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Lineare Mehrschrittverfahren
Begriffe

Verfahren der Bauart
k
ÿ

j“0

αjyn`j “ h
k
ÿ

j“0

βjfn`j , wobei fn`j :“ f ptn`j ,yn`jq, (LMV)

heißen lineare Mehrschrittverfahren, genauer lineare k-Schritt-Verfahren.
• O.B.d.A. sei αk “ 1 und pα0, β0q ‰ p0, 0q.
• Falls βk “ 0, ist (LMV) explizit, sonst implizit.
• Bei impliziten Verfahren muss in jedem Zeitschritt ein (i.Allg. nichtlineares)
Gleichungssystem der Form

yn`k “ hβkf ptn`k,yn`kq `
k´1
ÿ

j“0

phβjfn`j ´ αjyn`jq “ gpyn`kq ` c

gelöst werden. Wegen

}gpvq ´ gpwq} “ h|βk|}f ptn`k, vq ´ f ptn`k,wq} ď h |βk|L }v ´w}

besitzt dies eine eindeutige Lösung, wenn h |βk|L ă 1, die mit
Fixpunktiteration bestimmt werden kann.
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Lineare Mehrschrittverfahren
Begriffe

Das Polynom
σpζq :“ β0 ` β1ζ ` ¨ ¨ ¨ ` βkζ

k P Pk

heißt zweites charakteristisches Polynom von (LMV) und

L pz ptq;hq :“
k
ÿ

j“0

“

αjz pt` jhq ´ hβjz
1pt` jhq

‰

, z P C1pIq

der mit (LMV) assoziierte Differenzenoperator.
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Lineare Mehrschrittverfahren
Konsistenzordnung

Lemma 3.1

Ist z genügend oft differenzierbar, so gilt

L pz ptq;hq “ C0z ptq ` C1z
1ptqh` ¨ ¨ ¨ ` Cqz

pqqptqhq ` ¨ ¨ ¨

mit C0 “

k
ÿ

j“0

αj “ ρp1q, C1 “

k
ÿ

j“0

rjαj ´ βjs “ ρ1p1q ´ σp1q

und Cq “
k
ÿ

j“0

”

jq

q! αj ´
jq´1

pq´1q!βj

ı

pq “ 2, 3, . . .q.

Für die Koeffizienten der analogen Entwicklung

L pz pt` τhq;hq “
8
ÿ

j“0

Djz
pjqpt` τhqhj

gelten Cq “
řq
j“0

τj

j!Dq´j (q “ 0, 1, . . .).

Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2016/17 144 / 294



Lineare Mehrschrittverfahren
Konsistenzordnung

• Der lineare Differenzenoperator L entspricht im Wesentlichen dem
bekannten Residuum: Rn`k “ L pyptnq;hq.

• Das lineare Mehrschrittverfahren (LMV) besitzt die genaue
Konsistenzordnung p, wenn

C0 “ C1 “ ¨ ¨ ¨ “ Cp “ 0 und Cp`1 ‰ 0

gelten. Mit den Bezeichnungen von Lemma 3.1 ist das äquivalent zu
D0 “ D1 “ ¨ ¨ ¨ “ Dp “ 0 und Dp`1 ‰ 0.

Cp`1 (“ Dp`1) heißt dann die Fehlerkonstante des Verfahrens.
• Beachte, dass (LMV) genau dann konsistent ist (mit anderen Worten: seine
Konsistenzordnung beträgt mindestens p “ 1), wenn ρp1q “ 0 und
ρ1p1q “ σp1q erfüllt sind.

• (LMV) ist damit genau dann konvergent, wenn ρ die Wurzelbedingung erfüllt
und ρp1q “ 0 sowie ρ1p1q “ σp1q gelten (was insbesondere ρ1p1q “ σp1q ‰ 0
impliziert).
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Lineare Mehrschrittverfahren
Konsistenzordnung

Satz 3.2

Für jedes lineare k-Schritt-Verfahren sind die folgenden fünf Aussagen äquivalent:
(a) Das k-Schritt-Verfahren besitzt (mindestens) die Konsistenzordnung p.

(b) q!Cq “
řk
j“0

“

jqαj ´ qj
q´1βj

‰

“ 0 pq “ 0, 1, . . . , pq.
(c) Das k-Schritt-Verfahren ist konsistent mit y1 “ y, yp0q “ 1, von (mindestens)

der Ordnung p.
(d) Die Funktion

ρpζq

log ζ
´ σpζq

hat in ζ “ 1 eine (mindestens) p-fache Nullstelle.
(e) L pz ptq;hq “ 0 für alle Polynome z P Pp.
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Lineare Mehrschrittverfahren
Peano-Kern

Nach der Definition der Fehlerkonstanten Cp`1 eines LMV wissen wir lediglich dass

L pyptnq;hq “ hp`1Cp`1y
pp`1qptnq `Oph

p`2q phÑ 0q.

Die Frage, wann auch eine Darstellung der Form L pyptnq;hq “ hp`1Cp`1y
pp`1qpξq

mit tn ď ξ ď tn ` h möglich ist, führt auf die Darstellung mittels Peano-Kern.

Lemma 3.3

Das lineare k-Schritt-Verfahren (LMV) zur Lösung von (AWP) besitze die
Konsistenzordnung p. Für Funktionen y P Cpp`1qpIq gilt

L pyptq;hq “ hp`1

ż k

0

Gpτqy pp`1qpt` τhqdτ (3.1)

schreiben mit der Peano-Kernfunktion

Gpτq “
k
ÿ

j“0

«

αj
pj ´ τqp`

p!
´ βj

pj ´ τqp´1
`

pp´ 1q!

ff

, uk` :“ maxt0, uuk.
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Lineare Mehrschrittverfahren
Peano-Kern

Bemerkungen:

(1) Durch früheres Abbrechen der Taylor-Reihen im Beweis von Lemma 3.3 erhält
man entsprechende Darstellungen

L pyptq;hq “ hq`1

ż k

0

Gqpτqy
pq`1qpt` τhqdτ, 1 ď q ď p

mit

Gqpτq “
k
ÿ

j“0

«

αj
pj ´ τqq`

q!
´ βj

pj ´ τqq´1
`

pq ´ 1q!

ff

.

(2) Gqpτq “ 0 für τ P Rzp0, kq.
(3) Gq ist pq ´ 2q-mal stetig differenzierbar und G1qpτq “ ´Gq´1pτq (für q “ 2

stückweise zu verstehen).
(4) G1psq ist stückweise linear mit Sprüngen der Höhe βj an den Stellen τj “ j,

j “ 0, . . . , k und Steigung ´pαj ` αj`1 ` ¨ ¨ ¨ ` αkq im Intervall pj, j ` 1q.
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Lineare Mehrschrittverfahren
Peano-Kern

Satz 3.4

Für den Differenzenoperator eines LMV der Konsistenzordnung p und
y P Cpp`1qpIq gilt

|L pyptnq;hq| ď hp`1GY

mit Y :“ maxtPI |y
pp`1qptq| sowie, falls der Peano-Kern Gpτq das Vorweichen in

r0, ks nicht wechselt,

G “ |Cp`1| “

ˇ

ˇ

ˇ

ˇ

ˇ

ż k

0

Gpτqdτ

ˇ

ˇ

ˇ

ˇ

ˇ

und andernfalls

G “

ż k

0

|Gpτq|dτ.

LMV ohne Vorzeichenwechsel des Peano-Kerns sind beispielsweise die Familie der
Adams-Bashforth bzw. Adams-Moulton Verfahren.
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Lineare Mehrschrittverfahren
Peano-Kern, Beispiel

Satz 3.4 erlaubt Abschätzungen des lokalen Diskretisierungsfehlers:

Beispiel: Für das stabile Zweischrittverfahren

yn`2 ´ yn`1 “
h

12
p5fn`2 ` 8fn`1 ´ fnq (3.2)

der Konsistenzordnung 3 (C0 “ C1 “ C2 “ C3 “ 0, C4 “ ´1{24) erhalten wir

Gpτq “
1

24
p0´ τq2` ´

1

6
p1´ τq3` ´

3

4
p1´ τq2` `

1

6
p2´ τq3` ´

5

24
p2´ τq2`

“

$

&

%

´ τ2

24 0 ď τ ď 1,

´ 1
6τ

3 ` 19
24τ

2 ´ 7
6τ `

1
2 1 ď τ ď 2.

Wie man leicht nachprüft gilt Gpτq ď 0 für τ P r0, 2s.
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Lineare Mehrschrittverfahren
Peano-Kern, Beispiel

Peano-Kern Gpτq des Verfahrens (3.2):

0 1 2
τ

-0.05

-0.04

-0.03

-0.02

-0.01

0
G

(τ
)

Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2016/17 151 / 294



Lineare Mehrschrittverfahren
Peano-Kern, Beispiel

Ist y P C4pIq, so gilt nach Satz 3.4

| 1hRn`2| “ |
1
hL pyptnq;hq| “ h3

ˇ

ˇ

ˇ

ˇ

ż 2

0

Gpτq yp4qptn ` τhqdτ

ˇ

ˇ

ˇ

ˇ

ď h3|C4|max
tPI

|y4ptq| “
h3

24
max
tPI

|yp4qptq|.

Alternativ folgt mit der Hölder-Ungleichung

| 1hRn`2| ď h3
„
ż 2

0

|Gpτq|µdτ

1{µ „
ż 2

0

|yp4qptn ` τhq|
νdτ

1{ν

,

falls 1{µ` 1{ν “ 1.
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Lineare Mehrschrittverfahren
Peano-Kern, Beispiel

Für µ “ 1, ν “ 8 ergibt sich (entspricht Satz 3.4)

| 1hRn`2| ď ´h
3

„
ż 2

0

Gpτqdτ



max
tnďtďtn`2h

|yp4qptq|

“
h3

24
max

tnďtďtn`2h
|yp4qptq|

sowie für µ “ 8, ν “ 1:

| 1hRn`2| ď h3 max
0ďτď2

|Gpτq|

„
ż 2

0

|yp4qptn ` τhq|dτ



“
125

2592
h3

ż 2

0

|yp4qptn ` τhq|dτ.

Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2016/17 153 / 294



Lineare Mehrschrittverfahren
Peano-Kern, globaler Fehler

Mit Hilfe von Satz 3.4 kann man auch Abschätzungen für den globalen Diskretisie-
rungsfehler angeben. Sei

en :“ yptnq ´ ỹn, ỹn “ ỹnphq,

wobei die Folge pỹnqnPN0 die durch Rundungsfehler gestörte Differenzengleichung

k
ÿ

j“0

αj ỹn`j “ h
k
ÿ

j“0

βjf ptn`j , ỹn`jq ` ϑnKh
q`1

loooomoooon

lokaler Rundungsfehler

, }ϑn}8 ď 1

erfüllt. Wir setzen

A :“
k
ÿ

j“0

|αj |, B :“
k
ÿ

j“0

|βj |.

sowie für den Fehler der Startwerte

E :“ max
0ďjďk´1

}ej}.
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Lineare Mehrschrittverfahren
Peano-Kern, globaler Fehler

Bezeichnet pγjqjPN0
die Folge der Koeffizienten der Potenzreihe

1

ζkρpζ´1q
“

1

αk ` αk´1ζ ` ¨ ¨ ¨ ` α0ζk
“

8
ÿ

j“0

γjζ
j ,

so gilt, sofern ρ die Wurzelbedingung erfüllt ist,

Γ :“ sup
jě0

|γj | ă 8.

Wir setzen ferner
Γ˚ :“

Γ

1´ h|βk|L

mit der Lipschitz-Konstanten L der rechten Seite fpt,yq.
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Lineare Mehrschrittverfahren
Peano-Kern, globaler Fehler

Unter der Annahme, dass
h|βk|L ă 1 (3.3)

lässt sich dann zeigen17, dass

}en} ď Γ˚
“

kAE ` ptn ´ t0qp
1
hL pyptnq;hq ` h

qKq
‰

exppΓ˚BLptn ´ t0qq.

Mit Hilfe der Peano-Kern-Darstellung für den lokalen Fehler L pyptnq;hq aus Satz 3.4
ergibt sich

}en} ď Γ˚ rkAE ` ptn ´ t0qph
pGY ` hqKqs exppΓ˚BLptn ´ t0qq. (3.4)

Details in [Lambert, 1991; §3.6], [Henrici, 1962; §5.3–4] .

17Hier wird wie schon in Kapitel 2 auf die Lösungsdarstellung für inhomogene lineare
Differenzengleichungen zurückgegriffen.
Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2016/17 156 / 294



Lineare Mehrschrittverfahren
Bemerkungen

(1) (3.3) ist für explizite LMV stets erfüllt, für implizite ist es eine hinreichende
Bedingung für die eindeutige Lösbarkeit der Verfahrensgleichung.

(2) (3.4) zeigt den Einfluss von lokalem Fehler, Startfehler und Rundefehler;
Insbesondere implizieren E “ Ophpq, Konsistenzordnung p sowie q ě p für
den Gesamtfehler }en} “ Ophpq.

(3) Für den Startfehler findet keine Fehlerakkumulation statt, d.h. für die
Anlaufrechnung genügt ein Verfahren der Konsistenzordnung p´ 1.

(4) Das Rundungsfehlermodell Khq`1 ist unrealistisch; wir beobachten jedoch,
dass man eine h-Potenz beim Übergang zum globalen Fehler verliert.
Realistischer wäre eine absolute Schranke ε für den (lokalen) Rundungsfehler,
was im globalen auf einen Anteil „ ε{h führt. (Konsequenz?)

(5) Ist die Wurzelbedingung nicht erfüllt, so ist Γ nicht endlich.
(6) (3.4) fördert das Verständnis der Fehlerentwicklung, ist in der Praxis aber

kaum von Nutzen. Obwohl die einzelnen Terme – zumindest a posteriori –
geschätzt werden können, wird der globale Fehler durch (3.4) oft stark
überschätzt.
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Lineare Mehrschrittverfahren
Die erste Dahlquist-Barriere

• Was ist die maximale Ordnung eines konvergenten linearen
k-Schritt-Verfahrens?

• 2k ` 2 freie Parameter tαj , βjukj“0,
2k ` 1 nach Normierung, 2k für ein explizites Verfahren.

• Konsistenz der Ordnung p führt auf p` 1 homogene lineare Gleichungen für
die Koeffizienten. Bis zu welcher Ordnung p liegt auch Stabilität vor? Erste
Vermutung: p “ 2k [p “ 2k ´ 1] im impliziten [expliziten] Fall?

• 1956 beantwortet in
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Lineare Mehrschrittverfahren
Maximale Konsistenzordnung

Nach Satz 3.2 ist die Konsistensordnung eines LMV von mindestens p äquivalent
damit, dass die Funktion

ϕpζq “
ρpζq

log ζ
´ σpζq, p| arg ζ| ă π, log 1 “ 0q

an der Stelle ζ “ 1 eine Nullstelle der Vielfachheit mindestens p besitzt.

Als einfache Folgerung hieraus läßt sich ein zweites charakteristisches Polynom σ
bei gegebenem ersten charakteristischen Polynom ρ optimal wählen:

Satz 3.5
Sei ρ P Pk mit ρp1q “ 0 sowie ` P t0, 1, . . . , ku. Dann gibt es genau ein Polynom
σ P P` sodass das zugehörige LMV die Konsistenzordnung mindestens ` besitzt.

Von praktischem Interesse lediglich

` “ k ´ 1 führt auf bestmögliches explizites Verfahren,
` “ k ” ” implizites ” .
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Lineare Mehrschrittverfahren
Die erste Dahlquist-Barriere

Ausgangspunkt der Analyse der maximalen Konsistenzordnung eines stabilen LMV
sind wieder dessen charakteristischen Polynome ρpζq und σpζq. Folgende Variablen-
substitution ist hierbei hilfreich:

ζ “
z ` 1

z ´ 1
, z “

ζ ` 1

ζ ´ 1
, (3.5)

sowie die hierdurch bestimmten Polynome

Rpzq “

ˆ

z ´ 1

2

˙k

ρpζq “
k
ÿ

j“0

ajz
j , Spzq “

ˆ

z ´ 1

2

˙k

σpζq “
k
ÿ

j“0

bjz
j .

Lemma 3.6
Für ein stabiles LMV mit mindestens Konsistenzordnung p “ 0 gilt
(a) ak “ 0 sowie ak´1 “ 21´kρ1p1q ‰ 0.
(b) Alle von Null verschiedenen Koeffizienten von Rpzq besitzen das gleiche

Vorzeichen.
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Lineare Mehrschrittverfahren
Die erste Dahlquist-Barriere

Lemma 3.7
Ein LMV besitzt genau dann die Konsistenzordnung p, wenn

Rpzq

ˆ

log
z ` 1

z ´ 1

˙´1

´ Spzq “ Cp`1

ˆ

2

z

˙p´k

`O

˜

ˆ

2

z

˙p´k`1
¸

, z Ñ8.

(3.6)

Lemma 3.8
Für die Koeffizienten der Laurent-Reihe

ˆ

log
z ` 1

z ´ 1

˙´1

“
z

2
´
µ1

z
´
µ3

z3
´
µ5

z5
´ . . . (3.7)

gilt µ2j`1 ą 0 für alle j ě 0.
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Lineare Mehrschrittverfahren
Die erste Dahlquist-Barriere

Satz 3.9 (Dahlquist-Barriere)

Für die Konsistenzordnung p eines stabilen linearen k-Schritt-Verfahrens gilt

p ď

$

’

&

’

%

k ` 2, falls k gerade,
k ` 1, falls k ungerade,
k, falls βk{αk ď 0.
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Lineare Mehrschrittverfahren
Die erste Dahlquist-Barriere

Optimalität bei der Ordnung LMV hat strukturelle Eigenschaften zur Folge:

Satz 3.10
Stabile LMV mit (maximaler) Konisistenzordnung k ` 2 sind symmetrisch, d.h.

αj “ ´αk´j und βj “ βk´j , j “ 0, . . . , k. (3.8)

Beachte: Bei (stabilen) symmetrischen LMV gilt ρpζq “ ´ζkρp1{ζq. Mit ζ ist somit
auch 1{ζ Nullstelle von ρ, d.h. alle Nullstellen von ρ liegen auf dem Einheitskreis
und sind somit einfach.

Korollar 3.11

Ist k gerade, dann ist ein stabiles lineares k-Schritt-Verfahren mit optimaler
Konsistenzordnung k ` 2 nur schwach stabil, d.h. alle Nullstellen des ersten
charakteristischen Polynoms haben Betrag 1.
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Lineare Mehrschrittverfahren
Die erste Dahlquist-Barriere

(Jedes) stabile k-Schritt-Verfahren (k “ 2`) mit Konsistenzordnung k`2 kann man
wie folgt konstruieren:
(1) Setze

ρpζq :“ pζ ´ 1qpζ ` 1q

pk´2q{2
ź

j“1

pζ ´ ζjqpζ ´ ζjq

mit paarweise verschiedenen ζj , |ζj | “ 1, Im ζj ą 0.
(2) Bestimme die ersten Koeffizienten der Taylor-Entwicklung

`

z´1
2

˘k
ρ
´

z`1
z´1

¯

log z`1
z´1

“

8
ÿ

j“0

bjz
j und setze Spzq :“

k
ÿ

j“0

bjz
j .

(3) Setze

σpζq :“ pζ ´ 1qkS

ˆ

ζ ` 1

ζ ´ 1

˙

.
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Lineare Mehrschrittverfahren
Die erste Dahlquist-Barriere

• Das einzige stabile Zweischrittverfahren der Ordnung 4 ist die
Simpson-Regel18

yn`2 ´ yn “
h
3 pfn`2 ` 4fn`1 ` fnq.

• Für k “ 4 ist z.B.

yn`4 ´ yn “
h
90 p56fn`4 ´ 31fn`3 ` 96fn`2 ´ 31fn`1 ` 56fnq

ein stabiles Verfahren der Ordnung 6.
• In der Praxis spielen diese Beispiele (wie alle linearen 2`-Schritt-Verfahren der
Ordnung 2`` 2) keine Rolle (vgl. dazu Abschnitt 6).

18Thomas Simpson (1710–1761)
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Lineare Mehrschrittverfahren
Die Verfahren von Adams-Bashforth und Adams-Moulton

Die Idee der Adams-Bashforth-Verfahren19:

yptn`1q ´ yptnq “

ż tn`1

tn

y 1ptqdt “

ż tn`1

tn

f pt,yptqqdt.

Ersetze f pt,yptqq durch ein Polynom qk´1ptq PPk´1, das die k Datenpaare

ptn, fnq, ptn´1, fn´1q, . . . , ptn´k`1, fn´k`1q

interpoliert. In der Lagrange20-Darstellung ist dieses durch

qk´1ptq “
k´1
ÿ

j“0

fn´j

k´1
ź

`“0
`‰j

t´ tn´`
tn´j ´ tn´`

gegeben.

19John Couch Adams (1819–1892), Francis Bashforth, 1819–1912)
20Joseph-Louis Lagrange (1736–1813)
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Lineare Mehrschrittverfahren
Die Verfahren von Adams-Bashforth und Adams-Moulton

k-te Adams-Bashforth-Formel

yn`1 “ yn ` h
k´1
ÿ

j“0

βk,jfn´j (A-B)

mit βk,j “
1

h

ż tn`1

tn

k´1
ź

`“0
`‰j

t´ tn´`
tn´j ´ tn´`

dt “

ż 1

0

k´1
ź

`“0
`‰j

s` `

`´ j
ds.

Die Adams-Moulton-Verfahren21 konstruiert man fast genauso. Der einzige Unter-
schied besteht darin, dass ein Interpolationspolynom qk vom Grad k zu den pk` 1q
Daten

ptn`1, fn`1q, ptn, fnq, ptn´1, fn´1q, . . . , ptn´k`1, fn´k`1q

als Approximation an f pt,yptqq verwendet wird.

21Forest Ray Moulton (1872–1952),
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Lineare Mehrschrittverfahren
Die Verfahren von Adams-Bashforth und Adams-Moulton

k-te Adams-Moulton-Formel:

yn`1 “ yn ` h
k
ÿ

j“0

β˚k,jfn`1´j mit β˚k,j “
ż 0

´1

k
ź

`“0
`‰j

s` `

`´ j
ds. (A-M)

Satz 3.12

Das Adams-Bashforth-Verfahren (A-B) ist ein explizites lineares
k-Schritt-Verfahren. Es ist stabil und besitzt die Konsistenzordnung k.
Das Adams-Moulton-Verfahren (A-M) ist ein implizites lineares
k-Schritt-Verfahren. Es ist stabil und besitzt die Konsistenzordnung k ` 1.
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Lineare Mehrschrittverfahren
Die Verfahren von Adams-Bashforth und Adams-Moulton

Koeffizienten für Adams-Bashforth-Verfahren:

k
1 1

2 3
2 ´ 1

2

3 23
12 ´ 16

12
5
12

4 55
24 ´ 59

24
37
24 ´ 9

24

5 1901
720 ´ 2774

720
2616
720 ´ 1274

720
251
720

6 4277
1440 ´ 7923

1440
9982
1440 ´ 7298

1440
2877
1440 ´ 475

1440

Beispielsweise ist
yn`1 “ yn `

h
2 p3fn ´ fn´1q

das Adams-Bashforth-Verfahren für k “ 2.
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Lineare Mehrschrittverfahren
Die Verfahren von Adams-Bashforth und Adams-Moulton

Koeffizienten für Adams-Moulton-Verfahren:

k
1 1

2
1
2

2 5
12

8
12 ´ 1

12

3 9
24

19
24 ´ 5

24
1
24

4 251
720

646
720 ´ 264

720
106
720 ´ 19

720

5 475
1440

1427
1440 ´ 798

1440
482
1440 ´ 173

1440
27

1440

6 19087
60480

65112
60480 ´ 46461

60480
37504
60480 ´ 20211

60480
6312
60480 ´ 863

60480

Beispielsweise ist

yn`1 “ yn `
h

2
pfn`1 ` fnq (Trapezregel)

das Adams-Moulton-Verfahren für k “ 1 und

yn`1 “ yn `
h

12
p5fn`1 ` 8fn ´ fn´1q

das für k “ 2.
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Lineare Mehrschrittverfahren
Die Verfahren von Nyström und Milne-Simpson

Natürlich kann man auch in

yptn`kq ´ yptn`k´`q “

ż tn`k

tn`k´`

y 1ptqdt “

ż tn`k

tn`k´`

f pt,yptqq dt

(` “ 1, 2, . . .) den Integrand durch ein Interpolationspolynom ersetzen, um lineare
Mehrschrittverfahren zu konstruieren. (Für ` “ 1 ergeben sich die Adams-Formeln.)
Für ` “ 2 erhält man so die expliziten Nyström-Verfahren, z.B. die Mittelpunktsregel

yn`2 ´ yn “ 2hfn`1,

bzw. die impliziten Milne-Simpson-Verfahren, wie etwa die Simpson-Regel

yn`2 ´ yn “
h
3 pfn`2 ` 4fn`1 ` fnq .
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Lineare Mehrschrittverfahren
Interpolation und Integration bei den Adams-artigen LMV

n n+k−2 n+k−1 n+k

Interpolation

Integration

Adams−Bashforth

n n+k−2 n+k−1 n+k

Interpolation

Integration

Adams−Moulton

n n+k−2 n+k−1 n+k

Interpolation

Integration

Nystroem

n n+k−2 n+k−1 n+k

Interpolation

Integration

Milne−Simpson
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Lineare Mehrschrittverfahren
Prädiktor-Korrektor-Verfahren

Löst man ein AWP durch ein implizites Mehrschrittverfahren, so muss in jedem
Zeitschritt ein Gleichungssystem der Form

yn`k “ hβkf ptn`k,yn`kq ` c

(vgl. Abschnitt 1) gelöst werden. Ist h|βk|L ă 1, so konvergiert die Fixpunktitera-
tion

y
pνq
n`k “ hβkf ptn`k,y

pν´1q
n`k q ` c ν “ 1, 2 . . .

gegen die (eindeutige) Lösung. Einen Startwert y p0qn`k kann man mit einem expliziten
Verfahren berechnen. Man verwendet dazu ein Verfahren gleicher Ordnung.
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Lineare Mehrschrittverfahren
Prädiktor-Korrektor-Verfahren

Kombiniert man etwa die pk ` 1q-te Adams-Bashforth-Formel (Prädiktor) mit der
k-ten Adams-Moulton-Formel (Korrektor), so liest sich ein Zeitschritt des resultie-
renden Prädiktor-Korrektor-Verfahrens wie folgt:

(P): y
p0q
n`1 “ yn ` h

řk
j“0 βk`1,jfn´j ,

For ν “ 0, 1, 2, . . .:

f
pνq
n`1 “ f ptn`1,y

pνq
n`1q,

(K): y
pν`1q
n`1 “ yn ` hβ

˚
k,0f

pνq
n`1 ` h

řk
j“1 β

˚
k,jfn`1´j .

Man bricht die Iteration (K) ab, wenn }y pν`1q
n`1 ´ y

pνq
n`1} „genügend klein“ ist.

Dann setzt man yn`1 “ y
pν`1q
n`1 und (für weitere Zeitschritte) fn`1 “ f

pνq
n`1 (oder

alternativ: fn`1 “ f ptn`1,y
pν`1q
n`1 qq.
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Lineare Mehrschrittverfahren
Prädiktor-Korrektor-Verfahren

• In der Praxis kann man so nur selten vorgehen, da völlig unklar ist, wie viele
Schritte von (K) durchgeführt werden müssen, um das Abbruchkriterium zu
erfüllen. Stattdessen wird man nur eine feste (kleine) Zahl µ von diesen
Iterationsschritten durchführen.

• Bezeichnen p bzw. p˚ die Konsistenzordnungen von Prädiktor und Korrektor
(in unserem Beispiel p “ p˚ “ kq, dann ist die Konsistenzordnung des
zusammengesetzten Verfahrens gleich der des Korrektors, wenn p ě p˚ oder
µ ą p˚ ´ p gilt.
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Lineare Mehrschrittverfahren
Absolute Stabilität, einführendes Beispiel

Der Begriff absolute Stabilität befasst sich anstelle der Stabilität eines Verfahrens
im Grenzwert hÑ 0, mit dessen Verhalten für lange Integrationsintervalle bei fester
Schrittweite h ą 0.

Qualitativ: wie klein muss man bei gegebener AWA und gegebenem Verfahren die
Schrittweite wählen, damit die numerische Approximation der Lösung sich zumin-
dest qualitativ richtig verhält.

Beispiel 1: Für die AWA

y1ptq “ ´ sin t, yp0q “ 1 (3.9)

mit Lösung yptq “ cos t (und L “ 0) beträgt das Residuum Rn`1 des expliziten
Euler-Verfahrens an der Stelle tn

Rn`1 “ L pyptnq;hq “ ´
h2

2
y2ptnq `Oph

3q “
h2

2
cos tn `Oph

3q,

sodass der globale Fehler für t P rt0, tends beschränkt ist durch (vgl. Beweis Satz 2.1)

max
t0ďnhďtend

|en| ď h max
t0ďtďtend

| cos t| “ h.
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Lineare Mehrschrittverfahren
Absolute Stabilität, einführendes Beispiel

Für einen Fehler |e| ď 10´3 bei der Integration bis tend “ 2 müßte also eine
Schrittweite von h “ 10´3 ausreichen. Man erhält für N “ 2000

yN “ ´4.166014 ¨ 10´1, |yp2q ´ yN | “ 4.547667 ¨ 10´4.

Beispiel 2: Wir modifizieren obige AWA zu

y1ptq “ λpy ´ cos tq ´ sin t, yp0q “ 1 (3.10)

mit derselben Lösung yptq “ cos t. Man rufe sich in Erinnerung, dass beim expliziten
Euler-Verfahren der globale Fehler der Rekursion

|en`1| ď p1` hLq|en| `Oph
2q

genügt, mit L der Lipschitz-Konstanten der rechten Seite. Für λ “ ´10 erhalten
wir nun

yN “ ´4.170721 ¨ 10´1, |yp2q ´ yN | “ 1.611611 ¨ 10´5.
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Lineare Mehrschrittverfahren
Absolute Stabilität, einführendes Beispiel

Beispiel 3: Wir betrachten obiges Beispiel für λ “ ´2100. In diesem Fall ergibt
sich

yN “ 1.597768 ¨ 1076, |yp2q ´ yN | “ 1.452516 ¨ 1076.

Verschiedene Schrittweiten für dieses AWP liefern

h Fehler bei tend “ 2
0.001 1.7e` 76
0.000976 3.1e` 36
0.00095 8.6e´ 04
0.0008 7.3e´ 04
0.0004 3.6e´ 04
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Lineare Mehrschrittverfahren
Absolute Stabilität

• Bekanntlich streben die Lösungen yptq von y 1 “ Ay , A P Rmˆm (konstant)
gegen 0 für tÑ8, wenn Reλ ă 0 für alle Eigenwerte λ von A gilt.

• Wir suchen Bedingungen an ein numerisches Verfahren (zunächst LMV), so
dass die Näherungslösungen dasselbe asymptotische Verhalten besitzen.

• Dazu eine Bezeichnung: Seien ρ und σ die charakteristischen Polynome eines
LMV; dann heißt

πpζ; ĥq :“ ρpζq ´ ĥσpζq, ĥ “ hλ

Stabilitätspolynom des Verfahrens.
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Lineare Mehrschrittverfahren
Absolute Stabilität

Lemma 3.13

Es seien tynu die Näherungen eines linearen k-Schritt-Verfahrens

k
ÿ

j“0

αjyn`j “ h
k
ÿ

j“0

βjfn`j pn “ 0, 1, 2, . . .q

zur Lösung von y 1 “ Ay (inkl. Anfangsbedingungen). Bei festem h gilt

lim
nÑ8

}yn} “ 0

genau dann, wenn alle Nullstellen von πpζ; ĥq “ πpζ;hλq (als Polynom in ζ
betrachtet) betragsmäßig echt kleiner als 1 sind und zwar für jedes λ P ΛpAq.
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Lineare Mehrschrittverfahren
Absolute Stabilität

• Das Verfahren heißt absolut stabil für ĥ, wenn alle Nullstellen ζ von πp¨; ĥq
die Beziehung |ζ| ă 1 erfüllen.

• Die Menge

RA :“ tĥ P C : πp¨; ĥq hat nur Nullstellen in |ζ| ă 1u

heißt Stabilitätsgebiet des Verfahrens.
• Das Verfahren heißt A-stabil (absolut stabil), wenn RA die linke Halbebene
tRe ζ ă 0u enthält.

Bemerkungen.
(1) Für jedes konvergente LMV gibt es ein ĥ0 ą 0, so dass RA X r0, ĥ0s “ H.
(2)

BRA Ď

"

ĥ P C : ĥ “
ρpeiφq

σpeiφq
, 0 ď φ ď 2π

*

.
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Lineare Mehrschrittverfahren
Absolute Stabilität

−2 −1.5 −1 −0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Adams−Bashforth, k=1

−2 −1.5 −1 −0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Adams−Bashforth, k=2

−2 −1.5 −1 −0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Adams−Bashforth, k=3

−2 −1.5 −1 −0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Adams−Bashforth, k=4

Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2016/17 186 / 294



Lineare Mehrschrittverfahren
Absolute Stabilität
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Lineare Mehrschrittverfahren
Zweite Dahlquist-Barriere

Ein LMV mit charakteristischen Polynomen ρpζq und σpζq heißt irreduzibel, falls
ρpζq und σpζq keine gemeinsamen Nullstellen besitzen.

Lemma 3.14
Ist ein lineares Mehrschrittverfahren A-stabil, so gilt

Re
ρpζq

σpζq
ě 0 für |ζ| ě 1. (3.11)

Für irreduzible LMV gilt auch die Umkehrung, d.h. (3.11) impliziert A-Stabilität.

Satz 3.15 (Dahlquist, 1963)
Für die Konsistenzordnung p eines A-stabilen LMV gilt p ď 2. Gilt p “ 2, so gilt
für die Fehlerkonstante des Verfahrens C ď ´ 1

12 . Die Trapezregel ist das einzige
A-stabile LMV mit Fehlerkonstante C “ ´ 1

12 .
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Lineare Mehrschrittverfahren
BDF-Verfahren

Idee der BDF-Verfahren (Backward Differentiation Formulas), oder auch Gear-
Verfahren22:
Um eine Näherung für yptn`1q zu gewinnen, approximieren wir t ÞÑ f pt,yptqq
durch das Interpolationspolynom Pk P Pk mit den k ` 1 Wertepaaren

ptj , f ptj ,yjqq “ ptj , fjq, j “ n´ k ` 1, . . . , n` 1.

Es ergibt sich

y 1ptq “ f pt,yptqq « Pkptq “
k
ÿ

j“0

`j

ˆ

tn`1 ´ t

h

˙

yn`1´j mit `jptq “
k
ź

s“0
s‰j

t´ s

j ´ s
.

Jetzt approximieren wir y 1ptn`1q « P 1kptn`1q “
řk
j“0

`

´ 1
h

˘

`1jp0qyn`1´j und set-
zen diese Näherung ein in

P 1kptn`1q « y 1ptn`1q “ f ptn`1,yn`1q « f ptn`1,yn`1q “ fn`1

22Charles William Gear, (1935–)
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Lineare Mehrschrittverfahren
BDF-Verfahren

und erhalten die Verfahrensgleichung eines linearen k-Schritt-Verfahrens

k
ÿ

j“0

p´`1jp0qqyn`1´j “ hfn`1,

das BDF(k)-Verfahren. In Standardform:

yn`1 `

k
ÿ

j“1

`1jp0q

`10p0q
yn`j´1 “ ´

h

`10p0qq
fn`1.

Nach Konstruktion besitzt es die Konsistenzordnung k.

Satz 3.16 (Stabilität von BDF-Verfahren)

Das BDF(k)-Verfahren ist genau dann stabil (und damit konvergent), wenn k ď 6.
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Lineare Mehrschrittverfahren
BDF-Verfahren

Koeffizienten und Fehlerkonstanten der BDF-Verfahren:

k α6 α5 α4 α3 α2 α1 α0 βk Ck`1

1 1 ´1 1 ´ 1
2

2 1 ´ 4
3

1
3

2
3 ´ 2

9

3 1 ´ 18
11

9
11 ´ 2

11
6
11 ´ 3

22

4 1 ´ 48
25

36
25 ´ 16

25
3
25

12
25 ´ 12

125

5 1 ´ 300
137

300
137 ´ 200

137
75
137 ´ 12

137
60
137 ´ 10

137

6 1 ´ 360
147

450
147 ´ 400

147
225
147 ´ 72

147
10
147

60
147 ´ 20

343

Für k “ 1 erhält man das implizite Euler-Verfahren yn`1 “ yn ` hf ptn`1,yn`1q.
BDF-Verfahren zeichnen sich durch „große“ Stabilitätsbereiche aus.
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Lineare Mehrschrittverfahren
BDF-Verfahren
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Lineare Mehrschrittverfahren
BDF-Verfahren
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Lineare Mehrschrittverfahren
BDF-Verfahren
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