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Elliptic Boundary Value Problem

We consider the elliptic boundary value problem of finding the solution of the partial
differential equation with Dirichlet boundary condition

´∇¨pa∇uq “ f on D Ă R2, (B.1a)
u “ g on BD, (B.1b)

given a convex bounded domain D with sufficiently smooth boundary BD, a coef-
ficient function a : D Ñ R`, a source term f : D Ñ R and boundary data in the
form of a function g : BD Ñ R.
The differential operator in (B.1a) is short for

∇¨pa∇uq “
2
ÿ

j“1

B

Bxj

ˆ

apx q
Bupx q

Bxj

˙

Equation (B.1a) is a model for diffusion phenomena occurring in , e.g., heat conduc-
tion, electrostatics, potential flow and elasticity. Generalizations of (B.1) involve
the addition of lower-order terms, other boundary conditions, a matrix-valued co-
efficient function and dependence of a on u.
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Elliptic Boundary Value Problem
Strong and weak solution

If f P CpDq and a P C1pDq, then a function u P C2pDq X C1pDq which satisfies
(B.1) is called a classical solution or a strong solution of the boundary value problem.

There are (theoretical and practical) reasons for generalizing the classical solution
concept. The key to this generalization lies in reformulating (B.1) as a variational
problem. Multiplying both sides of (B.1a) by an arbitrary function φ P C80 pDq, in
this context known as a test function, and integrating by parts, we observe that
any (classical) solution of (B.1) also satisfies the equation

apu, φq “ `pφq @φ P C80 pDq, (B.2)

with the symmetric bilinear form ap¨, ¨q and linear functional `p¨q given by

apu, φq “

ż

D

apx q∇upxq ¨∇φpx qdx , `pφq “

ż

D

fpx qφpx qdx . (B.3)

For (B.2) to make sense, it is sufficient that the integrals and derivatives are well-
defined.
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Elliptic Boundary Value Problem
Strong and weak solution

This is the case if u and φ are taken to lie in the Sobolev space

H1pDq :“ tv P L2pDq : ∇v P L2pDq2u,

which is a Hilbert space with respect to the inner product

pu, vqH1pDq “

ż

D

p∇u ¨∇v ` uvq dx “ p∇u,∇vq ` pu, vq,

where we use p¨, ¨q to denote the inner product in L2pDq. The associated norm on
H1pDq is

}u}2H1pDq “

ż

D

`

|∇u|2 ` u2
˘

dx .

The gradients are in terms of weak derivatives in the sense
ˆ

Bu

Bxj
, φ

˙

“ ´

ˆ

u,
Bφ

Bxj

˙

@φ P C80 pDq.

Oliver Ernst (Numerische Mathematik) UQ Sommersemester 2014 247 / 315



Elliptic Boundary Value Problem
Strong and weak solution

Stating the boundary condition (B.1b) requires a well-defined notion of evaluating
a function from H1pDq on the lower-dimensional manifold BD.

Functions in H1pDq satisfying the BC with homogeneous boundary data
g ” 0 are easily defined as lying in the subspace

H1
0 pDq :“ C80 pDq

}¨}H1pDq
Ă H1pDq.

For inhomogeneous boundary data we define the space

W :“ H1
g pDq :“ tv P H1pDq : u|BD “ gu.

The evaluation on the boundary is understood in the following sense: for a
sufficiently smooth boundary there exists a bounded trace operator
γ : H1pDq Ñ L2pBDq such that for all u P C1pDq there holds γu “ u|BD.
Since C1pDq is dense in H1pDq, we have γu “ limnÑ8 u|BD for any
approximating sequence tunu Ă C1pDq converging to u in H1pDq.
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Elliptic Boundary Value Problem
Strong and weak solution

Definition B.1
The trace space of H1pDq for a sufficiently smooth domain D is defined as

H1{2pBDq :“ γpH1pDqq “ tγu : u P H1pDqu.

H1{2pBDq is a Hilbert space with norm

}g}H1{2pBDq :“ inft}u}H1pDq : γu “ g, u P H1pDqu.

Sine in general H1{2pBDq Ĺ L2pBDq, boundary data g in (B.1b) must be chosen
from H1{2pBDq.

Lemma B.2
There exists Kγ ą 0 such that, for all g P H1{2pBDq, we can find ug P H1pDq
with γug “ g and

}ug}H1pDq ď Kγ}g}H1{2pBDq
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Elliptic Boundary Value Problem
Strong and weak solution

We denote the spaces of trial and test functions by

W :“ H1
g pDq, and V :“ H1

0 pDq.

Assumption B.3

The coefficient function a “ apx q in (B.1a) satisfies

0 ă amin ď apx q ď amax ă 8 for almost all x P D

for positive constants amin and amax. In particular, a P L8pDq and a is uniformly
bounded away from zero.

By Assumption B.3, the bilinear form ap¨, ¨q is bounded on H1pDq, i.e.,

|apu, vq| ď C}u}H1pDq}v}H1pDq, @u, v P H1pDq

with a constant C ď }a}L8pDq.
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Elliptic Boundary Value Problem
Strong and weak solution

Definition B.4
A weak solution of (B.1) is a function u PW such that

apu, vq “ `pvq @v P V, (B.4)

with ap¨, ¨q and `p¨q as defined in (B.3).
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Elliptic Boundary Value Problem
Strong and weak solution

Definition B.5
A bilinear form a : H ˆH Ñ R on a Hilbert space H is said to be coercive if
there exists a constant α ą 0 such that

apu, uq ě α}u}2H @u P H.

Lemma B.6 (Lax & Milgram)
Let H be a real Hilbert space with norm } ¨ } and let ` be a bounded linear
functional on H. Let a : H ˆH Ñ R be a bilinear form that is bounded and
coercive. Then there exists a unique u` P H such that apu`, vq “ `pvq for all
v P H.
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Elliptic Boundary Value Problem
Strong and weak solution

For functions in H1pDq we introduce the H1 semi-norm

|u|H1pDq :“

ˆ
ż

D

|∇u|2 dx

˙1{2

.

as well as the energy norm associated with the coefficient function a as

|u|a :“ apu, uq1{2 “

ˆ
ż

D

a∇u ¨∇udx

˙1{2

.

Theorem B.7 (Poincaré-Friedrichs inequality)

For a bounded domain D there exists a constant C “ CD ą 0 such that

}u}L2pDq ď CD|u|H1pDq @u P H1
0 pDq.
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Elliptic Boundary Value Problem
Strong and weak solution

Lemma B.8
Under Assumption B.3 the bilinear form a : H1pDq ˆH1

0 pDq Ñ R is bounded and
the energy norm is equivalent to the H1 semi-norm on H1pDq.

Theorem B.9

Let Assumption B.3 hold, f P L2pDq and g P H1{2pBDq. Then (B.1) has a unique
weak solution u PW “ H1

g pDq.

Theorem B.10
Under the conditions of Theorem B.9 the weak solution u PW satisfies

|u|H1pDq ď K
`

}f}L2pDq ` }g}H1{2pBD

˘

where K “ maxtCD{amin,Kγp1` amax{aminqu.
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Elliptic Boundary Value Problem
Perturbed data

Replacing a und f in (B.1) by approximations ã and f̃ , leads to the perturbed
problem of finding ũ PW such that

ãpũ, vq “ ˜̀pvq @v P V (B.5)

with ã : W ˆ V Ñ R sowie ˜̀ : V Ñ R defined by

ãpu, vq “

ż

D

ãpx q∇upx q ¨∇vpx qdx , ˜̀pφq “

ż

D

f̃px qvpx qdx . (B.6)

Theorem B.11

Let Assumption B.3 hold for a as well as for ã with constants ãmin, ãmax. If,
furthermore, f̃ P L2pDq and g P H1{2pBDq, then problem (B.5) has a unique
weak solution ũ PW “ H1

g pDq.
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Elliptic Boundary Value Problem
Perturbed data

Theorem B.12

Under the conditions of Theorems B.9 and B.11, if u, ũ PW denote the solutions
of (B.4) and (B.5), respectively, then

|u´ ũ|H1pDq ď CDã
´1
min}f ´ f̃}L2pDq ` ã

´1
min}a´ ã}L8pDq|u|H1pDq
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Finite Element Approximation
Galerkin discretization

Given: linear variational problem of finding u P V , V a Hilbert space with norm
} ¨ }, such that

apu, vq “ `pvq @v P V (B.7)

with a bilinear form ap¨, ¨q and linear form `p¨q on V which satisfy the assumptions
of the Lax-Milgram lemma.

Galerkin method for finding approximate solutions of (B.7) proceeds by restricting
the problem to a finite-dimensional subspace Vn Ă V : denote by un P Vn the
solution of

apun, vq “ `pvq @v P Vn. (B.8)

Note: The Galerkin approximation un of u with respect to the space Vn is uniquely
determined since the conditions of the Lax-Milgram lemma are satisfied for Problem
(B.8) by inclusion.
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Finite Element Approximation
Céa’s lemma

The simple structure of a linear variational problem allows its reduction to a problem
of best approximation.

Lemma B.13 (Céa)
If the assumptions of the Lax-Milgram lemma apply to Problem (B.7) with
solution u P V , then the Galerkin approximation un, i.e., the solution of (B.8),
satisfies

}u´ un} ď
C

α
inf
vPVn

}u´ v}. (B.9)
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Finite Element Approximation
Céa’s lemma, symmetric case

If the bilinear form ap¨, ¨q is, in addition, symmetric (Hermitian) then, because
of coercivity, it defines an inner product on V .
Galerkin orthogonality then implies un is the a-orthogonal projection of u
onto Vn and therefore the best approximation to u from Vn with respect to
the associated (energy) norm.
In the energy norm (B.9) is therefore satisfied with C “ α “ 1.
Coercivity and boundedness also imply that the energy norm is equivalent
with } ¨ }, i.e.,

?
α}v} ď |v|a ď

?
C}v} @v P V,

which leads to the improved estimate over (B.9)

}u´ un} ď

c

C

α
inf
vPVn

}u´ v}.
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Finite Element Approximation
Application to elliptic BVP

We have seen that, for the elliptic BVP (B.1), we have the equivalences

} ¨ }H1pDq — | ¨ |H1pDq — | ¨ |a.

Corollary B.14

Under Assumption B.3, the Galerkin approximation un fo the solution of the
elliptic boundary value problem (B.1), with respect to any subspace Vn of
V “ H1

0 pDq, satisfies

|u´ un|a “ inf
vPVn

|u´ v|a,

|u´ un|H1pDq ď

c

amin

amax
|u´ v|H1pDq @v P Vn.
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Finite Element Approximation
Galerkin system

Given a basis tv1, . . . , vnu of Vn and the solution un “
řn
j“1 ξjvj , then the Galerkin

variational equation (B.8) is equivalent with

n
ÿ

j“1

ξj apvj , viq “ `pviq, i “ 1, . . . , n,

which, when rewritten as a linear system of equation, becomes the Galerkin system

Ax “ b (B.10)

with Galerkin matrix rAsi,j “ apvj , viq, unknown vector rx si “ ξi and right-hand
side vector rbsi “ `pviq.

If ap¨, ¨q is symmetric, then so is A.
If ap¨, ¨q is coercive, then A is (uniformly) positive definite.
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Finite Element Approximation
The finite element method

Different Galerkin methods result from different choices of subspaces.
Wavelets.
Trigonometric functions, global polynomials (spectral methods).
Radial basis functions.
The finite element method employs finite dimensional subspaces of the
variational spaces (trial and test spaces) consisting of piecewise polynomials
with respect to a partition of D.
We shall assume in the following that D is a polygon (polyhedron), but the
finite element method can also be applied to domains with curved boundaries.
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Finite Element Approximation
Triangulations

Assumptions on the partition of the domain D, denoted by Th with elements K:

(Z1) D “ YKPTh
K.

(Z2) Each K P Th is a closed set with nonempty interor K̊.

(Z3) For two distinct K1,K2 P Th there holds K̊1 X K̊2 “ H.

(Z4) Each K P Th has a Lipschitz-continuous boundary BK.

The partition is usually assigned a discretization parameter h ą 0 given by

h :“ max
KPT h

diamK,

which is a measure of how fine the partition is.
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Finite Element Approximation
Triangulations

Triangular mesh on a square domain. Triangular mesh on a polygonal
approximation of a circle.
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Finite Element Approximation
Triangulations

Quadrilateral mesh on a rectangular (exterior)
domain.

Mesh consisting of triangles and
quadrilaterals.
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Finite Element Approximation
Triangulations

Tetrahedral mesh of complex 3D geometry (engine block).
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Finite Element Approximation
H1-conforming finite element spaces

A conforming Galerkin approximation is one which employs finite-dimensional spaces
Vn such that Vn Ă V .

Let V h denote a space of piecewise continuous functions v : D Ñ R with respect
to an admissible triangulation Th of D, i.e., such that each restriction v|K to any
K P Th is continuous on K.

Theorem B.15
With the notation defined above, there holds V h Ă H1pDq if, and only if,

V h Ă CpDq and tv|K : v P V hu Ă H1pKq.

In this case tv P V h : v “ 0 on BDu Ă H1
0 pDq.
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Finite Element Approximation
Finite elements

According to [Ciarlet, 1978], a finite element is a triple pK,PK ,ΨKq such that
(1) K is a nonempty set
(2) PK is a finite-dimensional space of functions defined on K and
(3) ΨK is a set of linearly independent linear functionals ψ on PK with the

property that, for any p P PK ,

ψppq “ 0 @ψ P ΨK ñ p “ 0.

We shall consider a single finite element, the so-called linear triangle, where
(1) K P R2 is a triangle with (non-collinear) vertices x1, x2 and x3,
(2) PK is the space of all affine functions on K and
(3) ΨK consists of the three functionals

ΨK “ tψj : PK Ñ R, ψjppq “ ppxjq, j “ 1, 2, 3u.
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Finite Element Approximation
Trianglular finite elements

To construct a (global) finite element space V h based on linear triangle
elements consider a triangulation T h of D consisting of (closed) triangles K
which satisfy properties (Z1)–(Z4).
The functions in V h will also lie in H1pDq if they are continuous on D,
which, for piecewise linear (polynomial) functions, is equivalent with their
being continuous across triangle boundaries.
We thus obtain the space

V h :“ tv P CpDq : v|K P P1 @K P T hu,

where Pk denotes the space of (multivariate) polynomials of (complete)
degree k.
A subspace V h0 of V h is given by

V h0 :“ tv P V h : v|BD “ 0u Ă H1
0 pDq.
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Finite Element Approximation
Degrees of freedom, nodal basis

A continuous piecewise linear function in V h is completely determined by its
values at all triangle vertices.
Such a (finite) set of parameters which uniquely determine a finite element
function is called a set of degrees of freedom (DOF).
In V h0 these are the values at all nodes which do not lie on BD; denote their
number by n.
A particularly convenient basis tφ1, . . . , φnu of V h0 is the so-called nodal basis
characterized by

φjpxiq “ δi,j i, j “ 1, . . . , n.

If N h “ tx1, . . . , xnu denotes the set of vertices xj R BD, then

suppφj “
ď

KPT h

xjPK

K.
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Finite Element Approximation
Nodal basis for linear triangles

A nodal basis function with its support.
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Finite Element Approximation
Nodal basis for linear triangles

Triangulation of an L-shaped domain with the supports of several basis functions.
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Finite Element Approximation
Galerkin matrix, linear triangles

Implications for Galerkin system (B.10):

rbsi “ `pφiq “

ż

D

fφi dx “

ż

suppφi

fφi dx ,

rAsi,j “ apφj , φiq “

ż

D

apx qφipx q ¨∇φjpx qdx

“

ż

suppφiXsuppφj

apx q∇φipx q ¨∇φjpx qdx .

In particular: Galerkin matrix A is sparse.
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Finite Element Approximation
Finite element assembly

Common procedure in assembling the Galerkin system:

(1) Ignore boundary condition initially, i.e., consider all of V h with nodal basis

tφ1, φ2, . . . , φn, φn`1, . . . , φñu,

ñ´ n the number of vertices on the boundary BD.
Yields matrix Ã P Rñˆñ, vector b̃ P Rñ.

(2) Then eliminate the DOF associated with boundary vertices.
Yields matrix A, vector b.

Note:
Initial approach for step (1): compute Ã, b̃, entry by entry, i.e., basis
function by basis function
But: shape and connectivity of supports typically very different.
Simpler: compute A, b element by element.
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Finite Element Approximation
Finite element assembly

K P T h: then for i, j “ 1, 2 . . . , ñ:

apφj , φiq “

ż

D

a∇φj ¨∇φi dx “
ÿ

KPT h

ż

K

a∇φj ¨∇φi dx “:
ÿ

KPT h

aKpφj , φiq,

`pφiq “

ż

D

fφi dx “
ÿ

KPT h

ż

K

fφi dx “:
ÿ

KPT h

`Kpφiq.

Setting

rÃKsi,j :“ aKpφj , φiq i, j “ 1, 2, . . . , ñ,

rb̃Ksi :“ `Kpφi, i “ 1, 2, . . . , ñ,

we obtain
Ã “

ÿ

KPT h

ÃK , b̃ “
ÿ

KPT h

b̃K .
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Finite Element Approximation
Finite element assembly: element table

Since each element belongs to the support of exactly three basis functions, only (at
most) nine entries of ÃK and three entries of b̃K are nonzero.
Which entries these are can be determined by maintaining an element table:

rET pi, jqsi“1,2,3;j“1,...,nK
:

Element K1 K2 . . . KnK

first vertex i
p1q
1 i

p2q
1 . . . i

pnKq

1

second vertex i
p1q
2 i

p2q
2 . . . i

pnKq

2

third vertex i
p1q
3 i

p2q
3 . . . i

pnKq

3

Here nK denotes the number of triangles in T h.

Besides the global vertex numbering

x1, x2, . . . , xñ,

the element table introduces a second, local vertex numbering

x
pKq
1 , x

pKq
2 , x

pKq
3

of the vertices (DOFs) associated with K.
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Finite Element Approximation
Finite element assembly

Global numbering of
vertices (red) and
elements (black)
in a triangulation of an
L-shaped domain.
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Finite Element Approximation
Finite element assembly

With this notation the nonzero submatrix AK of ÃK and nonzero subvector bK
of b̃K are given by

AK :“

»

—

–

aKpφ
pKq

1 , φ
pKq

1 q aKpφ
pKq

2 , φ
pKq

1 q aKpφ
pKq

3 , φ
pKq

1 q

aKpφ
pKq

1 , φ
pKq

2 q aKpφ
pKq

2 , φ
pKq

2 q aKpφ
pKq

3 , φ
pKq

2 q

aKpφ
pKq

1 , φ
pKq

3 q aKpφ
pKq

2 , φ
pKq

3 q aKpφ
pKq

3 , φ
pKq

3 q

fi

ffi

fl

, bK :“

»

—

–

`Kpφ
pKq

1 q

`Kpφ
pKq

2 q

`Kpφ
pKq

3 q

fi

ffi

fl

.

If K has number k in the enumeration of the elements, then the association of the
local numbering tφpKqi ui“1,2,3 of the three basis functions whose support contains
K with the global numbering tφjuñj“1 of all basis functions is given by

φ
pKq
i “ φj , j “ ET pi, kq, i “ 1, 2, 3.

AK and bK are sometimes called the element stiffness matrix and element load
vector.
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Finite Element Approximation
Finite element assembly

We summarize phase (1) of the finite element assembly process in the following
algorithm4

Algorithm 2: Phase (1) of finite element assembly.

1 Initialize Ã :“ O , b̃ :“ 0.
2 foreach K P Th do
3 Compute AK and bK
4 k Ð [index of element K]
5 i1 Ð ET p1, kq, i2 Ð ET p2, kq, i3 Ð ET p3, kq

6 Ãpri1i2i3s, ri1i2i3sq Ð Ãpri1i2i3s, ri1i2i3sq `AK

7 b̃pri1i2i3sq Ð b̃pri1i2i3sq ` bK

4We use the following Matlab-inspired notation:

Apri1i2i3s, ri1i2i3sq “

»

–

ai1,i1 ai1,i2 ai1,i3
ai2,i1 ai2,i2 ai2,i3
ai3,i1 ai3,i2 ai3,i3

fi

fl , bpri1i2i3sq “

»

–

bi1
bi2
bi3

fi

fl .
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Finite Element Approximation
Reference element

Both the numerical integration as well as the error analysis benefit from a change
of variables to a reference element K̂ Ă R2. Each element K P T h then has a
parametrization K “ FKpK̂q, where

FK : K̂ Ñ K, K̂ Q ξ ÞÑ x P K, x “ FKpξq “ BKξ ` bK .

Most common for triangular elements: unit simplex

K̂ “ tpξ, ηq P R2 : 0 ď ξ ď 1, 0 ď η ď 1´ ξu.

For each triangle K P T h the affine mapping FK is determined by prescribing, e.g.,

p1, 0q ÞÑ px1, y1q,

p0, 1q ÞÑ px2, y2q,

p0, 0q ÞÑ px3, y3q, i.e.
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Finite Element Approximation
Reference element

K̂

ξ

η

p0, 0q p1, 0q

p0, 1q

x

y

FK

K

px1, y1q

px2, y2q

px3, y3q

„

x
y



“

„

x1 ´ x3 x2 ´ x3
y1 ´ y3 y2 ´ y3



looooooooooomooooooooooon

BK

„

ξ
η



`

„

x3
y3



loomoon

bK
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Finite Element Approximation
Reference element

Local (nodal) basis on K̂: (dual basis of DOF)

φ̂1pξ, ηq “ ξ, φ̂2pξ, ηq “ η, φ̂3pξ, ηq “ 1´ ξ ´ η, pξ, ηq P K̂.

The correspondence

φ̂ ÞÑ φ :“ φ̂ ˝ F´1
K , d.h. φpx q :“ φ̂pξpx qq “ φ̂pF´1

K px qq

assigns to φ̂ on K̂ a unique function φ on K.

Local basis functions on K:

φj “ φ̂j ˝ F
´1
K : K Ñ R, j “ 1, 2, 3.
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Finite Element Approximation
Reference element, change of variables

The chain rule5 applied to φpx q “ φ̂pξpx qq gives

∇φ “
„

φx
φy



“

„

φ̂ξξx ` φ̂ηηx
φ̂ξξy ` φ̂ηηy



“

„

ξx ηx
ξy ηy

 „

φ̂ξ
φ̂η



“ pDF´1
K qJ∇̂φ̂.

Since x “ FKpξq “ BKξ ` bK , i.e. DFK ” BK ,

ξ “ F´1
K px q “ B´1

K px ´ bKq, i.e. DF´1
K ” B´1

K

we obtain
∇φ “ B´JK ∇̂φ̂.

5∇̂ indicates differentiation with respect to the variables ξ and η.
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Finite Element Approximation
Reference element, element integrals

This finally gives the element integrals (φi “ φ
pKq
i , i “ 1, 2, 3)

aKpφj , φiq “

ż

K

apx q∇φjpx q ¨∇φipx qdx

“

ż

K̂

apx pξqq
´

B´JK ∇̂φ̂jpξq
¯

¨

´

B´JK ∇̂φ̂ipξq
¯

|detBK |dξ.

(B.11)

The determinant is given by (note K is a triangle)

|detBK | “ 2|K|,

B´JK “
1

2|K|

„

y2 ´ y3 x3 ´ x2
y3 ´ y1 x1 ´ x3



,

“

∇̂φ̂1 ∇̂φ̂2 ∇̂φ̂3
‰

“

„

1 0 ´1
0 1 ´1



.
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Finite Element Approximation
Eliminate constrained boundary DOF

To impose the Dirichlet boundary condition we require that the Galerkin approxi-
mation uh P V h satisfy

uhpxjq “ gpxjq at all boundary vertices txjuñj“n`1. (B.12)

We partition the coefficient vector u P Rñ into a first block uI P Rn
containing the coefficients associated with the interior vertices txjunj“1 and a
second block uB P Rñ´n containing the constrained coefficients associated
with boundary vertices.
For the assembled matrix Ã and vector b̃ this induces the partitionings

Ã “

„

ÃII ÃIB

ÃBI ÃBB



, b̃ “

„

b̃I
b̃B



.

The constraint (B.12) now reads uB “ g , where g P Rñ´n contains the
boundary data tgpxjquñj“n`1.
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Finite Element Approximation
Eliminate constrained boundary DOF

This constraint is characterized by there being no coupling of the boundary DOF
to either interior DOF or among themselves, resulting in the modified linear system
of equations

„

ÃII ÃIB

O I

 „

uI
uB



“

„

bI
g



,

which gives the reduced system

AuI “ b, A “ ÃII , b “ bI ´ ÃIBg

for the interior DOF.

Note that this procedure is a discrete variant of the reformulation of the BVP with
inhomogeneous Dirichlet boundary conditions to an equivalent one with homoge-
neous Dirichlet boundary conditions.
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Finite Element Convergence
. . . in a nutshell

Céa’s lemma characterizes the Galerkin error as one of best appproximation
from the FE subspace V h.
An upper bound for this error is the distance of the true solution from its
interpolant from the FE subspace. This is the uniquely determined function
from V h which possesses the same global DOF as the exact solution.
The asymptotic behavior of the interpolant is then analyzed on a sequence of
meshes tThn

unPN with limnÑ8 hn “ 0.
For the interpolation error to become small, the mesh sequence has to be
shape-regular: if ρK denotes the radius of the inscribed circle in K and
hK “ diamK, then a sequence of meshes is shape-regular provided the ratio

ρK
hK

, K P Th

is bounded below uniformly for all tThn
u.

A priori convergence bounds are obtained by relating the smoothness of the
exact solution to the convergence rate hα of the interpolation error as hÑ 0.
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Finite Element Convergence
Extra regularity

Interpolation estimates for a solution u which is only in H1pDq do not yield a useful
rate hα with an α ą 0. For this reason one usually tries to show that the solution
possesses more regularity.

Definition B.16
For r P N and D Ă Rd bounded, we denote by HrpDq the Sobolev space

HrpDq :“ tv P L2pDq : Dαu P L2pDq for all α P Nd0, |α| ď ru

HrpDq is a Hilbert space with the inner product

pu, vqHrpDq “
ÿ

|α|ďr

ż

D

pDαuqpDαvqdx .
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Finite Element Convergence
Extra regularity, fractional index

For any r P RzN0 we set r “ k` s, k P N0, s P p0, 1q and denote by | ¨ |HrpDq and
} ¨ }HrpDq the Sobolev-Slobodetskii semi-norm and norm defined for v P HkpDq by

|v|HrpDq “

¨

˝

ż

DˆD

ÿ

|α|“k

rDαvpx q ´Dαvpyqs2

|x ´ y |d`2s
dxdy

˛

‚

1{2

and

}v}HrpDq “

´

}v}2HkpDq ` |v|
2
HrpDq

¯1{2

.

The Sobolev space HrpDq is then defined as the space of functions v P HkpDq
such that |v|2HrpDq is finite.
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Finite Element Convergence
Interpolation error of linear FE for H2-regular functions

Let V h denote the space of piecewise linear functions subject to a
shape-regular, admissible triangulation Th of D.
Denote by Ih : CpDq Ñ V h the (global) interpolation operator assigning to
each continuous function v the interpolant vh P V h determined by the
condition that vh agrees with v at all vertices of Th.
Then the error of best approximation of u P CpDq is bounded by the
interpolation error

inf
vPV h

|u´ v|H1pDq ď |u´ Ihu|H1pDq.

If the solution u of (B.4) has additional regularity u P H2pDq, then the
Sobolev imbedding theorem assures that u agrees a.e. with a function in
CpDq, so that pointwise evaluation of u and thus the interpolant is
well-defined.
In this case a scaling argument can be used to show

|u´ Ihu|H1pDq ď K h |u|H2pDq

with a constant K independent of h and u.
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Finite Element Convergence
Model problem

Assumption B.17 (H2 regularity)

There exists a constant K2 ą 0 such that, for every f P L2pDq, the solution of (B.4) belongs to
H2pDq and satisfies

|u|H2pDq ď K2}f}L2pDq.

Theorem B.18

Under Assumptions B.3 and B.17, the solution u of (B.4) with f P L2pDq and the piecewise
linear finite element approximation uh on a sequence of shape-regular meshes satisfy

|u´ uh|a ď K
?
amax|u|H2pDq h ď KK2

?
amax}f}L2pDq h (B.13)

with a constant K independent of h.

Corollary B.19
Under the assumptions of Theorem B.18 there holds

|u´ uh|H1pDq ď K

c

amax

amin
|u|H2pDq h ď KK2

c

amax

amin
}f}L2pDq h.
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Finite Element Convergence
Model problem, approximate data

When the coefficient function a and the source term f are replaced by approxima-
tions ã « a and f̃ « f , then with the modified bilinear and linear forms defined as
in (B.6), we may consider the discrete problem

ãpũh, vq “ ˜̀pvq @v P V h. (B.14)

In analogy to Theorem B.11 we obtain

Theorem B.20
Under Assumption B.3 let f̃ P L2pDq and g P H1{2pBDq. Then (B.14) has a
unique solutiuon ũh P V h.

By the triangle inequality, we have

|u´ ũh|H1pDq ď |u´ ũ|H1pDq ` |ũ´ ũh|H1pDq.

By an obvious extension of Corollary B.14, we obtain the bound

|ũ´ ũh|H1pDq ď

c

ãmax

ãmin
inf
vPV h

|ũ´ v|H1pDq.
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Finite Element Convergence
Model problem, approximate data

Alternatively, if we approximate the data at the discrete level only, we may consider
the following splitting as more natural:

|u´ ũh|H1pDq ď |u´ uh|H1pDq ` |uh ´ ũh|H1pDq.

The second term arises, e.g., if we approximate the Galerkin approximation uh by
approximating the bilinear and linear forms using, e.g., piecewise constant approxi-
mations of the coefficient a and source term f .

Straightforward modification of the proof of Theorem B.12 yields

|u´ ũh|H1pDq ď CDã
´1
min}f ´ f̃}L2pDq ` ã

´1
min}a´ ã}L8pDq|uh|H1pDq.
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