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Probability Theory

Probability measure

We denote an abstract probability space by (2,2, P), in which

Q is an abstract set of elementary events,
2 is a o-algebra of subsets of Q containing the measurable events and
P is a probability measure on 2I.

Definition A.1

A measure P on a measurable space (Q2,2l) is called a probability measure if
P(Q) =1.

Definition A.2

An event A € 2 is said to occur almost surely with respect to the measure P
(P-as.) if P(A) =1.

| \,
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Probability Theory

Borel-Cantelli lemma

Proposition A.3 (Boole's inequality)

For events {A,}nen there holds

Definition A.4

The set of all w € Q such that w € A, for infinitely many values of n is defined as

{Ap, i.0. }:=lim sR;lp Ap =Nl U An
ne

Theorem A.5 (Borel-Cantelli Lemma)

If >, P(A,) < o, then P{A,,i.0.} = 0. For independent events {A,}qen such
that D77, P(A,) = o there holds P{A,,i.0.} = 1.

v
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Probability Theory

Random variables

Definition A.6

Let (€2,2, P) be a probability space and (E, €) a measurable space. A measurable
function X : Q — E is called an (E-valued) random variable. Individual values
X(w) for w € Q are called realisations of the random variable.

Remark: If E is a topological space then the o-algebra generated by the open
subsets of E is called the Borel o-algebra $B(E).

Definition A.7

Let X be an E-valued random variable where (E, €) is a measurable space and
(Q,2(, P) is the underlying probability space. The probability distribution Px of X
(also called the law of X) is the probability measure on (E, &) defined by

Px(A) := P(X71(A)) for pre-images X 1(A) := {we Q: X(w) € A)} of sets

Ae €.

Remark: This construction is sometimes called the push-forward measure defined
by (Q,2(,P), (E,€) and X.
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Probability Theory

Doob-Dynkin Lemma

Theorem A.8 (Doob-Dynkin lemma)

Let f: Q — E and g : 2 — F be two measurable functions from a measurable
space (Q,2l) to two measurable spaces (E, €) and (F,§) of which the first is a
separable and complete metric space. Then f is g-measurable if and only if there
exists some measurable mapping h: F — E with f = ho g.

See [Kallenberg, 1997], Lemma 1.13 for a proof.
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Probability Theory

Expectation, moments

Definition A.9

The expectation of a Banach space-valued random variable X is defined as the
integral

E[X] = LX(w)dP(w).

| \

Definition A.10

The k-th moment (k € N) of a real-valued random variable X is E [ X*].

The first moment p := E[X] is also called the mean or mean value.

The central moments E [(X — p)¥] measure the deviation of X from its mean.
The second central moment

Var X := E[(X — p)?| = E[X?] — 12

of a random variable X is called its variance.

Remark: The quantity o := +/Var X is called the standard deviation of X.
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Probability Theory

Computation of moments

Moments of a random variable are sometimes more easily computed by integrating
over the image variable.

Consider a real-valued random variable X from (Q,2() to (I',B(I)) where '

R. For B € B(T), set A := X~1(B). Then by the definition of the probability
distribution Px

f 1La(w) dP(w) = P(A) — Px(B) — f 5(x) dPx ().
Q r
For measurable functions f : I — R we have

f F(X(w)) dP(w) = j f(x) dPx ()
Q

r

and, in particular,
E[X] = LX(w)dP(w) = f xdPx(x).
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Probability Theory

Probability density functions

Definition A.11

Let P be a probability measure on (', B(I")) for some ' = R. If there exists a
function p : I — [0,0) such that P(B) = { p(x) dx for any B € B(I') we say
that P has a density p with respect to Lebesgue measure and we call p its
probability density function (pdf). If X is a -valued random variable on (2,2, P),
the pdf px of X (if it exists) is the pdf of the probability distribution Px.

For real-valued random variables X from (Q,2(,P) to (I',B(T")) we then have3

JX ) dP (w dePx( ) = erp(x)dx. (A1)

Event probabilities are then easily calculated as

b
P(Xe(a,b)=P({weQ:a<X(w)<b})=Px((a b)) = f p(x) dx.

a

3(where we have omitted the subscript X)
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Probability Theory

Uniform distribution

A random variable X is uniformly distributed on D = [a, b] € R, (a < b), denoted
X ~ U(a, b)a

if its pdf is

Using (A.1), we easily obtain

b b 2 3 3
E[X]=J X_ g 2Eh E[X2]=f = dx= 2 =3

. b—a 27

so that Var X = E[X?| — E [X]? = (bI;)z'
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Probability Theory

Gaussian distribution

A random variable X is said to follow the Gaussian or normal distributionon ' = R
if its pdf is given by

1 —(x — p)?
,D(X)=Wexp< (20_2))7 XER7

with two real parameters € R and o > 0, denoted X ~ N(u,02).
As is easily verified,

E[X]=p,  VarX =o°
The probability that X is within « of its mean is given by

P(|X—u|<a)=erf(\/;7>,

with the error function erf defined by
erf(x) = ij et dt.

Oliver Ernst (Numerische Mathematik) uQ Sommersemester 2016 140 / 252



Probability Theory

Gaussian distribution

The cumulative distribution function (cdf) of the standard normal distribution
N(0,1) is denoted by

1 x 2 1 1
¢(X)=7J‘ e_zdt=§+§erf<%>.
% -

Any (finite) linear combination of (jointly) random variables is normally distributed.
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Probability Theory

Change of variables formula

Lemma A.12 (Change of variables)

Suppose Y : Q — R is a real-valued random variable and f : (a,b) —> R is
continuously differentiable with inverse function f~1. If py is the pdf of Y, the
pdf of the random variable X : Q — (a, b) defined via X = f~1(Y) is

px(x) = py(f(x)) |f'(x)| fora<x < b.
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Probability Theory

Lognormal distribution
If Y ~ N(u,0?), then the random variable
X :=exp(Y)

is said to follow a lognormal distribution. With f(x) = logx, Lemma A.12 yields
the pdf of X as

Px (X) = /727T0'2X2 252

Moreover, there holds

SN ELLUED )

0.2

E[X] = exp (,u + 5 ) ) Var X = (&7 — 1)e?+o”,
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Probability Theory

Covariance

Definition A.13

The covariance between two real-valued random variables is defined as

Cov(X,Y) =E[(X —ux)(Y — puy)],

where pux := E[X] and py := E[Y]. In particular, Cov(X, X) = Var X.

Note: An equivalent expression is Cov(X, Y) = E[XY] — E[X]E[Y].

Calculation of the covariance requires evaluating the integral

E[XY] = J Xw)Y (w)dP(w) = f xy dPx y(x,y),
Q X(Q)xY(Q)
in which Px y is the joint probability distribution of X and Y.
Sometimes it is useful to scale the covariance to lie in [—1, 1]. The resulting quantity
is known as the correlation coefficient

Cov(X,Y
p(X, v) = SUXT)
OXO0y
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Probability Theory

Joint probability distribution

Definition A.14

The joint probability distribution of two random variables X and Y is the
distribution of the bivariate random variable X = (X, Y), i.e., for all
BeB(X(Q) x Y(Q))

Px.y(B) = P({we Q: X(w) € B}).

If it exists, the density px,y of Px y is known as the joint pdf and

Pxy = f px,y(x,y)dxdy.
B
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Probability Theory

Uncorrelated random variables

Definition A.15

If Cov(X, Y) = 0 the random variables X and Y are said to be uncorrelated. A
family {X,} is said to be pairwise uncorrelated if X, and Xg are uncorrelated for
all o # .

Note: Uncorrelated random variables may still be strongly related. As an example,
X ~N(0,1), and Y :=cosX

satisfy ux = 0 and hence

Cov(X,Y) =E[Xcos X] = J x cos(x) dPx (x)
R

—x2
\ﬁj x cos(x) exp <2> dx = 0.

A stronger notion is that of independent random variables.
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Probability Theory

Sub o-algebras, o-algebras generated by random variables

Definition A.16
A o-algebra B is a sub o-algebra of A if B < 2, i.e., if Ae B implies A € 2.

Definition A.17

Let X be an E-valued random variable on (€,2l, P) for a measurable space
(E, €). The o-algebra generated by X, denoted o (X), is defined as

o(X) = {X1A):Ae ¢} cA

Remark: o(X) is the smallest o-algebra such that X is measurable. It may be
considerably smaller than 2.
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Probability Theory

Independence of events, o-algebras and random variables

Definition A.18

Two events A, B € 2 are independent if P(An B) = P(A)P(B).
Two o-algebras 2A; and 2(, are independent if all pairs of events A; and Ay with
A; € 2y and A; € 2, are independent.

| \

Definition A.19

Two random variables X, Y on a probability space (Q,2l, P) are said to be
independent if the o-algebras o(X) and o(Y) are independent.

A family {X,}. of random variables is said to be pairwise independent if X, and
Xga are independent for all a # .

.

Independence of random variables X and Y can be conveniently determined using
their joint distribution Px y: X and Y are independent if and only if Px y equals
the product measure Px x Py. If X and Y are real-valued with densities px and
py, they are independent if and only if their joint pdf is

px,y(x,y) = px(x)py (y).
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Probability Theory

Independence implies uncorrelatedness

Lemma A.20

If X and Y are independent real-valued random variables and
E[|X|],E[|Y]] < o, then X and Y are uncorrelated.

Note: The converse is generally false.

Theorem A.21 (Jensen's inequality)

If X is a real-valued random variable with E [|X]|] < o0 and ¢ : R — R a convex
function, then

P(E[X]) < E[o(X)]. (A2)
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Probability Theory

Bochner spaces

Definition A.22

Let (2,2, P) be a probability space and let W be a separable Banach space with
norm | - |. We denote by L”(Q; /), 1 < p < o, the space of W-valued
A-measurable random variables X : Q — W with E[|X|P] < 0. The resulting
space is a Banach space with the norm

1/p
IX1ee(wy == IXw)[PdPw)) = E[IX]*17.
Q

Similarly, L™ (£2; W) is the Banach space of W-valued random variables
X : Q — W for which

X @:wy = S [ X (w)] < co.
wEe
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Probability Theory

Bochner spaces, p = 2

The case p = 2 when W is a Hilbert space W = H with inner product (-, -) occurs
frequently. In this case L?(Q; H) is a Hilbert space with inner product

(X, ¥) iz = E[(X, Y)] = L(X«u), Y (w)) dP(w).

Random variables in L2(2; H) are called mean-square integrable random variables.
For random variables X, Y € L?(Q; H) the Cauchy-Schwarz inequality takes on the
form

[(X, )iz | < X[z Yl 2im)

” E[(X, V)] <E[|X]2]" E[IY "
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Probability Theory

Bochner spaces, p = 2, covariance

Definition A.23

Let H be a separable Hilbert space. A linear operator C : H — H is the
covariance of two H-valued random variables X and Y if

(Co,9) = Cov((¢, X), (¥,Y))  Vo,9peH.

X and Y are said to be uncorrelated if C is the zero operator. If Y = X then C is
called the covariance of X.

W

More generally, the covariance of two random variables X and Y with values in a
separable Banach space W may be defined as a bilinear map ¢ : W/ x W/ — R on
the dual space W’ of W such that

C(¢a 1/)) = Cov(<¢5X>W’><W7<1/)7 Y>W’><W) v¢a 7/) € W/'

Here (-, >wrxw denotes the duality bracket between W’ and W. The bilinear map
¢ may be identified with a linear operator from C : W' — W via the identity

<C¢a ¢>W”>< wr = C(¢, 7/})
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Probability Theory

Convergence of random variables

Definition A.24

Let W be a Banach space with norm | - | and {X,}nen be a sequence of W-valued
random variables. We say X, converges to X € W

almost surely if X,(w) — X(w) for almost all w € Q, i.e., if
P (| X, — X| — 0 for n — o) = 1.

in probability if P (| X, — X| > €) — 0 for n — oo for any € > 0.
in p-th mean or in LP(Q; W) if E[|X, — X|P] = 0 as n — c0. When p = 2 this
is known as convergence in mean square.

in distribution if E[¢(X,)] — E[¢(X)] as n — oo for any bounded and
continuous function ¢ : W — R.
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Probability Theory

Convergence of random variables

Theorem A.25

Let Xy — X in p-th mean and, for r > 0 and a constant K = K(p), assume that

K
1%~ Xy = E[1Xe — X1 < K@) (A3)
Then the following convergence properties apply:
(a) Xk — X in probability and, for any € > 0,
—rrey o K(P)P
P (1% - X| > k+) < K0P (A4)

(b) E[¢(Xk)] = E[¢(X)] for all Lipschitz continuous functions on W and, if L denotes a
Lipschitz constant of ¢,

K(p)

E[6(x)] — E[6(0)]] < L2

(c) If (A.3) holds for all p sufficiently large, then Xy, — X a.s. Furthermore, for each ¢ > 0
there exists a nonnegative random variable K such that | X (w) — X(w)| < K(w)k="*¢
for almost all w.

p
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Probability Theory

Random vectors

Random variables X = (Xi,...,X,)" from (Q,2,P) to ([, B(I") with I = R” are
known as random vectors or multivariate random variables (bivariate for n = 2).

Their expected value
b= E[X] = | X(@)dPw) = [E[X] ... EXIT
Q
is a vector in R™. If X has a pdf p, then for B € B(I')
P(X ¢ B) — P({we Q: X(w) e B}) — Px(B) — f p(x) dx.
B

The components {X;}_; of X are (pairwise) independent if and only if Px is the
product measure Px, x --- x Px . In terms of the pdf, this is equivalent to

p(x) = px, (x1) - pxa(X2) - - - Px, (Xn)-
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Probability Theory

Multivariate uniform

A random vector X : Q — [ with values in a set [ < R” with finite Lebesgue
measure |I'| follows a multivariate uniform distribution on I, denoted by

X ~ (I

if it has the pdf

p(x)si xel.

iy
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Probability Theory

Covariance matrix

Definition A.26

The covariance of two real-valued random vectors X = [Xi, ..., X,,]" and
Y =[Y1,...,Y,]" is given by the m x n matrix

Cov(X,Y)=E[(X —E[X])(Y —E[Y]T].

X and Y are said to be uncorrelated if Cov(X, Y) = O (the m x n zero matrix).
The matrix Cov(X, X) € R"*" is called the covariance matrix of X.

| \,

Proposition A.27

Let X be an R"-valued random variable with mean vector p and covariance
matric C. Then C ist symmetric positive semi-definite and its trace is given by

E[|X — pl3]-
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Probability Theory

Multivariate normal distribution

A random vector with mean vector p and positive definite covariance matrix C is
said to follow an n-variate Gaussian distribution if it has the pdf

-1
p(x) = ! . exp (—(x — ) CT(x - “)> . (A.5)

(27)9 det 2
To cover the case that C is singular we introduce the characteristic function.

Definition A.28

The characteristic function of an R"-valued random vector X is E [exp(i/\TX)],
for A € R". If X has the pdf p, then its characteristic function is

E |exp(iATX)| = (27)”25(-),

where p is the Fourier transform of p. (The minus sign is a convention in
probability theory.)

W,
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Probability Theory

Multivariate normal distribution

Proposition A.29

A random vector X has the density (A.5) for a given vector u € R" and symmetric
positive definite matrix C € R"*" if and only if its characteristic function is

E [exp(i)\TX)] = exp(iA"p — %)\TC)\). (A.6)

Definition A.30

An R"-valued random vector X follows a multivariate normal (or Gaussian)
distribution, denoted

| A

X ~ N(/J‘a C)a

where p € R” and C € R"*" is symmetric positive semi-definite, if its
characteristic function is (A.6).
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Probability Theory

Multivariate normal distribution

If X ~ N(u, C) is a multivariate normal random vector, then for any a € R" the
linear combination

Y=a'X=> aX
k=1

follows the normal distribution Y ~ N(a'p,a' Ca).
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Probability Theory

i.i.d. random variables

Definition A.31

A sequence {X;}jen of random variables is said to be independent and identically
distributed (i.i.d.) if they all follow the same probability distribution and, in
addition, are pairwise independent.

The classical limit theorems of probability theory concern sums of iid random vari-
ables. For an iid sequence {X}jen, we introduce the notation

Sh=X1+ -+ X, neN.
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Probability Theory

Weak Law of Large Numbers

Theorem A.32 (Chebyshev inequality)

A random variable X with finite mean p and finite variance o satisfies

AP(|X — pl = ¢) <o

Theorem A.33 (WLLN)

Let {Xk}ken be a sequence of i.i.d. random variables on a given probability space
(Q2,2(, P) with mean p and finite variance. Then

Sn . A
— — u  in probability, i.e.
n

for ever fixed € > 0 there holds

P(|S,/n—pl>€) -0 as n— oo.
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Probability Theory

Strong Law of Large Numbers

Theorem A.34 (SLLN)

Let {Xk}ken be a sequence of i.i.d. real-valued random variables on a given probability space (2,2, P).
Then S,/n has a finite limit if and only if E[|X1|] < 00, in which case

Sn
o E[Xi] as.

If E[|X1]] = oo, then limsup,_,, |Sh|/n — oo a.s.

Lemma A.35 (Kronecker's Lemma)

If the series >;° ; xx/k converges (not necessarily absolutely) for a sequence {xi}xen of real numbers,
then

g
lim 7Zxk=0,
n"wnkzl

)

Lemma A.36

The sequence {Xk}ken converges a.s. if and only if

lim P{sup [Xpik — Xn| > €} =0 Ve > 0.
n—oo kEN )
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Probability Theory

Strong Law of Large Numbers

Theorem A.37 (Kolmogorov Inequality)

Let Xi,..., X, be independent real-valued random variables with E[X;] = 0 and 0 < 01-2 = Var X; < ©

for all j. Then for each ¢ > 0
1 n
Pl s> of < 2 2t (A0

Conversely, if there exists ¢ such that P{|Xx| < e} = 1 for each k, then for each €

(c+e)?
Zj":l ‘7]'2

P {12/2(" |Sk| > e} =>1- (A.8)

4

Theorem A.38

Let {Xk}ken be independent real-valued random variables with E [X,] = 0 for all k. If

Y

i ZVaer<oo

k=1 k=1

then Zf’zl Xk converges a.s.

Oliver Ernst (Numerische Mathematik) uQ Sommersemester 2016 166 / 252



Probability Theory

Strong Law of Large Numbers

Definition A.39

For a real-valued random variable X and ¢ > 0 we denote the truncation of X at ¢ by

XE = XLxjeq = {X if | X|<c

otherwise.

y

Theorem A.40 (Three-series theorem)

Let {Xk}ken be independent. If, for some ¢ > 0,

0

Z {|Xk| > ¢} < o0, (A.93)

i E[X{]| < oo, (A.9b)

i MS

Var X < oo, (A.9¢)

then 377 | Xk converges a.s.
Conversely, if 3, ; Xk converges a.s., then (A.9a)—(A.9c) hold for every ¢ > 0.

V.
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Probability Theory

Central Limit Theorem

Let the sequence {Xj}jen of real-valued random variables be independent, but not
necessarily identically distributed. In addition, let E[X;] = 0 and E[X?] < oo for
all j.

Besides S, = >,/_; Xj, introduce the quantities
o? := Var X;
J S0

n
2= Zof = Var§,.
j=1

The central limit theorem (CLT) is the statement that

lim S _ lim S — E[Sn]

am Zn am W ~ N(O, 1) in distribution.
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Probability Theory

Central Limit Theorem

Definition A.41 (Lyapunov condition)

The sequence {Xi}ken satisfies the Lyapunov condition if E [|Xk[*] < oo for each
k and

Theorem A.42 (CLT)
If {Xk}ken satisfies the Lyapunov condition, then S,/~, — N(0, 1) in distribution.
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Probability Theory

Central Limit Theorem

Definition A.43 (Lindeberg condition )

The sequence { Xk }ken satisfies the Lindeberg condition if for every e > 0

n
lim —2 Z Xk ']1{|Xk|>e>2n}] = 0.

n—>OO

Proposition A.44

The Lyapunov condition implies the Lindeberg condition.

Example A.45

(1) If P{|Xk| < ¢} = 1 for some constant ¢ and if ¥2 — oo, then the Lindeberg
condition is satisfied.

(2) If {Xk}ken are i.i.d. with variance o2 € (0, 0), then the Lindeberg condition is
satisfied.
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Probability Theory

Central Limit Theorem

Theorem A.46 (Lindeberg-Feller CLT)
If {Xk}ken satisfies the Lindeberg condition, then S,/¥, — N(0, 1) in distribution.
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Probability Theory

Berry-Esseen Theorem

Theorem A.47 (Berry, 1941; Esseen 1942)

Let {Xk}ken be i.i.d. random variables with (common)
pi=E[X], o®:=VarX;>0, p:=E[X—p}*|<w.

If F, denotes the distribution function of (S, — nu)/(c+/n) and ® that of the
standard normal distribution N(0, 1), then, with a universal constant C,

p
d(x) - Fo(x)| < C-
i;ﬁ' (x) = Fa(x)] s

B

v

0.7056 [Shevtsova, 2007].

Note: the constant C is known to satisfy 0.4097 < C

N
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Statistical Estimation

e Estimation theory is concerned with determining an unknown quantity
associated with the probability distribution of a random variable X given n
i.i.d. samples {Xy}{_; of X.

e Typical examples of such quantities 6 are moments of X's distribution such
as the mean and the variance. Another common situation is the estimation of
one or more parameters which determine the distribution of X.

e An estimator for a scalar quantity 6 is a function
¢:R" >R, 0=¢(X,...,Xp)

mapping n i.i.d. realizations of X to the estimate 6 of 6.

e Note that, since each of the n random samples X, are random variables, the

same is true of o
0 =0(w) = p(X1(w), ..., Xn(w)).

Once the samples have been drawn/realized, the estimate 0 is a real number.
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Statistical Estimation

Sample average, unbiased estimator

The sample average
. X1+ + X,
Hn =

is an estimate for the mean p = E[X].

Since the Xj are i.i.d., we conclude from the linearity of expectation that

n

1
ZE[Xk]=;"W=M-
k=1

m
—
=
3
S
Il
S|

If E[|X]] < o the SLLN tells us that also fi, — pu = E[X] a.s. as n — .

Since Var i, = "Tz, where 02 = Var X, we note that the variance /i,
decreases like 1/n with growing sample size.

Definition A.48

An estimator for which E [GA] = 0 is called unbiased.
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Statistical Estimation

Sample variance

The sample variance

1 n

A2 A \2

o5 = E Xk — [in
n n—lk 1( k )

is an unbiased estimator for o2 = Var X.

In addition, there holds 42 — 02 a.s. as n — .
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Statistical Estimation

Confidence intervals

An estimator 0 is, in general, only close to the estimated quantity 6 in a probabilistic
sense, i.e., it will fluctuate around the true value 6 from realization to realization.

For a probability distribution depending on a real-valued parameter 8, we denote by
P(A[0)

the probability of event A if the true value of the parameter is 6.

Definition A.49

Given n i.i.d. random variables {Xy(w)}]_; and a number « € [0, 1],
a confidence interval of level ~ for a quantity 6 is determined by two functions
7_,7T : R" — R such that, for all possible values of 0,

P(r—(X1,...,X,) <O< 7. (Xq,.... %) |0) =1.
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Statistical Estimation

Confidence intervals example

As an example, take the random variables
X = b+ €k, pweR, e ~N(,1)iid., k=1,...,n

Then = E[X] and for the estimation error we obtain

N 1 ¢
—p== D ea~N(0,7)
]
and therefore \/n(fi, — 1) ~ N(0,1).

Given «y € [0, 1] we choose a > 0 such that ®(a) — ®(—a) = v and obtain

. . a X
7=P(—a<\/ﬁ(un—u)<a|u)=|’<un—\/—ﬁ<u<un f|u>

so that 74 = i, + ﬁ yield a confidence interval of level ~ for p.
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Statistical Estimation

Interpretations of confidence intervals

Beyond the mathematical definition of confidence intervals, there is substantial
variation as to their interpretation.

e In Frequentist statistics, the unknown parameter 6 is a real number. If the
experiment is performed many (independent) times, the y-confidence interval
would contain 6 in a proportion of v of the number of such trials. For a
single experiment with observation vector x, this is meant by [7—(x), 74 (x)]
being a y-confidence interval.

e In Bayesian statistics, the parameter 6 is a random variable with a given prior
probability distribution. Here, a y-confidence interval [ is one for which the
posterior density of 6 conditioned on the observation integrated over | equals
.

More on Frequentist vs. Bayesian confidence intervals can be found in the excellent
book [Williams, 2001; Chapter 6].

An investigation of common fallacies in the (scientific) interpretation of confidence
intervals is given in [Morey & al., 2016].
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