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Wesentliche Inhalte

Folgende Themen werden bahandelt:
Zuvallsvariable mit Werten in abstrakten Räumen
Darstellung von Zufallsfeldern
Monte Carlo Methoden
Kollokation bzw. hochdimensionale Quadratur und Interpolation
Dünne Gitter
Polynomielle Chaosentwicklungen
Stochastische Galerkin Diskretisierung

Nicht behandelt werden
Stochastische Differentialgleichungen (völlig andere Methoden, siehe
Stochastik-LV)
Inverse Probleme (vielleicht im nächsten Durchlauf)
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Literatur

Wir folgen teilweise dem (bald erscheinenden) Buch

An Introduction to Computational Stochastic PDEs
von Lord, Powell und Shardlow
Cambridge University Press, 2014.

Weitere Bücher zum Thema:
D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method
Approach. Princeton University Press, Princeton, NJ, 2010.
O. P. Le Maître and O. M. Knio. Spectral Methods for Uncertainty Quantification.
Springer-Verlag, Dordrecht Heildelberg, 2010.
R. C. Smith. Uncertainty Quantification: Theory, Implementation and Applications.
Computational Science and Engineering. SIAM, 2014.
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Siehe auch die (laufend ergänzte) Literaturliste auf der Webseite.
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Hilfreiches Vorwissen

Grundlagen Numerik
Grundlagen Stochastik (wird aufgefrischt)
Grundlagen Funktionalanalysis
Theorie und Numerik elliptischer Randwertaufgaben (FE)
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What is Uncertainty Quantification? (UQ)

What is uncertainty quantification (UQ) about?

What is uncertainty?
How can uncertainty be described?
How can the effects of uncertainty be treated and quantified?
Methods for solving the resulting mathematical problems.
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What is Uncertainty Quantification? (UQ)
What is ‘uncertain’?

uncertainty: Not able to be relied on; not known or definite.
Oxford Collegiate Dictionary

uncertainty: not exactly known or decided; not definite or fixed
Merriam Webster Online Dictionary
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What is Uncertainty Quantification? (UQ)
Auf Deutsch?

unsicher: gefahrvoll, gefährlich, keine Sicherheit bietend
gefährdet, bedroht
das Risiko eines Misserfolges in sich bergend, keine [ausreichenden] Garantien
bietend; nicht verlässlich; zweifelhaft unzuverlässig
einer bestimmten Situation nicht gewachsen, eine bestimmte Fähigkeit
nicht vollkommen, nicht souverän beherrschend nicht selbstsicher
(etwas Bestimmtes) nicht genau wissend
nicht feststehend; ungewiss

Duden Online

ungewiss: fraglich, nicht feststehend; offen
unentschieden, noch keine Klarheit gewonnen habend
(gehoben) so [beschaffen], dass nichts Deutliches zu erkennen, wahrzunehmen
ist; unbestimmbar

Duden Online
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What is Uncertainty Quantification? (UQ)
A poetic description

There are known knowns;
there are things we know we know.

We also know there are known unknowns;
that is to say, we know there are some things we do not know.

But there are also unknown unknowns – the ones we don’t know we don’t
know. U. S. Secretary of Defense, Donald Rumsfeld

DoD News Briefing; Feb. 12, 2002
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What is Uncertainty Quantification? (UQ)
Uncertainty in Modern Life

(Increasingly?) many aspects of modern life involve uncertainty.

Social systems: military, finance, insurance industry, elections
Environmental systems: weather, climate, seismics, subsurface geophysics
Engineering systems: automobiles, aircraft, bridges, structures
Biological systems: health and medicine, pharmaceuticals, gene expression,
cancer research
Physical systems: quantum physics, radioactive decay
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What is Uncertainty Quantification? (UQ)
Uncertainty in Modern Life

Source: National Hurricane Center, USA

Predicted storm path with uncertainty cones.
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What is Uncertainty Quantification? (UQ)
Uncertainty in Modern Life

Source: Brodman & Karoly, 2013

Global-mean temperature change for a business-as-usual emission scenario, relative to
pre-industrial. Black line: median, shaded regions 67% (dark), 90% (medium) and 95%

(light) confidence intervals.
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What is Uncertainty Quantification? (UQ)
Uncertainty in Modern Life

Source: K. A. Cliffe, 2012

Sample paths of groundwater-borne contaminant particles emanating from an
underground radioactive waste disposal site.
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What is Uncertainty Quantification? (UQ)
Examples

Radioactive decay

Radium-226: half-life of 1602 years
Decays into Radon gas (Radon-222) by emitting alpha particles.
Over a period of 1602 years, half the radium atoms in a given sample will
decay.
But we cannot say which half!

This kind of uncertainty seems to be ‘built in’ to the physical world.
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What is Uncertainty Quantification? (UQ)
Examples

Rolling a die (or several dice)

Cube, 6 faces, numbered 1–6
One or more thrown onto a table.
For “fair dice”, expect to see the numbers 1–6 appear equally often, provided
the dice are thrown sufficiently many times.

How does this differ from radioactive decay?

Is this uncertainty also ’built-in’ to the physical world, or is it just that we don’t
know how to calculate what will happen when the dice are thrown?
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What is Uncertainty Quantification? (UQ)
Examples

Screening/testing for disease

Incidence of disease among general population: 0.01 %
Test has true positive rate (sensitivity) of 99.9 %.
Same test has true negative rate (specificity) of 99.99 %.
What is the chance that someone who tests positive actually has the disease?

Answer (relative probabilities, conditional probabilities, Bayes’ formula)

Ppdesease|posq “
Pppos|diseaseq ¨ Ppdiseaseq

Pppos|diseaseq ¨ Ppdiseaseq ` Pppos|no diseaseq ¨ Ppno diseaseq

“
0.999 ¨ 0.0001

0.999 ¨ 0.0001` p1´ 0.9999q ¨ p1´ 0.0001q

« 0.4998
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What is Uncertainty Quantification? (UQ)
Examples

Alternative answer (natural frequencies)

Think of random sample 10,000 people.
Of these, on average 1 will have the disease, 9,999 will not.
The person who has the disease will almost certainly test positive.
of the 9,999 healthy people, on average one will test (falsely) positive.
Thus, roughly one out of every two positive patients actually has the disease.

In [Gigerenzer, 1996] medical practitioners were given the following information re-
garding mammography screenings for breast cancer:

incidence: 1 %; sensitivity: 80 %; specificity: 90 %.

When asked to quantify the probability of the patiant actually having breast cancer
given a positive screening result (7.5%), 95 out of 100 physicians estimated this
probability to lie above 75%.
See also [Gigerenzer et al., 1998] for similar observations in AIDS counseling.
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What is Uncertainty Quantification? (UQ)
Examples

274

The probability that a patient has breast cancer is
1% (the physician’s prior probability).

If the patient has breast cancer, the probability
that the radiologist will correctly diagnose it is 80%

(hit rate or sensitivity).
If the patient has a benign lesion (no breast can-

cer), the probability that the radiologist will incor-
rectly diagnose it as cancer is 10% (false-positive rate).

Question: What is the probability that a patient
with a positive mammography actually has breast
cancer?

Eddy reported that 95 of 100 physicians estimated
the probability of breast cancer after positive mam-
mography to be about 75%. If one inserts the num-
bers into Bayes’ theorem, however, one gets a value
of 7.5%, that is, an estimate one order of magnitude
smaller. Casscells and colleagues9 have reported
similar results with physicians, staff, and students at
the Harvard Medical School. Is there something sys-
tematically wrong with physicians’ statistical train-
ing, with their intuitions, or both?

Physicians are no exception in having difficulties
with probabilities. Numerous undergraduates sitting
through tests in psychological laboratories found
themselves similarly helpless and were diagnosed as
suffering from &dquo;cognitive illusions.&dquo; From these

studies, many have concluded that the human mind
lacks something important: &dquo;People do not appear
to follow the calculus of chance or the statistical the-

ory of prediction&dquo; 10 p 237; &dquo;It appears that people lack
the correct programs for many important judgmen-
tal tasks&dquo; 11; or more bluntly, &dquo;Tversky and Kahne-
man argue, correctly I think, that our minds are not
built (for whatever reason) to work with the rules of

probability.&dquo; 12 p 469 If these conclusions are correct,
then the problem is not so much in training, but in
our minds: there seems to be little hope for physi-
cians, and for their patients as well.

MENTAL COMPUTATIONS DEPEND ON

INFORMATION FORMATS

These conclusions, however, are premature. Let
us be clear why. A discrepancy between human
judgment and the outcome of Bayes’ rule is ob-

served, from which the conclusion is drawn that
there is no cognitive algorithm similar to Bayes’ rule
in people’s minds (but only dubious heuristics such
as &dquo;representativeness&dquo;). However, any claim against
the existence of an algorithm, Bayesian or otherwise,
is impossible to evaluate unless one specifies the in-
formation format for which the algorithm is de-

signed to operate. For instance, numbers can be
represented in various formats: Arabic, Roman, and
binary systems, among others. My pocket calculator
has an algorithm for multiplication that is designed
for Arabic numbers as the input format. If I enter

FIGURE 1. Bayesian computations are simpler when information
is represented in a frequency format (right) than when it is rep-
resented in a probability format (left) p(H) = prior probability
of hypothesis. H (breast cancer), p(D ~ H) = probability of data D
(positive test) given H, and p(D ) - H) = probability of D given - H
(no breast cancer).

binary numbers instead, garbage comes out. The
observation that the output of my pocket calculator
deviates from the normative rule (here: multiplica-
tion), however, does not entail the conclusion that it
has no algorithm for multiplication. Similarly, the
algorithmic operations acquired by humans are de-
signed for particular formats. Consider for a mo-
ment division in Roman numerals.
The format of information is a feature of the de-

cision maker’s environment. Let us apply this ar-
gument to medical diagnosis, such as Eddy’s mam-
mography problem. Assume that through the evo-
lutionary process of adapting to risky environments,
some capacity or cognitive algorithm for statistical
inference has evolved. For what information format
would such an algorithm be designed? Certainly not
probabilities and percentages-as in the above

mammography problem-because these are rela-
tively new (a few hundred years old) formats for
learning and communicating risk.313 So if not prob-
abilities and percentages, for what information for-
mat were these cognitive algorithms designed? I

argue that they evolved to deal with absolute fre-
quencies, because information was experienced
during most of the existence of Homo sapiens in
terms of discrete cases, for example, three out of 20
cases rather than 15%.

 at Universitaetsbibliothek on April 8, 2014mdm.sagepub.comDownloaded from 

Source: Gigerenzer, 1996

Sometimes the description of uncertainty
is crucial for its transparent communica-
tion.
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What is Uncertainty Quantification? (UQ)
Examples

Modeling biological systems

From one view, biology is just very complicated physics and chemistry.
But even the simplest biological systems are far too complicated to be
understood from basic principles at the moment.
Models are constructed that attempt to capture the essential features of
what is happening, but often there are competing models and they may all
fail in some way or other to predict the observed phenomena.
In short, we don’t really know what the model is!

How does this situation differ from the previous two?

Oliver Ernst (Numerische Mathematik) UQ Sommersemester 2014 22 / 315



What is Uncertainty Quantification? (UQ)
Examples

Climate change
The weight of evidence makes it clear that climate change is a real and present
danger. The Exeter conference was told that whatever policies are adopted from
this point on, the Earth’s temperature will rise by 0.6F within the next 30 years.
Yet those who think climate change just means Indian summers in Manchester
should be told that the chances of the Gulf stream - the Atlantic thermohaline
circulation that keeps Britain warm - shutting down are now thought to be
greater than 50%.

The Guardian, 2005

Most of the observed increase in globally-averaged temperatures since the mid-
20th century is very likely due to the observed increase in anthropogenic GHG
concentrations. It is likely there has been significant anthropogenic warming
over the past 50 years averaged over each continent (except Antarctica).

IPCC Fourth Assessment
Summary for Policymakers.

What do these statements mean?
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What is Uncertainty Quantification? (UQ)
Examples

Unknown unknowns

Obviously can’t give a current example.
A good example ist the state of Physics at the end of the 19th century.

There is nothing new to be discovered in physics now. All that remains is
more and more precise measurement.

Lord Kelvin, 1900

Quantum mechanics and relativity theory were unknown unknowns.

It is easy to underestimate uncertainty.
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What is Uncertainty Quantification? (UQ)
Political Implications

Questions:1

1 How do we account for all the uncertainties in the complex models and
analyses that inform decision makers?

2 How can those uncertainties be communicated simply but quantitatively to
decision makers?

3 How should decision makers use those uncertainties when combining
scientific evidence with more socio-economic considerations?

4 How can decisions be communicated so that the proper acknowledgment of
uncertainty is transpartent?

1posed on entry at the 2006 EPSRC Ideas Factory on the topic Scientific Uncertainty and
Decision Making for Regulatory and Risk Assessment Purposes.
Oliver Ernst (Numerische Mathematik) UQ Sommersemester 2014 25 / 315



What is Uncertainty Quantification? (UQ)
UQ and the scientific computing paradigm

Physical Phenomenon Mathematical Model

Numerical ApproximationComputer Implementation

Prediction
Insight
Optimization
Control
Decision
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What is Uncertainty Quantification? (UQ)
UQ and the scientific computing paradigm

Physical Phenomenon

Data
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Mathematical Model
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Solution

Numerical Approximation

Discretization
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Computer Implementation
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What is Uncertainty Quantification? (UQ)
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Variability
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What is Uncertainty Quantification? (UQ)
Validation and Verification (V & V)

What confidence can be assigned to a computer prediction of complex phenomena?

Validation: The determination of whether a mathematical model adequately rep-
resents the pysical or engineering phenomenon under study.
“Are we solving the right problem?”

Is this even possible? (cf. Carl Popper)

Verification: The determination of whether an algorithm and/or computer code
correctly implements a given mathematical model.
“Are we solving the problem correctly?”

code verification (software engineering)
solution verification (a posteriori error estimation)
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What is Uncertainty Quantification? (UQ)
Aleatory and Epistemic Uncertainty

Aleatoric Uncertainty: (variability) Uncertainty due to true intrinsic variability;
cannot be reduced by additional experimentation, improvement of measuring devices
etc.

Examples:
rolling a die
wind stress on a structure
production variations

Epistemic Uncertainty: Uncertainty due to lack of knowledge/incomplete infor-
mation.
Examples:

turbulence modeling assumptions
surrogate chemical kinetics
the probability distribution a random quantity follows

Note: This distinction is not always meaningful or possible.
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What is Uncertainty Quantification? (UQ)
Model Problem

The most popular model problem in the UQ community has become the second-
order elliptic PDE with an uncertain coefficient function:

´∇¨pa∇uq “ f ` domain D Ă Rd ` BC.

Rather than the solution u (whatever that may be), typical problems in UQ require
a functional Q of the solution, e.g. its value at a point in the computational domain.
Such a functional is known as a quantity of interest (QoI).
Examples:

Qpuq “ upx0q, Qpuq “
1

|D0|

ż

D0

upx qdx .

Introduce associated output set G “ tQpuqu for all possible solutions u.
Consider mapping P : S Ñ G of all possible inputs to output set G.

In what way might uncertainty in the coefficient a be addressed?
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What is Uncertainty Quantification? (UQ)
Worst case analysis

Introduce an ε-ball around a given function a0 (in a suitable norm).

Examples:

S8 :“ ta P L8pDq : }a´ a0}L8pDq ď εu,

S1 :“ ta PW 1,8pDq : }a´ a0}W 1,8pDq ď εu,

Sconst :“ ta : a is constant in D, |a´ a0| ď εu.

Worst case analysis: determine uncertainty interval

I “ rinf
aPS

Qpupaqq, sup
aPS

Qpupaqqs.

The uncertainty range of Q is then the length of I.

This is a generalization of interval analysis.
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What is Uncertainty Quantification? (UQ)
Probabilistic model

Idea: Some values (functions) a P S are more likely than others.

Purely probabilistic approach:
Introduce probability measure on S.
(Measurable) mapping P : S Ñ G induces probability measure on G.
(“uncertainty propagation”)
Big issue: choice of distribution, too much subjective information?
Some classical guidelines: Laplace’s principle of insufficient reason, maximum
entropy, etc.
Choosing distribution based on data is point of departure for Bayesian inverse
problem.
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What is Uncertainty Quantification? (UQ)
Evidence theory

Generalizes probabilistic model (also called Dempster-Shafer theory)

Finite or countable family F of events.
Set function m : FÑ r0, 1s giving likelihood information for each event,
satisfies

ÿ

APF

mpAq “ 1, mpHq “ 0,

but, unlike probability measures, need not satisfy A Ă B ñ mpAq ď mpBq.
Belief and plausability functions for admissible events C

belpCq “
ÿ

APF,AĂC

mpAq, plpCq “
ÿ

APF,AXC‰H

mpAq.

provide lower and upper bounds, respectively, on likelihood of event C.
Likelihood function dependent on expert opinion.
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What is Uncertainty Quantification? (UQ)
Fuzzy sets and possibility theory

Deterministic approach introduced by [Zadeh, 1965].

Generalizes “P” relation of classical set theory: for C Ă S, in place of
exhaustive alternatives x P C and x R C, introduces membership function

µC : S Ñ r0, 1s

expressing truth degree of statement x P C.
Important tool: α-cut of set C defined by

Cα :“ tx P S : µCpxq ě αu

giving set characterization of uncertainty.
Mapping P then again propagates fuzziness of input set S to output set G.
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A Case Study: Radioactive Waste Disposal

An area where UQ has played a central role in the past 25 years is the
assessment of strategies and sites for the long-term storage of radioactive
waste.
Uncertainties arise from technological complexity as well as the long time
scales to be considered.
Many leading industrial countries (USA, UK, Germany) have scrapped
previous plans for national long-term disposal sites and are re-evalutating
their strategies.
We consider a basic UQ problem which occurs in site assessment studies.
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A Case Study: Radioactive Waste Disposal
Background

Radioactive waste is produced in large part by power plants, in which the
heat from controlled nuclear fission is used to produce electric power. (Other
sources: medical, weapon production, non-nuclear industries)
Exposure to high radiation levels seriously harmful to humans and animals;
long-term exposure to low-level radiation can cause cancer and other
long-term health problems.
Classification

high-level waste (HLW): highly radioactive, produces heat, small quantities.
intermediate-level waste (ILW): still very radioactive, does not produce heat.
low-level waste (LLW): low radiactivity; packaging material, protective
clothing, soil, concrete etc. which has been exposed to radioactivity.

Quantities in storage (source: IAEA database, http://newmdb.iaea.org)
Germany: 120,000 m3 (2007)
France: 90,000 m3 (2007)
UK: 350,000 m3 (2007)
USA: 540,000 m3 (2008)
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A Case Study: Radioactive Waste Disposal
Management Options

Since this problem has received serious consideration (« 1970s), several options
have been discussed

Surface storage: current universal solution, not long-term, risky.
Disposal at sea: banned by international treaty (London Convention)
Disposal in space: too dangerous, prohibitive cost (but permanent solution).
Transmutation: not yet proven technology, would mitigate but not solve the
problem.
Deep geological disposal

Favored by nearly all countries with a radioactive waste disposal program.
Storage in containers in tunnels, several hundred meters deep, in stable
geological formations.
Issue: retrievable or not?
No human intervention required after final closure of repository.
Several barriers: chemical, physical, geological.
Substantial engineering challenge (containment must be assured for at least
10,000 years).
Main escape route for radionuclides: groundwater pathway.
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A Case Study: Radioactive Waste Disposal
WIPP

US DOE repository for radioactive waste
situated near Carlsbad, NM.
Fully operational since 1999.
Extensive site characterization and
performance assessment since 1976, also
in course of compliance certification and
recertification by US EPA (every 5 years).
Large amount of publicly available data.
http://www.wipp.energy.gov
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A Case Study: Radioactive Waste Disposal
WIPP geology

Repository located at depth of 655
m within bedded evaporites,
primarily halite (salt).
The most transmissive rock in the
region is the Culebra Dolomite.
In the event of an accidental breach,
Culebra would be the principal
pathway for transport of
radionuclides away from the
repository.
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A Case Study: Radioactive Waste Disposal
WIPP UQ scenario

One scenario at WIPP is a release of
radionuclides by means of a borehole drilled into
the repository.
Radionuclides are released into the Culebra
Dolomite and then transported by groundwater.
Travel time from release point in the repository
to the boundary of the region is an important
quantity.
Flow is two-dimensional to a good
approximation.
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Darcy’s law

The simplest mathematical model for flow through a
porous medium (as in groundwater through an aquifer)
is given by Darcy’s Law

q “
´k

µ
∇p,

in which q is the volumetric flux or Darcy velocity
(discharge per unit area in [m/s]), k is the permeability
tensor, a material parameter describing how easily water
flows through the given medium, µ is the dynamic
viscosity of the fluid and p is the hydraulic head of the
fluid.
The hydraulic conductivity tensor is defined as
K :“ kρg{µ, where g is the acceleration due to gravity
and ρ the fluid density.
The actual pore velocity with which the fluid particles
move through the pores is obtained as u “ q{φ, where
phi P r0, 1s denotes the porosity of the medium.
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A Case Study: Radioactive Waste Disposal
Groundwater Flow Model

Stationary Darcy flow q “ ´K∇p q : Darcy flux
K : hydraulic conductivity
p : hydraulic head

mass conservation ∇¨u “ 0 u : pore velocity
q “ φu φ : porosity

transmissivity T “ Kb b : aquifer thickness

particle transport 9x ptq “ ´
T px q

bφ
∇ppx q x : particle position

x p0q “ x0 x0 : release location

Quantity of interest: particle travel time to reach WIPP boundary
(actually, its log10).
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A Case Study: Radioactive Waste Disposal
PDE with Random Coefficient

Primal form of Darcy equations:

∇¨rT px q∇ppx qs “ 0, x P D, p “ p0 along BD.

Model T as a random field (RF) T “ T px , ωq, ω P Ω, with respect to underlying
probability space pΩ,A,Pq.

Modeling Assumptions: (standard in hydrogeology)

T has finite mean and covariance

T px q “ E rT px , ¨qs , x P D,

CovT px ,yq “ E
“`

T px , ¨q ´ T px q
˘ `

T py , ¨q ´ T pyq
˘‰

, x ,y P D.

T is lognormal, i.e., Zpx , ωq :“ log T px , ωq is a Gaussian RF.
CovZ is stationary and isotropic, i.e., CovZpx ,yq “ cp}x ´ y}2q,
and of Matérn type.
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A Case Study: Radioactive Waste Disposal
Matérn Family of Covariance Kernels

cpx ,yq “ cθprq “
σ2

2ν´1 Γpνq

ˆ

2
?
ν r

ρ

˙ν

Kν

ˆ

2
?
ν r

ρ

˙

, r “ }x ´ y}2

Kν : modified Bessel function of order ν

Parameters θ “ pσ2, ρ, νq σ2 : variance
ρ : correlation length
ν : smoothness parameter

Special cases:

ν “ 1
2
: cprq “ σ2 expp´

?
2r{ρq exponential covariance

ν “ 1 : cprq “ σ2
´

2r
ρ

¯

K1

´

2r
ρ

¯

Bessel covariance

ν Ñ8 : cprq “ σ2 expp´r2{ρ2q Gaussian covariance
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A Case Study: Radioactive Waste Disposal
Matérn Covariance Functions
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Smoothness: Realizations Zp¨, ωq are k times differentiable ô ν ą k.
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A Case Study: Radioactive Waste Disposal
Karhunen-Loève expansion

Covariance function of RF Z P L2
PpΩ;L8pDqq

cpx ,yq “ CovZpx ,yq :“ E
”´

Zpx , ¨q ´ Zpx q
¯´

Zpy , ¨q ´ Zpyq
¯ı

, x ,y P D,

is symmetric in x ,y , positive semidefinite, and continuous on DˆD if continuous
along ‘diagonal’ tpx ,x q : x P Du.

The covariance operator

C “ CZ : L2pDq Ñ L2pDq, pCuqpx q “

ż

D

upyqcpx ,yqdy

is therefore selfadjoint, compact, nonnegative. Its eigenvalues tλmumPN form a
nonincreasing sequence accumulating at most at 0.
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A Case Study: Radioactive Waste Disposal
Karhunen-Loève expansion

Denoting eigenfunctions by tZmumPN there exists sequence of RV

tξmumPN Ă L2
PpΩq, E rξms “ 0, E rξkξms “ δk,m,

such that the expansion

Zpx, ωq “ Zpx q `
8
ÿ

m“1

a

λm Zmpx q ξmpωq

converges in L2
PpΩ;L8pDqq.

[Karhunen, 1947], [Loève, 1948]
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A Case Study: Radioactive Waste Disposal
Karhunen-Loève expansion

For normalized eigenfunctions Zmpx q,

VarZpx q :“ cpx ,x q “
8
ÿ

m“1

λmZmpx q
2,

Total variance:
ż

D

VarZpx qdx “
8
ÿ

m“1

λm pZm, ZmqD
looooomooooon

“1

“ traceC.

For constant variance (e.g., stationary RF),

VarZ ” σ2 ą 0,
ÿ

m

λm “ |D|σ
2.

Interpretation: M first covariance eigenmodes form best rank-M approximation
to C in sense of retaining maximal amount of variance.
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A Case Study: Radioactive Waste Disposal
Karhunen-Loève expansion

Truncate KL expansion after M leading terms:

ZpMqpx , ωq “ Zpxq `
M
ÿ

m“1

a

λm Zmpx q ξmpωq.

Truncation error

E
”

}Z ´ ZpMq}2L2pDq

ı

“

8
ÿ

m“M`1

λm.

Choose M to retain sufficient fraction δ P p0, 1q of total variance, i.e.,

E
”

}Z ´ ZpMq}2L2pDq

ı

E
”

}Z}2L2pDq

ı “

ř8

m“M`1 λm
ř8

m“1 λm
“ 1´

řM
m“1 λm
|D|σ2

ă δ.
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A Case Study: Radioactive Waste Disposal
WIPP Data
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WIPP site boundary

transmissivity measurements at 38
test wells
head measurements, used to obtain
boundary data via statistical
interpolation (kriging)
constant layer thickness of b “ 8m
constant porosity of φ “ 0.16

SANDIA Nat. Labs reports
[Caufman et al., 1990]
[La Venue et al., 1990]

Oliver Ernst (Numerische Mathematik) UQ Sommersemester 2014 50 / 315



A Case Study: Radioactive Waste Disposal
Probabilistic Model of Transmissivity

Merge transmissivity data with statistical model:

(1) Point estimates of parameters σ, ρ and ν via restricted maximum likelihood
estimation (REML).

(2) Condition resulting covariance structure of log T on transmissivity
measurements. (Low-rank modification of covariance operator.)

(3) Approximate log T by truncated Karhunen-Loève expansion.
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A Case Study: Radioactive Waste Disposal
WIPP KL modes conditioned on 38 transmissivity observations

unconditioned, m “ 1, 2, 9, 16

conditioned, m “ 1, 2, 9, 16
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A Case Study: Radioactive Waste Disposal
Deterministic parametric representation

Parametrize input RF by vector of independent Gaussian RV tξmuMm“1 “: ξ.
If ξm has density ρm and image Γm :“ ξmpΩq, then (Doob-Dynkin lemma)

L2
PpΩq » L2

ρpΓq, where Γ :“ ˆ8m“1Γm, ρ “
ź

m

ρm.

Replace Zpx , ωq, ppx , ωq . . . with Zpx , ξq, ppx , ξq.

BVP becomes purely deterministic with (possibly) high-dimensional parameter
space:

∇¨rT px , ξq∇ppx , ξqs “ 0, x P D, P-a.s.,
ppx , ξq “ p0px q, x P BD, P-a.s.,

where

log T px , ξq “ Zpx q `
M
ÿ

m“1

a

λm Zmpx q ξm.
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A Case Study: Radioactive Waste Disposal
Travel-time computations

Generate sufficiently large ensemble of log-travel times spξq “ log10 tpξq

Compute empirical CDF to quantify uncertainty in travel time.

Three sampling methods:

(1) Monte Carlo (MC) sampling of RV ξ Ñ spξq.
(NMC solutions of PDE)

(2) Stochastic collocation (SC) Ñ RF representation of velocity field uNSC px , ξq,
use this to sample spξq.

(NSC solutions of PDE)

(3) Gaussian process emulator: NDP MC samples of spξq used to calibrate
surrogate of mapping ξ Ñ spξq, use this surrogate to sample spξq.

(NDP solutions of PDE)
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A Case Study: Radioactive Waste Disposal
Monte Carlo Method

Draw independent random samples tξju
NMC
j“1 of ξ.

Solve determinisic PDE for each conductivity exppZM px , ξjqq.
Solve ODE for each flow field upx , ξjq and compute spξjq.

How many samples do we need for a desired sampling error of

P

ˆ

sup
xPR

|F̂NMC px q ´ F px q| ď 0.01

˙

ě 0.95 ?

Here F denotes the true CDF of s and FNMC the empirical CDF obtained by NMC

samples. By Donsker’s theorem we have
a

NMC sup
xPR

|F̂NMC px q ´ F px q|
d

ÝÝÝÝÝÝÑ
NMCÑ8

sup
xPr0,1s

|Bpx q|,

where B is a standard Brownian Bridge on r0, 1s.

This yields NMC « 20, 000. Can we do better than solving 20k PDEs?

Oliver Ernst (Numerische Mathematik) UQ Sommersemester 2014 55 / 315



A Case Study: Radioactive Waste Disposal
Monte Carlo Method

Draw independent random samples tξju
NMC
j“1 of ξ.

Solve determinisic PDE for each conductivity exppZM px , ξjqq.
Solve ODE for each flow field upx , ξjq and compute spξjq.

How many samples do we need for a desired sampling error of

P

ˆ

sup
xPR

|F̂NMC px q ´ F px q| ď 0.01

˙

ě 0.95 ?

Here F denotes the true CDF of s and FNMC the empirical CDF obtained by NMC

samples. By Donsker’s theorem we have
a

NMC sup
xPR

|F̂NMC px q ´ F px q|
d

ÝÝÝÝÝÝÑ
NMCÑ8

sup
xPr0,1s

|Bpx q|,

where B is a standard Brownian Bridge on r0, 1s.

This yields NMC « 20, 000. Can we do better than solving 20k PDEs?

Oliver Ernst (Numerische Mathematik) UQ Sommersemester 2014 55 / 315



A Case Study: Radioactive Waste Disposal
Monte Carlo Method

Draw independent random samples tξju
NMC
j“1 of ξ.

Solve determinisic PDE for each conductivity exppZM px , ξjqq.
Solve ODE for each flow field upx , ξjq and compute spξjq.

How many samples do we need for a desired sampling error of

P

ˆ

sup
xPR

|F̂NMC px q ´ F px q| ď 0.01

˙

ě 0.95 ?

Here F denotes the true CDF of s and FNMC the empirical CDF obtained by NMC

samples. By Donsker’s theorem we have
a

NMC sup
xPR

|F̂NMC px q ´ F px q|
d

ÝÝÝÝÝÝÑ
NMCÑ8

sup
xPr0,1s

|Bpx q|,

where B is a standard Brownian Bridge on r0, 1s.

This yields NMC « 20, 000. Can we do better than solving 20k PDEs?
Oliver Ernst (Numerische Mathematik) UQ Sommersemester 2014 55 / 315



A Case Study: Radioactive Waste Disposal
Stochastic Collocation

Evaluate v : Γ Ñ V at collocation points Ξ :“ tξju
NSC
j“1 Ă Γ,

approximate vw « v in NSC-dim. function space VξpΓ;V q.

Here: Smolyak sparse tensor collocation

vw “
ÿ

|i |ďw

«

M
â

m“1

∆
pmq
im

ff

v,

where ∆
pmq
0 “ 0, ∆

pmq
k “ I

pmq
k ´ I

pmq
k´1 for k P N and

´

I
pmq
k f

¯

pξq :“
ÿ

ξjPΞ
pmq
k

fpξjq `jpξq, for f : Γm Ñ V,

`j Lagrange polynomials associated with (1D) nodal sets Ξ
pmq
k Ă Γm.

Here: Ξ
pmq
k are the p2pk´1q ` 1qth Gauss-Hermite nodes, Ξ

pmq
1 “ t0u.
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A Case Study: Radioactive Waste Disposal
Smolyak sparse grid based on Gauss-Hermite nodes
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A Case Study: Radioactive Waste Disposal
Smolyak sparse grid based on Gauss-Hermite nodes
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A Case Study: Radioactive Waste Disposal
Smolyak sparse grid based on Gauss-Hermite nodes
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A Case Study: Radioactive Waste Disposal
Smolyak sparse grid based on Gauss-Hermite nodes
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A Case Study: Radioactive Waste Disposal
Smolyak sparse grid based on Gauss-Hermite nodes
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A Case Study: Radioactive Waste Disposal
Smolyak sparse grid based on Gauss-Hermite nodes
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A Case Study: Radioactive Waste Disposal
Gaussian Process Emulators

An emulator is a statistical approximation to the output of a computer code

y “ fpx q.

Basic idea:

(1) Represent the code, fp¨q as a Gaussian stochastic process.
(2) Run model for sample of design inputs x and observe outputs y .
(3) Condition GP on observed outputs y .
(4) Emulator provides a distribution function for the output of the computer code.
(5) Use emulator as a surrogate for computer model when performing MC

analysis.

[Kennedy & O’Hagan, 2001], [Stone, 2011]
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A Case Study: Radioactive Waste Disposal
Spatial Discretization

Mixed FE discretization:
lowest order RT elements for u , pcw. constants for p.
Fixed mesh, 29 208 triangles, (73 234 DOF)
Flow divergence-free ñ discrete fluxes pcw. constant,
(makes particle trajectory calculation trivial).
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A Case Study: Radioactive Waste Disposal
Collocation error

Error w.r.t. MC reference calculation with NMC “ 20, 000.

Errors measured in L2
ρpΓ;L2pDqq, L2

ρpΓ;Hpdiv, Dqq resp. L2
ρpΓ;Rq norms.
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A Case Study: Radioactive Waste Disposal
Travel Time CDFs for M “ 20 KL modes
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A Case Study: Radioactive Waste Disposal
Travel Time CDFs for M “ 20 KL modes
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Kolmogorov-Smirnov Test

Statistical test to determine whether the random evaluations of the surrogates were
drawn from the same distribution as pure MC.

Significance level: α “ 0.05. KL length: M “ 20.

Surrogate Nsurrogate KS-test (1K) KS-test (20K)
SC 41 7 7

881 X X
13201 X X

GPE 200 7 7

400 X 7

600 X 7

1000 X 7

Basically the same results for M “ 10 and M “ 30.
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Neglected Variance
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Monte Carlo Methods
Monte Carlo
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Monte Carlo Methods
The Buffon Needle Problem

George Louis Leclerc, Comte de Buffon
(1707–1788), French naturalist and mathematician,
posed the following problem in 1777:

Let a needle of length ` be thrown at
random onto a horizontal plane ruled with
parallel straight lines spaced by a distance
d ą ` from each other. What is the
probability p that the needle will intersect
one of these lines?

Analog randomized experiment to approximate π,
later used by Laplace.

Theorem 2.1
The probability of a needle falling in such a way that it intersects one of the lines
as described above is

p “
2`

πd
.
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Monte Carlo Methods
The Buffon Needle Problem

Let tHkukPN denote a sequence of i.i.d. random variables whose value is

Hkpωq “

#

1 if k-th needle intersects a line,
0 otherwise.

Their common distribution is that of a Bernoulli trial with success probability
p “ 2`{πd. In particular:

E rHks “ p @k.

Then SN “ H1 ` ¨ ¨ ¨ `HN is the total number of hits after N throws.
SLLN:

SN
N
Ñ p a.s.

Monte Carlo simulation: compute realizations of Hk by randomly sampling
Xk „ Ur0, d{2s (distance of needle center to closest line) and Θk „ Ur0, π{2s
(acute angle of needle with lines) using a random number generator.
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Monte Carlo Methods
The Buffon Needle Problem
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Monte Carlo Methods
The Buffon Needle Problem

Setting d “ 2, ` “ 1 gives p “ 1
π . For large N , we should have N{SN « π.

A Matlab experiment (setting rng(’default’)) yields
N SN N{SN rel. Error
10 3 3.3 6.1e-2
100 32 3.12 5.2e-3
1000 330 3.0 3.5e-2
10000 3188 3.13 1.5e-3

The Italian mathematician Mario Lazzarini (1901) built a machine with which
to carry out many repetitions of this random experiment. His needle was 2.5
cm long and the lines 3.0 cm apart. He claims to have observed 1808
intersections for 3408 throws, corresponding to

π « 2 ¨
2.5

3
¨

3408

1808
“ 3.141592920353983 . . .

which corresponds to an error of 2.67 ¨ 10´7.
Is this too good to be true?
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Monte Carlo Methods
Basic Monte Carlo simulation

Given a device for generating a sequence tXku of i.i.d. realizations of a given
random variable X, basic MC simulation uses the approximation

E rXs «
SN
N
, SN “ X1 ` ¨ ¨ ¨ `XN .

By the SLLN, SNN Ñ E rXs a.s.

Similarly, for a measurable function f , E rfpXqs « 1
N

řN
k“1 fpXkq.

For a RV X P L2pΩ;Rq the standardized RV

X˚ :“
X ´ E rXs
?
VarX

has E rX˚s “ 0, VarX˚ “ 1.

If µ “ E rXs, σ2 “ VarX, then E rSN s “ Nµ, VarSN “ Nσ2 and, by the
CLT,

S˚N “
SN ´Nµ
?
Nσ

Ñ Np0, 1q.
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Monte Carlo Methods
Convergence rate

Since

E

«

ˆ

SN
N
´ µ

˙2
ff

“ Var
SN
N
“
σ2

N
Ñ 0,

we have L2-convergence of SN{N to µ and, by Theorem A.25, for any ε ą 0,

P

"
ˇ

ˇ

ˇ

ˇ

SN
N
´ µ

ˇ

ˇ

ˇ

ˇ

ą N´1{2`ε

*

ď
σ2

N2ε
, (2.1)

i.e., as the number N of samples increases, the probability of the error being
larger than OpN´1{2`εq converges to zero for any ε ą 0.
If ρ :“ E

“

|X ´ µ|3
‰

ă 8, then the Berry-Esseen bound Theorem A.47
further gives

|PtS˚N ď xu ´ Φpxq| ď C
ρ

σ3
?
N
, (2.2)

where Φ denotes the cdf of Np0, 1q.
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Monte Carlo Methods
Asymptotic confidence intervals

For a RV Z „ Np0, 1q and x P R, this implies

PpS˚N ď xq “ PpZ ď xq `OpN´1{2q

and therefore

Pp|S˚N | ď xq “ PpS˚N ď xq ´ PpS˚N ă ´xq

“ PpZ ď xq ´ PpZ ă ´xq `OpN´1{2q

“ Pp|Z| ď xq `OpN´1{2q

“ erf

ˆ

x
?

2

˙

`OpN´1{2q

where

erf

ˆ

x
?

2

˙

“ 2 Φpxq ´ 1.

If the OpN´1{2q-term is assumed negligible, this can be used to construct
(asymptotic) confidence intervals for S˚N , i.e., the MC estimate SN{N .
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Monte Carlo Methods
Confidence intervals from Berry-Esseen estimate

True confidence intervals are obtained if we carry along the bound in the Berry-
Esseen estimate (2.2), denoted by BN ,

´BN ď Pp|S˚N | ď cq ´ Φpxq ď BN

i.e., for R ě 0 we have

Pp|S˚N | ď Rq “ PpS˚N ď Rq ´ Pp|S˚N | ă ´Rq

ě ΦpRq ´BN ´ pΦp´Rq `BN q

“ ΦpRq ´ Φp´Rq
loooooooomoooooooon

“:γR

´2BN

and, in the same manner, Pp|S˚N | ď Rq ď γR ` 2BN , i.e.,

γR ´ 2BN ď P

ˆ

µ P

„

SN
N
´

σR
?
N
,
SN
N
`

σR
?
N

˙

ď γR ` 2BN .
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Monte Carlo Methods
Application to Buffon Needle problem

In the Buffon needle problem, we have, with RV H denoting the outcome of each
needle throw,

E rHs “ p, VarH “ pp1´ pq, E
“

|H ´ p|3
‰

“ pp1´ pqr1´ 2p` 2p2s

and therefore
S˚N “

SN{N ´ p
b

pp1´pq
N

Ñ Np0, 1q.

Choosing R “ 2 gives γ2 “ erfp
?

2q « 0.9545, so that an asymptotic confidence
interval of level γ2 « 95% is obtained as

«

SN
N
´ 2

c

pp1´ pq

N
,
SN
N
` 2

c

pp1´ pq

N

ff

.
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Monte Carlo Methods
Comparison with Lazzarini’s results

In Lazzarini’s experiment `{d “ 5{6, N “ 3408, giving p “ 5
3π « 0.5305, giving

π « 5
3 ¨

3408
1808 “

355
113 . This corresponds to an approximation error of

ˇ

ˇ

ˇ

ˇ

SN
N
´ p

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1808

3404
´

5

3π

ˇ

ˇ

ˇ

ˇ

“: εL « 4.5 ¨ 10´8.

For the given values of p and N , we have

2

c

pp1´ pq

3408
« 0.0171,

giving a γ2-asymptotic confidence interval around SN{N of width

4

c

pp1´ pq

3408
| « 0.0342.

The γ2 asymptotic confidence interval has a width of εL for N ą 4.9094 ¨ 1014.
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Monte Carlo Methods
Comparison with Lazzarini’s results

To obtain true γR confidence intervals using the Berry-Esseen bound, note that
here

BN “ C
ρ

σ3
?
N
“ C

1´ 2p` 2p2

a

pp1´ pqN
ď

0.3116
?
N

,

where we have used the value C “ 0.7056 given in [Shevtsova, 2006].

The upper bound γR` 2BN for the probability that SN{N is within εL of the true
value p after N “ 3408 throws, corresponds to

σ
?
N
R ď εL, i.e., R ď RL :“

?
NεL
σ

« 5.2695 ¨10´6, γRL « 4.2044 ¨10´6

giving

P

ˆ
ˇ

ˇ

ˇ

ˇ

SN
N
´ p

ˇ

ˇ

ˇ

ˇ

ď εL

˙

ď γRL ` 2B3408 « 0.0107.
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Monte Carlo Methods
Quasi-Monte Carlo methods

In quasi-Monte Carlo methods, the samples are not chosen randomly, but special
(deterministic) number sequences, known as low-discrepancy sequences, are used
instead. Discrepancy is a measure of equidistribution of a number sequence.

Example: The van der Corput sequence to base 3 is such a low-discrepancy se-
quence for the unit interval. It is given by xn “ k

3j , where j increases monotonically
and, for each j, k runs through all nonnegative integers such that k{3j is an ir-
reducible fraction. The ordering in k is obtained by representing k in base 3 and
reversing the digits. The first 11 numbers are

txnu
11
n“1 “ 0,

1

3
,

2

3
,

1

9
,

4

9
,

7

9
,

2

9
,

5

9
,

8

9
,

1

27
,

10

27
.

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1
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Monte Carlo Methods
Quasi-Monte Carlo methods

Replacing i.i.d. random numbers sampled from Ur0, 1s in a standard Monte
Carlo approximation of E rfpXqs for some f P C8p0, 1q and X „ Ur0, 1s, by
the van der Corput sequence of length N , yields a quasi-Monte Carlo method.
The convergence rate is improved from OpN´1{2q to OpN´2q.
Although this improvement is impressive, the method does not generalise
easily and the rate of convergence depends on the problem.
In particular, the rate of convergence for a quasi-Monte Carlo method
generally does depend on the dimension.
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Monte Carlo Methods
Variance reduction

The constant in the MC convergence rate appearing in (2.1) is the variance of
the RV from which MC samples are being drawn. By designing an equivalent MC
approximation with lower variance, we can expect to obtain faster convergence.

To approximate E rXs by standard MC, we draw independent samples
tXku

N
k“1 of X and compute the sample average SN{N .

Now assume a second set of samples X̃k of X is given with sample average
S̃N{N .
Since both sample averages converge to E rXs, so does 1

2 pSN{N ` S̃N{Nq.

When Xk and X̃k are negatively correlated they are called antithetic samples,
and the approximation 1

2N pSN ` S̃N q is a more reliable approximation of
E rXs than 1

2N S2N .

Oliver Ernst (Numerische Mathematik) UQ Sommersemester 2014 82 / 315



Monte Carlo Methods
Variance reduction

Theorem 2.2
Let thew two sequences tXku and tX̃ku of random variables be identically
distributed with

CovpXj , Xkq “ CovpX̃j , X̃kq “ 0 for j ‰ k.

Then the sample averages SN{N and S̃N{N satisfy

Var
SN ` S̃N

2N
“ Var

S2N

2N
`

1

2
Cov

˜

SN
N
,
S̃N
N

¸

ď Var
SN
N
. (2.3)

Worst case: Variance of average of N samples and N antithetic samples less
than variance of N independent samples.
Best case: negatively correlated SN{N and S̃N{N , therefore variance of N
samples and N antithetic samples less than variance of 2N indepependent
samples.
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Monte Carlo Methods
Example: Predator-prey dynamical system

Consider the popular model of the dynamics of two interacting populations

9u “

„

9u1

9u2



“

„

u1p1´ u2q

u2pu1 ´ 1q



, up0q “ u0.

Assume the vector of initial conditions u0 is uncertain and that it is modeled as a
random vector u0 „ UpΓq, where Γ denotes the square

Γ “ u0 ` r´ε, εs
2.

Goal: estimate E ru1pT qs at time T ą 0.
Denote by un “ unpωq the explicit Euler approximation after n time steps of
length ∆t starting with initial data u0 “ u0pωq.
Define φpuq “ u1 for u “ ru1, u2s

T P R2, estimate E rφpunT qs for
nT∆t “ T , using the MC method.
Denote by SN :“ SN{N the average over N samples of u1pT q.
Expect better approximations for N large and ∆t small.
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Monte Carlo Methods
Example: Predator-prey dynamical system

Notation:

forward map: G : Γ Ñ Cpr0, T s;R2q

discretized forward map: G∆t : Γ Ñ Cpr0, T s;R2q

quantity of interest (QoI): Q : Cpr0, T s;R2q Ñ R, u ÞÑ u1pT q “ φpupT qq

approximation of QoI: Q∆t :“ φpunT q “ φpG∆tpu0q|t“T q

MC estimate, N samples: pQ∆t :“ pQ∆t,N « E rQ∆ts « E rQs .

Error with N samples and nT “ T {∆t time steps:

eN,∆t “ |E rQs ´ pQ∆t| ď |E rQs ´ E rQ∆ts |
loooooooooomoooooooooon

explicit Euler error

` |E rQ∆t
s ´ pQ∆t|

looooooooomooooooooon

Monte Carlo error
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Monte Carlo Methods
Example: Predator-prey dynamical system

Explicit Euler error:
}upT q ´ u∆tpT q} ď K∆t.

φ Lipschitz-continuous with constant L “ 1:

|φpupT qq ´ φpu∆tpT qq| ď K L∆t.

Therefore
|E rQs ´ E rQ∆ts | “ |E rQ´Q∆ts | ď K L∆t. (2.4)
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Monte Carlo Methods
Example: Predator-prey dynamical system

For MC error, apply CLT, confidence intervals: if VarQ∆t “ σ2,

P

ˆ

ˇ

ˇ

ˇ
E rQ∆ts ´ pQ∆t,N

ˇ

ˇ

ˇ
ď

2σ
?
N

˙

ą γ2 `OpN
´1{2q

Combined with (2.4):

P

ˆ

eN,∆t ď K L∆t`
2σ
?
N

˙

ą γ2 `OpN
´1{2q.

Balance discretization and MC errors:

KL∆t «
δ

2
,

2σ
?
N
«
δ

2
,

leads to

∆t «
δ

2KL
and N «

16σ2

δ2
.
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Monte Carlo Methods
Example: Predator-prey dynamical system

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

u
1

u
2

Population dynamics problem integrated over r0, T “ 6s with u0 “ r0.5, 2s ` Ur´ε, εs

for ε “ 0.2. Unperturbed trajectory (black) along with 15 perturbed trajectories. For the
unperturbed trajectory u1pT q “ 1.3942.
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Monte Carlo Methods
Example: Predator-prey dynamical system, antithetic sampling

We may introduce antithetic sampling to this problem by noting that, if u0 „ UpΓq,
then the same holds for the random vector

ũ0 :“ 2u0 ´ u0.

Thus, the trajectories generated by the random initial data ũ0 have the same dis-
tribution as those generated by u0.

Denote by Xk “ φpu∆tpT qq the basic samples, by X̃k the antithetic
counterparts. Note that all pairs of samples are independent except each
sample and its antithetic counterpart.
We estimate S2N using the sample variance.

To estimate 1
2

´

SN ` S̃N

¯

by (2.3), note that

CovpSN , S̃N q “
1

N2
CovpSN , S̃N q “

1

N2

N
ÿ

k“1

CovpXk, X̃kq “
1

N
CovpX, X̃q

The last quantity can be estimated using the sample covariance.
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Monte Carlo Methods
Example: Predator-prey dynamical system

0 0.5 1 1.5 2 2.5 3 3.5 4
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4
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e
n
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)
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1
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e
n
d
)

MC estimation of E ru1pT qs using standard MC with N samples (left) versus MC with
antithetic sampling using N{2 samples (right) of the initial data. Both curves show the
estimate along with a 95% (asymptotic) confidence interval.
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Multilevel Monte Carlo Methods
Discretization

The following summary of basic MLMC techniques and analysis closely follows
[Teckentrup, 2013], see also [Cliffe et al., 2011]

To estimate the expectation E rQs of a (random) quantity of interest (QoI) Q,
assume only approximations Qh « Q are computable, where h ą 0 denotes a
discretization parameter for which

lim
hÑ0

E rQhs “ E rQs .

More precisely, we shall assume the error in mean to converge at a rate α, i.e.,

|E rQh ´Qs | À hα, as hÑ 0, α ą 0.
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Multilevel Monte Carlo Methods
Mean-square error

Given an unbiased estimator pQh for E rQhs, the associated mean-square error
(MSE) may always be decomposed as

E
”

`

pQh ´ E rQs
˘2
ı

“ E
”

`

pQh ´ E
”

pQh

ı

` E
”

pQh

ı

´ E rQs
˘2
ı

“ E
”

`

pQh ´ E
”

pQh

ı

˘2
ı

`

´

E
”

pQh

ı

´ E rQs
¯2

“ Var pQh ` pE rQhs ´ E rQsq2

“ Var pQh ` E rQh ´Qs
2

consisting of the variance of the estimator and the squared expectation of the
discretization error (systematic error, bias).
We shall sometimes refer to the root mean-square error (RMSE), which is
simply the square root of the MSE, i.e., the L2-norm of the estimation error

c

E
”

`

pQh ´ E rQs
˘2
ı
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Multilevel Monte Carlo Methods
Standard MC estimator

If the standard Monte Carlo estimator pQh “ pQMC
h,N with N samples is used,

and Qpiqh denote i.i.d. RV with the same distribution as Qh, then

Var pQMC
h,N “ Var

˜

1

N

N
ÿ

i“1

Q
piq
h

¸

“
1

N2
N VarQh “

VarQh
N

,

giving

E

„

´

pQMC
h,N ´ E rQs

¯2


“
VarQh
N

` E rQh ´Qs
2
.

We denote by C p pQq the cost, in terms of the number of floating-point
operations required for its evaluation, associated with an estimator pQ.
The cost will often depend on the type of discretization, typically inversely
proportional to h or, more generally, satisfying a relation of the form

C pQ
piq
h q À h´γ , γ ą 0.

so that C p pQMC
h,N q À Nh´γ .
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Multilevel Monte Carlo Methods
Cost scaling

To balance the two error components, assume each ist bounded by ε2

2 ,
resulting in a total bound of ε for the RMSE.
Assuming VarQh is approximately constant independent of h, this error
balance requires

N Á ε´2 and h À ε1{α.

Since the cost per sample was assumed to satisfy C pQ
piq
h q À h´γ , this gives

C p pQMC
h,N q À Nh´γ ,

whereby the total cost of achieving a RMSE of Opεq using a standard MC
estimator is

Cεp pQ
MC
h,N q À ε´2´γ{α.
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Multilevel Monte Carlo Methods
Multilevel estimator

The idea underlying multilevel estimators is to use realizations of Qh on
different levels, i.e., for different values h0, . . . , hL of the discretization
parameter, and decompose E rQhs as

E rQhs “ E rQh0
s `

L
ÿ

`“1

E
“

Qh` ´Qh`´1

‰

“:
L
ÿ

`“0

E rY`s ,

where

h` “ s´1h`´1, h0 ą 0, ` “ 1, . . . , L, s P Nzt1u. (2.5)

Given (unbiased) estimators tpY`uL`“0 for E rY`s, we refer to

pQML
h :“

L
ÿ

`“0

pY`

as a multilevel estimator for Q.
Since all expectations E rY`s are sampled independently, we have

Var pQML
h “

L
ÿ

`“0

Var pY`.
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Multilevel Monte Carlo Methods
Multilevel Monte Carlo estimator

If each pY` is itself a standard Monte Carlo estimator, i.e.,

pY0 “ pY MC
0,N0

:“ pQMC
h0,N0

and

pY MC
`,N`

:“
1

N`

N
ÿ̀

i“0

´

Q
piq
h`
´Q

piq
h`´1

¯

, ` “ 1, . . . , L,

one obtains a multilevel Monte Carlo estimator, denoted pQMLMC
h,tN`u

.

The associated MSE then has the standard decomposition

E

„

´

pQMLMC
h,tN`u

´ E rQs
¯2


“

L
ÿ

`“0

Var Y`
N`

` E rQh ´Qs
2 (2.6)

into estimation variance and bias.
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Multilevel Monte Carlo Methods
MLMC scaling

To achieve a balanced RMSE of ε, note that the the bias term in (2.6) is the
same as for the standard MC estimator, leading again to a choise of h “ hL
satisfying h À ε1{α.
Achieving a bound of ε2{2 for the variance term in the MSE is typically
possible at lower cost than for standard MC for the following two reasons:
If Qh Ñ Q also in mean square, then Var Y` “ VarpQh` ´Qh`´1

q Ñ 0 as
`Ñ8, allowing for smaller and smaller sample sizes N` on finer and finer
levels.
As εÑ 0, the discretization parameter h0 on the coarsest level can remain
fixed, leading to fixed cost per sample there.
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Multilevel Monte Carlo Methods
MLMC cost

The cost of the MLMC estimator is

C p pQMLMC
h,tN`u

q “

L
ÿ

`“0

N`C`, C` :“ C pY
piq
` q.

Treating the N` as continuous variables, the variance of the MLMC estimator
is minimized for a fixed cost for

N` »

c

Var Y`
C`

(2.7)

with the implied constant chosen to make the total variance equal to ε2{2.
This results in a total cost on level ` proportional to

?
C`Var Y` and therefore

C p pQMLMC
h,tN`u

q À

L
ÿ

`“0

a

C`Var Y`
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Multilevel Monte Carlo Methods
MLMC cost

If Var Y` decays faster than C` increases, the cost on level ` “ 0 dominates,
and, since N0 h ε´2, the cost ratio of MLMC to ML estimation is
approximately

C0

CL
h

ˆ

hL
h0

˙γ

.

If C` increases faster than Var Y` decays, then the cost on level ` “ L
dominates, and then the cost ratio is approximately

Var YL
Var Y0

,

which is Opε2q if h0 is such that Var Y0 h VarQh0
.
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Multilevel Monte Carlo Methods

Theorem 2.3

Let th`uL`“0 satisfy (2.5), ε ă expp´1q, and assume there exist constants
α, β, γ, δ, cM1, cM2, cM4 ą 0 such that α ě mintβ, γ{δu and δ P p 1

2 , 1s.
Assume further that

(M1) |E rQh`s ´ E rQs | ď cM1h
α
` .

(M2) Var pY` ď cM2N
´1{δ
` hβ` .

(M3) E
”

pY`

ı

“

#

E rQh0
s , ` “ 0,

E
“

Qh` ´Qh`´1

‰

, ` “ 1, . . . , L.

(M4) C ppY`q ď N`h
´γ
` .

Then there exists tN`uL`“0 such that E
„

´

pQML
h ´ E rQs

¯2


ď ε2 where h “ hL and

C p pQML
h q ď c

$

’

&

’

%

ε´2δ, if δβ ą γ,

ε´2δ| log ε|1`δ, if δβ “ γ,

ε´2δ´pγ´δβq{α, if δβ ă γ,

where the constant c depends on cM1, cM2 and cM4.
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Multilevel Monte Carlo Methods
MLMC Algorithm

The following MLMC algorithm computes the optimal values of N` ‘on the
fly’ using (unbiased) sample averages and sample variances of Y`.
We assume there exists an h‹ ą 0 such that the error decay in |E rQh ´Qs |
is monotonic for h ď h‹ and satisfies |E rQh ´Qs | h hα.

This ensures that |E rYLs | h hα since s ą 1 and thus |pYL| h hα for NL
sufficiently large.
This gives a computable error estimator to determine whether h is sufficiently
small or whether L needs to be increased.
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Multilevel Monte Carlo Methods
MLMC Algorithm

Algorithm 1: MLMC algorithm
1 LÐ 0.
2 Estimate Var YL by the sample variance of an initial number of samples.
3 Calculate optimal tN`uL`“1 using (2.7).
4 Evaluate extra samples at each level as needed for the new N`.
5 if L ě 1 then
6 test for convergence using pYL h hα.

7 if not converged or L “ 0 then
8 LÐ L` 1 and go back to 2.

Step 3 aims to make the variance of the MLMC estimator less than ε2{2.
Step 5 ensures that the remaining bias is less than ε{

?
2.
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Monte Carlo Finite Element Method

We return to our model elliptic boundary value problem with random data

´∇¨pa∇uq “ f, on D Ă R2, u|BD “ 0, (2.8)

where a and f are random fields defined on D with respect to a probability space
pΩ,A,Pq.

If f is random, we assume fp¨, ωq P L2pDq for (almost) all ω P Ω.

Our goal is to use the MC method to estimate a quantity of interest which
depends on the (random) solution u. We focus, for now, on the mean
E rupx , ¨qs and variance Var upx , ¨q.
With each of N i.i.d. realizations apjq “ ap¨, ωjq and f pjq “ fp¨, ωjq we
associate the unique solution upjq, approximate upjqh « upjq using the finite
element method and compute the (H1

0 pDq-valued) estimates

µN,h :“
1

N

N
ÿ

j“1

u
pjq
h , σ2

N,h :“
1

N ´ 1

N
ÿ

j“1

ˆ

u
pjq
h ´ µN,h

˙2
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Monte Carlo Finite Element Method
Assumptions on a

To ensure a unique solution upjq for each realization, we could require the coef-
ficient a to satisfy Assumption B.3. However, this proves too restrictive in many
applications, and for many cases it is sufficient to require merely realization-wise
bounds:

Assumption 2.4

For almost all ω P Ω, realizations ap¨, ωq of the coefficient function a “ apx q lie in
L8pDq and satisfy

0 ă aminpωq ď apx , ωq ď amaxpωq ă 8 a.e. in D, (2.9)

where

aminpωq :“ ess inf
xPD

apx , ωq, amaxpωq :“ ess sup
xPD

apx , ωq. (2.10)
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Monte Carlo Finite Element Method
Realization-wise solution

For any realization ω for which Assumption 2.4 holds and fpωq P L2pDq, we may apply
the Lax-Milgram lemma and obtain a unique solution of (2.8).

Theorem 2.5

Let Assumption 2.4 hold and fp¨, ωq P L2pDq P-a.s. Then (2.8) has a unique solution
up¨, ωq P H1

0 pDq P-a.s.

The following theorem provides sufficient conditions for the realization-wise solutions u
to have finite p-th moments, i.e., to lie in LppΩ;H1

0 pDqq.
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Monte Carlo Finite Element Method
Realization-wise summability

Theorem 2.6

Under Assumption 2.4, assume the mappings a : Ω Ñ L8pDq and f : Ω Ñ L2pDq are
measurable, let V h Ă H1

0 pDq denote a closed subspace and uh : Ω Ñ V h satisfy P-a.s.
ż

D

apx , ωq∇uhpx , ωq ¨∇vpx qdx “

ż

D

fpx , ωqvpx qdx @v P V h.

Then, with CD the Poincaré-Friedrichs constant from Lemma B.7:
(a) If f P L2pDq is deterministic, then 1{amin P L

ppΩ;Rq with p ě 1 implies

}uh}LppΩ;H1
0 pDqq

ď CD}a
´1
min}LppΩ;Rq}f}L2pDq.

(b) If 1{amin P L
qpΩ;Rq and f P LrpΩ;L2pDqq with q, r ě 1, 1{q ` 1{r “ 1{p ď 1,

then
}uh}LppΩ;H1

0 pDqq
ď CD}a

´1
min}LqpΩ;Rq}f}LrpΩ;L2pDqq.

If, in addition, a and f are independent, the above bound holds with q “ r “ p.
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Monte Carlo Finite Element Method
Mean finite element error

Assumption 2.7

There exists a constant K2 ą 0 such that, for every f P L2pDq, we have
u P L4pΩ;H2pDqq and

|u|L4pΩ;H2pDqq ď K2}f}L2pΩ;L2pDq.

Theorem 2.8

Under the conditions of Theorem 2.5 together with Assumption 2.7 and assuming
that a´1{2

min a
1{2
max P L4pΩ;Rq, the piecewise linear finite element approximation uh

with respect to a shape-regular triangulation Th satisfies

}u´ uh}L2pΩ;H1
0 pDqq

ď Kh}a
´1{2
min a1{2

max}L4pΩ;Rq}f}L2pΩq.
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Monte Carlo Finite Element Method
Error analysis

We split the error in approximating E rus by the MC estimate µN,h in the H1
0 pDq-

norm as

}E rus ´ µN,h}H1
0 pDq

ď }E rus ´ E ruhs }H1
0 pDq

looooooooooooomooooooooooooon

discretization error

`}E ruhs ´ µN,h}H1
0 pDq

loooooooooooomoooooooooooon

MC error

.

For the discretization error we obtain, using Jensen’s inequality noting that norms
are convex function,

}E ru´ uhs }H1
0 pDq

ď E
”

}u´ uh}H1
0 pDq

ı

ď

ˆ

E
”

}u´ uh}H1
0 pDq

ı2
˙1{2

and again for the convex function φpxq “ x2 to obtain

}E ru´ uhs }H1
0 pDq

ď E
”

}u´ uh}
2
H1

0 pDq

ı1{2

“ }u´ uh}L2pΩ;H1
0 pDq

,

which is Ophq by Theorem 2.8.
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Monte Carlo Finite Element Method
Error analysis

Theorem 2.9
Under the conditions of Theorem 2.6 there holds

E
”

}E ruhs ´ µN,h}
2
H1

0 pDq

ı

ď
K

N

with a constant K independent of h.

Corollary 2.10
Under the conditions of Theorem 2.6 there holds for any ε ą 0

P
´

}E ruhs ´ µN,h}H1
0 pDq

ě N´1{2`ε
¯

ď LN´2ε

for a constant L ą 0 independent of h.
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Monte Carlo Finite Element Method
Summary and Outlook

Result: The total error of estimating the mean E rus of the solution of (2.8)
using a piecewise linear FE discretization with mesh size h and a MC sample
size of N decays at the rate

}E rus ´ µN,h}H1
0 pDq

“ Ophq `OpN´1{2q, hÑ 0, N Ñ8.

This is already very slow convergence, and, particularly for low-regularity
solutions as arise, e.g., in groundwater flow applications, more advanced
techniques such as MLMC methods are attractive.

Recalling Theorem 2.3, we note that for rough problems we are typically in
the regime β ă γ. For standard MC estimators on each level (δ “ 1) and, as
is typical, β “ 2α, we obtain a cost on the order of ε´γ{α, which is
asymptotically the cost of computing one sample on a mesh sufficiently fine
to approximate one realization with sufficient spatial accuracy.
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Random Fields

Similar to a stochastic process, a random field is a family of random variables
indexed by a parameter. The former concept is often tied to a parameter set
which is totally ordered (e.g. N or R`0 ), whereas for random fields the
parameter is a spatial coordinate, typically from subsets of R2 or R3.
Random fields first arose in the field of geostatistics to model phenomena in
Earth Sciences such as hydrology, agriculture or geology.
Since the data for PDE models often consists of one or more functions of
space, it is natural to specify the uncertain or random data for PDEs as
random fields.
The alternative view of random fields is as random variables with values in
abstract sets, such as spaces of functions, equivalence classes of functions or
distributions.
Naturally, there are extensions to spatio-temporal random fields featuring an
additional (ordered) parameter used to model, e.g., turbulence or
meteorological phenomena.
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Random Fields
Definition

Definition 3.1
Given a set D Ă Rd, d P N and a probability space pΩ,A,Pq, a (real-valued)
random field is a mapping

a : D ˆ Ω Ñ R

such that each function apx , ¨q : Ω Ñ R, x P D, is a random variable.
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Random Fields
Random field as a function-valued random variable

Definition 3.2

For each fixed ω P Ω the associated function ap¨, ωq : D Ñ R is called a
realization of the random field.

Denote by RD the set of all real-valued functions f : D Ñ R. In particular,
realizations of a real-valued random field belong to RD by Definition 3.2.
Denote further by ApRDq the smallest σ-algebra containing all sets

A “ tf P RD : pfpx1q, . . . , fpxnqq P Bu

for any B P BpRnq,x1, . . . ,xn P D,n P N.

Proposition 3.3
Let a be a random field on D Ă Rd with underlying probability space pΩ,A,Pq.
Then the mapping ω ÞÑ ap¨, ωq from pΩ,Aq to the measurable space pRD,ApRDqq
is measurable and hence a random variable with values in RD.
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Random Fields
Independence

Definition 3.4
(a) Two real-valued random fields tapx q,x P Du and tbpyq,y P Du on D Ă Rd

are said to be independent if the associated pRD,ApRDqq-valued random
variables are independent.

(b) We call fi : D Ñ R, i “ 1, 2, independent realizations of a real-valued
random field a on D Ă Rd if fipx q “ aipx , ωq for some ω P Ω, where ai are
i.i.d. random fields with the same distribution as a.
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Random Fields
Finite-dimensional distributions

Definition 3.5
For a real-valued random field tapx q,x P Du defined on D Ă Rd the probability
distributions of all random vectors papx1q, . . . , apxnqq with x1, . . . ,xn P D on
pRn,BpRnqq are known as the finite-dimensional distributions of a.

The Daniell-Kolmogorov theorem states consistency conditions for defining the dis-
tribution of a random field by a family of finite-dimensional probability measures.
We denote by Pa the probability distribution of a random field a on the measurable
space pRD,ApRDqq.
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Random Fields
Characterization by finite-dimensional distributions

Theorem 3.6 (Daniell & Kolmogorov)
Suppose that for each set tx1, . . . ,xnu Ă D there exists a probability measure
µx1,...,xn on Rn such that
(i) For any permutation σ of t1, . . . , nu and any B P BpRnq there holds

µxσp1q,...,xσpnqpσpBqq “ µx1,...,xnpBq,

where σpBq “ tpxσp1q, . . . ,xσpnqq : px1, . . . ,xnq P Bu and
(ii) for m ă n and any B P BpRmq

µx1,...,xnpB ˆ Rn´mq “ µx1,...,xmpBq.

Then there exists a random field tapx q,x P Du with finite-dimensional
distributions µx1,...,xn . If apx q and bpx q are two such random fields, then
PapAq “ PbpAq for any A P ApRDq.
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Random Fields
Mean, covariance

Definition 3.7
A random field a on D Ă Rd is said to be of second order if for all x P D there
holds apx q “ apx , ¨q P L2pΩ;Rq. We say a second-order random field a has mean
function apx q :“ E rapx qs and covariance function

cpx ,yq “ capx ,yq :“ Covpapx q, apyqq, x ,y P D.

Definition 3.8
A function f : D ˆD Ñ R is called positive semidefinite if for any n-tuple
px1, . . . ,xnq P D

n and vector z “ rz1, . . . , zns
T P Rn there holds

n
ÿ

j,k“1

zjzkfpxj ,xkq ě 0.

Note: In the stochastics literature this property is often called simply positive
definite.
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Random Fields
Covariance functions and positive definiteness

Theorem 3.9
Let D Ă Rd. The following statements are equivalent:
(a) There exists a real-valued second-order random field tapx q,x P Du with

covariance function c : D ˆD Ñ R.
(b) c P RDˆD is symmetric and positive semidefinite.

Definition 3.10
A real-valued random field on D Ă Rd is called Gaussian if each random vector
rapx1q, . . . , apxnqs follows an n-variate normal distribution for any x1, . . . ,xn P D
and any n P N.

Corollary 3.11
The probability distribution Pa on pRD,ApRDqq of a real-valued Gaussian random
field a is uniquely determined by its mean and covariance function.
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Random Fields
Values in L2pDq

Given a second-order random field a on D Ă Rd with mean a, consider the centered
random field a´a. Given a CONS tψmumPN of L2pDq, we have for each realization
of a:

ap¨, ωq ´ a “
8
ÿ

m“1

ξmpωqψm,

where the ξm are random variables defined by

ξmpωq :“ pap¨, ωq ´ a, ψmqL2pDq.

The Karhunen-Loève expansion of a results from choosing as a particular CONS the
eigenfunctions of the covariance operator C “ Ca : L2pDq Ñ L2pDq of a, which
is given by

u ÞÑ Cu, pCuqpx q “

ż

D

upyqcpx ,yqdy , x P D. (3.1)

Lemma 3.12
If a P L2pΩ;L2pDqq, then a P L2pDq and ap¨, ωq P L2pDq P-a.s.
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Random Fields
Values in L2pDq

By Definition A.23, if a P L2pΩ;L2pDqq for D Ă Rd, we have for any φ, ψ P L2pDq
by Fubini’s theorem

pCφ,ψqL2pDq “ Cov
`

pφ, aqL2pDq, pψ, aqL2pDq

˘

“ E

„
ż

D

φpx qrapx q ´ apx qsdx

ż

D

ψpyqrapyq ´ apyqsdy



“

ż

D

ż

D

Covpapx q, apyqqφpx qdx ψpyqdy ,

from which we infer that the covariance operator Ca of the L2pDq-valued random
variable a is the linear integral operator Ca : L2pDq Ñ L2pDq with kernel function
ca P L

2pDˆDq given by capx ,yq “ Covpapx q, apyqq (not pointwise, in general !)
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Random Fields
Example

Example 3.13
For d “ 1 and D “ r´b, bs, b ą 0, the exponential covariance function is defined by

cpx, yq “ e
´|x´y|

` , ` ą 0.

The eigenvalues of the associated covariance operator are given by

λm “
2`

`2ω2
m ` 1

, pm evenq, λm “
2`

`2ω̃2
m ` 1

, pm oddq

where ωm and ω̃m denote the solutions of the transcendental equations

1´ ω` tanpωbq “ 0 and ω`` tanpωbq “ 0,

respectively. The associated eigenfunctions are given by

fmpxq “
cospωmxq

b

b` sinp2ωmbq
2ωm

, f̃mpxq “
sinpω̃mxq

b

b´ sinp2ω̃mbq
2ω̃m

,
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Random Fields
KL expansion

Theorem 3.14
If pλm, amqmPN denotes the sequence of eigenpairs (in descending order, }am}L2pDq “ 1) of
the covariance operator Ca associated with the random field a P L2pΩ;L2pDqq with mean
function apx q, then

apx , ωq “ apx q `
8
ÿ

m“1

a

λm ampx q ξmpωq, (3.2)

where the series converges in L2pΩ;L2pDqq, the random variables

ξmpωq “
1

?
λm
pap¨, ωq ´ a, amqL2pDq

have mean zero, unit variance and are pairwise uncorrelated.
If the random field is, in addition, Gaussian, then ξm „ Np0, 1q are i.i.d.
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Random Fields
KL expansion, truncation

The KL expansion suggests a convenient approach for approximating a
random field to a specified accuracy by truncation:

apx , ωq « aM px , ωq :“ apx q `
M
ÿ

m“1

a

λm ampx q ξmpωq. (3.3)

The truncated RF aM has the same mean as a and the covariance function

cpx ,yq « cM px ,yq “ ca,M px ,yq “
M
ÿ

m“1

λmampx qampyq, x ,y P D.

(3.4)
Since tφjpx qφkpuquj,kPN is a CONS for L2pD ˆDq, cM Ñ c in L2pD ˆDq.
For a bounded domain D and continuous covariance function, its series
expansion (3.4) and the MSE of the truncated KL series (3.3) both converge
uniformly.
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Random Fields
KL expansion, uniform convergence

Theorem 3.15
Let aM denote the truncated approximation defined in (3.3) of a real-valued
random field a P L2pΩ;L2pDqq for a compact domain D Ă Rd with covariance
function c P CpD ˆDq. Then the KL eigenfunctions tamumPN are continuous on
D and the series expansion of c converges uniformly, i.e.,

sup
x ,yPD

|cpx ,yq ´ cM px ,yq| ď sup
xPD

8
ÿ

m“M`1

λmampx q
2 Ñ 0, M Ñ8. (3.5)

In addition,
sup
xPD

E
“

papx q ´ aM px qq
2
‰

Ñ 0 M Ñ8.
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Random Fields
KL expansion, variance

For the variance of the truncated KL expansion, we have

Varpapx qq ´ VarpaM px qq “ E
“

papx q ´ ampx qq
2
‰

“

8
ÿ

m“M`1

λmampx q
2 ě 0,

hence aM always underestimates the variance of a.
Viewed as a random variable a P L2pΩ;L2pDqq, we have for the truncation
error

}a´ aM }
2
L2pΩ;L2pDqq “

8
ÿ

m“M`1

λm.

In addition,

}a´ aM }
2
L2pΩ;L2pDqq “ E

”

}a´ a}2L2pDq ´ }aM ´ a}2L2pDq

ı

“

ż

D

Var apx qdx ´
M
ÿ

m“1

λm.
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Random Fields
KL expansion, variance

This allows an assessment of the truncation error w.r.t. } ¨ }L2pΩ;L2pDqq

provided the first M eigenvalues can be calculated as well as the integral of
Var a over D.
Eigenvalue approximations can be obtained by solving the covariance
eigenproblem numerically. If Var a ” σ2 on D, this yields

}a´ aM }
2
L2pΩ;L2pDqq “ σ2|D| ´

M
ÿ

m“1

λm,

where |D| “
ş

D
dx is the Lebesgue measure of D.

In this case the error can always be estimated once a number of leading
eigenvalues are available.
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Regularity of Random Fields

Definition 3.16
A random field tapx q,x P Du is said to be mean-square continuous if, for all
x P D,

}apx ` hq ´ apx q}L2pΩq “ E
“

papx ` hq ´ apx qq2
‰

Ñ 0 as h Ñ 0.

We assume centered random fields a in the remainder of this section, i.e., a ” 0.

Theorem 3.17
Let tapx q,x P Du be a centered random field. Then its covariance function c is
continuous at px ,x q, x P D, if and only if E

“

papx ` hq ´ apx qq2
‰

Ñ 0 as
h Ñ 0. In particular, if c P CpD ˆDq, then a is mean-square continuous.

Corollary 3.18
Let tapx q,x P Du be a centered random field. If its covariance function is
continuous along the ‘diagonal’ tpx ,x q : x P Du, then it is continuous throughout
D ˆD.
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Regularity of Random Fields
Mean-square differentiability

Theorem 3.19
Let tapx q,x P Du be a centered second-order random field. If its covariance
function c P C2pD ˆDq, then a is mean-square differentiable, i.e., there exists a
random field tBxjapx q,x P Du such that for all j “ 1, 2, . . . , d,

›

›

›

›

apx ` hejq ´ apx q

h
´ Bxjapx q

›

›

›

›

L2pΩq

Ñ 0 as hÑ 0

and Bxjapx q has covariance function

cjpx ,yq “
B2cpx ,yq

BxjByj
.

Analogous relations hold for higher order mean-square derivatives of a random field
given higher order differentiability of the covariance function.
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Regularity of Random Fields
Regularity of realizations

Mean-square continuity and differentiability depend on the expectation, i.e.,
on an average over all realizations.
A related issue is the regularity of each individual realization.
Even for Gaussian fields, it is not possible to show that each realization is
continuous.
Even though the distribution of a Gaussian random field is uniquely defined
on ApRDq, realization-wise continuity cannot hold in general.
ApRDq is contructed from a countable set of conditions, whereas statements
about the continuity of functions involve conditions on a continuum of
points, i.e., uncountably many conditions.
However, given a condition of the moments of the ‘increments’ apx q ´ apyq,
a version of apx q with continuous realizations can be shown to exist.
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Regularity of Random Fields
Regularity of realizations

Theorem 3.20
Let D be a bounded domain in Rd and tapx q,x P Du be a centered Gaussian
random field such that, for some L, s ą 0

E
“

|apxq ´ apyq|2
‰

ď L}x ´ y}s2 @x ,y P D.

Then for any p ě 1 there exists a random variable K such that eK P LppΩq and

|apx q ´ apyq| ď Kpωq}x ´ y}
ps´εq{2
2 @x ,y P D a.s.,

i.e., realizations of a are Hölder continuous with exponent s{2.
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Regularity of Random Fields
Regularity of realizations

Definition 3.21
A random field tbpx q,x P Du is called a version of a random field tapx q,x P Du
if

P papx q “ bpx qq “ 1 @x P D.

A random field tapx q,x P Du is said to have a continuous version if there exists
a version of a with continuous realizations.

Theorem 3.22 (cf. [Kallenberg (1997)], Thm. 2.23)
Let a be a random field on D Ă Rd with values in a Banach space and assume for
some a, b ą 0 that

E r}apx q ´ apyq}as À }x ´ y}d`b, x ,y P D.

Then a has a continuous version, and for any c P p0, b{aq the latter is a.s. locally
Hölder continuous with exponent c.
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Covariance Eigenvalue Decay
Stationarity

Definition 3.23
(a) A random field a is strictly stationary or homogeneous if its finite-dimensional

distributions are invariant under translation, i.e., if the multivariate
distribution of papx1q, . . . , apxnqq is the same as that of
papx1 ` hq, . . . , apxn ` hqq, for all h .

(b) A random field a is (wide-sense) stationary or (wide-sense) homogeneous if its
mean is constant and its covariance function satisfies cpx ,yq “ cpx ´ yq.
Such a covariance function is known as a stationary covariance.

Example 3.24
The separable exponential covariance function is given by

cpx ,yq “
d
ź

j“1

e
´|xj´yj |

`j , `j ą 0,

where `j is a correlation length parameter in the j-th Cartesian direction, is an
example of a stationary covariance function.
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Covariance Eigenvalue Decay
Fourier representation

Theorem 3.25 (Wiener-Khintchine)
The following two statements are equivalent:
(a) There exists a mean-square continuous stationary random field

tapx q,x P Rdu with stationary covariance function c.
(b) The function c : Rd Ñ R is such that

cpx q “

ż

Rd
eiλ¨x dF pλq

for some measure F on Rd with F pRdq ă 8,

The measure F is called the spectral distribution. If it exists, the density f of F is
called the spectral density. Alternatively, given c : Rd Ñ R, we may compute

fpλq “ p2πq´d
ż

Rd
e´iλ¨x cpx qdx .

If f is nonnegative and integrable then c is a valid covariance function.
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Covariance Eigenvalue Decay
Fourier representation

Example 3.26 (Separable exponential covariance)
The Fourier transform of the separable covariance function is obtained as the
rpoduct of the transforms of its factors, i.e.,

fpλq “ p2πq´d
ż

Rd
e´iλ¨x cpx qdx “

d
ź

j“1

p2πq´1

ż

R
e´ixjλje´|xj |{`j dxj ,

yielding

fpλq “
d
ź

j“1

`j
πpλ2

j ` `
2
j q
.

Since `j ą 0 for all j, f is nonnegative and is the density of a measure F with
F pRdq ă 8. By the Wiener-Khintchine theorem c is thus the covariance kernel
for some mean-square continuous random field.
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Covariance Eigenvalue Decay
Fourier representation

Example 3.27 (Gaussian covariance)
For a symmetric positive definite matrix A P Rdˆd the function

cpx q “ e´xTAx , x P Rd,

has the Fourier transform

fpλq “ p2πq´d
ż

Rd
e´ix ¨λe´xTAx dx “

1

p2πqd{22d{2
?

detA
“ e´λTA´1λ{4.

f is nonnegative and is the density of a measure F – in fact the Gaussian
distribution Np0, 2Aq. Again, the Wiener-Khintchine theorem asserts that c is the
covariance function of a random field.
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Covariance Eigenvalue Decay
Isotropy

Definition 3.28
A stationary random field tapx q,x P Rdu is said to be isotropic if its covariance
function is invariant under rotations, i.e.,

cpx ,yq “ cprq, r “ }x ´ y}2.

Example 3.29 (Isotropic Gaussian covariance)

A simple example of an isotropic covariance function is cprq “ e´r
2

, arising from a
Gaussian covariance with A “ Id. In fact, cpx q “ e´xTAx is isotropic whenever
A “ σId for some σ ą 0.

Example 3.30 (Bessel covariance)
Another isotropic covariance function, proposed by Whittle as a generalization of
the exponential covariance to higher dimensions, is given by cprq “ rK1prq, where
K1 is the modified Bessel function of second kind with index 1.
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Covariance Eigenvalue Decay
Isotropy

For isotropic functions the Fourier transform in the Wiener-Khintchine theorem
becomes a Hankel transform (cf. Theorem D.1). For fpsq “ fp}λ}2q, we obtain
for d “ 1, 2, 3

cprq “

$

’

’

’

’

&

’

’

’

’

%

2
ş8

0
cosprsq fpsqds, d “ 1,

2π
ş8

0
J0prsqfpsqsds, d “ 2,

4π
ş8

0
1
rs sinprsqfpsqs2 ds, d “ 3.
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Covariance Eigenvalue Decay
Isotropy

Theorem 3.31
Let tapx q,x P Rdu be an isotropic random field with mean-square continuous
covariance function c. There exists a finite measure F on R` known as the radial
spectral distribution such that

cprq “ Γ
`

d
2

˘

ż 8

0

Jνprsq

p rs2 q
ν

dF psq, ν “ d
2 ´ 1.

If the spectral density exists, fpsq “ fpλq for s “ }λ}2 is called the radial spectral
density function. Then

dF psq “
2πd{2

Γpd2 q
sd´1fpsqds and fpsq “ p2πq´d{2

ż 8

0

Jνprsq

prsqν
cprqrd´1 dr.
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Covariance Eigenvalue Decay
The Matérn class

The Matérn class is a family of isotropic covariance functions named after the
Swedish forestry statistician Bertil Matérn and is very popular in geostatistics as
well as machine learning etc.
The covariance function is given by

cprq “
σ2

2ν´1 Γpνq

ˆ

2
?
ν r

ρ

˙ν

Kν

ˆ

2
?
ν r

ρ

˙

, r “ }x ´ y}2, (3.6)

where

Kν is the modified (second-kind) Bessel function of order ν,
ν is known as the smoothness parameter,
σ2 is the variance parameter,
ρ is the correlation length parameter,
Γ denotes the Gamma-function.
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Covariance Eigenvalue Decay
The Matérn class
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With smaller correlation length ρ the Matérn covariance function becomes
more strongly concentrated near r “ 0.
With increasing values of the smoothness parameter ν the Matérn covariance
function becomes smoother at r “ 0. (It is analytic everywhere else.)
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Covariance Eigenvalue Decay
Decay rate

The Matérn family has a number of attractive features:
It contains the exponential, Bessel and Gaussian covariance functions as
special cases:

ν “ 1
2 : cprq “ σ2 expp´

?
2r{ρq exponential covariance

ν “ 1 : cprq “ σ2
´

2r
ρ

¯

K1

´

2r
ρ

¯

Bessel covariance

ν Ñ8 : cprq “ σ2 expp´r2{ρ2q Gaussian covariance

Smoothness of realizations: a random field with Matérn covariance function
is s times mean-square differentiable if and only if ν ą s.
The flexibility of the parametrization allows its application to many statistical
situation, the parameters may be estimated from observed data using
statistical techniques.
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Covariance Eigenvalue Decay
Matérn eigenvalue decay

Before asymptotic decay sets in (determined by the smoothness of the kernel),
there is a preasymptotic plateau whose length is determined by the correlation
length parameter ρ.
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Eigenvalue decay, Matérn covariance kernel, D “ r´1, 1s.
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Covariance Eigenvalue Decay
Widom’s result

In a paper published in 19632, Harold Widom analyzed linear integral operators of
the form

u ÞÑ Ku, pKuqpx q “

ż

Rd
V px q1{2kpx ´ yqV pyq1{2upyqdy . (3.7)

We obtain the covariance operator for an isotropic covariance function on a bounded
domain D Ă Rd by setting V px q “ 1D and kpx ´ yq “ cp}x ´ y}2q.

Definition 3.32
Two functions f : E Ñ R and g : F Ñ R, E Ă Rn and F Ă Rm are said to be
equimeasurable if, for all t P R,

|tx P E : fpx q ą tu| “ |ty P F : gpyq ą tu|

where | ¨ | denotes Lebesgue measure.

2Widom, H., Asymptotic behavior of the eigenvalues of certain integral equations. Trans.
Amer. Math. Soc. 109, 278–295 (1963).
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Covariance Eigenvalue Decay
Widom’s result

We denote the spectral density (Fourier transform) of c “ cpx q “ cp}x }2q by

ĉpλq “ p2πq´d
ż

Rd
cpx qe´ix ¨λ dx “ fpsq

and set Kpλq :“ p2πqd ĉpλq.

Theorem 3.33 (Widom, 1963)
For the integral operator K in (3.7) let V be a bounded, nonnegative function
with bounded support, let k be integrable over Rd with an ultimately positive
Fourier transform and let tλmumPN denote its (nonincreasing) sequence of
eigenvalues. If the function φ0 : R`0 Ñ R is equimeasurable to
V px qKpλq : Rd ˆ Rd Ñ R, then

λm — φ0pp2πq
dmq as mÑ8.

Note: The theorem still holds when the integral operator leads to a K 1pλq such
that

Kpλq — K 1pλq, as }λ}2 Ñ8.
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Covariance Eigenvalue Decay
Decay rate

Corollary 3.34
Let c “ cprq be an isotropic covariance function on Rd with radial spectral density f “ fpsq.
Assume that fpsq — bs´ρ as sÑ8, for some b, ρ ą 0. Let D be a bounded domain in Rd
and let tλmumPN denote the (nonincreasing) eigenvalues of the covariance operator C given
by (3.1). Then

λm — KpD, d, ρ, bqm´ρ{d, mÑ8,

with KpD, d, ρ, bq :“ p2πqd´ρbp|D|Vdq
ρ{d, where Vd “ 2πd{2

dΓpd{2q denotes the volume of the
unit sphere in Rd.

Corollary 3.35
If the spectral density fpsq of an isotropic random field satisfies fpsq — bs´ρ, then

λm — Km´ρ{d, mÑ8,

with K “ p2πqd´ρb p|D|Vdq
ρ{d where Vd denotes the volume of the d-dimensional unit sphere.
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Covariance Eigenvalue Decay
Decay rate

The Fourier transform of the Matérn covariance function with smoothness param-
eter ν, variance σ2 and correlation length parameter ` is given by

fps; ν, σ, `q “ σ2π´d{2
Γpν ` d{2q

Γpνq

α2ν

ps2 ` α2qν`d{2
.

where α :“ 2
?
ν{`.

Corollary 3.36
For the Matérn covariance in d dimensions with smoothness parameter ν the
covariance eigenvalues decay asymptotically like

λm — Km´p1`2ν{dq, mÑ8,

where

K “ p2πq´2ν´d{2σ2 Γpν ` d{2q

Γpνq

ˆ

2
?
ν

`

˙2ν

p|D|Vdq
1`2ν{d

.
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Covariance Eigenvalue Decay
Realizations of Gaussian RF

Matérn covariance, σ “ 1, ν “ 1
2 , ` “ 0.5
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Covariance Eigenvalue Decay
Realizations of Gaussian RF

Matérn covariance, σ “ 1, ν “ 1
2 , ` “ 0.05
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Covariance Eigenvalue Decay
Realizations of Gaussian RF

Matérn covariance, σ “ 1, ν “ 3
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Covariance Eigenvalue Decay
Realizations of Gaussian RF

Matérn covariance, σ “ 1, ν “ 5
2 , ` “ 0.05
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Stochastic Collocation
Introduction

Collocation methods are a long-established technique for solving integral or differ-
ential equations and are based on requiring the equation under consideration to
hold at a finite number of collocation points sufficient to determine an approximate
solution in an appropriate finite-dimensional function space.

They were introduced for solving PDEs with random inputs in [Xiu & Hesthaven,
2005] and [Babuška, Nobile & Tempone, 2007] and offer anumber of atractive features:

Like MC, they reduce to a series of uncoupled deterministic subproblems for
which legacy code can be used essentialy unmodified.
Unlike MC, collocation can take advantage of smooth dependence of the
solution on the random parameters to yield spectral convergence.
Nonlinear problems pose no additional difficulty.
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Stochastic Collocation
Setting

We consider the model problem on the bounded domain D Ă Rd

´∇¨pa∇uq “ f on D, u|BD “ 0 (4.1)

with random field data tapx q,x P Du and (possibly) tfpx q,x P Du.

We make the following assumptions:

Assumption 4.1

(a) f P L2pΩ;L2pDqq.
(b) a is uniformly bounded from below, i.e., there exists a constant amin ą 0 such

that
apx q ě amin @x P D, P-a.s.
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Stochastic Collocation
Setting

In addition to the space V :“ L2pΩ;H1
0 pDqq “ L2pΩ;Rq bH1

0 pDq, we introduce
the stochastic energy space

Va :“
!

v P V : }v}a :“ E
“

pa∇v,∇vqL2pDq

‰1{2
ă 8

)

.

Proposition 4.2
Under these assumptions Va is continuously embedded in V and

}v}L2pΩ;H1
0 pDqq

ď
1

amin
}v}Va .
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Stochastic Collocation
Stochastic variational problem

With these definitions we give the following variational formulation of problem (4.1)

Find u P Va such that

E
“

pa∇u,∇vqL2pDq

‰

“ E
“

pf, vqL2pDq

‰

@v P Va. (4.2)

Lemma 4.3

Under Assumption 4.1, the variational problem (4.2) possesses a unique solution
u P Va such that

}u}L2pΩ;H1
0 pDqq

ď
CD
amin

}f}L2pΩ;L2pDqq,

where CD denotes the Poincaré-Friedrichs constant of D.
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Stochastic Collocation
Weaker assumptions on coefficient

If we assume the lower bound on the coefficient field a to hold only realization-wise,
i.e.,

apx , ωq ě aminpωq ą 0 a.s. and a.e. on D,

for a random variable amin, then Lemma 4.3 yields, for each ω P Ω, a solution
upωq P H1

0 pDq.

Lemma 4.4
Let p, q ě 0 be conjugate exponents, i.e., 1{p` 1{q “ 1 and k P N. Then if
f P LkppΩ;L2pDqq and 1{amin P L

kqpΩ;Rq, we have u P LkpΩ;H1
0 pDqq.

Example 4.5
Lognormal Gaussian field

apx , ωq “ exp

˜

M
ÿ

m“1

gmpx qξmpωq

¸

, ξm i.i.d., ξm „ Np0, 1q.
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Stochastic Collocation
Finite-dimensional noise

Assumption 4.6 (Finite-dimensional noise)
The coefficient and source term in (4.1) have the form

apx , ωq “ apx , ξ1pωq, . . . , ξM pωqq, fpx , ωq “ fpx ,x , ξ1pωq, . . . , ξM pωqq

with M P N and real-valued random variables tξmu with mean zero and unit
variance. We denote by Γm “ ξmpΩq the image of each ξm, Γ :“

śM
m“1 Γm and

assume that the random vector ξ “ rξ1, . . . , ξM s has a joint pdf

ρ : Γ Ñ R`0 with ρ P L8pΓq.

An example of such a situation is a random field represented as a truncated
KL expansion.
Typically f and a are assumed independent, i.e., the first depends on a
random vector ξapωq and the second on ξf pωq with both random vectors
independent.
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Stochastic Collocation
Parametric problem

The stochastic variational problem (4.2) may now be reformulated as a (determin-
istic) parametrized PDE with respect to the space

Vρ,a :“ L2pΓ,BpΓq, ρdξ;H1
0 pDqq

in place of Va:

Find u P Va,ρ such that
ż

Γ

pa∇u,∇vqL2pDq ρpξqdξ “

ż

Γ

pf, vqL2pDq ρpξqdξ @v P Vρ,a. (4.3)

The solution then also has the form u “ upx , ξq P Vρ,a with x P D, ξ P Γ. It is
convenient to view u as a mapping

u : Γ Ñ H1
0 pDq.
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Stochastic Collocation
Basic idea

To approximate a parameter-dependent object u “ upξq with values in an abstract
space V , fix a finite-dimensional subspace VN “ spantu1, . . . , uNu Ă V and set

upξq « uN pξq “
N
ÿ

j“1

uj ψjpξq

with coefficient functions ψj : Γ Ñ R determined by a fixed set of

collocation points tξju
N
j“1 Ă Γ.

Simplest choice for ψj: Lagrange basis of multivariate (global) polynomials with
respect to a system

Ξ :“ tξju
N
j“1 Ă Γ

of unisolvent nodes.
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Stochastic Collocation
Lagrange interpolant

Given a univariate nodal sequence of distinct nodes

χk “ tξ
pkq
1 , . . . , ξpkqnk u, k P N,

we denote by t`pkqj u
nk
j“1 with `pkqj P Pnk´1 the associated Lagrange basis, i.e., the

uniquely determined polynomials of degree nk ´ 1 satisfying

`
pkq
j pξ

pkq
i q “ δi,j , j “ 1, . . . , nk.

We introduce the univariate interpolation operator

Ik : f ÞÑ Ikf “
nk
ÿ

j“1

fpξ
pkq
j q `

pkq
j P Pnk´1
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Stochastic Collocation
Interpolation nodes

We will later analyze tensor-product interpolation in the variable ξ and its
approximation properties, which can be derived from the constituent
univariate interpolations.
For univariate interpolation, good nodal sequences are, e.g., zeros of
orthogonal polynomials, Clenshaw-Curtiss nodes (extremal values of the
Chebyshev polynomials) and Leja points.
We will restrict ourselves to zeros of orthogonal polynomials. Since these are,
at the same time, the nodes of high-order quadrature schemes, this will
simplify the computation of integrals involving the collocation approximation,
e.g., to compute moments of the solution of (4.1).
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Stochastic Collocation
Tensorized Lagrange interpolant

If we assume Γ is the M -fold Cartesian product of the same (bounded or
unbounded) real interval. In this case we may choose the same nodal
sequence in all coordinates, and set

Ξk :“ χk ˆ ¨ ¨ ¨ ˆ χk “ tξα “ pξ
pkq
α1
, . . . , ξpkqαM q : 1 ď αm ď nku.

Note that N :“ |Ξk| “ nMk .
The tensor-product interpolation operator is then defined as

Ik :“ Ik b ¨ ¨ ¨ b Ik : u ÞÑ
ÿ

|α|8ďnk

upξαq `
pkq
α1
¨ . . . ¨ `pkqαM ,

where |α|8 “ maxMm“1 |αm|.
The range of the tensor-product interpolation operator Ik is the space
Qnk´1,M of multivariate polynomials of degree nk ´ 1 defined as

Qp,M “

#

M
ź

m“1

pmpξmq : pm P Pp

+

.
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Stochastic Collocation
Semi-discrete problem

The semi-discrete problem is obtained by replacing V “ H1
0 pDq with a

finite-dimensional subspace, say, a finite-element space V h Ă H1
0 pDq.

If we require the discrete variational problem to hold pointwise in Γ, we
obtain the problem

Find uh : Γ Ñ V h such that

papξq∇upξq,∇vqL2pDq “ pfpξq, vqL2pDq @v P V h and @ξ P Γ. (4.4)
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Stochastic Collocation
Fully discrete problem

The fully discrete problem is obtained by approximating the semidiscrete solution
uh : Γ Ñ V h by

uhpx , ξq « uh,ppx , ξq :“ pIpu
hqpx , ξq,

where Ip is the tensor-product interpolant constructed from univariate Lagrange
interpolants of degree p, i.e., based on p` 1 disctinct nodes in each variable.

This entails solving a (deterministic) version of (4.1) for each of the tensor-product
interpolation nodes:

Find upξαq P V h for all ξα P Ξ such that

papξαq∇upξαq,∇vqL2pDq “ pfpξαq, vqL2pDq @v P V h. (4.5)
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Stochastic Collocation
Auxiliary density

We have not made the assumption that the random variables tξmuMm“1 are
independent. Expansions containing non-independent random variables arise
naturally when other expansion functions than the covariance eigenfunctions
are employed.
Both analysis and computation, however, are considerably simplified when
independence holds. To this end we introduce an auxiliary density function
ρ̂ : Γ Ñ R`0 with the properties

ρ̂pξq “
M
ź

m“1

ρ̂mpξmq @ξ P Γ and
›

›

›

›

ρ

ρ̂

›

›

›

›

L8pΓq

ă 8. (4.6)

Since the density separates, it can be viewed as the joint pdf of M
independent random variables.
We choose as interpolation nodes the tensor product of univariate nodal sets
consisting of the zeros of the orthogonal polynomials associated with the
weight function ρ̂mpξmq in each of the M coordinates ξ1, . . . , ξM .
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Stochastic Collocation
Weighted space

Our analysis requires assumptions on f and the densities ρ̂ and ρ:
f is a continuous function of ξ which, in case of unbounded parameter
domain Γ, grows at most exponentially at infinity.
ρ and ρ̂ behave at infinity like a Gaussian density.

To make these assumptions explicit we introduce a weight function

σpξq :“
M
ź

m“1

σmpξmq ď 1, σmpξmq “

#

1 if Γm bounded,
e´αm|ξm| otherwise,

(4.7)

as well as the function space

CσpΓ;W q :“

"

v : Γ ÑW, v continuous in ξ, max
ξPΓ

}σpξqvpξq}W ă 8

*

where W is a Banach space of functions defined on D.
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Stochastic Collocation
Weighted space

Assumption 4.7 (Growth at infinity)
In what follows we assume that
(a) f P CσpΓ;L2pDqq and
(b) the joint probability density ρ satisfies

ρpξq ď Cρ e
´

řM
m“1pδmξmq

2

@ξ P Γ (4.8)

for some Cρ ą 0 and δm ą 0 if Γm is unbounded and δm “ 0 otherwise.
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Stochastic Collocation
Weighted space

We can now choose any suitable auxiliary density ρ̂pξq “
śM
m“1 ρ̂mpξmq that

satisfies, for each m “ 1, . . . ,M ,

C
pmq
mine

´pδmξmq
2

ď ρ̂mpξmq ď Cpmqmaxe
´pδmξmq

2

, @ξm P Γm, (4.9)

for positive constants Cpmqmin , C
pmq
max independent of ξm.

This choice satisfies the requirement (4.6) with

›

›

›

›

ρ

ρ̂

›

›

›

›

L8pΓq

ď
Cρ
Cmin

, Cmin :“
M
ź

m“1

C
pmq
min .

Under the above assumptions we have the inclusions

CσpΓ;W q Ă L2
ρ̂pΓ;W q Ă L2

ρpΓ;W q

with continuous imbeddings. (L2
ρpΓ;W q :“ L2pΓ,BpΓq, ρpξqdξ;W q)
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Stochastic Collocation
Weighted space

Lemma 4.8

If f P CσpΓ;L2pDqq and a P ClocpΓ;L8pDqq, uniformly bounded away from zero,
then the solution to problem (4.3) satisfies u P CσpΓ;H1

0 pDqq.
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Stochastic Collocation
Analytic extension

We next show that, if a and f possess partial derivatives of all orders with respect to
ξ with mild growth, then the solution u is analytic as a function of each individual
parameter ξm. This requires a one-dimensional analysis, for which we introduce the
following notation:

Γ˚m :“
M
ą

j“1,
j‰m

Γj with generic elements denoted ξ˚m, m “ 1, . . . ,M.

Similarly, we set

ρ̂˚m :“
M
ź

j“1,
j‰m

ρ̂j and σ˚m :“
M
ź

j“1,
j‰m

σj .
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Stochastic Collocation
Analytic extension

Lemma 4.9

Under the assumption that, for every ξ “ pξm, ξ
˚
mq P Γ, there exists γm ă 8 such

that
›

›

›

›

›

Bkξmapξq

apξq

›

›

›

›

›

L8pDq

ď γkm k! and
}Bkξmfpξq}L2pDq

1` }fpξq}L2pDq
ď γkm k!, (4.10)

the solution upξm, ξ˚mq as a function of ξm. u : Γm Ñ Cσ˚mpΓ
˚
m;H1

0 pDqq admits
an analytic continuation upζ, ξ˚mq, ζ P C, to the region of the complex plane

ΣpΓm; τmq :“ tζ P C : distpζ,Γmq ď τmu (4.11)

with 0 ă τm ă 1{p2γmq. Moreover, for all ζ P ΣpΓm; τnq there holds

}σmpRe ζqupζq}C˚σm pΓ
˚
m;H1

0 pDqq
ď

CD
amin

eαmτm

1´ 2τmγm
p1` 2}f}CσpΓ;H1

0 pDqq
q. (4.12)
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Stochastic Collocation
Analytic extension, examples

If the diffusion coefficient is expanded in a finite linear KL series

apx , ωq “ apx q `
M
ÿ

m“1

a

λm ampx q ξmpωq,

assuming apx , ωq ě amin P-a.s. and a.e. in D, then we have the bounds

›

›

›

›

›

Bkξma

a

›

›

›

›

›

L8pΓˆDq

ď

$

&

%

?
λm}am}L8pDq

amin
, k “ 1,

0, k ą 1.

and we may choose

γm “

?
λm}am}L8pDq

amin

in (4.10).
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Stochastic Collocation
Analytic extension, examples

If the diffusion coefficient is expanded in a finite exponential KL series

apx , ωq “ amin ` exp

˜

apx q `
M
ÿ

m“1

a

λm ampx q ξmpωq

¸

we have
›

›

›

›

›

Bkξma

a

›

›

›

›

›

L8pΓˆDq

ď

´

a

λm}am}L8pDq

¯k

and we can set
γm “

a

λm}am}L8pDq

in (4.10).
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Stochastic Collocation
Analytic extension, examples

If the source term f has the form

fpx , ωq “ fpx q `
M
ÿ

m“1

fmpx q ξmpωq

with Gaussian RV ξm (not necessarily independent) and the functions fm are square
integrable, then f belongs to CσpΓ;L2pDqq with weight σ as defined in (4.7) for
any choice of exponential coefficients αm ą 0.

Moreover
}Bkξmfpξq}L2pDq

1` }fpξq}L2pDq
ď

#

}fm}L2pDq, k “ 1,

0, k ą 1,

and we can take γ “ }fm}L2pDq in (4.10).

Thus such a source term satisfies the assumptions of Lemma 4.9.

Note also that, in case a is deterministic, the solution u is linear in the ξm, and
hence clearly analytic.
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Stochastic Collocation
Convergence

We collect some classical results on interpolation theory and consider univariate
functions f defined on a bounded or unbounded interval Γ Ă R with values in a
Hilbert space V .

As before, assume ρ is a positive weight function on Γ which satisfies

ρpξq ď CM e´pδξq
2

for some CM ą 0

and δ ą 0 for unbounded Γ and δ “ 0 otherwise.
We let tϑju

p`1
j“1 denote the zeros of the orthogonal polynomial of degree

p` 1 associated with the weight function ρ.
Let σ be an additional positive weight function such that

σpξq ě Cm e
´pδξq2{4 for some Cm ą 0.

Observe that the condition on σ is satisfied both by a Gaussian weight
σpξq “ e´pµξq

2

with µ ď δ{2 and by an exponential weight σpξq “ e´α|ξ| for
any α ě 0.
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Stochastic Collocation
Convergence

Lemma 4.10
Let Γ Ă R be an interval (bounded or unbounded) and let ρ : Γ Ñ R` denote a
weight function such that all integer moments are finite, i.e.,
ş

Γ
ξn ρpξqdξ ă 8, n P N0. Then for each p P N there exist polynomials tqju

p`1
j“1

of degree p such that for all 1 ď j, k ď p` 1 there holds

pqj , qkqρ :“

ż

Γ

qmpξqqnpξq ρpξqdξ “ δj,k,

and pqj , qkqρ̃ “ ϑjδj,k,n,

(4.13)

where ρ̃pξq :“ ξρpξq. Moreover, the qj are, up to a constant factor, the Lagrange
basis polynomials t`ju

p`1
j“1 constructed with the p` 1 (distinct) zeros of the

orthogonal polynomial of degree p` 1 associated with the weight function ρ.

The ϑj are the nodes of the associated pp` 1q-point Gauss quadrature rule with
weights given by

ωj “

ż

Γ

`jpξqρpξqdξ “

ż

Γ

`jpξq
2ρpξqdξ, j “ 1, . . . , p` 1.
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Stochastic Collocation
Convergence

By Ip : CpΓq ÑPp we denote the Lagrange interpolation operator

pIpfqpξq “
p`1
ÿ

j“1

fpϑjq`jpξq, ξ P Γ.

Lemma 4.11
The operator Ip : CσpΓ, V q Ñ L2

ρpΓ;V q is continuous.

Lemma 4.12
For every function v P L2

ρpΓ;V q the interpolation error satisfies

}v ´ Ipv}L2
ρpΓ;V q ď C inf

wPPpbV
}v ´ w}CσpΓ;V q

with a constant C independent of p.
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Stochastic Collocation
Convergence

Lemma 4.13
Given a function v P CpΓ;V q which admits an analytic extension to the region

ΣpΓ; τq :“ tz P C : distpz,Γq ď τu

of the complex plane for some τ ą 0, then there holds

min
wPPpbV

}v ´ w}CpΓ;V q ď
2

ρ´ 1
e´p log ρ max

zPΣpΓ;τq
}vpzq}V ,

where

ρ :“
2τ

|Γ|
`

d

1`
4τ2

|Γ|2
ě 1.

A proof can be found in [Babuška et al., 2007] Lemma 4.4 and general results on best
approximation of analytic functions by polynomials in [DeVore & Lorentz, 1993] Chapter
7, Section 8.
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Stochastic Collocation
Convergence

In case of unbounded Γ we recall a theorem of [Hille, 1940] on the convergence of
Hermite series and the decay of the associated expansion coefficients.

Let Hn P Pn denote the (univariate) Hermite polynomial of degree n

Hnpξq “
p´1qn

?
π1{22nn!

eξ
2 dn

dξn
e´ξ

2

, n P N0,

and by hnpξq “ e´ξ
2
{2Hnpξq the associated Hermite function.

The Hermite polynomials are orthogonal on R with respect to the weight
function e´ξ

2

and form a complete orthonormal system of L2pRq with
respect to the associated inner product.
The Hermite polynomials and functions as defined above are normalized in
such a way that

ż

R
hkpξqh`pξqdξ “

ż

R
HkpξqH`pξqe

´ξ2 dξ “ δk,`, k, ` P N0.
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Stochastic Collocation
Convergence

Lemma 4.14 (Hille, 1940)
Let the function f be analytic in the strip t| Im z| ď τu. A necessary and sufficient
condition for the Fourier-Hermite series

8
ÿ

k“0

fk hkpzq, fk :“

ż

R
fpξqhkpξqdξ, (4.14)

to converge to fpzq in ΣpR; τq is that for every β P r0, τq there exist a finite
positive Cpβq such that

|fpx` iyq| ď Cpβqe´|x|
?
β2´y2 , x P R, |y| ď β. (4.15)

Moreover, the Fourier coefficients satisfy

|fk| ď Ce´τ
?

2k`1. (4.16)
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Stochastic Collocation
Convergence

Lemma 4.15
Assume that v P CσpR;V q admits an analytic extension to the strip

ΣpR; τq “ tz P C : distpz,Rq ď τu for some τ ą 0

and that
σpxq}vpzq}V ď Cvpτq @z “ x` iy P ΣpR; τq.

Then for any δ ą 0 there exists a constant C independent of p and a function
Θppq “ Oppq such that

min
wPPpbV

max
ξPR

ˇ

ˇ

ˇ
}vpξq ´ wpξq}V e

´pδξq2{4
ˇ

ˇ

ˇ
ď C Θppq e´τδ

?
p.
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Stochastic Collocation
Convergence

Theorem 4.16
Under the assumptions of Lemmas 4.8 and 4.9 there exist positive constants trmuMm“1 and C
independent of h and p such that

}u´ uh,p}L2
ρpΓ,V q

ď
1

?
amin

inf
vPL2

ρpΓ,V
hq
}u´ v}Va ` C

M
ÿ

m“1

βmppmq expp´rmp
θm
m q (4.17)

where, if Γm is bounded,

θm “ βm “ 1, rm “ log

«

2τm
|Γm|

˜

1`

d

1`
|Γm|2

4τ2
m

¸ff

and, if Γm is unbounded,

θm “ 1{2, βm “ Op
?
pmq, rm “ τmδm.

τm is smaller than the distance between Γm and the nearest singularity of u as defined in
Lemma 4.9 and δm is as defined in (4.8).
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Probability Theory
Probability measure

We denote an abstract probability space by pΩ,A,Pq, in which

Ω is an abstract set of elementary events,
A is a σ-algebra of subsets of Ω containing the measurable events and
P is a probability measure on A.

Definition A.1
A measure P on a measurable space pΩ,Aq is called a probability measure if
PpΩq “ 1.

Definition A.2
An event A P A is said to occur almost surely with respect to the measure P
(P-a.s.) if PpAq “ 1.
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Probability Theory
Borel-Cantelli lemma

Proposition A.3 (Boole’s inequality)
For events tAnunPN there holds

P pY8n“1Anq ď
8
ÿ

n“1

PpAnq.

Definition A.4
The set of all ω P Ω such that ω P An for infinitely many values of n is defined as

tAn, i.o. u :“ lim sup
nPN

An :“ X8k“1 Y
8
n“k An

Theorem A.5 (Borel-Cantelli Lemma)
If
ř8

n“1 PpAnq ă 8, then PtAn, i.o.u “ 0. For independent events tAnunPN such
that

ř8

n“1 PpAnq “ 8 there holds PtAn, i.o.u “ 1.
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Probability Theory
Random variables

Definition A.6
Let pΩ,A,Pq be a probability space and pE,Eq a measurable space. A measurable
function X : Ω Ñ E is called an (E-valued) random variable. Individual values
Xpωq for ω P Ω are called realisations of the random variable.

Remark: If E is a topological space then the σ-algebra generated by the open
subsets of E is called the Borel σ-algebra BpEq.

Definition A.7
Let X be an E-valued random variable where pE,Eq is a measurable space and
pΩ,A,Pq is the underlying probability space. The probability distribution PX of
X (also called the law of X) is the probability measure on pE,Eq defined by
PXpAq :“ PpX´1pAqq for pre-images X´1pAq :“ tω P Ω : Xpωq P Aqu of sets
A P E.

Remark: This construction is sometimes called the push-forward measure defined
by pΩ,A,Pq, pE,Eq and X.
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Probability Theory
Doob-Dynkin Lemma

Theorem A.8 (Doob-Dynkin lemma)
Let f : Ω Ñ E and g : Ω Ñ F be two measurable functions from a measurable
space pΩ,Aq to two measurable spaces pE,Eq and pF,Fq of which the first is a
separable and complete metric space. Then f is g-measurable if and only if there
exists some measurable mapping h : F Ñ E with f “ h ˝ g.

See [Kallenberg, 1997], Lemma 1.13 for a proof.
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Probability Theory
Expectation, moments

Definition A.9
The expectation of a Banach space-valued random variable X is defined as the
integral

E rXs :“

ż

Ω

XpωqdPpωq.

Definition A.10
The k-th moment (k P N) of a real-valued random variable X is E

“

Xk
‰

.
The first moment µ :“ E rXs is also called the mean or mean value.
The central moments E

“

pX ´ µqk
‰

measure the deviation of X from its mean.
The second central moment

VarX :“ E
“

pX ´ µq2
‰

“ E
“

X2
‰

´ µ2

of a random variable X is called its variance.

Remark: The quantity σ :“
?
VarX is called the standard deviation of X.
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Probability Theory
Computation of moments

Moments of a random variable are sometimes more easily computed by integrating
over the image variable.

Consider a real-valued random variable X from pΩ,Aq to pΓ,BpΓqq where Γ Ă R.
For B P BpΓq, set A :“ X´1pBq. Then by the definition of the probability
distribution PX

ż

Ω

1ApωqdPpωq “ PpAq “ PXpBq “

ż

Γ

1BpxqdPXpxq.

For measurable functions f : Γ Ñ R we have
ż

Ω

fpXpωqqdPpωq “

ż

Γ

fpxqdPXpxq

and, in particular,

E rXs “

ż

Ω

XpωqdPpωq “

ż

Γ

x dPXpxq.
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Probability Theory
Probability density functions

Definition A.11
Let P be a probability measure on pΓ,BpΓqq for some Γ Ă R. If there exists a
function p : Γ Ñ r0,8q such that PpBq “

ş

B
ppxqdx for any B P BpΓq we say

that P has a density p with respect to Lebesgue measure and we call p its
probability density function (pdf). If X is a Γ-valued random variable on
pΩ,A,Pq, the pdf pX of X (if it exists) is the pdf of the probability distribution
PX .

For real-valued random variables X from pΩ,A,Pq to pΓ,BpΓqq we then have3

E rXs “

ż

Ω

XpωqdPpωq “

ż

Γ

x dPXpxq “

ż

Γ

xppxqdx. (A.1)

Event probabilities are then easily calculated as

PpX P pa, bqq “ P ptω P Ω : a ă Xpωq ă buq “ PXppa, bqq “

ż b

a

ppxqdx.

3(where we have omitted the subscript X)
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Probability Theory
Uniform distribution

A random variable X is uniformly distributed on D “ ra, bs Ă R, pa ă bq, denoted

X „ Upa, bq,

if its pdf is

ppxq “
1

b´ a
, x P ra, bs.

Using (A.1), we easily obtain

E rXs “

ż b

a

x

b´ a
dx “

a` b

2
, E

“

X2
‰

“

ż b

a

x2

b´ a
dx “

b3 ´ a3

3pb´ aq
,

so that VarX “ E
“

X2
‰

´ E rXs2 “ pb´aq2

12 .
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Probability Theory
Gaussian distribution

A random variable X is said to follow the Gaussian or normal distribution on Γ “ R
if its pdf is given by

ppxq “
1

?
2πσ2

exp

ˆ

´px´ µq2

2σ2

˙

, x P R,

with two real parameters µ P R and σ ą 0, denoted X „ Npµ, σ2q.
As is easily verified,

E rXs “ µ, VarX “ σ2.

The probability that X is within α of its mean is given by

Pp|X ´ µ| ď αq “ erf

ˆ

α
?

2σ2

˙

,

with the error function erf defined by

erfpxq “
2
?
π

ż x

0

e´t
2

dt.
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Probability Theory
Gaussian distribution

The cumulative distribution function (cdf) of the standard normal distribution
Np0, 1q is denoted by

Φpxq “
1
?

2π

ż x

´8

e´
t2

2 dt “
1

2
`

1

2
erf

ˆ

x
?

2

˙

.

Any (finite) linear combination of (jointly) random variables is normally distributed.
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Probability Theory
Change of variables formula

Lemma A.12 (Change of variables)

Suppose Y : Ω Ñ R is a real-valued random variable and f : pa, bq Ñ R is
continuously differentiable with inverse function f´1. If pY is the pdf of Y , the
pdf of the random variable X : Ω Ñ pa, bq defined via X “ f´1pY q is

pXpxq “ pY pfpxqq |f
1pxq| for a ă x ă b.
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Probability Theory
Lognormal distribution

If Y „ Npµ, σ2q, then the random variable

X :“ exppY q

is said to follow a lognormal distribution. With fpxq “ log x, Lemma A.12 yields
the pdf of X as

pXpxq “
1

?
2πσ2x2

exp

ˆ

´
rlogpxq ´ µs2

2σ2

˙

.

Moreover, there holds

E rXs “ exp

ˆ

µ`
σ2

2

˙

, VarX “ peσ
2

´ 1qe2µ`σ2

.
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Probability Theory
Covariance

Definition A.13
The covariance between two real-valued random variables is defined as

CovpX,Y q “ E rpX ´ µXqpY ´ µY qs ,

where µX :“ E rXs and µY :“ E rY s. In particular, CovpX,Xq “ VarX.

Note: An equivalent expression is CovpX,Y q “ E rXY s ´ E rXsE rY s.

Calculation of the covariance requires evaluating the integral

E rXY s “

ż

Ω

XpωqY pωqdPpωq “

ż

XpΩqˆY pΩq

xy dPX,Y px, yq,

in which PX,Y is the joint probability distribution of X and Y .
Sometimes it is useful to scale the covariance to lie in r´1, 1s. The resulting quantity
is known as the correlation coefficient

ρpX,Y q :“
CovpX,Y q

σXσY
.
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Probability Theory
Joint probability distribution

Definition A.14
The joint probability distribution of two random variables X and Y is the
distribution of the bivariate random variable X “ pX,Y q, i.e., for all
B P BpXpΩq ˆ Y pΩqq

PX,Y pBq “ Pptω P Ω : X pωq P Buq.

If it exists, the density pX,Y of PX,Y is known as the joint pdf and

PX,Y “

ż

B

pX,Y px, yqdxdy.
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Probability Theory
Uncorrelated random variables

Definition A.15
If CovpX,Y q “ 0 the random variables X and Y are said to be uncorrelated. A
family tXαuα is said to be pairwise uncorrelated if Xα and Xβ are uncorrelated
for all α ‰ β.

Note: Uncorrelated random variables may still be strongly related. As an example,

X „ Np0, 1q, and Y :“ cosX

satisfy µX “ 0 and hence

CovpX,Y q “ E rX cosXs “

ż

R
x cospxqdPXpxq

“
1
?

2π

ż

R
x cospxq exp

ˆ

´x2

2

˙

dx “ 0.

A stronger notion is that of independent random variables.
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Probability Theory
Sub σ-algebras, σ-algebras generated by random variables

Definition A.16
A σ-algebra B is a sub σ-algebra of A if B Ă A, i.e., if A P B implies A P A.

Definition A.17
Let X be an E-valued random variable on pΩ,A,Pq for a measurable space
pE,Eq. The σ-algebra generated by X, denoted σpXq, is defined as

σpXq :“ tX´1pAq : A P Eu Ă A.

Remark: σpXq is the smallest σ-algebra such that X is measurable. It may be
considerably smaller than A.
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Probability Theory
Independence of events, σ-algebras and random variables

Definition A.18
Two events A,B P A are independent if PpAXBq “ PpAqPpBq.
Two σ-algebras A1 and A2 are independent if all pairs of events A1 and A2 with
A1 P A1 and A2 P A2 are independent.

Definition A.19
Two random variables X,Y on a probability space pΩ,A,Pq are said to be
independent if the σ-algebras σpXq and σpY q are independent.
A family tXαuα of random variables is said to be pairwise independent if Xα and
Xβ are independent for all α ‰ β.

Independence of random variables X and Y can be conveniently determined using
their joint distribution PX,Y : X and Y are independent if and only if PX,Y equals
the product measure PX ˆ PY . If X and Y are real-valued with densities pX and
pY , they are independent if and only if their joint pdf is

pX,Y px, yq “ pXpxqpY pyq.
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Probability Theory
Indepenence implies uncorrelatedness

Lemma A.20
If X and Y are independent real-valued random variables and
E r|X|s ,E r|Y |s ă 8, then X and Y are uncorrelated.

Note: The converse is generally false.

Theorem A.21 (Jensen’s inequality)
If X is a real-valued random variable with E r|X|s ă 8 and φ : RÑ R a convex
function, then

φpE rXsq ď E rφpXqs . (A.2)
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Probability Theory
Bochner spaces

Definition A.22
Let pΩ,A,Pq be a probability space and let W be a separable Banach space with
norm } ¨ }. We denote by LppΩ;W q, 1 ď p ă 8, the space of W -valued
A-measurable random variables X : Ω ÑW with E r}X}ps ă 8. The resulting
space is a Banach space with the norm

}X}LppΩ;W q :“

ˆ
ż

Ω

}Xpωq}p dPpωq

˙1{p

“ E r}X}ps1{p .

Similarly, L8pΩ;W q is the Banach space of W -valued random variables
X : Ω ÑW for which

}X}L8pΩ;W q “ ess sup
ωPΩ

}Xpωq} ă 8.
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Probability Theory
Bochner spaces, p “ 2

The case p “ 2 when W is a Hilbert space W “ H with inner product p¨, ¨q occurs
frequently. In this case L2pΩ;Hq is a Hilbert space with inner product

pX,Y qL2pΩ;Hq :“ E rpX,Y qs “

ż

Ω

pXpωq, Y pωqqdPpωq.

Random variables in L2pΩ;Hq are called mean-square integrable random variables.

For random variables X,Y P L2pΩ;Hq the Cauchy-Schwarz inequality takes on the
form

|pX,Y qL2pΩ;Hq| ď }X}L2pΩ;Hq}Y }L2pΩ;Hq

or
E rpX,Y qs ď E

“

}X}2
‰1{2

E
“

}Y }2
‰1{2

.
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Probability Theory
Bochner spaces, p “ 2, covariance

Definition A.23

Let H be a separable Hilbert space. A linear operator C : H Ñ H is the
covariance of two H-valued random variables X and Y if

pCφ,ψq “ Covppφ,Xq, pψ, Y qq @φ, ψ P H.

X and Y are said to be uncorrelated if C is the zero operator. If Y “ X then C
is called the covariance of X.

More generally, the covariance of two random variables X and Y with values in a
separable Banach space W may be defined as a bilinear map c : W 1 ˆW 1 Ñ R on
the dual space W 1 of W such that

cpφ, ψq “ Covpxφ,XyW 1ˆW , xψ, Y yW 1ˆW q @φ, ψ PW 1.

Here x¨, ¨yW 1ˆW denotes the duality bracket between W 1 and W . The bilinear map
c may be identified with a linear operator from C : W 1 ÑW 2 via the identity

xCφ,ψyW2ˆW 1 “ cpφ, ψq.
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Probability Theory
Convergence of random variables

Definition A.24
Let W be a Banach space with norm } ¨ } and tXnunPN be a sequence of
W -valued random variables. We say Xn converges to X PW

almost surely if Xnpωq Ñ Xpωq for almost all ω P Ω, i.e., if

P p}Xn ´X} Ñ 0 for nÑ8q “ 1.

in probability if P p}Xn ´X} ą εq Ñ 0 for nÑ8 for any ε ą 0.
in p-th mean or in LppΩ;W q if E r}Xn ´X}

ps Ñ 0 as nÑ8. When p “ 2 this
is known as convergence in mean square.

in distribution if E rφpXnqs Ñ E rφpXqs as nÑ8 for any bounded and
continuous function φ : W Ñ R.
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Probability Theory
Convergence of random variables

Theorem A.25

Let Xk Ñ X in p-th mean and, for r ą 0 and a constant K “ Kppq, assume that

}Xk ´X}LppΩ;W q :“ E r}Xk ´X}
ps

1{p
ď
Kppq

kr
. (A.3)

Then the following convergence properties apply:
(a) Xk Ñ X in probability and, for any ε ą 0,

P
`

}Xk ´X} ě k´r`ε
˘

ď
Kppqp

kpε
. (A.4)

(b) E rφpXkqs Ñ E rφpXqs for all Lipschitz continuous functions on W and, if L denotes a
Lipschitz constant of φ,

|E rφpXkqs ´ E rφpXqs| ď L
Kppq

kr
.

(c) If (A.3) holds for all p sufficiently large, then Xk Ñ X a.s. Furthermore, for each ε ą 0
there exists a nonnegative random variable K such that }Xkpωq ´Xpωq} ď Kpωqk´r`ε

for almost all ω.
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Probability Theory
Random vectors

Random variables X “ pX1, . . . , Xnq
T from pΩ,A,Pq to pΓ,BpΓq with Γ Ă Rn

are known as random vectors or multivariate random variables (bivariate for n “ 2).

Their expected value

µ “ E rX s “

ż

Ω

X pωqdPpωq “ rE rX1s , . . . ,E rXnss
T

is a vector in Rn. If X has a pdf p, then for B P BpΓq

PpX P Bq “ Pptω P Ω : X pωq P Buq “ PX pBq “

ż

B

ppx qdx .

The components tXju
n
j“1 of X are (pairwise) independent if and only if PX is the

product measure PX1
ˆ ¨ ¨ ¨ ˆ PXn . In terms of the pdf, this is equivalent to

ppx q “ pX1px1q ¨ pX2px2q ¨ ¨ ¨ pXnpxnq.
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Probability Theory
Multivariate uniform

A random vector X : Ω Ñ Γ with values in a set Γ Ă Rn with finite Lebesgue
measure |Γ| follows a multivariate uniform distribution on Γ, denoted by

X „ UpΓq

if it has the pdf

ppx q ”
1

|Γ|
, x P Γ.

Oliver Ernst (Numerische Mathematik) UQ Sommersemester 2014 221 / 315



Probability Theory
Covariance matrix

Definition A.26
The covariance of two real-valued random vectors X “ rX1, . . . , Xms

T and
Y “ rY1, . . . , Yns

T is given by the mˆ n matrix

CovpX ,Y q “ E
“

pX ´ E rX sqpY ´ E rY sqT
‰

.

X and Y are said to be uncorrelated if CovpX ,Y q “ O (the mˆ n zero
matrix). The matrix CovpX ,X q P Rnˆn is called the covariance matrix of X .

Proposition A.27
Let X be an Rn-valued random variable with mean vector µ and covariance
matric C . Then C ist symmetric positive semi-definite and its trace is given by
E
“

}X ´ µ}22
‰

.
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Probability Theory
Multivariate normal distribution

A random vector with mean vector µ and positive definite covariance matrix C is
said to follow an n-variate Gaussian distribution if it has the pdf

ppx q “
1

a

p2πqd detC
exp

ˆ

´px ´ µqTC´1px ´ µq

2

˙

. (A.5)

To cover the case that C is singular we introduce the characteristic function.

Definition A.28

The characteristic function of an Rn-valued random vector X is E
”

exppiλTX q
ı

,
for λ P Rn. If X has the pdf p, then its characteristic function is

E
”

exppiλTX q
ı

“ p2πqn{2p̂p´λq,

where p̂ is the Fourier transform of p. (The minus sign is a convention in
probability theory.)
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Probability Theory
Multivariate normal distribution

Proposition A.29
A random vector X has the density (A.5) for a given vector µ P Rn and
symmetric positive definite matrix C P Rnˆn if and only if its characteristic
function is

E
”

exppiλTX q
ı

“ exppiλTµ´ 1
2λ

TCλq. (A.6)

Definition A.30
An Rn-valued random vector X follows a multivariate normal (or Gaussian)
distribution, denoted

X „ Npµ,C q,

where µ P Rn and C P Rnˆn is symmetric positive semi-definite, if its
characteristic function is (A.6).
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Probability Theory
Multivariate normal distribution

If X „ Npµ,C q is a multivariate normal random vector, then for any a P Rn the
linear combination

Y “ aJX “

n
ÿ

k“1

akXk

follows the normal distribution Y „ NpaJµ,aJCaq.
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Probability Theory
i.i.d. random variables

Definition A.31
A sequence tXjujPN of random variables is said to be independent and identically
distributed (i.i.d.) if they all follow the same probability distribution and, in
addition, are pairwise independent.

The classical limit theorems of probability theory concern sums of iid random vari-
ables. For an iid sequence tXjujPN, we introduce the notation

Sn :“ X1 ` ¨ ¨ ¨ `Xn, n P N.
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Probability Theory
Weak Law of Large Numbers

Theorem A.32 (Chebyshev inequality)
A random variable X with finite mean µ and finite variance σ2 satisfies

c2Pp|X ´ µ| ě cq ď σ2.

Theorem A.33 (WLLN)
Let tXkukPN be a sequence of i.i.d. random variables on a given probability space
pΩ,A,Pq with mean µ and finite variance. Then

Sn
n
Ñ µ in probability, i.e.

for ever fixed ε ą 0 there holds

P p|Sn{n´ µ| ą εq Ñ 0 as nÑ8.
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Probability Theory
Strong Law of Large Numbers

Theorem A.34 (SLLN)
Let tXkukPN be a sequence of i.i.d. real-valued random variables on a given probability space pΩ,A,Pq.
Then Sn{n has a finite limit if and only if E r|X1|s ă 8, in which case

Sn
n
Ñ E rX1s a.s.

If E r|X1|s “ 8, then lim supnÑ8 |Sn|{nÑ8 a.s.

Lemma A.35 (Kronecker’s Lemma)
If the series

ř8

k“1 xk{k converges (not necessarily absolutely) for a sequence txkukPN of real numbers,
then

lim
nÑ8

1

n

n
ÿ

k“1

xk “ 0.

Lemma A.36
The sequence tXkukPN converges a.s. if and only if

lim
nÑ8

Ptsup
kPN

|Xn`k ´Xn| ą εu “ 0 @ε ą 0.
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Probability Theory
Strong Law of Large Numbers

Theorem A.37 (Kolmogorov Inequality)
Let X1, . . . , Xn be independent real-valued random variables with E rXjs “ 0 and
0 ă σ2

j “ VarXj ă 8 for all j. Then for each ε ą 0

P

"

max
1ďkďn

|Sk| ą ε

*

ď
1

ε2

n
ÿ

j“1

σ2
j . (A.7)

Conversely, if there exists c such that Pt|Xk| ă εu “ 1 for each k, then for each ε

P

"

max
1ďkďn

|Sk| ą ε

*

ě 1´
pc` εq2
řn
j“1 σ

2
j

. (A.8)

Theorem A.38
Let tXkukPN be independent real-valued random variables with E rXks “ 0 for all k. If

8
ÿ

k“1

E
“

X2
k

‰

“

8
ÿ

k“1

VarXk ă 8

then
ř8

k“1Xk converges a.s.
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Probability Theory
Strong Law of Large Numbers

Definition A.39
For a real-valued random variable X and c ą 0 we denote the truncation of X at c by

Xc :“ X1t|X|ďcu “

#

X if |X| ď c,

0 otherwise.

Theorem A.40 (Three-series theorem)
Let tXkukPN be independent. If, for some c ą 0,

8
ÿ

k“1

Pt|Xk| ą cu ă 8, (A.9a)

8
ÿ

k“1

|E rXc
ks | ă 8, (A.9b)

8
ÿ

k“1

VarXc
k ă 8, (A.9c)

then
ř8

k“1Xk converges a.s.
Conversely, if

ř8

k“1Xk converges a.s., then (A.9a)–(A.9c) hold for every c ą 0.
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Probability Theory
Central Limit Theorem

Let the sequence tXjujPN of real-valued random variables be independent, but not
necessarily identically distributed. In addition, let E rXjs “ 0 and E

“

X2
j

‰

ă 8 for
all j.

Besides Sn “
řn
j“1Xj , introduce the quantities

σ2
j :“ VarXj ,

Σ2
n :“

n
ÿ

j“1

σ2
j “ VarSn.

The central limit theorem (CLT) is the statement that

lim
nÑ8

Sn
Σn

“ lim
nÑ8

Sn ´ E rSns
?
VarSn

„ Np0, 1q in distribution.
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Probability Theory
Central Limit Theorem

Definition A.41 (Lyapunov condition)
The sequence tXkukPN satisfies the Lyapunov condition if E

“

|Xk|
3
‰

ă 8 for each
k and

lim
nÑ8

1

Σ2
n

n
ÿ

k“1

E
“

|Xk|
3
‰

“ 0.

Theorem A.42 (CLT)
If tXkukPN satisfies the Lyapunov condition, then Sn{Σn Ñ Np0, 1q in
distribution.
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Probability Theory
Central Limit Theorem

Definition A.43 (Lindeberg condition )
The sequence tXkukPN satisfies the Lindeberg condition if for every ε ą 0

lim
nÑ8

1

Σ2
n

n
ÿ

k“1

E
“

X2
k ¨ 1t|Xk|ąεΣnu

‰

“ 0.

Proposition A.44
The Lyapunov condition implies the Lindeberg condition.

Example A.45
(1) If Pt|Xk| ď cu “ 1 for some constant c and if Σ2

n Ñ8, then the Lindeberg
condition is satisfied.

(2) If tXkukPN are i.i.d. with variance σ2 P p0,8q, then the Lindeberg condition
is satisfied.
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Probability Theory
Central Limit Theorem

Theorem A.46 (Lindeberg-Feller CLT)
If tXkukPN satisfies the Lindeberg condition, then Sn{Σn Ñ Np0, 1q in
distribution.
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Probability Theory
Berry-Esseen Theorem

Theorem A.47 (Berry, 1941; Esseen 1942)

Let tXkukPN be i.i.d. random variables with (common)

µ :“ E rX1s , σ2 :“ VarX1 ą 0, ρ :“ E
“

|X1 ´ µ|
3
‰

ă 8.

If Fn denotes the distribution function of pSn ´ nµq{pσ
?
nq and Φ that of the

standard normal distribution Np0, 1q, then, with a universal constant C,

sup
xPR

|Φpxq ´ Fnpxq| ď C ¨
ρ

σ3
?
n
.

Note: the constant C is known to satisfy 0.4097 ď C ď 0.7056 [Shevtsova, 2007].
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Statistical Estimation

Estimation theory is concerned with determining an unknown quantity θ
associated with the probability distribution of a random variable X given n
i.i.d. samples tXku

n
k“1 of X.

Typical examples of such quantities θ are moments of X’s distribution such
as the mean and the variance. Another common situation is the estimation of
one or more parameters which determine the distribution of X.
An estimator for a scalar quantity θ is a function

φ : Rn Ñ R, θ̂ “ φpX1, . . . , Xnq

mapping n i.i.d. realizations of X to the estimate θ̂ of θ.
Note that, since each of the n random samples Xk are random variables, the
same is true of

θ̂ “ θ̂pωq “ φpX1pωq, . . . , Xnpωqq.

Once the samples have been drawn/realized, the estimate θ̂ is a real number.
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Statistical Estimation
Sample average, unbiased estimator

The sample average

µ̂n :“
X1 ` ¨ ¨ ¨ `Xn

n

is an estimate for the mean µ “ E rXs.
Since the Xk are i.i.d., we conclude from the linearity of expectation that

E rµ̂ns “
1

n

n
ÿ

k“1

E rXks “
1

n
¨ nµ “ µ.

If E r|X|s ă 8 the SLLN tells us that also µ̂n Ñ µ “ E rXs a.s. as nÑ8.

Since Var µ̂n “
σ2

n , where σ2 “ VarX, we note that the variance µ̂n
decreases like 1{n with growing sample size.

Definition A.48

An estimator for which E
”

θ̂
ı

“ θ is called unbiased.
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Statistical Estimation
Sample variance

The sample variance

σ̂2
n :“

1

n´ 1

n
ÿ

k“1

pXk ´ µ̂nq
2

is an unbiased estimator for σ2 “ VarX.

In addition, there holds σ̂2
n Ñ σ2 a.s. as nÑ8.
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Statistical Estimation
Confidence intervals

An estimator θ̂ is, in general, only close to the estimated quantity θ in a probabilistic
sense, i.e., it will fluctuate around the true value θ from realization to realization.

For a probability distribution depending on a real-valued parameter θ, we denote by

PpA | θq

the probability of event A if the true value of the parameter is θ.

Definition A.49
Given n i.i.d. random variables tXkpωqu

n
k“1 and a number γ P r0, 1s,

a confidence interval of level γ for a quantity θ is determined by two functions
τ´, τ

` : Rn Ñ R such that, for all possible values of θ,

P pτ´pX1, . . . , Xnq ď θ ď τ`pX1, . . . , Xnq | θq “ γ.
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Statistical Estimation
Confidence intervals example

As an example, take the random variables

Xk “ µ` εk, µ P R, εk „ Np0, 1q i.i.d., k “ 1, . . . , n.

Then µ “ E rXs and for the estimation error we obtain

µ̂n ´ µ “
1

n

n
ÿ

k“1

εk „ Np0, 1
n q.

and therefore
?
npµ̂n ´ µq „ Np0, 1q.

Given γ P r0, 1s we choose a ě 0 such that Φpaq ´ Φp´aq “ γ and obtain

γ “ Pp´a ď
?
npµ̂n ´ µq ď a |µq “ P

ˆ

µ̂n ´
a
?
n
ď µ ď µ̂n `

a
?
n
|µ

˙

,

so that τ˘ “ µ̂n ˘
a?
n
yield a confidence interval of level γ for µ.
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Elliptic Boundary Value Problem

We consider the elliptic boundary value problem of finding the solution of the partial
differential equation with Dirichlet boundary condition

´∇¨pa∇uq “ f on D Ă R2, (B.1a)
u “ g on BD, (B.1b)

given a convex bounded domain D with sufficiently smooth boundary BD, a coef-
ficient function a : D Ñ R`, a source term f : D Ñ R and boundary data in the
form of a function g : BD Ñ R.
The differential operator in (B.1a) is short for

∇¨pa∇uq “
2
ÿ

j“1

B

Bxj

ˆ

apx q
Bupx q

Bxj

˙

Equation (B.1a) is a model for diffusion phenomena occurring in , e.g., heat conduc-
tion, electrostatics, potential flow and elasticity. Generalizations of (B.1) involve
the addition of lower-order terms, other boundary conditions, a matrix-valued co-
efficient function and dependence of a on u.
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Elliptic Boundary Value Problem
Strong and weak solution

If f P CpDq and a P C1pDq, then a function u P C2pDq X C1pDq which satisfies
(B.1) is called a classical solution or a strong solution of the boundary value problem.

There are (theoretical and practical) reasons for generalizing the classical solution
concept. The key to this generalization lies in reformulating (B.1) as a variational
problem. Multiplying both sides of (B.1a) by an arbitrary function φ P C80 pDq, in
this context known as a test function, and integrating by parts, we observe that
any (classical) solution of (B.1) also satisfies the equation

apu, φq “ `pφq @φ P C80 pDq, (B.2)

with the symmetric bilinear form ap¨, ¨q and linear functional `p¨q given by

apu, φq “

ż

D

apx q∇upxq ¨∇φpx qdx , `pφq “

ż

D

fpx qφpx qdx . (B.3)

For (B.2) to make sense, it is sufficient that the integrals and derivatives are well-
defined.
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Elliptic Boundary Value Problem
Strong and weak solution

This is the case if u and φ are taken to lie in the Sobolev space

H1pDq :“ tv P L2pDq : ∇v P L2pDq2u,

which is a Hilbert space with respect to the inner product

pu, vqH1pDq “

ż

D

p∇u ¨∇v ` uvq dx “ p∇u,∇vq ` pu, vq,

where we use p¨, ¨q to denote the inner product in L2pDq. The associated norm on
H1pDq is

}u}2H1pDq “

ż

D

`

|∇u|2 ` u2
˘

dx .

The gradients are in terms of weak derivatives in the sense
ˆ

Bu

Bxj
, φ

˙

“ ´

ˆ

u,
Bφ

Bxj

˙

@φ P C80 pDq.
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Elliptic Boundary Value Problem
Strong and weak solution

Stating the boundary condition (B.1b) requires a well-defined notion of evaluating
a function from H1pDq on the lower-dimensional manifold BD.

Functions in H1pDq satisfying the BC with homogeneous boundary data
g ” 0 are easily defined as lying in the subspace

H1
0 pDq :“ C80 pDq

}¨}H1pDq
Ă H1pDq.

For inhomogeneous boundary data we define the space

W :“ H1
g pDq :“ tv P H1pDq : u|BD “ gu.

The evaluation on the boundary is understood in the following sense: for a
sufficiently smooth boundary there exists a bounded trace operator
γ : H1pDq Ñ L2pBDq such that for all u P C1pDq there holds γu “ u|BD.
Since C1pDq is dense in H1pDq, we have γu “ limnÑ8 u|BD for any
approximating sequence tunu Ă C1pDq converging to u in H1pDq.
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Elliptic Boundary Value Problem
Strong and weak solution

Definition B.1
The trace space of H1pDq for a sufficiently smooth domain D is defined as

H1{2pBDq :“ γpH1pDqq “ tγu : u P H1pDqu.

H1{2pBDq is a Hilbert space with norm

}g}H1{2pBDq :“ inft}u}H1pDq : γu “ g, u P H1pDqu.

Sine in general H1{2pBDq Ĺ L2pBDq, boundary data g in (B.1b) must be chosen
from H1{2pBDq.

Lemma B.2
There exists Kγ ą 0 such that, for all g P H1{2pBDq, we can find ug P H1pDq
with γug “ g and

}ug}H1pDq ď Kγ}g}H1{2pBDq
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Elliptic Boundary Value Problem
Strong and weak solution

We denote the spaces of trial and test functions by

W :“ H1
g pDq, and V :“ H1

0 pDq.

Assumption B.3

The coefficient function a “ apx q in (B.1a) satisfies

0 ă amin ď apx q ď amax ă 8 for almost all x P D

for positive constants amin and amax. In particular, a P L8pDq and a is uniformly
bounded away from zero.

By Assumption B.3, the bilinear form ap¨, ¨q is bounded on H1pDq, i.e.,

|apu, vq| ď C}u}H1pDq}v}H1pDq, @u, v P H1pDq

with a constant C ď }a}L8pDq.
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Elliptic Boundary Value Problem
Strong and weak solution

Definition B.4
A weak solution of (B.1) is a function u PW such that

apu, vq “ `pvq @v P V, (B.4)

with ap¨, ¨q and `p¨q as defined in (B.3).
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Elliptic Boundary Value Problem
Strong and weak solution

Definition B.5
A bilinear form a : H ˆH Ñ R on a Hilbert space H is said to be coercive if
there exists a constant α ą 0 such that

apu, uq ě α}u}2H @u P H.

Lemma B.6 (Lax & Milgram)
Let H be a real Hilbert space with norm } ¨ } and let ` be a bounded linear
functional on H. Let a : H ˆH Ñ R be a bilinear form that is bounded and
coercive. Then there exists a unique u` P H such that apu`, vq “ `pvq for all
v P H.
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Elliptic Boundary Value Problem
Strong and weak solution

For functions in H1pDq we introduce the H1 semi-norm

|u|H1pDq :“

ˆ
ż

D

|∇u|2 dx

˙1{2

.

as well as the energy norm associated with the coefficient function a as

|u|a :“ apu, uq1{2 “

ˆ
ż

D

a∇u ¨∇udx

˙1{2

.

Theorem B.7 (Poincaré-Friedrichs inequality)

For a bounded domain D there exists a constant C “ CD ą 0 such that

}u}L2pDq ď CD|u|H1pDq @u P H1
0 pDq.
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Elliptic Boundary Value Problem
Strong and weak solution

Lemma B.8
Under Assumption B.3 the bilinear form a : H1pDq ˆH1

0 pDq Ñ R is bounded and
the energy norm is equivalent to the H1 semi-norm on H1pDq.

Theorem B.9

Let Assumption B.3 hold, f P L2pDq and g P H1{2pBDq. Then (B.1) has a unique
weak solution u PW “ H1

g pDq.

Theorem B.10
Under the conditions of Theorem B.9 the weak solution u PW satisfies

|u|H1pDq ď K
`

}f}L2pDq ` }g}H1{2pBD

˘

where K “ maxtCD{amin,Kγp1` amax{aminqu.
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Elliptic Boundary Value Problem
Perturbed data

Replacing a und f in (B.1) by approximations ã and f̃ , leads to the perturbed
problem of finding ũ PW such that

ãpũ, vq “ ˜̀pvq @v P V (B.5)

with ã : W ˆ V Ñ R sowie ˜̀ : V Ñ R defined by

ãpu, vq “

ż

D

ãpx q∇upx q ¨∇vpx qdx , ˜̀pφq “

ż

D

f̃px qvpx qdx . (B.6)

Theorem B.11

Let Assumption B.3 hold for a as well as for ã with constants ãmin, ãmax. If,
furthermore, f̃ P L2pDq and g P H1{2pBDq, then problem (B.5) has a unique
weak solution ũ PW “ H1

g pDq.
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Elliptic Boundary Value Problem
Perturbed data

Theorem B.12

Under the conditions of Theorems B.9 and B.11, if u, ũ PW denote the solutions
of (B.4) and (B.5), respectively, then

|u´ ũ|H1pDq ď CDã
´1
min}f ´ f̃}L2pDq ` ã

´1
min}a´ ã}L8pDq|u|H1pDq
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Finite Element Approximation
Galerkin discretization

Given: linear variational problem of finding u P V , V a Hilbert space with norm
} ¨ }, such that

apu, vq “ `pvq @v P V (B.7)

with a bilinear form ap¨, ¨q and linear form `p¨q on V which satisfy the assumptions
of the Lax-Milgram lemma.

Galerkin method for finding approximate solutions of (B.7) proceeds by restricting
the problem to a finite-dimensional subspace Vn Ă V : denote by un P Vn the
solution of

apun, vq “ `pvq @v P Vn. (B.8)

Note: The Galerkin approximation un of u with respect to the space Vn is uniquely
determined since the conditions of the Lax-Milgram lemma are satisfied for Problem
(B.8) by inclusion.
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Finite Element Approximation
Céa’s lemma

The simple structure of a linear variational problem allows its reduction to a problem
of best approximation.

Lemma B.13 (Céa)
If the assumptions of the Lax-Milgram lemma apply to Problem (B.7) with
solution u P V , then the Galerkin approximation un, i.e., the solution of (B.8),
satisfies

}u´ un} ď
C

α
inf
vPVn

}u´ v}. (B.9)
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Finite Element Approximation
Céa’s lemma, symmetric case

If the bilinear form ap¨, ¨q is, in addition, symmetric (Hermitian) then, because
of coercivity, it defines an inner product on V .
Galerkin orthogonality then implies un is the a-orthogonal projection of u
onto Vn and therefore the best approximation to u from Vn with respect to
the associated (energy) norm.
In the energy norm (B.9) is therefore satisfied with C “ α “ 1.
Coercivity and boundedness also imply that the energy norm is equivalent
with } ¨ }, i.e.,

?
α}v} ď |v|a ď

?
C}v} @v P V,

which leads to the improved estimate over (B.9)

}u´ un} ď

c

C

α
inf
vPVn

}u´ v}.
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Finite Element Approximation
Application to elliptic BVP

We have seen that, for the elliptic BVP (B.1), we have the equivalences

} ¨ }H1pDq — | ¨ |H1pDq — | ¨ |a.

Corollary B.14

Under Assumption B.3, the Galerkin approximation un fo the solution of the
elliptic boundary value problem (B.1), with respect to any subspace Vn of
V “ H1

0 pDq, satisfies

|u´ un|a “ inf
vPVn

|u´ v|a,

|u´ un|H1pDq ď

c

amin

amax
|u´ v|H1pDq @v P Vn.

Oliver Ernst (Numerische Mathematik) UQ Sommersemester 2014 261 / 315



Finite Element Approximation
Galerkin system

Given a basis tv1, . . . , vnu of Vn and the solution un “
řn
j“1 ξjvj , then the Galerkin

variational equation (B.8) is equivalent with

n
ÿ

j“1

ξj apvj , viq “ `pviq, i “ 1, . . . , n,

which, when rewritten as a linear system of equation, becomes the Galerkin system

Ax “ b (B.10)

with Galerkin matrix rAsi,j “ apvj , viq, unknown vector rx si “ ξi and right-hand
side vector rbsi “ `pviq.

If ap¨, ¨q is symmetric, then so is A.
If ap¨, ¨q is coercive, then A is (uniformly) positive definite.
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Finite Element Approximation
The finite element method

Different Galerkin methods result from different choices of subspaces.
Wavelets.
Trigonometric functions, global polynomials (spectral methods).
Radial basis functions.
The finite element method employs finite dimensional subspaces of the
variational spaces (trial and test spaces) consisting of piecewise polynomials
with respect to a partition of D.
We shall assume in the following that D is a polygon (polyhedron), but the
finite element method can also be applied to domains with curved boundaries.
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Finite Element Approximation
Triangulations

Assumptions on the partition of the domain D, denoted by Th with elements K:

(Z1) D “ YKPThK.

(Z2) Each K P Th is a closed set with nonempty interor K̊.

(Z3) For two distinct K1,K2 P Th there holds K̊1 X K̊2 “ H.

(Z4) Each K P Th has a Lipschitz-continuous boundary BK.

The partition is usually assigned a discretization parameter h ą 0 given by

h :“ max
KPT h

diamK,

which is a measure of how fine the partition is.
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Finite Element Approximation
Triangulations

Triangular mesh on a square domain. Triangular mesh on a polygonal
approximation of a circle.
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Finite Element Approximation
Triangulations

Quadrilateral mesh on a rectangular (exterior)
domain.

Mesh consisting of triangles and
quadrilaterals.
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Finite Element Approximation
Triangulations

Tetrahedral mesh of complex 3D geometry (engine block).

Oliver Ernst (Numerische Mathematik) UQ Sommersemester 2014 267 / 315



Finite Element Approximation
H1-conforming finite element spaces

A conforming Galerkin approximation is one which employs finite-dimensional spaces
Vn such that Vn Ă V .

Let V h denote a space of piecewise continuous functions v : D Ñ R with respect
to an admissible triangulation Th of D, i.e., such that each restriction v|K to any
K P Th is continuous on K.

Theorem B.15
With the notation defined above, there holds V h Ă H1pDq if, and only if,

V h Ă CpDq and tv|K : v P V hu Ă H1pKq.

In this case tv P V h : v “ 0 on BDu Ă H1
0 pDq.
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Finite Element Approximation
Finite elements

According to [Ciarlet, 1978], a finite element is a triple pK,PK ,ΨKq such that
(1) K is a nonempty set
(2) PK is a finite-dimensional space of functions defined on K and
(3) ΨK is a set of linearly independent linear functionals ψ on PK with the

property that, for any p P PK ,

ψppq “ 0 @ψ P ΨK ñ p “ 0.

We shall consider a single finite element, the so-called linear triangle, where
(1) K P R2 is a triangle with (non-collinear) vertices x1, x2 and x3,
(2) PK is the space of all affine functions on K and
(3) ΨK consists of the three functionals

ΨK “ tψj : PK Ñ R, ψjppq “ ppxjq, j “ 1, 2, 3u.
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Finite Element Approximation
Trianglular finite elements

To construct a (global) finite element space V h based on linear triangle
elements consider a triangulation T h of D consisting of (closed) triangles K
which satisfy properties (Z1)–(Z4).
The functions in V h will also lie in H1pDq if they are continuous on D,
which, for piecewise linear (polynomial) functions, is equivalent with their
being continuous across triangle boundaries.
We thus obtain the space

V h :“ tv P CpDq : v|K P P1 @K P T hu,

where Pk denotes the space of (multivariate) polynomials of (complete)
degree k.
A subspace V h0 of V h is given by

V h0 :“ tv P V h : v|BD “ 0u Ă H1
0 pDq.
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Finite Element Approximation
Degrees of freedom, nodal basis

A continuous piecewise linear function in V h is completely determined by its
values at all triangle vertices.
Such a (finite) set of parameters which uniquely determine a finite element
function is called a set of degrees of freedom (DOF).
In V h0 these are the values at all nodes which do not lie on BD; denote their
number by n.
A particularly convenient basis tφ1, . . . , φnu of V h0 is the so-called nodal basis
characterized by

φjpxiq “ δi,j i, j “ 1, . . . , n.

If N h “ tx1, . . . , xnu denotes the set of vertices xj R BD, then

suppφj “
ď

KPT h

xjPK

K.
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Finite Element Approximation
Nodal basis for linear triangles

A nodal basis function with its support.
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Finite Element Approximation
Nodal basis for linear triangles

Triangulation of an L-shaped domain with the supports of several basis functions.
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Finite Element Approximation
Galerkin matrix, linear triangles

Implications for Galerkin system (B.10):

rbsi “ `pφiq “

ż

D

fφi dx “

ż

suppφi

fφi dx ,

rAsi,j “ apφj , φiq “

ż

D

apx qφipx q ¨∇φjpx qdx

“

ż

suppφiXsuppφj

apx q∇φipx q ¨∇φjpx qdx .

In particular: Galerkin matrix A is sparse.
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Finite Element Approximation
Finite element assembly

Common procedure in assembling the Galerkin system:

(1) Ignore boundary condition initially, i.e., consider all of V h with nodal basis

tφ1, φ2, . . . , φn, φn`1, . . . , φñu,

ñ´ n the number of vertices on the boundary BD.
Yields matrix Ã P Rñˆñ, vector b̃ P Rñ.

(2) Then eliminate the DOF associated with boundary vertices.
Yields matrix A, vector b.

Note:
Initial approach for step (1): compute Ã, b̃, entry by entry, i.e., basis
function by basis function
But: shape and connectivity of supports typically very different.
Simpler: compute A, b element by element.
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Finite Element Approximation
Finite element assembly

K P T h: then for i, j “ 1, 2 . . . , ñ:

apφj , φiq “

ż

D

a∇φj ¨∇φi dx “
ÿ

KPT h

ż

K

a∇φj ¨∇φi dx “:
ÿ

KPT h

aKpφj , φiq,

`pφiq “

ż

D

fφi dx “
ÿ

KPT h

ż

K

fφi dx “:
ÿ

KPT h

`Kpφiq.

Setting

rÃKsi,j :“ aKpφj , φiq i, j “ 1, 2, . . . , ñ,

rb̃Ksi :“ `Kpφi, i “ 1, 2, . . . , ñ,

we obtain
Ã “

ÿ

KPT h

ÃK , b̃ “
ÿ

KPT h

b̃K .
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Finite Element Approximation
Finite element assembly: element table

Since each element belongs to the support of exactly three basis functions, only (at
most) nine entries of ÃK and three entries of b̃K are nonzero.
Which entries these are can be determined by maintaining an element table:

rET pi, jqsi“1,2,3;j“1,...,nK :

Element K1 K2 . . . KnK

first vertex i
p1q
1 i

p2q
1 . . . i

pnKq
1

second vertex i
p1q
2 i

p2q
2 . . . i

pnKq
2

third vertex i
p1q
3 i

p2q
3 . . . i

pnKq
3

Here nK denotes the number of triangles in T h.

Besides the global vertex numbering

x1, x2, . . . , xñ,

the element table introduces a second, local vertex numbering

x
pKq
1 , x

pKq
2 , x

pKq
3

of the vertices (DOFs) associated with K.
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Finite Element Approximation
Finite element assembly

Global numbering of
vertices (red) and
elements (black)
in a triangulation of an
L-shaped domain.
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Finite Element Approximation
Finite element assembly

With this notation the nonzero submatrix AK of ÃK and nonzero subvector bK
of b̃K are given by

AK :“

»

—

–

aKpφ
pKq

1 , φ
pKq

1 q aKpφ
pKq

2 , φ
pKq

1 q aKpφ
pKq

3 , φ
pKq

1 q

aKpφ
pKq

1 , φ
pKq

2 q aKpφ
pKq

2 , φ
pKq

2 q aKpφ
pKq

3 , φ
pKq

2 q

aKpφ
pKq

1 , φ
pKq

3 q aKpφ
pKq

2 , φ
pKq

3 q aKpφ
pKq

3 , φ
pKq

3 q

fi

ffi

fl

, bK :“

»

—

–

`Kpφ
pKq

1 q

`Kpφ
pKq

2 q

`Kpφ
pKq

3 q

fi

ffi

fl

.

If K has number k in the enumeration of the elements, then the association of the
local numbering tφpKqi ui“1,2,3 of the three basis functions whose support contains
K with the global numbering tφjuñj“1 of all basis functions is given by

φ
pKq
i “ φj , j “ ET pi, kq, i “ 1, 2, 3.

AK and bK are sometimes called the element stiffness matrix and element load
vector.
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Finite Element Approximation
Finite element assembly

We summarize phase (1) of the finite element assembly process in the following
algorithm4

Algorithm 2: Phase (1) of finite element assembly.

1 Initialize Ã :“ O , b̃ :“ 0.
2 foreach K P Th do
3 Compute AK and bK
4 k Ð [index of element K]
5 i1 Ð ET p1, kq, i2 Ð ET p2, kq, i3 Ð ET p3, kq

6 Ãpri1i2i3s, ri1i2i3sq Ð Ãpri1i2i3s, ri1i2i3sq `AK

7 b̃pri1i2i3sq Ð b̃pri1i2i3sq ` bK

4We use the following Matlab-inspired notation:

Apri1i2i3s, ri1i2i3sq “

»

–

ai1,i1 ai1,i2 ai1,i3
ai2,i1 ai2,i2 ai2,i3
ai3,i1 ai3,i2 ai3,i3

fi

fl , bpri1i2i3sq “

»

–

bi1
bi2
bi3

fi

fl .
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Finite Element Approximation
Reference element

Both the numerical integration as well as the error analysis benefit from a change
of variables to a reference element K̂ Ă R2. Each element K P T h then has a
parametrization K “ FKpK̂q, where

FK : K̂ Ñ K, K̂ Q ξ ÞÑ x P K, x “ FKpξq “ BKξ ` bK .

Most common for triangular elements: unit simplex

K̂ “ tpξ, ηq P R2 : 0 ď ξ ď 1, 0 ď η ď 1´ ξu.

For each triangle K P T h the affine mapping FK is determined by prescribing, e.g.,

p1, 0q ÞÑ px1, y1q,

p0, 1q ÞÑ px2, y2q,

p0, 0q ÞÑ px3, y3q, i.e.
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Finite Element Approximation
Reference element

K̂

ξ

η

p0, 0q p1, 0q

p0, 1q

x

y

FK

K

px1, y1q

px2, y2q

px3, y3q

„

x
y



“

„

x1 ´ x3 x2 ´ x3

y1 ´ y3 y2 ´ y3



looooooooooomooooooooooon

BK

„

ξ
η



`

„

x3

y3



loomoon

bK
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Finite Element Approximation
Reference element

Local (nodal) basis on K̂: (dual basis of DOF)

φ̂1pξ, ηq “ ξ, φ̂2pξ, ηq “ η, φ̂3pξ, ηq “ 1´ ξ ´ η, pξ, ηq P K̂.

The correspondence

φ̂ ÞÑ φ :“ φ̂ ˝ F´1
K , d.h. φpx q :“ φ̂pξpx qq “ φ̂pF´1

K px qq

assigns to φ̂ on K̂ a unique function φ on K.

Local basis functions on K:

φj “ φ̂j ˝ F
´1
K : K Ñ R, j “ 1, 2, 3.
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Finite Element Approximation
Reference element, change of variables

The chain rule5 applied to φpx q “ φ̂pξpx qq gives

∇φ “
„

φx
φy



“

„

φ̂ξξx ` φ̂ηηx
φ̂ξξy ` φ̂ηηy



“

„

ξx ηx
ξy ηy

 „

φ̂ξ
φ̂η



“ pDF´1
K qJ∇̂φ̂.

Since x “ FKpξq “ BKξ ` bK , i.e. DFK ” BK ,

ξ “ F´1
K px q “ B´1

K px ´ bKq, i.e. DF´1
K ” B´1

K

we obtain
∇φ “ B´JK ∇̂φ̂.

5∇̂ indicates differentiation with respect to the variables ξ and η.
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Finite Element Approximation
Reference element, element integrals

This finally gives the element integrals (φi “ φ
pKq
i , i “ 1, 2, 3)

aKpφj , φiq “

ż

K

apx q∇φjpx q ¨∇φipx qdx

“

ż

K̂

apx pξqq
´

B´JK ∇̂φ̂jpξq
¯

¨

´

B´JK ∇̂φ̂ipξq
¯

|detBK |dξ.

(B.11)

The determinant is given by (note K is a triangle)

|detBK | “ 2|K|,

B´JK “
1

2|K|

„

y2 ´ y3 x3 ´ x2

y3 ´ y1 x1 ´ x3



,

“

∇̂φ̂1 ∇̂φ̂2 ∇̂φ̂3

‰

“

„

1 0 ´1
0 1 ´1



.
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Finite Element Approximation
Eliminate constrained boundary DOF

To impose the Dirichlet boundary condition we require that the Galerkin approxi-
mation uh P V h satisfy

uhpxjq “ gpxjq at all boundary vertices txjuñj“n`1. (B.12)

We partition the coefficient vector u P Rñ into a first block uI P Rn
containing the coefficients associated with the interior vertices txjunj“1 and a
second block uB P Rñ´n containing the constrained coefficients associated
with boundary vertices.
For the assembled matrix Ã and vector b̃ this induces the partitionings

Ã “

„

ÃII ÃIB

ÃBI ÃBB



, b̃ “

„

b̃I
b̃B



.

The constraint (B.12) now reads uB “ g , where g P Rñ´n contains the
boundary data tgpxjquñj“n`1.
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Finite Element Approximation
Eliminate constrained boundary DOF

This constraint is characterized by there being no coupling of the boundary DOF
to either interior DOF or among themselves, resulting in the modified linear system
of equations

„

ÃII ÃIB

O I

 „

uI
uB



“

„

bI
g



,

which gives the reduced system

AuI “ b, A “ ÃII , b “ bI ´ ÃIBg

for the interior DOF.

Note that this procedure is a discrete variant of the reformulation of the BVP with
inhomogeneous Dirichlet boundary conditions to an equivalent one with homoge-
neous Dirichlet boundary conditions.
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Finite Element Convergence
. . . in a nutshell

Céa’s lemma characterizes the Galerkin error as one of best appproximation
from the FE subspace V h.
An upper bound for this error is the distance of the true solution from its
interpolant from the FE subspace. This is the uniquely determined function
from V h which possesses the same global DOF as the exact solution.
The asymptotic behavior of the interpolant is then analyzed on a sequence of
meshes tThnunPN with limnÑ8 hn “ 0.
For the interpolation error to become small, the mesh sequence has to be
shape-regular: if ρK denotes the radius of the inscribed circle in K and
hK “ diamK, then a sequence of meshes is shape-regular provided the ratio

ρK
hK

, K P Th

is bounded below uniformly for all tThnu.
A priori convergence bounds are obtained by relating the smoothness of the
exact solution to the convergence rate hα of the interpolation error as hÑ 0.
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Finite Element Convergence
Extra regularity

Interpolation estimates for a solution u which is only in H1pDq do not yield a useful
rate hα with an α ą 0. For this reason one usually tries to show that the solution
possesses more regularity.

Definition B.16
For r P N and D Ă Rd bounded, we denote by HrpDq the Sobolev space

HrpDq :“ tv P L2pDq : Dαu P L2pDq for all α P Nd0, |α| ď ru

HrpDq is a Hilbert space with the inner product

pu, vqHrpDq “
ÿ

|α|ďr

ż

D

pDαuqpDαvqdx .
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Finite Element Convergence
Extra regularity, fractional index

For any r P RzN0 we set r “ k` s, k P N0, s P p0, 1q and denote by | ¨ |HrpDq and
} ¨ }HrpDq the Sobolev-Slobodetskii semi-norm and norm defined for v P HkpDq by

|v|HrpDq “

¨

˝

ż

DˆD

ÿ

|α|“k

rDαvpx q ´Dαvpyqs2

|x ´ y |d`2s
dxdy

˛

‚

1{2

and

}v}HrpDq “
´

}v}2HkpDq ` |v|
2
HrpDq

¯1{2

.

The Sobolev space HrpDq is then defined as the space of functions v P HkpDq
such that |v|2HrpDq is finite.
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Finite Element Convergence
Interpolation error of linear FE for H2-regular functions

Let V h denote the space of piecewise linear functions subject to a
shape-regular, admissible triangulation Th of D.
Denote by Ih : CpDq Ñ V h the (global) interpolation operator assigning to
each continuous function v the interpolant vh P V h determined by the
condition that vh agrees with v at all vertices of Th.
Then the error of best approximation of u P CpDq is bounded by the
interpolation error

inf
vPV h

|u´ v|H1pDq ď |u´ Ihu|H1pDq.

If the solution u of (B.4) has additional regularity u P H2pDq, then the
Sobolev imbedding theorem assures that u agrees a.e. with a function in
CpDq, so that pointwise evaluation of u and thus the interpolant is
well-defined.
In this case a scaling argument can be used to show

|u´ Ihu|H1pDq ď K h |u|H2pDq

with a constant K independent of h and u.
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Finite Element Convergence
Model problem

Assumption B.17 (H2 regularity)

There exists a constant K2 ą 0 such that, for every f P L2pDq, the solution of (B.4) belongs to
H2pDq and satisfies

|u|H2pDq ď K2}f}L2pDq.

Theorem B.18

Under Assumptions B.3 and B.17, the solution u of (B.4) with f P L2pDq and the piecewise
linear finite element approximation uh on a sequence of shape-regular meshes satisfy

|u´ uh|a ď K
?
amax|u|H2pDq h ď KK2

?
amax}f}L2pDq h (B.13)

with a constant K independent of h.

Corollary B.19
Under the assumptions of Theorem B.18 there holds

|u´ uh|H1pDq ď K

c

amax

amin
|u|H2pDq h ď KK2

c

amax

amin
}f}L2pDq h.
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Finite Element Convergence
Model problem, approximate data

When the coefficient function a and the source term f are replaced by approxima-
tions ã « a and f̃ « f , then with the modified bilinear and linear forms defined as
in (B.6), we may consider the discrete problem

ãpũh, vq “ ˜̀pvq @v P V h. (B.14)

In analogy to Theorem B.11 we obtain

Theorem B.20
Under Assumption B.3 let f̃ P L2pDq and g P H1{2pBDq. Then (B.14) has a
unique solutiuon ũh P V h.

By the triangle inequality, we have

|u´ ũh|H1pDq ď |u´ ũ|H1pDq ` |ũ´ ũh|H1pDq.

By an obvious extension of Corollary B.14, we obtain the bound

|ũ´ ũh|H1pDq ď

c

ãmax

ãmin
inf
vPV h

|ũ´ v|H1pDq.
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Finite Element Convergence
Model problem, approximate data

Alternatively, if we approximate the data at the discrete level only, we may consider
the following splitting as more natural:

|u´ ũh|H1pDq ď |u´ uh|H1pDq ` |uh ´ ũh|H1pDq.

The second term arises, e.g., if we approximate the Galerkin approximation uh by
approximating the bilinear and linear forms using, e.g., piecewise constant approxi-
mations of the coefficient a and source term f .

Straightforward modification of the proof of Theorem B.12 yields

|u´ ũh|H1pDq ď CDã
´1
min}f ´ f̃}L2pDq ` ã

´1
min}a´ ã}L8pDq|uh|H1pDq.
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Hilbert-Schmidt Operators

For normed linear spaces X and Y , we denote by L pX,Y q the set of all bounded
linear operators from X to Y .

Definition C.1
Let X and Y be separable Hilbert spaces with norms } ¨ }X and } ¨ }Y and let
txjunPN denote a CONS of X. A linear operator L : X Ñ Y for which

}L}HSpX,Y q :“

˜

8
ÿ

j“1

}Lxj}
2
Y

¸1{2

ă 8

is called a Hilbert-Schmidt operator. We shall write }L}HS if X “ Y .

Proposition C.2
The mapping } ¨ }HSpX,Y q is a norm, called the Hilbert-Schmidt norm, on the space
of all Hilbert-Schmidt operators from X to Y , which we denote by HSpX,Y q.
In addition, pHSpX,Y q, } ¨ }HSpX,Y qq is Banach space.
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Hilbert-Schmidt Operators
Examples

Example C.3
For X “ Y “ Rn with the Euclidean norm } ¨ }, the Hilbert-Schmidt norm of a
matrix A P Rnˆn coincides with the Frobenius-norm }A}2F “

řn
i,j“1 a

2
i,j .

Example C.4
Define L P L pL2p0, 1qq by

pLuqpxq “

ż x

0

upyqdy, u P L2p0, 1q, x P p0, 1q.

For the CONS tfjpxq “
?

2 sinpjπxq : j P Nu, we have

pLfjqpxq “

?
2

jπ
p1´ cospjπxqq.

L is a Hilbert-Schmidt operator since }Lfj}L2p0,1q ď
2
?

2
jπ .
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Hilbert-Schmidt Operators
Integral operators

Lemma C.5
Let H be a separable Hilbert space. If L P HSpHq, then }L}L pHq ď }L}HS. In
particular, Hilbert-Schmidt operators are bounded.

Definition C.6
For a domain D Ă Rd and k P L2pD ˆDq, the integral operator with kernel
function k is defined as the linear operator

K : u ÞÑ pKuqpx q :“

ż

D

kpx ,yqupyqdy , x P D. (C.1)

Theorem C.7
An integral operator with kernel function k P L2pD ˆDq is a Hilbert-Schmidt
operator on L2pDq. Conversely, any Hilbert-Schmidt operator K on L2pDq can
be written in the form (C.1) with }K}HS “ }k}L2pDˆDq.
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Hilbert-Schmidt Operators
Compact operators

Definition C.8
A set B in a Banach space X is said to be compact if every sequence un Ă B has
a convergent subsequence unk with limit u P B.

Definition C.9
A linear operator L : X Ñ Y , where X and Y are Banach spaces, is said to be
compact if the image of any bounded set B Ă X has compact closure in Y , i.e., if

LpBq
}¨}Y is a compact set in Y for all bounded B Ă X.

Theorem C.10
For k P L2pD ˆDq the associated integral operator K on L2pDq with kernel
function k is a compact operator.
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Hilbert-Schmidt Operators
Selfadjoint operators, eigenvalues

Definition C.11
An operator L P L pHq on a Hilbert space H is said to be selfadjoint if

pLu, vq “ pu, Lvq @u, v P H.

Proposition C.12
For a domain D Ă Rd, if k P L2pD ˆDq is symmetric, i.e., kpx ,yq “ kpy ,x q for
all x ,y P D, then the integral operator with kernel function k is selfadjoint with
respect to the L2pDq inner product.

Definition C.13
If L P L pHq, λ P C is called an eigenvalue of L if there exists nonzero φ P H
such that Lφ “ λφ. The element φ is called an eigenvector or eigenfunction of L.
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Hilbert-Schmidt Operators
Spectral theorem

Theorem C.14 (Spectral theorem for selfadjoint compact operators)
Let H be a separable Hilbert space and K Ă L pHq be selfadjoint and compact.
Denote the eigenvalues of K by tλjujPN ordered such that |λj`1| ď |λj | and
denote the associated eigenfunctions by tφju. Then
(i) All eigenvalues are real and λj Ñ 0 as j Ñ8.
(ii) The sequence tφju can be chosen as a CONS of the range KpHq of K and,
(iii) for any u P H,

Ku “
8
ÿ

j“1

λkpu, φjqφj . (C.2)
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Hilbert-Schmidt Operators
Nonnegative functions, operators

Definition C.15
A function k : D ˆD Ñ R is nonnegative definite if for any set of points
x1, . . . ,xn P D and numbers a1, . . . , an P R there holds

n
ÿ

j,k“1

ajakkpxj ,xkq ě 0.

A linear operator L P L pHq on a Hilbert space H is nonnegative definite if

pu, Luq ě 0 @u P H

and positive definite if
pu, Luq ą 0 @u P H.
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Hilbert-Schmidt Operators
Nonnegative functions, operators, trace class operators

Lemma C.16
For a domain D Ă Rd and a nonnegative definite function k P CpD ˆDq, the
integral operator K on L2pDq with kernel function k is nonnegative.

Lemma C.17 (Dini)

For a bounded domain D let fn P CpDq be such that fnpx q ď fn`1px q for n P N
and fnpx q Ñ fpx q as nÑ8 for all x P D. Then }f ´ fn}8 Ñ 0 as nÑ8.

Definition C.18
Let H be a separable Hilbert space. A nonnegative definite operator L P L pHq is
said to be of trace class if tracepLq ă 8, where the trace of L is defined as

tracepLq :“
8
ÿ

j“1

pLψj , ψjq

for any CONS tψjujPN of H.
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Hilbert-Schmidt Operators
Mercer’s theorem

Theorem C.19 (Mercer)

For a bounded domain D, let k P CpD ˆDq be a symmetric and nonnegative
definite function and let K be the integral operator with kernel function k. There
exist eigenfunctions φj of K with eigenvalues λj ą 0 such that φj P CpDq and

kpx ,yq “
8
ÿ

j“1

λjφjpx qφjpyq, x ,y P D,

where the series converges in CpD ˆDq. Furthermore,

sup
x ,yPD

ˇ

ˇ

ˇ

ˇ

kpx ,yq ´
n
ÿ

j“1

λjφjpx qφjpyq

ˇ

ˇ

ˇ

ˇ

ď sup
xPD

8
ÿ

j“n`1

λj |φjpx q|
2. (C.3)

The operator K is of trace class and

tracepKq “

ż

D

kpx ,x qdx .
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Bessel Functions

Bessel functions arise, e.g., when constructing eigenfunction expansions for the
Laplacian in cylindrical coordinates. They are solutions to Bessel’s differential equa-
tion with parameter ν P C

u2pzq `
1

z
u1pzq `

ˆ

1´
ν2

z2

˙

upzq “ 0

for various boundary conditions.

We are interested in the Bessel functions of the first kind, denoted by Jνpzq for real
nonnegative argument z “ x ě 0. These are finite at x “ 0 for ν nonnegative or
integer and singular there for ν negative or non-integer.

For special values of u they possess simple expressions, e.g.

J´1{2pxq “

ˆ

2

πx

˙1{2

cosx, J1{2pxq “

ˆ

2

πx

˙1{2

sinx,
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Bessel Functions
Bessel functions of the first kind
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Bessel functions Jνpxq may be evaluated in Matlab with the command
besselj(nu,x).
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Bessel Functions
Fourier transforms spherically symmetric functions

Functions u : Rd Ñ C which are spherically symmetric w.r.t. the origin, i.e.,
for which

upx q “ uprq, r “ }x }2,

are sometimes called isotropic functions.

Theorem D.1

The Fourier transform û of an isotropic function u : Rd Ñ C is isotropic. Using
uprq and ûpλq with λ “ }λ}2 to denote upx q and ûpλq, there holds

ûpλq “ p2πq´d{2
ż 8

0

Jνpλrqpλrq
´νuprqrd´1 dr, ν “

d

2
´ 1.

This special case of the Fourier transform is known as a Hankel transform.

Oliver Ernst (Numerische Mathematik) UQ Sommersemester 2014 311 / 315



Bessel Functions
Modified Bessel functions

The modified Bessel functions (or hyperbolic Bessel functions) of the first and
second kind are given by

Iνpxq “ i´νJνpixq, Kνpxq “
π

2

I´νpxq ´ Iνpxq

sinpνπq
.

The modified Bessel functions of the second kind Kν arise in the definition of the
Matérn class of isotropic covariance functions.

The special case ν “ 1
2 has a simple expression:

K 1
2
pxq “

´ π

2x

¯1{2

e´x, x ě 0. (D.1)
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Bessel Functions
Modified Bessel functions
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Bessel functions Kνpxq may be evaluated in Matlab with the command
besselk(nu,x).
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Bessel Functions
Modified Bessel functions, half integral order

In view of the following relations which hold for the modified Bessel functions (cf.
[Lebedev, 1972])

Kν´1pzq ´Kν`1pzq “ ´
2ν

z
Kνpzq, K´νpzq “ Kνpzq

along with (D.1), the modified Bessel functions of half-integral order ν` 1
2 , ν P N0,

may be expressed in terms of the exponential function, the square root, and a
polynomial in 1{z. In particular,

K3{2pzq “
´ π

2z

¯1{2

e´z
ˆ

1`
1

z

˙

,

K5{2pzq “
´ π

2z

¯1{2

e´z
ˆ

1`
3

z
`

3

z2

˙

.
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Bessel Functions
Modified Bessel functions, half integral order, Matérn kernels

For the associated Matérn covariance kernel cprq “ cpr;σ, ν, ρq, we obtain

cpr;σ, 1{2, ρq “ σ2 exp

ˆ

´
?

2r

ρ

˙

,

cpr;σ, 3{2, ρq “ σ2 exp

ˆ

´

?
6r

ρ

˙ˆ

1`

?
6r

ρ

˙

,

cpr;σ, 5{2, ρq “ σ2 exp

ˆ

´

?
10r

ρ

˙

˜

1`

?
10r

ρ
`

1

3

ˆ

?
10r

ρ

˙2
¸

.
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