preprint arXiv:1804.05723 ] - Apel, T., Pfefferer, J., Rogovs, S., Winkler, M.:
Maximum norm error estimates for Neumann boundary value problems on graded meshes
IMA J. Numer. Anal. 40(1):474–497, 2020
[ Preprint arXiv:1804.10904 ] - Apel, T., Pfefferer, J., Winkler, M.:
Error Estimates for the postprocessing approach applied to Neumann boundary control problems in polyhedral domains,
IMA J. Numer. Anal.,38(4): 1984–2025, 2018. [ Preprint ] - Apel, T., Steinbach, O., Winkler, M.:
Error Estimates for Neumann Boundary Control Problems with Energy Regularization,
J. Numer. Math. 24(4):207-233, 2016. [ Preprint ] - Apel, T., Pfefferer, J., Winkler, M.:
Local Mesh Refinement for the Discretization of Neumann Boundary Control Problems on Polyhedra,
Math. Methods Appl. Sci. 39(5):1206-1232, 2015. [ Preprint ] - Apel, T., Lombardi, A. L., Winkler, M.:
Anisotropic mesh refinement in polyhedral domains: error estimates with data in L2(Ω),
ESAIM. Math. Model. Numer. Anal. 48(4): 1117-1145, 2014. [ Preprint ] - Grossmann, C., Winkler, M.:
Mesh-Independent Convergence of Penalty Methods Applied to Optimal Control with Partial Differential Equations,
Optimization 62(5): 629-647, 2013. [ Preprint ] - Grossmann, C., Winkler, M.:
A Mesh-Independence Principle for Quadratic Penalties Applied to Semilinear Elliptic Boundary Control,
Schedae Informaticae 21: 9-26, 2012. [ Preprint ]
Theses
- Diploma thesis: Strafmethoden für steuerbeschränkte Kontrollprobleme, TU Dresden, 2011.
- PhD thesis: Finite element error analysis for Neumann boundary control problems on polyhedral domains, UniBw München, 2015.