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A postprocessing strategy for optimal controls obtained via numerical so-
lution of Hamilton-Jacobi-Bellman equations is proposed. The method can
be applied to a large variety of problems for which the optimal control law
can be stated explicitly in terms of the value function and its derivatives, or
evaluated numerically. Our approach is based on an adaption of the post-
processing strategy introduced in [Meyer, Rösch, SIAM Journal on Control
and Optimization (2004)] in the context of open-loop control. Numerical
results are presented and improved convergence rates are confirmed nu-
merically.
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1. INTRODUCTION

Hamilton-Jacobi-Bellman (HJB) equations are a fundamental approach for solving dy-
namical closed-loop control problems both in deterministic and stochastic settings. HJB
equations are stationary or time-dependent partial differential equations which are of-
ten highly nonlinear. This results in a variety of interesting and demanding prob-
lems related to their numerical solution. Beyond classical methods such as Markov-
Chain approximations, see for instance Kushner, 1990, and finite difference schemes,
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see Kushner, Dupuis, 2001, new algorithms have been developed in recent years. Among
them are finite element (FE) methods for (partial integro) HJB differential equations
by Camilli, Jakobsen, 2009, the artificial diffusion FE method by Jensen, Smears, 2012,
the discontinuous Galerkin FE method by Smears, Süli, 2014 and the semi-Lagrangian
finite difference scheme by Chen, Forsyth, 2007.

The solution of an HJB equation is the value function v, which describes the optimal
value of the objective as a function of the initial/current condition in state space. Of
equal importance is the optimal control or policy as a function of the current state,
denoted by u. Nevertheless, most studies concerning convergence and convergence
rates focus primarily on the value function; see for instance Krylov, 1997; 2000 and
more recently, Barles, Jakobsen, 2002; 2005; 2007 for finite difference approximations,
and Jensen, Smears, 2013 for finite elements.

The optimal policy can usually be expressed, at least implicitly, as a pointwise function
of the value function and its derivatives, such as

u(t, x) = c(t, x, v(t, x), Dv(t, x), D2v(t, x)). (1.1)

Therefore convergence results for the optimal policy could be inferred in principle from
results available for the value function and the required derivatives. However in prac-
tice the admissible set for the controls is often infinite and it is discretized during the
computation of the value function to facilitate the implementation. This leads to an ad-
ditional discretization error, which is usually not accounted for in the analysis. More-
over, the policy computed in the process is tied to the chosen discretization.

In this paper we propose a postprocessing strategy which improves the accuracy of
discretized optimal policies. Our approach does not interfere with the procedure em-
ployed to compute a discrete approximation of the value function but it comes as an
additional step once the value function has been found.

The material is organized as follows: The remaining part of Section 1 introduces the
general problem structure. Section 2 presents the main concepts of the proposed post-
processing method. Numerical examples which illustrate the procedure are given in Sec-
tion 3. We conclude with a summary and an outlook on more complex problems to
which the proposed framework can be extended.

1.1. NOTATION AND INTRODUCTORY EXAMPLE

To set the stage and introduce notation we consider the following simple but typical
stochastic optimal control problem. The value function v is defined by

v(t, x) = inf
U ∈U

Et,x

∫ T∧τ

t
f (Xs, Us)ds + g(XT∧τ) (1.2)

with underlying controlled stochastic dynamics

dXs = b(Xs, Us)ds + σ(Xs, Us)dWs,
Xt = x.

(1.3)
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The process X = (Xs)s∈[t,T] describes a d-dimensional controlled Itô-diffusion with drift
function b and dispersion matrix σ. The control U can be described by another process
U = (Us)s∈[t,T]. We denote by U the set of all admissible control processes U. As usual, a
control process U is admissible if it attains values in some set A ⊂ Rm and is progres-
sively measurable with respect to the filtration (Fs)s∈[t,T]. The process W in (1.3) is a
standard d-dimensional Brownian motion, and τ := inf{t > 0 |Xt /∈ Ω} is a stopping
time, viz. the exit time from the bounded domain Ω ⊂ Rd, which is assumed to be
sufficiently regular. The integral in (1.2) extends from t to T ∧ τ := min{T, τ}, which
indicates that the process either stops reaching the boundary ∂Ω at time τ ≤ T, or else
the process remains in Ω for all of [t, T].

Through the dynamic programming principle we obtain the following parabolic HJB
equation governing the value function,

−∂v
∂t

(t, x)− inf
α∈ A
{Lαv(t, x)− f (t, x, α)} = 0 for (t, x) ∈ Q = (0, T)×Ω,

v(T, x) = g(x) for x ∈ Ω,

v(t, x) = g(x) for x ∈ ∂Ω.

(1.4)

We refer the reader to Pham, 2009 or Fleming, Soner, 2006 for details on the derivation
of HJB equations for continuous-time stochastic control problems. The differential op-
erator Lα is given by the infinitesimal generator of the controlled diffusion process (1.3):

[Lαv](t, x) = bT(x, α)∇v(t, x) +
1
2

σ(x, α) σT(x, α) : ∇2v(t, x)

=
d

∑
i=1

bi(x, α)
∂v
∂xi

(t, x) +
1
2

d

∑
i,j=1

ai,j(x, α)
∂2v

∂xi ∂xj
(t, x)

(1.5)

with the coefficient matrix

ai,j(x, α) =
d

∑
k=1

σi,k(x, α) σj,k(x, α).

If one finds a measurable function u : Q→ A such that

inf
α∈ A
{Lαv(t, x)− f (t, x, α)} = Lu(t,x)v(t, x)− f (t, x, u(t, x))

holds for almost all (t, x) ∈ Q, then u is an optimal control and it is implicitly defined
by the value function, i.e.,

u(t, x) = arg min
α∈A

Lαv(t, x)− f (t, x, α). (1.6)
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2. POSTPROCESSING OF HJB CONTROLS

In this section we introduce a postprocessing strategy in order to improve the accuracy
of control policies derived from discrete solutions of HJB equations. This strategy has
originally been proposed and analyzed in Meyer, Rösch, 2004 in the context of open-
loop optimal control of elliptic partial differential equations. It has been shown to offer
superior convergence rates of optimal controls w.r.t. the mesh size compared to stan-
dard approaches in which the control is discretized but no postprocessing is applied.
We make similar observations in the numerical experiments.

2.1. MAIN IDEA

The majority of discretization schemes for HJB equations proceed by discretizing both
the value function v and the (usually infinite) control set A. The discretization of
the latter can be either explicit or implicit, i.e., depending on the point (t, x) in state
space. This observation applies to semi-Lagrangian schemes, see Chen, Forsyth, 2007
and d’Halluin, Forsyth, Labahn, 2005, Markov chain approximations, see Kushner,
1990; Kushner, Dupuis, 2001, and generally to finite difference or finite element schemes.

The main idea of postprocessing is fairly straightforward and it can be summarized as
follows. We begin with a discrete approximation vh : Q → R of the value function ob-
tained “as always”, by applying some discretization scheme. If necessary, e.g., in case
of a finite difference approximation on a grid Qh ⊂ Q, we prolong the discrete approx-
imation vh to all of Q by interpolation. As part of the approximation the scheme for
the value function returns a discrete approximation of the control function uh : Q→ A
as well. Rather than use (and perhaps interpolate when necessary) this discrete con-
trol function uh, we instead obtain a postprocessed control ūh : Q → A by evaluating
the control law (1.6) on vh pointwise. This amounts to considering the postprocessed
control strategy

ūh(t, x) = arg min
α∈A

Lαvh(t, x)− f (t, x, α). (2.1)

This idea is illustrated in Figure 2.1 by means of the simple, exemplary control law1

ūh = max{ua, min{ub, vh}} (2.2)

in one space dimension.

It has been shown in Meyer, Rösch, 2004 for a class of open-loop optimal control prob-
lems for elliptic PDEs with right hand side controls, piecewise linear approximations of
the state as well as piecewise constant approximations of the control that the postpro-
cessed control ūh enjoys a higher convergence order than uh. This result has been ob-
tained by establishing certain superconvergent approximations under conditions which

1The control law (2.2) is used here for simplicity of illustration. It is obtained from (1.6) when A =
[ua, ub] ⊂ R, Lαv = 1

2 v2 − α v and f (t, x, α) = − 1
2 α2 hold. Notice that this particular form of the

generator is not covered by (1.5) but can be obtained for more general, discounted objectives in (1.2).
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Figure 2.1: Illustration of the postprocessing strategy using the exemplary control law
ūh = max{ua, min{ub, vh}} in one space dimension.

ensure increased regularity of the adjoint state, which plays the role of the value func-
tion in (2.2) in our context.

An investigation of these techniques for the problem class at hand is significantly more
involved and will not be pursued in the present paper. The increased level of difficulty
stems mainly from the fact that the generator Lα depends on the control. A secondary
issue is the parabolic nature of the problem. Nevertheless we remark that the main
principles in the technique of proof in Meyer, Rösch, 2004 are also in place here, first
and foremost the regularity gain of the control-to-value function map. We therefore
expect and are able to verify numerically that the postprocessed control ūh exhibits a
higher order of convergence than the discretized control uh.

In order to obtain a high-fidelity approximation ūh of the feedback control, formula (2.1)
must be evaluated potentially at many points (t, x). This in turn requires that the un-
derlying minimization problem can be solved with high accuracy and at reasonable
computational cost. Often (2.1) can even be solved explicitly. We present further exam-
ples beyond (2.2) in Section 3.

To summarize, the postprocessing strategy (2.1) can be combined with any discretiza-
tion scheme yielding an approximation vh of the value function v. No alterations are
required in this part of the solution process. Postprocessing comes in as a secondary
step to obtain an improved approximation of the feedback control ūh from vh. Besides
for function evaluations, (2.1) can also be used as a basis to compute, e.g., level sets of
the control function, switching boundaries between optimal feedback strategies, and
other quantities of interest. This will be illustrated in Section 3.

2.2. EVALUATION OF POSTPROCESSED CONTROL

Let us briefly address two options of comparing the usual discrete control uh to the
postprocessed control ūh.
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1. When the optimal “continuous” control u∗ is available or at least an approxima-
tion on a very fine grid, then the errors in the control ‖uh − u∗‖ and ‖ūh − u∗‖ can
be compared in appropriate norms.

2. Of equal interest is the comparison of the values incurred by operating according
to the controls uh and ūh starting from an initial state Xt = x of interest. In case of
uh this value is defined by

Et,x

∫ T∧τ

t
f (Xs, uh(s, Xs))ds + g(XT∧τ)

with underlying controlled stochastic dynamics

dXs = b(Xs, uh(s, Xs))ds + σ(Xs, uh(s, Xs))dWs,
Xt = x.

The value can be approximated either by Monte-Carlo simulations or by solv-
ing the corresponding Fokker-Planck-Kolmogorov equation which promotes the
probability density of the state variable forward in time.

Both procedures will be illustrated in the numerical examples in the following section.

3. NUMERICAL EXAMPLES

In this section we present different examples arising in optimal stochastic control and
their HJB equations. We provide a short description of each problem before discussing
and evaluating the postprocessing procedure in the respective situation.

3.1. MINIMUM ARRIVAL TIME

We consider the problem of minimizing the expected time-to-arrival with control cost
of a particle exposed to stochastic interference,

inf
U ∈U

E0,x

∫ T∧τ

0
1 +

γ

2
|Us|22 + µ |Us|1 ds. (3.1)

Here γ, µ ≥ 0 are parameters and the underlying controlled stochastic dynamics is
given by

dXs = Us ds + σ dWs,
X0 = x.

(3.2)

The term minimum arrival time results from the fact that the process is either stopped by
reaching the boundary ∂Ω of the bounded domain Ω ⊂ Rn (resulting in τ < T), or else
the process is stopped at final time T.
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The vector-valued control process Us with values in A ⊂ Rn defines the drift while
the diffusion is constant over Ω. To allow for different characteristics in the control we
impose in (3.1) control costs of the form

fγ(α) =
γ

2
|α|22 =

γ

2
(
α2

1 + . . . + α2
n
)

and
fµ(α) = µ |α|1 = µ

(
|α1|+ . . . + |αn|

)
.

While the problem with µ = 0 is classical, the term fµ is known to promote sparse
controls in many other situations; see for instance Stadler, 2009; Vossen, Maurer, 2006.
We are not aware of the discussion of objectives involving fµ in the stochastic, closed-loop
situation. For the deterministic, infinite horizon closed-loop case we refer the reader to
the recent Kalise, Kunisch, Rao, 2017.

Assuming γ > 0 and A = Rn we obtain from (1.6) in a straightforward way an optimal
control law of the form (1.1) as a function of the gradient Dv of the value function, viz.

u∗i =


− 1

γ

(
∂v
∂xi

+ µ
)

where ∂v
∂xi
≤ −µ,

− 1
γ

(
∂v
∂xi
− µ

)
where ∂v

∂xi
≥ µ,

0 otherwise.

(3.3)

We infer that the optimal drift u∗i (t, x) acting along the i-th coordinate direction is zero
in
{
(t, x) ∈ (0, T)×Ω : | ∂v

∂xi
(t, x)| ≤ µ

}
. In the case of vanishing quadratic costs (γ = 0)

we have to impose a bounded control set A to maintain a well-defined problem. For
this particular case we obtain a bang-off-bang control that attains only the extreme values
in A or zero (provided that 0 ∈ A). Switching for the i-th control occurs where | ∂v

∂xi
| = µ

holds.

The problem is considered on Ω = (0, 1)2 with time horizon T = 2 and solved by
the finite element (FE) method of artificial diffusion proposed in Jensen, Smears, 2012;
2013. The method is based on an explicit-implicit splitting of the convection and dif-
fusion coefficients bi and ai,j in (1.5) and it relies on a strictly acute triangulation of
the spatial domain. The value function vh is discretized with piecewise linear, contin-
uous (CG1) finite elements. The monotonicity of the approximation scheme requires
sufficient diffusion in the discrete operator, which is accomplished by adding artificial
diffusion, which goes to zero for decreasing grid size. For our studies we consider an
equally spaced temporal grid with nt = 1000 time steps. Spatial refinements are made
in a uniform way in order to maintain the strict acuteness of the grid.

In view of (3.3) the discretization of the value function by linear elements naturally
suggests a discretization of the control function uh by piecewise constant, discontinuous
(DG0) finite elements.

Figure 3.1 shows the value function, the optimal policy as a vector function and the
pointwise 2-norm of the optimal control policy at time t = 0 for certain problem pa-
rameters given in the figure caption. Since µ > 0 holds, we indeed observe a sparse
control, i.e., a non-trivial region in the state space Ω where a zero control is optimal.
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Figure 3.1: Illustration of CG1 value function vh (left), DG0 control uh (middle) and
|uh|2 (without postprocessing) for the minimum arrival time problem (3.1)–
(3.2) with cost parameters γ = µ = 1.5 and diffusion σ = 0.5 I2×2 on a
relatively fine grid (3584 cells). All functions are shown at time t = 0.

Figure 3.2: Comparison between DG0 control |uh|2 (without postprocessing, left) and |ūh|2
(with postprocessing, right) for the minimum arrival time problem (3.1)–(3.2)
at time t = 0 on a coarse mesh with 224 cells for better discernability. Data
as in Figure 3.1.
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The increased accuracy by postprocessing is clearly visible in Figure 3.2. Let us ex-
plain how the postprocessed control ūh was obtained. Notice that contrary to our
initial illustrative example control law (2.2) and contrary to the problem considered
in Meyer, Rösch, 2004, the control now depends on the gradient of the value function.
A straightforward evaluation of (3.3) (with the CG1 function vh in place of the continu-
ous value function v) would therefore not lead to an improvement in the postprocessed
control. Therefore we first employ a “gradient recovery” procedure. This technique
is well known from a posteriori error estimation; see Zienkiewicz, Zhu, 1987. To be
more precise we project the DG0 gradient ∇vh into the vector-valued CG1 space by
solving the following L2 projection problem for the recovered gradient gh := Rh(∇vh)

in [CG1(Ω)]2, ∫
Ω
∇vh · w dx =

∫
Ω

gh · w dx for all w ∈ [CG1(Ω)]2.

Subsequently the postprocessed control is obtained from the control law (3.3), i.e.,

ūh
i =


− 1

γ

(
[gh]i + µ

)
where [gh]i ≤ −µ,

− 1
γ

(
[gh]i − µ

)
where [gh]i ≥ µ,

0 otherwise.

Notice that the postprocessed control ūh is not a FE function but possesses sub-grid
resolution.

To confirm the improvement of the postprocessed control ūh compared to uh also nu-
merically we evaluate the errors ‖uh − u∗‖L2(Ω) and ‖uh − u∗‖L∞(Ω) at time t = 0;
see Figure 3.3. Due to the true solution being unknown we use an (unpostprocessed)
fine grid solution u∗ obtained on a grid with 229 376 cells and 115 201 vertices. Our
study shows that the postprocessing procedure indeed improves the convergence or-
der as well as the error constant, as can be seen in Figure 3.3.

Next we consider the case γ = 0 with control constraints described by the set of admis-
sible controls A = [−0.1, 0.1]. In this case the optimal policy is of type bang-off-bang and
the switching boundaries are sufficient to determine the control law. We illustrate how
to obtain the switching boundaries with sub-grid resolution using the postprocessing
strategy.

As before we use the discretization method of artificial diffusion and compute a CG1
approximation of the value function vh. The recovered gradient with components in
CG1 is denoted again by gh.

The two switching boundaries for the i-th component of the control can be found using

π+
i (t) :=

{
x ∈ Ω : −[gh(t, x)]i + µ = 0

}
,

π−i (t) :=
{

x ∈ Ω : −[gh(t, x)]i − µ = 0
}

.
(3.4)

At a given time t from the time grid, these sets are computed by looping over all tri-
angles T. Whether or not a triangle T intersects π±i (t) can be tested by considering the
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Figure 3.3: Convergence results for the minimum arrival time problem (3.1)–(3.2) with
constant isotropic diffusion σ = 0.125 I2×2, cost parameters γ = µ = 0.5.
The plots show the L2-error (left) and L∞-error (right) of uh− u∗ and ūh− u∗

at time t = 0, respectively.

signs of the values of the linear function [gh(t, ·)]i± µ in the vertices of T. If T intersects,
then it is easy to determine π±i (t) ∩ T by finding the two points on the boundary ∂T
where [gh(t, ·)]i ± µ = 0 holds and connecting them linearly. This procedure is illus-
trated in Figure 3.4, and it applies not only to two dimensional state spaces but—with
appropriate modifications—also in higher dimensions; see Section 3.2.

3.2. OPTIMAL ENERGY STORAGE

While the minimum arrival time problem considered in Section 3.1 presents the main
ideas of the postprocessing procedure in a simple setting, the following example high-
lights a more complex application. In contrast to Section 3.1 the state space is three-
dimensional and therefore a high spatial resolution incurs considerable numerical ef-
fort. Postprocessing can help mitigate the computational cost of obtaining control laws
of sufficient accuracy, especially in the case of finite time horizons, which leads to time-
dependent HJB equations.

The problem we are considering is the optimal control of a gas storage facility. The
model extends previous work by Chen, Forsyth, 2007 and is described and analyzed
in detail in the forthcoming Blechschmidt et al., 2017. While the gas storage process
is deterministic, the price and consumption are stochastic mean-reverting processes
with seasonalities. This setup leads to a singular diffusion coefficient matrix (ai,j) due
to vanishing viscosity in one spatial dimension. Moreover the problem features time-
dependent convection coefficients as well as a cost functional f which is discontinuous
due to the structure of the control costs. Although the problem fits well in the frame-
work introduced in Section 1.1 there a multiple sources of potential issues which we
will not discuss in detail here. We only mention that standard methods may fail solv-
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Figure 3.4: Illustration of determination of switching curves

ing mixed deterministic/stochastic optimal control problems due to the degeneracy of
the diffusion.

The stochastic dynamics for X = (P, Q, C) for the price process Ps = ps, the storage
level Qs = qs and the consumption process Cs = cs, together with their initial values,
are given by

dXs =

κp (µp(s)− Ps)
Us − Cs

κc (µc(s)− Cs)

 ds +

 σp 0 0
0 0 0

ρ σc 0
√

1− ρ2 σc

 dWs

where κp, κc, σc, σp > 0 are constants and ρ ∈ [0, 1] is a correlation coefficient.2 The
functions µp and µc are time-dependent and they describe seasonalities in the price and
consumption dynamics.

The value function for this problem is defined by

v(t, x) = sup
U ∈U

Et,x

∫ T

t
f (Xs, Us)ds + g(XT), (3.5)

with the supremum ranging over all admissible control processes Us ∈ U . Instead of
considering merely a maximization of the return we impose different kinds of transac-

2The complete set of parameters for our numerical study is given in Appendix A.
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tion costs as well as a storage cost. The costs considered are of the type

f (x, α) = −dp
q q−


α
(
(1 + dP

+) p + d f
+

)
− dc

+, where α > 0,
α
(
(1− dP

−) p− d f
−
)
− dc

−, where α < 0,
0 otherwise.

The constants dp
q , dp

+, dp
−, d f

+, d f
−, dc

+, dc
− ∈ R≥0 represent storage costs and proportional,

fixed and constant transaction costs, respectively. The terminal condition is determined
by a penalty payment in case one falls short of meeting the required minimal terminal
fill level q̄T:

g(x) =

{
−p (1 + dp

T) (q̄T − qT) where q̄T > qT,
0, otherwise.

where dp
T > 0 is another constant. The rigorous derivation of the corresponding HJB

equation and proper boundary conditions is a challenging problem in its own right. We
state it here without proof and refer to Blechschmidt et al., 2017 for details:

−∂v
∂t

(t, x)− sup
α∈A

{
Lαv(t, x) + f (x, α)

}
= 0,

v(T, x) = g(x)
(3.6)

with
Lαv = κp (µp(t)− p)

∂v
∂p

+ (α− c)
∂v
∂q

+ κc (µc(t)− c)
∂v
∂c

+
1
2

[
σ2

P
∂2v
∂p2 + 2 ρ σP σC

∂2v
∂p∂c

+ σ2
C

∂2v
∂c2

]
.

(3.7)

The optimal control is of bang-off-bang type and it can be expressed explicitly in the
form (1.1) in terms of the first derivative of v with respect to the storage direction q:

u∗(t, x) =


ζ(t, x), where p(t, x) ≥ 1

1−dp
−

(
∂v
∂q (t, x) + d f

− −
dc
−

ζ(t,x)

)
,

η(t, x), where p(t, x) < 1
1+dp

+

(
∂v
∂q (t, x)− d f

+ −
dc
+

η(t,x)

)
,

max{ζ(t, x), 0}, otherwise.

(3.8)

The functions ζ, η : Q → R denote the state-dependent maximum inflow and outflow
rates and they determine the feasible region A for the control. We use Ω = (0, 80)×
(0, 550 000)× (0, 16 000) as our computational domain and the considered time horizon
is T = 365 days to capture one full cycle of seasonality.

We solve the problem using a semi-Lagrangian finite difference approach which ex-
ploits the non-existing viscosity in the storage direction q, which would otherwise cause
numerical difficulties if not handled properly. This amounts to integrating the PDE (3.6)
along Lagrangian trajectories for fixed consumption and price, which allows us to sub-
stitute the term

∂v
∂t

+ (α− c)
∂v
∂q
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in (3.6)–(3.7) by a Lagrangian directional derivative

Dv
Dt

=
∂v
∂t

+ (α− c)
∂v
∂q

.

The resulting system is solved by a fully implicit time-stepping scheme. An important
advantage of the semi-Lagrangian scheme, described in detail in Chen, Forsyth, 2007
and d’Halluin, Forsyth, Labahn, 2005, lies in the reduction of the problem size. In-
stead of solving a linear system of size np · nq · nc in each time step the method requires
the solution of nq systems of size np · nc. In addition, one circumvents a full policy
iteration without losing convergence to the unique viscosity solution. For a detailed
discussion of the problem including the semi-Lagrangian discretization scheme, exis-
tence and uniqueness of a viscosity solution to problem (3.5)–(3.8) and a comparison
with previous studies of energy and gas storage problems we refer the reader to Blech-
schmidt et al., 2017.

We compare the discrete control uh (without postprocessing) to the postprocessed con-
trol ūh by means of Monte-Carlo simulations as described at the end of Section 2.2. We
ran m = 10 000 samples with either control policy to obtain the estimates vh

sim(0, x0)
(implementing the policy uh) and v̄h

sim(0, x0) (corresponding to ūh) by averaging over
all samples. All sample paths start at x0 = (40, 110 000, 8000) at time t = 0. We consider
an equally spaced grid in time with nt = 365 time steps and two types of spatial grids,
one with uniform distributions of cells in each dimension and one with non-uniform
distributions. In the latter, approximately one third of the intervals in each coordinate
direction are once refined around the mean reverting levels. Figure 3.5 shows the value
function and the optimal discrete control (without postprocessing) for a fixed consump-
tion level c = 7200 at time t = 0.
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Figure 3.5: Value function (left) and optimal control (right) for energy storage problem
with at time t = 0 on a coarse (equally spaced) grid with ndofs = 9261 de-
grees of freedom for better discernability. Shown are slice plots of vh and uh

for a fixed consumption c = 7200.

The results of this study are presented in Table 3.1. The first five rows give the results
for equally spaced grids in space, while the remaining rows pertain to non-uniform
grids as described above. Column vh(0, x0) gives the value as computed by the semi-
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Table 3.1: Improvement from postprocessing measured in terms of the incurred es-
timated values at (0, x0). Comparison of the values incurred by operat-
ing according to the controls uh and ūh starting from an initial state x0 =
(40, 110 000, 8000) at time t = 0.

np = nq = nc ndofs vh(0, x0) vh
sim(0, x0) v̄h

sim(0, x0) s(0, x0)

10 1,331 5.38 · 106 1.65 · 106 3.72 · 106 2.3785
20 9,261 4.42 · 106 2.09 · 106 3.98 · 106 1.2408
40 68,921 4.36 · 106 2.66 · 106 4.02 · 106 0.6241
80 5.31 · 105 4.30 · 106 3.45 · 106 4.07 · 106 0.2003

160 4.17 · 106 4.26 · 106 3.85 · 106 4.08 · 106 0.0670

15 4,096 4.39 · 106 2.03 · 106 3.91 · 106 1.1894
27 21,952 4.30 · 106 2.55 · 106 4.01 · 106 0.7553
56 1.76 · 105 4.27 · 106 3.03 · 106 4.04 · 106 0.4239

108 1.26 · 106 4.25 · 106 3.73 · 106 4.07 · 106 0.1056

Lagrangian method, in comparison to the averages

vh
sim(0, x0) =

1
m

m

∑
i=1

vh
sim,i(0, x0) and v̄h

sim(0, x0) =
1
m

m

∑
i=1

v̄h
sim,i(0, x0)

over the simulated values. The quantity s(0, x0) denotes the mean improvement through
postprocessing

s(0, x0) =
1
m

m

∑
i=1

v̄h
sim,i(0, x0)− vh

sim,i(0, x0)

vh
sim,i(0, x0)

. (3.9)

To ensure a meaningful comparison across all discretization levels an identical collec-
tion of m = 10 000 samples was used for all discretization levels so that the sample paths
for the price and consumption processes are the same on each level. The simulation of
the (correlated) price and consumption processes is straightforward. On each level the
control process Ut without postprocessing is computed by an interpolation of the discrete
control function uh while the control process Ūt with postprocessing is determined by a
pointwise evaluation of (3.8). Instead of recovering the gradient as in Section 3.1 we
use a first-order central difference in the storage direction q to obtain ∂vh

∂q (t, x). This
takes into account that the implemented semi-Lagrangian method is based on a finite
difference approach.

Combining this with the pointwise evaluation of (3.8) we obtain a significant improve-
ment by postprocessing in terms of the simulated values. For the coarsest spatial dis-
cretization with np = nq = nc = 10 cells, we obtain a relative improvement of s(0, x0) =
238% in terms of the value, and even for the finest discretization with ndofs = 4 173 281
spatial degrees of freedom we still obtain an improvement of about 7%. This amounts
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to an absolute surplus of 2.29× 105 in terms of the objective value. In addition we
wish to highlight that the postprocessed control for a grid size of np = nq = nc = 20
cells already leads to a (simulated) value which exceeds the value on the finest level
without postprocessing. This is an astonishing result, recalling that the only differ-
ence between the control without postprocessing and the postprocessed one lies in the
pointwise evaluation of the control law (3.8) instead of a plain interpolation of uh.

A further application of the proposed postprocessing idea lies in the possibility to com-
pute the switching boundaries as explained for the two-dimensional case in Section 3.1.
The procedure is similar in three dimensions. Each cuboid is divided into six simplices,
for which we compute the zero-level sets of the different cases in (3.8) by linear in-
terpolation. The resulting boundaries are shown in Figure 3.6 at three different time
stages. Notice that without preprocessing these boundaries would consist of piecewise
axis-parallel segments of significantly coarser resolution.

Figure 3.6: Illustration of postprocessed switching boundaries for the energy storage
problem at time t = 0, t = 180 and t = 350, respectively. The region to the
left of the green surfaces indicates that “buy at maximum rate” is optimal,
while the region to the right of the red surface corresponds “sell at maximum
rate”. The region between these surfaces correponds to the third case in (3.8).

4. CONCLUSION AND OUTLOOK

In this paper we proposed a postprocessing strategy for the policy obtained from nu-
merical solutions of Hamilton-Jacobi-Bellman equations. Our approach has the advan-
tage of improving the accuracy of policies without the necessity of changing the proce-
dure to compute an approximation of the value function. We presented the main ideas
on the basis of two examples of different complexities. These examples also show that
the approach can be used with finite element and finite difference approximations of
the value function. We verified numerically that postprocessing can lead to significant
improvements in the accuracy of control laws and their incurred values. A theoretical
confirmation of improved convergence rates for the policy w.r.t. the mesh size remains
a topic for future research. Another interesting topic is the extension of the approach to
HJB variational inequalities (HJB VIs) and quasi-variational inequalities (HJB QVIs).
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A. PARAMETERS FOR THE ENERGY STORAGE PROBLEM

Parameter Value Description

κp 0.02 rate of mean-reversion of price process
κc 0.007 rate of mean-reversion of consumption process
σp 0.50 diffusion coefficient of price process
σc 100.00 diffusion coefficient of consumption process
ρ 0.30 correlation coefficient between price and consumption
dp

q 0.001 proportional storage cost
dp
+ 0.05 proportional cost of buying

dp
− 0.05 proportional cost of selling

d f
+ 0.00 fixed cost of buying

d f
− 0.00 fixed cost of selling

dc
+ 10 000.00 constant cost of buying

dc
− 10 000.00 constant cost of selling

q̄T 110 000 terminal fill level
dp

T 0.20 proportional cost for penalty payment

MEAN PRICE LEVEL

µp(t) = 40− 3
t

365
+ 2.5 cos

(
2 π
(
1 +

t
365

))
MEAN CONSUMPTION LEVEL

µc(t) = 8000− 100
t

365
+ 1400 cos

(
5.93 + 2 π

t
365

)
+ 100 cos

(
5.52 + 4 π

t
365

)
MAXIMUM INFLOW RATE

ζ(t, x) = −36.41
√

q(t, x) + c(t, x)
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MAXIMUM OUTFLOW RATE

η(t, x) = 9 535 300

√
1

q(t, x) + 137 500
− 1

687 500
+ c(t, x)
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