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Probability Theory
Probability measure

We denote an abstract probability space by pΩ,A,Pq, in which

Ω is an abstract set of elementary events,
A is a σ-algebra of subsets of Ω containing the measurable events and
P is a probability measure on A.

Definition A.1
A measure P on a measurable space pΩ,Aq is called a probability measure if
PpΩq “ 1.

Definition A.2
An event A P A is said to occur almost surely with respect to the measure P
(P-a.s.) if PpAq “ 1.
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Probability Theory
Borel-Cantelli lemma

Proposition A.3 (Boole’s inequality)
For events tAnunPN there holds

P pY8n“1Anq ď
8
ÿ

n“1

PpAnq.

Definition A.4
The set of all ω P Ω such that ω P An for infinitely many values of n is defined as

tAn, i.o. u :“ lim sup
nPN

An :“ X8k“1 Y
8
n“k An

Theorem A.5 (Borel-Cantelli Lemma)
If
ř8

n“1 PpAnq ă 8, then PtAn, i.o.u “ 0. For independent events tAnunPN such
that

ř8

n“1 PpAnq “ 8 there holds PtAn, i.o.u “ 1.
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Probability Theory
Random variables

Definition A.6
Let pΩ,A,Pq be a probability space and pE,Eq a measurable space. A measurable
function X : Ω Ñ E is called an (E-valued) random variable. Individual values
Xpωq for ω P Ω are called realisations of the random variable.

Remark: If E is a topological space then the σ-algebra generated by the open
subsets of E is called the Borel σ-algebra BpEq.

Definition A.7
Let X be an E-valued random variable where pE,Eq is a measurable space and
pΩ,A,Pq is the underlying probability space. The probability distribution PX of
X (also called the law of X) is the probability measure on pE,Eq defined by
PXpAq :“ PpX´1pAqq for pre-images X´1pAq :“ tω P Ω : Xpωq P Aqu of sets
A P E.

Remark: This construction is sometimes called the push-forward measure defined
by pΩ,A,Pq, pE,Eq and X.
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Probability Theory
Doob-Dynkin Lemma

Theorem A.8 (Doob-Dynkin lemma)
Let f : Ω Ñ E and g : Ω Ñ F be two measurable functions from a measurable
space pΩ,Aq to two measurable spaces pE,Eq and pF,Fq of which the first is a
separable and complete metric space. Then f is g-measurable if and only if there
exists some measurable mapping h : F Ñ E with f “ h ˝ g.

See [Kallenberg, 1997], Lemma 1.13 for a proof.

Oliver Ernst (Numerische Mathematik) UQ Sommersemester 2014 199 / 315



Probability Theory
Expectation, moments

Definition A.9
The expectation of a Banach space-valued random variable X is defined as the
integral

E rXs :“

ż

Ω

XpωqdPpωq.

Definition A.10
The k-th moment (k P N) of a real-valued random variable X is E

“

Xk
‰

.
The first moment µ :“ E rXs is also called the mean or mean value.
The central moments E

“

pX ´ µqk
‰

measure the deviation of X from its mean.
The second central moment

VarX :“ E
“

pX ´ µq2
‰

“ E
“

X2
‰

´ µ2

of a random variable X is called its variance.

Remark: The quantity σ :“
?
VarX is called the standard deviation of X.
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Probability Theory
Computation of moments

Moments of a random variable are sometimes more easily computed by integrating
over the image variable.

Consider a real-valued random variable X from pΩ,Aq to pΓ,BpΓqq where Γ Ă R.
For B P BpΓq, set A :“ X´1pBq. Then by the definition of the probability
distribution PX

ż

Ω

1ApωqdPpωq “ PpAq “ PXpBq “

ż

Γ

1BpxqdPXpxq.

For measurable functions f : Γ Ñ R we have
ż

Ω

fpXpωqqdPpωq “

ż

Γ

fpxqdPXpxq

and, in particular,

E rXs “

ż

Ω

XpωqdPpωq “

ż

Γ

x dPXpxq.
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Probability Theory
Probability density functions

Definition A.11
Let P be a probability measure on pΓ,BpΓqq for some Γ Ă R. If there exists a
function p : Γ Ñ r0,8q such that PpBq “

ş

B
ppxqdx for any B P BpΓq we say

that P has a density p with respect to Lebesgue measure and we call p its
probability density function (pdf). If X is a Γ-valued random variable on
pΩ,A,Pq, the pdf pX of X (if it exists) is the pdf of the probability distribution
PX .

For real-valued random variables X from pΩ,A,Pq to pΓ,BpΓqq we then have3

E rXs “

ż

Ω

XpωqdPpωq “

ż

Γ

x dPXpxq “

ż

Γ

xppxqdx. (A.1)

Event probabilities are then easily calculated as

PpX P pa, bqq “ P ptω P Ω : a ă Xpωq ă buq “ PXppa, bqq “

ż b

a

ppxqdx.

3(where we have omitted the subscript X)
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Probability Theory
Uniform distribution

A random variable X is uniformly distributed on D “ ra, bs Ă R, pa ă bq, denoted

X „ Upa, bq,

if its pdf is

ppxq “
1

b´ a
, x P ra, bs.

Using (A.1), we easily obtain

E rXs “

ż b

a

x

b´ a
dx “

a` b

2
, E

“

X2
‰

“

ż b

a

x2

b´ a
dx “

b3 ´ a3

3pb´ aq
,

so that VarX “ E
“

X2
‰

´ E rXs2 “ pb´aq2

12 .
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Probability Theory
Gaussian distribution

A random variable X is said to follow the Gaussian or normal distribution on Γ “ R
if its pdf is given by

ppxq “
1

?
2πσ2

exp

ˆ

´px´ µq2

2σ2

˙

, x P R,

with two real parameters µ P R and σ ą 0, denoted X „ Npµ, σ2q.
As is easily verified,

E rXs “ µ, VarX “ σ2.

The probability that X is within α of its mean is given by

Pp|X ´ µ| ď αq “ erf

ˆ

α
?

2σ2

˙

,

with the error function erf defined by

erfpxq “
2
?
π

ż x

0

e´t
2

dt.
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Probability Theory
Gaussian distribution

The cumulative distribution function (cdf) of the standard normal distribution
Np0, 1q is denoted by

Φpxq “
1
?

2π

ż x

´8

e´
t2

2 dt “
1

2
`

1

2
erf

ˆ

x
?

2

˙

.

Any (finite) linear combination of (jointly) random variables is normally distributed.

Oliver Ernst (Numerische Mathematik) UQ Sommersemester 2014 205 / 315



Probability Theory
Change of variables formula

Lemma A.12 (Change of variables)

Suppose Y : Ω Ñ R is a real-valued random variable and f : pa, bq Ñ R is
continuously differentiable with inverse function f´1. If pY is the pdf of Y , the
pdf of the random variable X : Ω Ñ pa, bq defined via X “ f´1pY q is

pXpxq “ pY pfpxqq |f
1pxq| for a ă x ă b.
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Probability Theory
Lognormal distribution

If Y „ Npµ, σ2q, then the random variable

X :“ exppY q

is said to follow a lognormal distribution. With fpxq “ log x, Lemma A.12 yields
the pdf of X as

pXpxq “
1

?
2πσ2x2

exp

ˆ

´
rlogpxq ´ µs2

2σ2

˙

.

Moreover, there holds

E rXs “ exp

ˆ

µ`
σ2

2

˙

, VarX “ peσ
2

´ 1qe2µ`σ2

.
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Probability Theory
Covariance

Definition A.13
The covariance between two real-valued random variables is defined as

CovpX,Y q “ E rpX ´ µXqpY ´ µY qs ,

where µX :“ E rXs and µY :“ E rY s. In particular, CovpX,Xq “ VarX.

Note: An equivalent expression is CovpX,Y q “ E rXY s ´ E rXsE rY s.

Calculation of the covariance requires evaluating the integral

E rXY s “

ż

Ω

XpωqY pωqdPpωq “

ż

XpΩqˆY pΩq

xy dPX,Y px, yq,

in which PX,Y is the joint probability distribution of X and Y .
Sometimes it is useful to scale the covariance to lie in r´1, 1s. The resulting quantity
is known as the correlation coefficient

ρpX,Y q :“
CovpX,Y q

σXσY
.
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Probability Theory
Joint probability distribution

Definition A.14
The joint probability distribution of two random variables X and Y is the
distribution of the bivariate random variable X “ pX,Y q, i.e., for all
B P BpXpΩq ˆ Y pΩqq

PX,Y pBq “ Pptω P Ω : X pωq P Buq.

If it exists, the density pX,Y of PX,Y is known as the joint pdf and

PX,Y “

ż

B

pX,Y px, yqdxdy.
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Probability Theory
Uncorrelated random variables

Definition A.15
If CovpX,Y q “ 0 the random variables X and Y are said to be uncorrelated. A
family tXαuα is said to be pairwise uncorrelated if Xα and Xβ are uncorrelated
for all α ‰ β.

Note: Uncorrelated random variables may still be strongly related. As an example,

X „ Np0, 1q, and Y :“ cosX

satisfy µX “ 0 and hence

CovpX,Y q “ E rX cosXs “

ż

R
x cospxqdPXpxq

“
1
?

2π

ż

R
x cospxq exp

ˆ

´x2

2

˙

dx “ 0.

A stronger notion is that of independent random variables.
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Probability Theory
Sub σ-algebras, σ-algebras generated by random variables

Definition A.16
A σ-algebra B is a sub σ-algebra of A if B Ă A, i.e., if A P B implies A P A.

Definition A.17
Let X be an E-valued random variable on pΩ,A,Pq for a measurable space
pE,Eq. The σ-algebra generated by X, denoted σpXq, is defined as

σpXq :“ tX´1pAq : A P Eu Ă A.

Remark: σpXq is the smallest σ-algebra such that X is measurable. It may be
considerably smaller than A.
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Probability Theory
Independence of events, σ-algebras and random variables

Definition A.18
Two events A,B P A are independent if PpAXBq “ PpAqPpBq.
Two σ-algebras A1 and A2 are independent if all pairs of events A1 and A2 with
A1 P A1 and A2 P A2 are independent.

Definition A.19
Two random variables X,Y on a probability space pΩ,A,Pq are said to be
independent if the σ-algebras σpXq and σpY q are independent.
A family tXαuα of random variables is said to be pairwise independent if Xα and
Xβ are independent for all α ‰ β.

Independence of random variables X and Y can be conveniently determined using
their joint distribution PX,Y : X and Y are independent if and only if PX,Y equals
the product measure PX ˆ PY . If X and Y are real-valued with densities pX and
pY , they are independent if and only if their joint pdf is

pX,Y px, yq “ pXpxqpY pyq.
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Probability Theory
Indepenence implies uncorrelatedness

Lemma A.20
If X and Y are independent real-valued random variables and
E r|X|s ,E r|Y |s ă 8, then X and Y are uncorrelated.

Note: The converse is generally false.

Theorem A.21 (Jensen’s inequality)
If X is a real-valued random variable with E r|X|s ă 8 and φ : RÑ R a convex
function, then

φpE rXsq ď E rφpXqs . (A.2)
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Probability Theory
Bochner spaces

Definition A.22
Let pΩ,A,Pq be a probability space and let W be a separable Banach space with
norm } ¨ }. We denote by LppΩ;W q, 1 ď p ă 8, the space of W -valued
A-measurable random variables X : Ω ÑW with E r}X}ps ă 8. The resulting
space is a Banach space with the norm

}X}LppΩ;W q :“

ˆ
ż

Ω

}Xpωq}p dPpωq

˙1{p

“ E r}X}ps1{p .

Similarly, L8pΩ;W q is the Banach space of W -valued random variables
X : Ω ÑW for which

}X}L8pΩ;W q “ ess sup
ωPΩ

}Xpωq} ă 8.
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Probability Theory
Bochner spaces, p “ 2

The case p “ 2 when W is a Hilbert space W “ H with inner product p¨, ¨q occurs
frequently. In this case L2pΩ;Hq is a Hilbert space with inner product

pX,Y qL2pΩ;Hq :“ E rpX,Y qs “

ż

Ω

pXpωq, Y pωqqdPpωq.

Random variables in L2pΩ;Hq are called mean-square integrable random variables.

For random variables X,Y P L2pΩ;Hq the Cauchy-Schwarz inequality takes on the
form

|pX,Y qL2pΩ;Hq| ď }X}L2pΩ;Hq}Y }L2pΩ;Hq

or
E rpX,Y qs ď E

“

}X}2
‰1{2

E
“

}Y }2
‰1{2

.
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Probability Theory
Bochner spaces, p “ 2, covariance

Definition A.23

Let H be a separable Hilbert space. A linear operator C : H Ñ H is the
covariance of two H-valued random variables X and Y if

pCφ,ψq “ Covppφ,Xq, pψ, Y qq @φ, ψ P H.

X and Y are said to be uncorrelated if C is the zero operator. If Y “ X then C
is called the covariance of X.

More generally, the covariance of two random variables X and Y with values in a
separable Banach space W may be defined as a bilinear map c : W 1 ˆW 1 Ñ R on
the dual space W 1 of W such that

cpφ, ψq “ Covpxφ,XyW 1ˆW , xψ, Y yW 1ˆW q @φ, ψ PW 1.

Here x¨, ¨yW 1ˆW denotes the duality bracket between W 1 and W . The bilinear map
c may be identified with a linear operator from C : W 1 ÑW 2 via the identity

xCφ,ψyW2ˆW 1 “ cpφ, ψq.
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Probability Theory
Convergence of random variables

Definition A.24
Let W be a Banach space with norm } ¨ } and tXnunPN be a sequence of
W -valued random variables. We say Xn converges to X PW

almost surely if Xnpωq Ñ Xpωq for almost all ω P Ω, i.e., if

P p}Xn ´X} Ñ 0 for nÑ8q “ 1.

in probability if P p}Xn ´X} ą εq Ñ 0 for nÑ8 for any ε ą 0.
in p-th mean or in LppΩ;W q if E r}Xn ´X}

ps Ñ 0 as nÑ8. When p “ 2 this
is known as convergence in mean square.

in distribution if E rφpXnqs Ñ E rφpXqs as nÑ8 for any bounded and
continuous function φ : W Ñ R.
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Probability Theory
Convergence of random variables

Theorem A.25

Let Xk Ñ X in p-th mean and, for r ą 0 and a constant K “ Kppq, assume that

}Xk ´X}LppΩ;W q :“ E r}Xk ´X}
ps

1{p
ď
Kppq

kr
. (A.3)

Then the following convergence properties apply:
(a) Xk Ñ X in probability and, for any ε ą 0,

P
`

}Xk ´X} ě k´r`ε
˘

ď
Kppqp

kpε
. (A.4)

(b) E rφpXkqs Ñ E rφpXqs for all Lipschitz continuous functions on W and, if L denotes a
Lipschitz constant of φ,

|E rφpXkqs ´ E rφpXqs| ď L
Kppq

kr
.

(c) If (A.3) holds for all p sufficiently large, then Xk Ñ X a.s. Furthermore, for each ε ą 0
there exists a nonnegative random variable K such that }Xkpωq ´Xpωq} ď Kpωqk´r`ε

for almost all ω.
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Probability Theory
Random vectors

Random variables X “ pX1, . . . , Xnq
T from pΩ,A,Pq to pΓ,BpΓq with Γ Ă Rn

are known as random vectors or multivariate random variables (bivariate for n “ 2).

Their expected value

µ “ E rX s “

ż

Ω

X pωqdPpωq “ rE rX1s , . . . ,E rXnss
T

is a vector in Rn. If X has a pdf p, then for B P BpΓq

PpX P Bq “ Pptω P Ω : X pωq P Buq “ PX pBq “

ż

B

ppx qdx .

The components tXju
n
j“1 of X are (pairwise) independent if and only if PX is the

product measure PX1
ˆ ¨ ¨ ¨ ˆ PXn

. In terms of the pdf, this is equivalent to

ppx q “ pX1px1q ¨ pX2px2q ¨ ¨ ¨ pXnpxnq.
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Probability Theory
Multivariate uniform

A random vector X : Ω Ñ Γ with values in a set Γ Ă Rn with finite Lebesgue
measure |Γ| follows a multivariate uniform distribution on Γ, denoted by

X „ UpΓq

if it has the pdf

ppx q ”
1

|Γ|
, x P Γ.
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Probability Theory
Covariance matrix

Definition A.26
The covariance of two real-valued random vectors X “ rX1, . . . , Xms

T and
Y “ rY1, . . . , Yns

T is given by the mˆ n matrix

CovpX ,Y q “ E
“

pX ´ E rX sqpY ´ E rY sqT
‰

.

X and Y are said to be uncorrelated if CovpX ,Y q “ O (the mˆ n zero
matrix). The matrix CovpX ,X q P Rnˆn is called the covariance matrix of X .

Proposition A.27
Let X be an Rn-valued random variable with mean vector µ and covariance
matric C . Then C ist symmetric positive semi-definite and its trace is given by
E
“

}X ´ µ}22
‰

.
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Probability Theory
Multivariate normal distribution

A random vector with mean vector µ and positive definite covariance matrix C is
said to follow an n-variate Gaussian distribution if it has the pdf

ppx q “
1

a

p2πqd detC
exp

ˆ

´px ´ µqTC´1px ´ µq

2

˙

. (A.5)

To cover the case that C is singular we introduce the characteristic function.

Definition A.28

The characteristic function of an Rn-valued random vector X is E
”

exppiλTX q
ı

,
for λ P Rn. If X has the pdf p, then its characteristic function is

E
”

exppiλTX q
ı

“ p2πqn{2p̂p´λq,

where p̂ is the Fourier transform of p. (The minus sign is a convention in
probability theory.)
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Probability Theory
Multivariate normal distribution

Proposition A.29
A random vector X has the density (A.5) for a given vector µ P Rn and
symmetric positive definite matrix C P Rnˆn if and only if its characteristic
function is

E
”

exppiλTX q
ı

“ exppiλTµ´ 1
2λ

TCλq. (A.6)

Definition A.30
An Rn-valued random vector X follows a multivariate normal (or Gaussian)
distribution, denoted

X „ Npµ,C q,

where µ P Rn and C P Rnˆn is symmetric positive semi-definite, if its
characteristic function is (A.6).
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Probability Theory
Multivariate normal distribution

If X „ Npµ,C q is a multivariate normal random vector, then for any a P Rn the
linear combination

Y “ aJX “

n
ÿ

k“1

akXk

follows the normal distribution Y „ NpaJµ,aJCaq.
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Probability Theory
i.i.d. random variables

Definition A.31
A sequence tXjujPN of random variables is said to be independent and identically
distributed (i.i.d.) if they all follow the same probability distribution and, in
addition, are pairwise independent.

The classical limit theorems of probability theory concern sums of iid random vari-
ables. For an iid sequence tXjujPN, we introduce the notation

Sn :“ X1 ` ¨ ¨ ¨ `Xn, n P N.
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Probability Theory
Weak Law of Large Numbers

Theorem A.32 (Chebyshev inequality)
A random variable X with finite mean µ and finite variance σ2 satisfies

c2Pp|X ´ µ| ě cq ď σ2.

Theorem A.33 (WLLN)
Let tXkukPN be a sequence of i.i.d. random variables on a given probability space
pΩ,A,Pq with mean µ and finite variance. Then

Sn
n
Ñ µ in probability, i.e.

for ever fixed ε ą 0 there holds

P p|Sn{n´ µ| ą εq Ñ 0 as nÑ8.
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Probability Theory
Strong Law of Large Numbers

Theorem A.34 (SLLN)
Let tXkukPN be a sequence of i.i.d. real-valued random variables on a given probability space pΩ,A,Pq.
Then Sn{n has a finite limit if and only if E r|X1|s ă 8, in which case

Sn
n
Ñ E rX1s a.s.

If E r|X1|s “ 8, then lim supnÑ8 |Sn|{nÑ8 a.s.

Lemma A.35 (Kronecker’s Lemma)
If the series

ř8

k“1 xk{k converges (not necessarily absolutely) for a sequence txkukPN of real numbers,
then

lim
nÑ8

1

n

n
ÿ

k“1

xk “ 0.

Lemma A.36
The sequence tXkukPN converges a.s. if and only if

lim
nÑ8

Ptsup
kPN

|Xn`k ´Xn| ą εu “ 0 @ε ą 0.
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Probability Theory
Strong Law of Large Numbers

Theorem A.37 (Kolmogorov Inequality)
Let X1, . . . , Xn be independent real-valued random variables with E rXjs “ 0 and
0 ă σ2

j “ VarXj ă 8 for all j. Then for each ε ą 0

P

"

max
1ďkďn

|Sk| ą ε

*

ď
1

ε2

n
ÿ

j“1

σ2
j . (A.7)

Conversely, if there exists c such that Pt|Xk| ă εu “ 1 for each k, then for each ε

P

"

max
1ďkďn

|Sk| ą ε

*

ě 1´
pc` εq2
řn
j“1 σ

2
j

. (A.8)

Theorem A.38
Let tXkukPN be independent real-valued random variables with E rXks “ 0 for all k. If

8
ÿ

k“1

E
“

X2
k

‰

“

8
ÿ

k“1

VarXk ă 8

then
ř8

k“1Xk converges a.s.
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Probability Theory
Strong Law of Large Numbers

Definition A.39
For a real-valued random variable X and c ą 0 we denote the truncation of X at c by

Xc :“ X1t|X|ďcu “

#

X if |X| ď c,

0 otherwise.

Theorem A.40 (Three-series theorem)
Let tXkukPN be independent. If, for some c ą 0,

8
ÿ

k“1

Pt|Xk| ą cu ă 8, (A.9a)

8
ÿ

k“1

|E rXc
ks | ă 8, (A.9b)

8
ÿ

k“1

VarXc
k ă 8, (A.9c)

then
ř8

k“1Xk converges a.s.
Conversely, if

ř8

k“1Xk converges a.s., then (A.9a)–(A.9c) hold for every c ą 0.
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Probability Theory
Central Limit Theorem

Let the sequence tXjujPN of real-valued random variables be independent, but not
necessarily identically distributed. In addition, let E rXjs “ 0 and E

“

X2
j

‰

ă 8 for
all j.

Besides Sn “
řn
j“1Xj , introduce the quantities

σ2
j :“ VarXj ,

Σ2
n :“

n
ÿ

j“1

σ2
j “ VarSn.

The central limit theorem (CLT) is the statement that

lim
nÑ8

Sn
Σn

“ lim
nÑ8

Sn ´ E rSns
?
VarSn

„ Np0, 1q in distribution.
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Probability Theory
Central Limit Theorem

Definition A.41 (Lyapunov condition)
The sequence tXkukPN satisfies the Lyapunov condition if E

“

|Xk|
3
‰

ă 8 for each
k and

lim
nÑ8

1

Σ2
n

n
ÿ

k“1

E
“

|Xk|
3
‰

“ 0.

Theorem A.42 (CLT)
If tXkukPN satisfies the Lyapunov condition, then Sn{Σn Ñ Np0, 1q in
distribution.
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Probability Theory
Central Limit Theorem

Definition A.43 (Lindeberg condition )
The sequence tXkukPN satisfies the Lindeberg condition if for every ε ą 0

lim
nÑ8

1

Σ2
n

n
ÿ

k“1

E
“

X2
k ¨ 1t|Xk|ąεΣnu

‰

“ 0.

Proposition A.44
The Lyapunov condition implies the Lindeberg condition.

Example A.45
(1) If Pt|Xk| ď cu “ 1 for some constant c and if Σ2

n Ñ8, then the Lindeberg
condition is satisfied.

(2) If tXkukPN are i.i.d. with variance σ2 P p0,8q, then the Lindeberg condition
is satisfied.
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Probability Theory
Central Limit Theorem

Theorem A.46 (Lindeberg-Feller CLT)
If tXkukPN satisfies the Lindeberg condition, then Sn{Σn Ñ Np0, 1q in
distribution.
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Probability Theory
Berry-Esseen Theorem

Theorem A.47 (Berry, 1941; Esseen 1942)

Let tXkukPN be i.i.d. random variables with (common)

µ :“ E rX1s , σ2 :“ VarX1 ą 0, ρ :“ E
“

|X1 ´ µ|
3
‰

ă 8.

If Fn denotes the distribution function of pSn ´ nµq{pσ
?
nq and Φ that of the

standard normal distribution Np0, 1q, then, with a universal constant C,

sup
xPR

|Φpxq ´ Fnpxq| ď C ¨
ρ

σ3
?
n
.

Note: the constant C is known to satisfy 0.4097 ď C ď 0.7056 [Shevtsova, 2007].
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Statistical Estimation

Estimation theory is concerned with determining an unknown quantity θ
associated with the probability distribution of a random variable X given n
i.i.d. samples tXku

n
k“1 of X.

Typical examples of such quantities θ are moments of X’s distribution such
as the mean and the variance. Another common situation is the estimation of
one or more parameters which determine the distribution of X.
An estimator for a scalar quantity θ is a function

φ : Rn Ñ R, θ̂ “ φpX1, . . . , Xnq

mapping n i.i.d. realizations of X to the estimate θ̂ of θ.
Note that, since each of the n random samples Xk are random variables, the
same is true of

θ̂ “ θ̂pωq “ φpX1pωq, . . . , Xnpωqq.

Once the samples have been drawn/realized, the estimate θ̂ is a real number.
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Statistical Estimation
Sample average, unbiased estimator

The sample average

µ̂n :“
X1 ` ¨ ¨ ¨ `Xn

n

is an estimate for the mean µ “ E rXs.
Since the Xk are i.i.d., we conclude from the linearity of expectation that

E rµ̂ns “
1

n

n
ÿ

k“1

E rXks “
1

n
¨ nµ “ µ.

If E r|X|s ă 8 the SLLN tells us that also µ̂n Ñ µ “ E rXs a.s. as nÑ8.

Since Var µ̂n “
σ2

n , where σ2 “ VarX, we note that the variance µ̂n
decreases like 1{n with growing sample size.

Definition A.48

An estimator for which E
”

θ̂
ı

“ θ is called unbiased.
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Statistical Estimation
Sample variance

The sample variance

σ̂2
n :“

1

n´ 1

n
ÿ

k“1

pXk ´ µ̂nq
2

is an unbiased estimator for σ2 “ VarX.

In addition, there holds σ̂2
n Ñ σ2 a.s. as nÑ8.
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Statistical Estimation
Confidence intervals

An estimator θ̂ is, in general, only close to the estimated quantity θ in a probabilistic
sense, i.e., it will fluctuate around the true value θ from realization to realization.

For a probability distribution depending on a real-valued parameter θ, we denote by

PpA | θq

the probability of event A if the true value of the parameter is θ.

Definition A.49
Given n i.i.d. random variables tXkpωqu

n
k“1 and a number γ P r0, 1s,

a confidence interval of level γ for a quantity θ is determined by two functions
τ´, τ

` : Rn Ñ R such that, for all possible values of θ,

P pτ´pX1, . . . , Xnq ď θ ď τ`pX1, . . . , Xnq | θq “ γ.
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Statistical Estimation
Confidence intervals example

As an example, take the random variables

Xk “ µ` εk, µ P R, εk „ Np0, 1q i.i.d., k “ 1, . . . , n.

Then µ “ E rXs and for the estimation error we obtain

µ̂n ´ µ “
1

n

n
ÿ

k“1

εk „ Np0, 1
n q.

and therefore
?
npµ̂n ´ µq „ Np0, 1q.

Given γ P r0, 1s we choose a ě 0 such that Φpaq ´ Φp´aq “ γ and obtain

γ “ Pp´a ď
?
npµ̂n ´ µq ď a |µq “ P

ˆ

µ̂n ´
a
?
n
ď µ ď µ̂n `

a
?
n
|µ

˙

,

so that τ˘ “ µ̂n ˘
a?
n
yield a confidence interval of level γ for µ.
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