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What is Uncertainty Quantification? (UQ)

What is uncertainty quantification (UQ) about?

What is uncertainty?
How can uncertainty be described?
How can the effects of uncertainty be treated and quantified?
Methods for solving the resulting mathematical problems.
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What is Uncertainty Quantification? (UQ)
What is ‘uncertain’?

uncertainty: Not able to be relied on; not known or definite.
Oxford Collegiate Dictionary

uncertainty: not exactly known or decided; not definite or fixed
Merriam Webster Online Dictionary
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What is Uncertainty Quantification? (UQ)
Auf Deutsch?

unsicher: gefahrvoll, gefährlich, keine Sicherheit bietend
gefährdet, bedroht
das Risiko eines Misserfolges in sich bergend, keine [ausreichenden] Garantien
bietend; nicht verlässlich; zweifelhaft unzuverlässig
einer bestimmten Situation nicht gewachsen, eine bestimmte Fähigkeit
nicht vollkommen, nicht souverän beherrschend nicht selbstsicher
(etwas Bestimmtes) nicht genau wissend
nicht feststehend; ungewiss

Duden Online

ungewiss: fraglich, nicht feststehend; offen
unentschieden, noch keine Klarheit gewonnen habend
(gehoben) so [beschaffen], dass nichts Deutliches zu erkennen, wahrzunehmen
ist; unbestimmbar

Duden Online
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What is Uncertainty Quantification? (UQ)
A poetic description

There are known knowns;
there are things we know we know.

We also know there are known unknowns;
that is to say, we know there are some things we do not know.

But there are also unknown unknowns – the ones we don’t know we don’t
know. U. S. Secretary of Defense, Donald Rumsfeld

DoD News Briefing; Feb. 12, 2002
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What is Uncertainty Quantification? (UQ)
Uncertainty in Modern Life

(Increasingly?) many aspects of modern life involve uncertainty.

Social systems: military, finance, insurance industry, elections
Environmental systems: weather, climate, seismics, subsurface geophysics
Engineering systems: automobiles, aircraft, bridges, structures
Biological systems: health and medicine, pharmaceuticals, gene expression,
cancer research
Physical systems: quantum physics, radioactive decay
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What is Uncertainty Quantification? (UQ)
Uncertainty in Modern Life

Source: National Hurricane Center, USA

Predicted storm path with uncertainty cones.
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What is Uncertainty Quantification? (UQ)
Uncertainty in Modern Life

Source: Brodman & Karoly, 2013

Global-mean temperature change for a business-as-usual emission scenario, relative to
pre-industrial. Black line: median, shaded regions 67% (dark), 90% (medium) and 95%

(light) confidence intervals.
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What is Uncertainty Quantification? (UQ)
Uncertainty in Modern Life

Source: K. A. Cliffe, 2012

Sample paths of groundwater-borne contaminant particles emanating from an
underground radioactive waste disposal site.
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What is Uncertainty Quantification? (UQ)
Examples

Radioactive decay

Radium-226: half-life of 1602 years
Decays into Radon gas (Radon-222) by emitting alpha particles.
Over a period of 1602 years, half the radium atoms in a given sample will
decay.
But we cannot say which half!

This kind of uncertainty seems to be ‘built in’ to the physical world.
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What is Uncertainty Quantification? (UQ)
Examples

Rolling a die (or several dice)

Cube, 6 faces, numbered 1–6
One or more thrown onto a table.
For “fair dice”, expect to see the numbers 1–6 appear equally often, provided
the dice are thrown sufficiently many times.

How does this differ from radioactive decay?

Is this uncertainty also ’built-in’ to the physical world, or is it just that we don’t
know how to calculate what will happen when the dice are thrown?
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What is Uncertainty Quantification? (UQ)
Examples

Screening/testing for disease

Incidence of disease among general population: 0.01 %
Test has true positive rate (sensitivity) of 99.9 %.
Same test has true negative rate (specificity) of 99.99 %.
What is the chance that someone who tests positive actually has the disease?

Answer (relative probabilities, conditional probabilities, Bayes’ formula)

Ppdesease|posq “
Pppos|diseaseq ¨ Ppdiseaseq

Pppos|diseaseq ¨ Ppdiseaseq ` Pppos|no diseaseq ¨ Ppno diseaseq

“
0.999 ¨ 0.0001

0.999 ¨ 0.0001` p1´ 0.9999q ¨ p1´ 0.0001q

« 0.4998
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What is Uncertainty Quantification? (UQ)
Examples

Alternative answer (relative frequencies)

Think of random sample 10,000 people.
Of these, on average 1 will have the disease, 9,999 will not.
The person who has the disease will almost certainly test positive.
of the 9,999 healthy people, on average one will test (falsely) positive.
Thus, roughly one out of every two positive patients actually has the disease.

In [Gigerenzer, 1996] medical practitioners were given the following information re-
garding mammography screenings for breast cancer:

incidence: 1 %; sensitivity: 80 %; specificity: 90 %.

When asked to quantify the probability of the patiant actually having breast cancer
given a positive screening result (7.5%), 95 out of 100 physicians estimated this
probability to lie above 75%.
See also [Gigerenzer et al., 1998] for similar observations in AIDS counseling.
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What is Uncertainty Quantification? (UQ)
Examples

274

The probability that a patient has breast cancer is
1% (the physician’s prior probability).

If the patient has breast cancer, the probability
that the radiologist will correctly diagnose it is 80%

(hit rate or sensitivity).
If the patient has a benign lesion (no breast can-

cer), the probability that the radiologist will incor-
rectly diagnose it as cancer is 10% (false-positive rate).

Question: What is the probability that a patient
with a positive mammography actually has breast
cancer?

Eddy reported that 95 of 100 physicians estimated
the probability of breast cancer after positive mam-
mography to be about 75%. If one inserts the num-
bers into Bayes’ theorem, however, one gets a value
of 7.5%, that is, an estimate one order of magnitude
smaller. Casscells and colleagues9 have reported
similar results with physicians, staff, and students at
the Harvard Medical School. Is there something sys-
tematically wrong with physicians’ statistical train-
ing, with their intuitions, or both?

Physicians are no exception in having difficulties
with probabilities. Numerous undergraduates sitting
through tests in psychological laboratories found
themselves similarly helpless and were diagnosed as
suffering from &dquo;cognitive illusions.&dquo; From these

studies, many have concluded that the human mind
lacks something important: &dquo;People do not appear
to follow the calculus of chance or the statistical the-

ory of prediction&dquo; 10 p 237; &dquo;It appears that people lack
the correct programs for many important judgmen-
tal tasks&dquo; 11; or more bluntly, &dquo;Tversky and Kahne-
man argue, correctly I think, that our minds are not
built (for whatever reason) to work with the rules of

probability.&dquo; 12 p 469 If these conclusions are correct,
then the problem is not so much in training, but in
our minds: there seems to be little hope for physi-
cians, and for their patients as well.

MENTAL COMPUTATIONS DEPEND ON

INFORMATION FORMATS

These conclusions, however, are premature. Let
us be clear why. A discrepancy between human
judgment and the outcome of Bayes’ rule is ob-

served, from which the conclusion is drawn that
there is no cognitive algorithm similar to Bayes’ rule
in people’s minds (but only dubious heuristics such
as &dquo;representativeness&dquo;). However, any claim against
the existence of an algorithm, Bayesian or otherwise,
is impossible to evaluate unless one specifies the in-
formation format for which the algorithm is de-

signed to operate. For instance, numbers can be
represented in various formats: Arabic, Roman, and
binary systems, among others. My pocket calculator
has an algorithm for multiplication that is designed
for Arabic numbers as the input format. If I enter

FIGURE 1. Bayesian computations are simpler when information
is represented in a frequency format (right) than when it is rep-
resented in a probability format (left) p(H) = prior probability
of hypothesis. H (breast cancer), p(D ~ H) = probability of data D
(positive test) given H, and p(D ) - H) = probability of D given - H
(no breast cancer).

binary numbers instead, garbage comes out. The
observation that the output of my pocket calculator
deviates from the normative rule (here: multiplica-
tion), however, does not entail the conclusion that it
has no algorithm for multiplication. Similarly, the
algorithmic operations acquired by humans are de-
signed for particular formats. Consider for a mo-
ment division in Roman numerals.
The format of information is a feature of the de-

cision maker’s environment. Let us apply this ar-
gument to medical diagnosis, such as Eddy’s mam-
mography problem. Assume that through the evo-
lutionary process of adapting to risky environments,
some capacity or cognitive algorithm for statistical
inference has evolved. For what information format
would such an algorithm be designed? Certainly not
probabilities and percentages-as in the above

mammography problem-because these are rela-
tively new (a few hundred years old) formats for
learning and communicating risk.313 So if not prob-
abilities and percentages, for what information for-
mat were these cognitive algorithms designed? I

argue that they evolved to deal with absolute fre-
quencies, because information was experienced
during most of the existence of Homo sapiens in
terms of discrete cases, for example, three out of 20
cases rather than 15%.

 at Universitaetsbibliothek on April 8, 2014mdm.sagepub.comDownloaded from 

Source: Gigerenzer, 1996

Sometimes the description of uncertainty
is crucial for its transparent communica-
tion.
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What is Uncertainty Quantification? (UQ)
Examples

Modeling biological systems

From one view, biology is just very complicated physics and chemistry.
But even the simplest biological systems are far too complicated to be
understood from basic principles at the moment.
Models are constructed that attempt to capture the essential features of
what is happening, but often there are competing models and they may all
fail in some way or other to predict the observed phenomena.
In short, we don’t really know what the model is!

How does this situation differ from the previous two?
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What is Uncertainty Quantification? (UQ)
Examples

Climate change
The weight of evidence makes it clear that climate change is a real and present
danger. The Exeter conference was told that whatever policies are adopted from
this point on, the Earth’s temperature will rise by 0.6F within the next 30 years.
Yet those who think climate change just means Indian summers in Manchester
should be told that the chances of the Gulf stream - the Atlantic thermohaline
circulation that keeps Britain warm - shutting down are now thought to be
greater than 50%.

The Guardian, 2005

Most of the observed increase in globally-averaged temperatures since the mid-
20th century is very likely due to the observed increase in anthropogenic GHG
concentrations. It is likely there has been significant anthropogenic warming
over the past 50 years averaged over each continent (except Antarctica).

IPCC Fourth Assessment
Summary for Policymakers.

What do these statements mean?
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What is Uncertainty Quantification? (UQ)
Examples

Unknown unknowns

Obviously can’t give a current example.
A good example ist the state of Physics at the end of the 19th century.

There is nothing new to be discovered in physics now. All that remains is
more and more precise measurement.

Lord Kelvin, 1900

Quantum mechanics and relativity theory were unknown unknowns.

It is easy to underestimate uncertainty.

Oliver Ernst (Numerische Mathematik) UQ Sommersemester 2014 24 / 315



What is Uncertainty Quantification? (UQ)
Political Implications

Questions:1

1 How do we account for all the uncertainties in the complex models and
analyses that inform decision makers?

2 How can those uncertainties be communicated simply but quantitatively to
decision makers?

3 How should decision makers use those uncertainties when combining
scientific evidence with more socio-economic considerations?

4 How can decisions be communicated so that the proper acknowledgment of
uncertainty is transpartent?

1posed on entry at the 2006 EPSRC Ideas Factory on the topic Scientific Uncertainty and
Decision Making for Regulatory and Risk Assessment Purposes.
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What is Uncertainty Quantification? (UQ)
UQ and the scientific computing paradigm

Physical Phenomenon Mathematical Model

Numerical ApproximationComputer Implementation

Prediction
Insight
Optimization
Control
Decision
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What is Uncertainty Quantification? (UQ)
UQ and the scientific computing paradigm

Physical Phenomenon

Data
Quantities of Interest

Mathematical Model

DEs
Parameters

Solution

Numerical Approximation

Discretization
Solvers

Computer Implementation

Software

Prediction
Insight
Optimization
Control
Decision
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What is Uncertainty Quantification? (UQ)
UQ and the scientific computing paradigm

Physical Phenomenon

Uncertain Data
Lack of Knowledge

Variability

Mathematical Model

SDEs
Random Fields

Numerical Approximation

?

Computer Implementation
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Prediction
Insight
Optimization
Control
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Oliver Ernst (Numerische Mathematik) UQ Sommersemester 2014 26 / 315



What is Uncertainty Quantification? (UQ)
UQ and the scientific computing paradigm

Physical Phenomenon

Uncertain Data
Lack of Knowledge

Variability

Mathematical Model

SDEs
Random Fields

Numerical Approximation

?

Computer Implementation

?

Prediction
Insight
Optimization
Control
Decision

Quantified

Oliver Ernst (Numerische Mathematik) UQ Sommersemester 2014 26 / 315



What is Uncertainty Quantification? (UQ)
Validation and Verification (V & V)

What confidence can be assigned to a computer prediction of complex phenomena?

Validation: The determination of whether a mathematical model adequately rep-
resents the pysical or engineering phenomenon under study.
“Are we solving the right problem?”

Is this even possible? (cf. Carl Popper)

Verification: The determination of whether an algorithm and/or computer code
correctly implements a given mathematical model.
“Are we solving the problem correctly?”

code verification (software engineering)
solution verification (a posteriori error estimation)
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What is Uncertainty Quantification? (UQ)
Aleatory and Epistemic Uncertainty

Aleatoric Uncertainty: (variability) Uncertainty due to true intrinsic variability;
cannot be reduced by additional experimentation, improvement of measuring devices
etc.

Examples:
rolling a die
wind stress on a structure
production variations

Epistemic Uncertainty: Uncertainty due to lack of knowledge/incomplete infor-
mation.
Examples:

turbulence modeling assumptions
surrogate chemical kinetics
the probability distribution a random quantity follows

Note: This distinction is not always meaningful or possible.
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What is Uncertainty Quantification? (UQ)
Model Problem

The most popular model problem in the UQ community has become the second-
order elliptic PDE with an uncertain coefficient function:

´∇¨pa∇uq “ f ` domain D Ă Rd ` BC.

Rather than the solution u (whatever that may be), typical problems in UQ require
a functional Q of the solution, e.g. its value at a point in the computational domain.
Such a functional is known as a quantity of interest (QoI).
Examples:

Qpuq “ upx0q, Qpuq “
1

|D0|

ż

D0

upx qdx .

Introduce associated output set G “ tQpuqu for all possible solutions u.
Consider mapping P : S Ñ G of all possible inputs to output set G.

In what way might uncertainty in the coefficient a be addressed?
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What is Uncertainty Quantification? (UQ)
Worst case analysis

Introduce an ε-ball around a given function a0 (in a suitable norm).

Examples:

S8 :“ ta P L8pDq : }a´ a0}L8pDq ď εu,

S1 :“ ta PW 1,8pDq : }a´ a0}W 1,8pDq ď εu,

Sconst :“ ta : a is constant in D, |a´ a0| ď εu.

Worst case analysis: determine uncertainty interval

I “ rinf
aPS

Qpupaqq, sup
aPS

Qpupaqqs.

The uncertainty range of Q is then the length of I.

This is a generalization of interval analysis.
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What is Uncertainty Quantification? (UQ)
Probabilistic model

Idea: Some values (functions) a P S are more likely than others.

Purely probabilistic approach:
Introduce probability measure on S.
(Measurable) mapping P : S Ñ G induces probability measure on G.
(“uncertainty propagation”)
Big issue: choice of distribution, too much subjective information?
Some classical guidelines: Laplace’s principle of insufficient reason, maximum
entropy, etc.
Choosing distribution based on data is point of departure for Bayesian inverse
problem.
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What is Uncertainty Quantification? (UQ)
Evidence theory

Generalizes probabilistic model (also called Dempster-Shafer theory)

Finite or countable family F of events.
Set function m : FÑ r0, 1s giving likelihood information for each event,
satisfies

ÿ

APF

mpAq “ 1, mpHq “ 0,

but, unlike probability measures, need not satisfy A Ă B ñ mpAq ď mpBq.
Belief and plausability functions for admissible events C

belpCq “
ÿ

APF,AĂC

mpAq, plpCq “
ÿ

APF,AXC‰H

mpAq.

provide lower and upper bounds, respectively, on likelihood of event C.
Likelihood function dependent on expert opinion.
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What is Uncertainty Quantification? (UQ)
Fuzzy sets and possibility theory

Deterministic approach introduced by [Zadeh, 1965].

Generalizes “P” relation of classical set theory: for C Ă S, in place of
exhaustive alternatives x P C and x R C, introduces membership function

µC : S Ñ r0, 1s

expressing truth degree of statement x P C.
Important tool: α-cut of set C defined by

Cα :“ tx P S : µCpxq ě αu

giving set characterization of uncertainty.
Mapping P then again propagates fuzziness of input set S to output set G.
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A Case Study: Radioactive Waste Disposal

An area where UQ has played a central role in the past 25 years is the
assessment of strategies and sites for the long-term storage of radioactive
waste.
Uncertainties arise from technological complexity as well as the long time
scales to be considered.
Many leading industrial countries (USA, UK, Germany) have scrapped
previous plans for national long-term disposal sites and are re-evalutating
their strategies.
We consider a basic UQ problem which occurs in site assessment studies.
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A Case Study: Radioactive Waste Disposal
Background

Radioactive waste is produced in large part by power plants, in which the
heat from controlled nuclear fission is used to produce electric power. (Other
sources: medical, weapon production, non-nuclear industries)
Exposure to high radiation levels seriously harmful to humans and animals;
long-term exposure to low-level radiation can cause cancer and other
long-term health problems.
Classification

high-level waste (HLW): highly radioactive, produces heat, small quantities.
intermediate-level waste (ILW): still very radioactive, does not produce heat.
low-level waste (LLW): low radiactivity; packaging material, protective
clothing, soil, concrete etc. which has been exposed to radioactivity.

Quantities in storage (source: IAEA database, http://newmdb.iaea.org)
Germany: 120,000 m3 (2007)
France: 90,000 m3 (2007)
UK: 350,000 m3 (2007)
USA: 540,000 m3 (2008)
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A Case Study: Radioactive Waste Disposal
Management Options

Since this problem has received serious consideration (« 1970s), several options
have been discussed

Surface storage: current universal solution, not long-term, risky.
Disposal at sea: banned by international treaty (London Convention)
Disposal in space: too dangerous, prohibitive cost (but permanent solution).
Transmutation: not yet proven technology, would mitigate but not solve the
problem.
Deep geological disposal

Favored by nearly all countries with a radioactive waste disposal program.
Storage in containers in tunnels, several hundred meters deep, in stable
geological formations.
Issue: retrievable or not?
No human intervention required after final closure of repository.
Several barriers: chemical, physical, geological.
Substantial engineering challenge (containment must be assured for at least
10,000 years).
Main escape route for radionuclides: groundwater pathway.
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A Case Study: Radioactive Waste Disposal
WIPP

US DOE repository for radioactive waste
situated near Carlsbad, NM.
Fully operational since 1999.
Extensive site characterization and
performance assessment since 1976, also
in course of compliance certification and
recertification by US EPA (every 5 years).
Large amount of publicly available data.
http://www.wipp.energy.gov
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A Case Study: Radioactive Waste Disposal
WIPP geology

Repository located at depth of 655
m within bedded evaporites,
primarily halite (salt).
The most transmissive rock in the
region is the Culebra Dolomite.
In the event of an accidental breach,
Culebra would be the principal
pathway for transport of
radionuclides away from the
repository.
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A Case Study: Radioactive Waste Disposal
WIPP UQ scenario

One scenario at WIPP is a release of
radionuclides by means of a borehole drilled into
the repository.
Radionuclides are released into the Culebra
Dolomite and then transported by groundwater.
Travel time from release point in the repository
to the boundary of the region is an important
quantity.
Flow is two-dimensional to a good
approximation.
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Darcy’s law

The simplest mathematical model for flow through a
porous medium (as in groundwater through an aquifer)
is given by Darcy’s Law

q “
´k

µ
∇p,

in which q is the volumetric flux or Darcy velocity
(discharge per unit area in [m/s]), k is the permeability
tensor, a material parameter describing how easily water
flows through the given medium, µ is the dynamic
viscosity of the fluid and p is the hydraulic head of the
fluid.
The hydraulic conductivity tensor is defined as
K :“ kρg{µ, where g is the acceleration due to gravity
and ρ the fluid density.
The actual pore velocity with which the fluid particles
move through the pores is obtained as u “ q{φ, where
phi P r0, 1s denotes the porosity of the medium.
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A Case Study: Radioactive Waste Disposal
Groundwater Flow Model

Stationary Darcy flow q “ ´K∇p q : Darcy flux
K : hydraulic conductivity
p : hydraulic head

mass conservation ∇¨u “ 0 u : pore velocity
q “ φu φ : porosity

transmissivity T “ Kb b : aquifer thickness

particle transport 9x ptq “ ´
T px q

bφ
∇ppx q x : particle position

x p0q “ x0 x0 : release location

Quantity of interest: particle travel time to reach WIPP boundary
(actually, its log10).
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A Case Study: Radioactive Waste Disposal
PDE with Random Coefficient

Primal form of Darcy equations:

∇¨rT px q∇ppx qs “ 0, x P D, p “ p0 along BD.

Model T as a random field (RF) T “ T px , ωq, ω P Ω, with respect to underlying
probability space pΩ,A,Pq.

Modeling Assumptions: (standard in hydrogeology)

T has finite mean and covariance

T px q “ E rT px , ¨qs , x P D,

CovT px ,yq “ E
“`

T px , ¨q ´ T px q
˘ `

T py , ¨q ´ T pyq
˘‰

, x ,y P D.

T is lognormal, i.e., Zpx , ωq :“ log T px , ωq is a Gaussian RF.
CovZ is stationary and isotropic, i.e., CovZpx ,yq “ cp}x ´ y}2q,
and of Matérn type.
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A Case Study: Radioactive Waste Disposal
Matérn Family of Covariance Kernels

cpx ,yq “ cθprq “
σ2

2ν´1 Γpνq

ˆ

2
?
ν r

ρ

˙ν

Kν

ˆ

2
?
ν r

ρ

˙

, r “ }x ´ y}2

Kν : modified Bessel function of order ν

Parameters θ “ pσ2, ρ, νq σ2 : variance
ρ : correlation length
ν : smoothness parameter

Special cases:

ν “ 1
2
: cprq “ σ2 expp´

?
2r{ρq exponential covariance

ν “ 1 : cprq “ σ2
´

2r
ρ

¯

K1

´

2r
ρ

¯

Bessel covariance

ν Ñ8 : cprq “ σ2 expp´r2{ρ2q Gaussian covariance
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A Case Study: Radioactive Waste Disposal
Matérn Covariance Functions
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Smoothness: Realizations Zp¨, ωq are k times differentiable ô ν ą k.
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A Case Study: Radioactive Waste Disposal
Karhunen-Loève expansion

Covariance function of RF Z P L2
PpΩ;L8pDqq

cpx ,yq “ CovZpx ,yq :“ E
”´

Zpx , ¨q ´ Zpx q
¯´

Zpy , ¨q ´ Zpyq
¯ı

, x ,y P D,

is symmetric in x ,y , positive semidefinite, and continuous on DˆD if continuous
along ‘diagonal’ tpx ,x q : x P Du.

The covariance operator

C “ CZ : L2pDq Ñ L2pDq, pCuqpx q “

ż

D

upyqcpx ,yqdy

is therefore selfadjoint, compact, nonnegative. Its eigenvalues tλmumPN form a
nonincreasing sequence accumulating at most at 0.
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A Case Study: Radioactive Waste Disposal
Karhunen-Loève expansion

Denoting eigenfunctions by tZmumPN there exists sequence of RV

tξmumPN Ă L2
PpΩq, E rξms “ 0, E rξkξms “ δk,m,

such that the expansion

Zpx, ωq “ Zpx q `
8
ÿ

m“1

a

λm Zmpx q ξmpωq

converges in L2
PpΩ;L8pDqq.

[Karhunen, 1947], [Loève, 1948]

Oliver Ernst (Numerische Mathematik) UQ Sommersemester 2014 47 / 315



A Case Study: Radioactive Waste Disposal
Karhunen-Loève expansion

For normalized eigenfunctions Zmpx q,

VarZpx q :“ cpx ,x q “
8
ÿ

m“1

λmZmpx q
2,

Total variance:
ż

D

VarZpx qdx “
8
ÿ

m“1

λm pZm, ZmqD
looooomooooon

“1

“ traceC.

For constant variance (e.g., stationary RF),

VarZ ” σ2 ą 0,
ÿ

m

λm “ |D|σ
2.

Interpretation: M first covariance eigenmodes form best rank-M approximation
to C in sense of retaining maximal amount of variance.
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A Case Study: Radioactive Waste Disposal
Karhunen-Loève expansion

Truncate KL expansion after M leading terms:

ZpMqpx , ωq “ Zpxq `
M
ÿ

m“1

a

λm Zmpx q ξmpωq.

Truncation error

E
”

}Z ´ ZpMq}2L2pDq

ı

“

8
ÿ

m“M`1

λm.

Choose M to retain sufficient fraction δ P p0, 1q of total variance, i.e.,

E
”

}Z ´ ZpMq}2L2pDq

ı

E
”

}Z}2L2pDq

ı “

ř8

m“M`1 λm
ř8

m“1 λm
“ 1´

řM
m“1 λm
|D|σ2

ă δ.
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A Case Study: Radioactive Waste Disposal
WIPP Data
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WIPP site boundary

transmissivity measurements at 38
test wells
head measurements, used to obtain
boundary data via statistical
interpolation (kriging)
constant layer thickness of b “ 8m
constant porosity of φ “ 0.16

SANDIA Nat. Labs reports
[Caufman et al., 1990]
[La Venue et al., 1990]
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A Case Study: Radioactive Waste Disposal
Probabilistic Model of Transmissivity

Merge transmissivity data with statistical model:

(1) Point estimates of parameters σ, ρ and ν via restricted maximum likelihood
estimation (REML).

(2) Condition resulting covariance structure of log T on transmissivity
measurements. (Low-rank modification of covariance operator.)

(3) Approximate log T by truncated Karhunen-Loève expansion.

Oliver Ernst (Numerische Mathematik) UQ Sommersemester 2014 51 / 315



A Case Study: Radioactive Waste Disposal
WIPP KL modes conditioned on 38 transmissivity observations

unconditioned, m “ 1, 2, 9, 16

conditioned, m “ 1, 2, 9, 16
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A Case Study: Radioactive Waste Disposal
Deterministic parametric representation

Parametrize input RF by vector of independent Gaussian RV tξmuMm“1 “: ξ.
If ξm has density ρm and image Γm :“ ξmpΩq, then (Doob-Dynkin lemma)

L2
PpΩq » L2

ρpΓq, where Γ :“ ˆ8m“1Γm, ρ “
ź

m

ρm.

Replace Zpx , ωq, ppx , ωq . . . with Zpx , ξq, ppx , ξq.

BVP becomes purely deterministic with (possibly) high-dimensional parameter
space:

∇¨rT px , ξq∇ppx , ξqs “ 0, x P D, P-a.s.,
ppx , ξq “ p0px q, x P BD, P-a.s.,

where

log T px , ξq “ Zpx q `
M
ÿ

m“1

a

λm Zmpx q ξm.
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A Case Study: Radioactive Waste Disposal
Travel-time computations

Generate sufficiently large ensemble of log-travel times spξq “ log10 tpξq

Compute empirical CDF to quantify uncertainty in travel time.

Three sampling methods:

(1) Monte Carlo (MC) sampling of RV ξ Ñ spξq.
(NMC solutions of PDE)

(2) Stochastic collocation (SC) Ñ RF representation of velocity field uNSC
px , ξq,

use this to sample spξq.
(NSC solutions of PDE)

(3) Gaussian process emulator: NDP MC samples of spξq used to calibrate
surrogate of mapping ξ Ñ spξq, use this surrogate to sample spξq.

(NDP solutions of PDE)
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A Case Study: Radioactive Waste Disposal
Monte Carlo Method

Draw independent random samples tξju
NMC
j“1 of ξ.

Solve determinisic PDE for each conductivity exppZM px , ξjqq.
Solve ODE for each flow field upx , ξjq and compute spξjq.

How many samples do we need for a desired sampling error of

P

ˆ

sup
xPR

|F̂NMC
px q ´ F px q| ď 0.01

˙

ě 0.95 ?

Here F denotes the true CDF of s and FNMC
the empirical CDF obtained by NMC

samples. By Donsker’s theorem we have
a

NMC sup
xPR

|F̂NMC
px q ´ F px q|

d
ÝÝÝÝÝÝÑ
NMCÑ8

sup
xPr0,1s

|Bpx q|,

where B is a standard Brownian Bridge on r0, 1s.

This yields NMC « 20, 000. Can we do better than solving 20k PDEs?
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A Case Study: Radioactive Waste Disposal
Stochastic Collocation

Evaluate v : ΓÑ V at collocation points Ξ :“ tξju
NSC
j“1 Ă Γ,

approximate vw « v in NSC-dim. function space VξpΓ;V q.

Here: Smolyak sparse tensor collocation

vw “
ÿ

|i |ďw

«

M
â

m“1

∆
pmq
im

ff

v,

where ∆
pmq
0 “ 0, ∆

pmq
k “ I

pmq
k ´ I

pmq
k´1 for k P N and

´

I
pmq
k f

¯

pξq :“
ÿ

ξjPΞ
pmq

k

fpξjq `jpξq, for f : Γm Ñ V,

`j Lagrange polynomials associated with (1D) nodal sets Ξ
pmq
k Ă Γm.

Here: Ξ
pmq
k are the p2pk´1q ` 1qth Gauss-Hermite nodes, Ξ

pmq
1 “ t0u.
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A Case Study: Radioactive Waste Disposal
Smolyak sparse grid based on Gauss-Hermite nodes
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A Case Study: Radioactive Waste Disposal
Smolyak sparse grid based on Gauss-Hermite nodes
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A Case Study: Radioactive Waste Disposal
Smolyak sparse grid based on Gauss-Hermite nodes
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A Case Study: Radioactive Waste Disposal
Smolyak sparse grid based on Gauss-Hermite nodes
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A Case Study: Radioactive Waste Disposal
Smolyak sparse grid based on Gauss-Hermite nodes
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A Case Study: Radioactive Waste Disposal
Smolyak sparse grid based on Gauss-Hermite nodes
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A Case Study: Radioactive Waste Disposal
Gaussian Process Emulators

An emulator is a statistical approximation to the output of a computer code

y “ fpx q.

Basic idea:

(1) Represent the code, fp¨q as a Gaussian stochastic process.
(2) Run model for sample of design inputs x and observe outputs y .
(3) Condition GP on observed outputs y .
(4) Emulator provides a distribution function for the output of the computer code.
(5) Use emulator as a surrogate for computer model when performing MC

analysis.

[Kennedy & O’Hagan, 2001], [Stone, 2011]
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A Case Study: Radioactive Waste Disposal
Spatial Discretization

Mixed FE discretization:
lowest order RT elements for u , pcw. constants for p.
Fixed mesh, 29 208 triangles, (73 234 DOF)
Flow divergence-free ñ discrete fluxes pcw. constant,
(makes particle trajectory calculation trivial).
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A Case Study: Radioactive Waste Disposal
Collocation error

Error w.r.t. MC reference calculation with NMC “ 20, 000.

Errors measured in L2
ρpΓ;L2pDqq, L2

ρpΓ;Hpdiv, Dqq resp. L2
ρpΓ;Rq norms.
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A Case Study: Radioactive Waste Disposal
Travel Time CDFs for M “ 20 KL modes
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A Case Study: Radioactive Waste Disposal
Travel Time CDFs for M “ 20 KL modes
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Kolmogorov-Smirnov Test

Statistical test to determine whether the random evaluations of the surrogates were
drawn from the same distribution as pure MC.

Significance level: α “ 0.05. KL length: M “ 20.

Surrogate Nsurrogate KS-test (1K) KS-test (20K)
SC 41 7 7

881 X X
13201 X X

GPE 200 7 7

400 X 7

600 X 7

1000 X 7

Basically the same results for M “ 10 and M “ 30.
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Neglected Variance
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