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Lineare Mehrschrittverfahren

Begriffe

Verfahren der Bauart
k k
Z QjYntj = h Z Bifn+i,  wobei foyj = f(tnts, Yntj), (LMV)
j=0 7=0

heiBen lineare Mehrschrittverfahren, genauer lineare k-Schritt-Verfahren.
e 0.B.d.A. sei ap =1 und (ap, Bo) # (0,0).
e Falls 5, = 0, ist (LMV) explizit, sonst implizit.
e Bei impliziten Verfahren muss in jedem Zeitschritt ein (i.Allg. nichtlineares)
Gleichungssystem der Form

k=1
Ynik = hBif ok Ynik) + O (hBiFats — itni) = 9(Yni) + €
=0

geldst werden. Wegen

lg(v) = g(w)|| = hlBk||f (tnik, v) = F (tnik, w)| < BBk L v — w]|

besitzt dies eine eindeutige Ldsung, wenn h|S;| L < 1, die mit
Fixpunktiteration bestimmt werden kann.
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Begriffe

Das Polynom
o(C) :=Bo+ il + -+ + B¢t € P,

heit zweites charakteristisches Polynom von (LMV) und
k
L(z(t);h) = > [az(t + jh) — hp;2'(t+ jh)|, =z e C(I)
j=0

der mit (LMV) assoziierte Differenzenoperator.
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Lineare Mehrschrittverfahren

Konsistenzordnung

Ist z geniigend oft differenzierbar, so gilt

ZL(z(t);h) = Coz(t) + C12' (t)h + - + Cyz D (t)hI +
k
mit  Cp = Z a; = p(1 Z jaj — B =p'(1) — (1)

k
ind Gy = 3 [fay — d8] @=2.3..).

Jj=0

Fiir die Koeffizienten der analogen Entwicklung

ZL(z(t+Th);h ZD 2D (t + Th)hI
7=0
gelten C,, = ZJ 0;, —j (@=0,1,..).
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Lineare Mehrschrittverfahren

Konsistenzordnung

e Der lineare Differenzenoperator .£ entspricht im Wesentlichen dem
bekannten Residuum: R, = Z(y(tn); h).

e Das lineare Mehrschrittverfahren (LMV) besitzt die genaue
Konsistenzordnung p, wenn

Co=01="-=cp=0 undeH?EO
gelten. Mit den Bezeichnungen von Lemma 3.1 ist das dquivalent zu
D0=D1:"'=Dp=0 unde+17éO.

Cpt1 (= Dp+1) heiBt dann die Fehlerkonstante des Verfahrens.

o Beachte, dass (LMV) genau dann konsistent ist (mit anderen Worten: seine
Konsistenzordnung betrdgt mindestens p = 1), wenn p(1) = 0 und
p'(1) = o(1) erfiillt sind.

e (LMV) ist damit genau dann konvergent, wenn p die Wurzelbedingung erfiillt
und p(1) = 0 sowie p'(1) = o(1) gelten (was insbesondere p/(1) = o (1) # 0
impliziert).
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Lineare Mehrschrittverfahren

Konsistenzordnung

Satz 3.2

Fiir jedes lineare k-Schritt-Verfahren sind die folgenden fiinf Aussagen dquivalent:
(a) Das k-Schritt-Verfahren besitzt (mindestens) die Konsistenzordnung p.
(b) ¢!Cy =X [i%y — qj%'B] =0 (¢=0,1,...,p).

(c) Das k-Schritt-Verfahren ist konsistent mit ¥’ = y, y(0) = 1, von (mindestens)
der Ordnung p.

(d) Die Funktion
p(Q)
P =00
hat in ¢ = 1 eine (mindestens) p-fache Nullstelle.
(e) Z(z(t); h) = O fiir alle Polynome z € &,,.
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Lineare Mehrschrittverfahren

Peano-Kern

Nach der Definition der Fehlerkonstanten C),11 eines LMV wissen wir lediglich dass
L(y(tn);h) = WP Cpay® V(t,) + O(RPT?) (b —0).

Die Frage, wann auch eine Darstellung der Form .2 (y(t,,); h) = h?*1C,1y®+1 ()
mit ¢, < & < t,, + h moglich ist, fiihrt auf die Darstellung mittels Peano-Kern.

Lemma 3.3

Das lineare k-Schritt-Verfahren (LMV) zur Lésung von (AWP) besitze die
Konsistenzordnung p. Fiir Funktionen y € CP+1) (1) gilt

Lly(t):h) = h”“f G(r) y @+ (¢ + Th) dr (3.1)
schreiben mit der Peano-Kernfunktion
k . . _1
(-4 -1k k k
7)) = a; — B , vy 1= max{0,u}".
) ]Z=o [ J p! BJ (p _ 1)! + { }
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Lineare Mehrschrittverfahren

Peano-Kern

Bemerkungen:

(1) Durch fritheres Abbrechen der Taylor-Reihen im Beweis von Lemma 3.3 erhilt
man entsprechende Darstellungen

k
L(y(t);h) = T | Go(r)y " D (t+7h)dr, 1<q<p
0 q

mit
1

. (J—7)4 U-n%
gl BT
(2) Gylr) = 0 fiir 7 € R\(0, k).

(3) Gy ist (g — 2)-mal stetig differenzierbar und G7(7) = —G,_1(7) (fir g =2
stiickweise zu verstehen).

(4) Gi(s) ist stiickweise linear mit Spriingen der Hohe §; an den Stellen 7; = j,
j=0,...,k und Steigung —(a; + aj11 + - + ag) im Intervall (5,7 + 1).
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Peano-Kern

Satz 3.4

Fiir den Differenzenoperator eines LMV der Konsistenzordnung p und
y e CP+(T) gilt
2 (y(tn); h)| < WPHIGY

mit Y := maxes |yP*t1)(¢)| sowie, falls der Peano-Kern G(7) das Vorweichen in
[0, k] nicht wechselt,

k
G =|Cpi1| = j G(r)dr
0

und andernfalls

k
G = L |G(7)|dr.

v

LMV ohne Vorzeichenwechsel des Peano-Kerns sind beispielsweise die Familie der
Adams-Bashforth bzw. Adams-Moulton Verfahren.
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Lineare Mehrschrittverfahren

Peano-Kern, Beispiel

Satz 3.4 erlaubt Abschatzungen des lokalen Diskretisierungsfehlers:

Beispiel: Fiir das stabile Zweischrittverfahren

h
Ynt2 — Ynil = E(5fn+2 + 8fns1 — fn) (3.2)

der Konsistenzordnung 3 (Cy = C; = Cy = C3 =0, Cy = —1/24) erhalten wir

1 , 1 N , 1 s 5 ,
G(T)=ﬁ(O—T)Jr—6(1—7’)+—1(1—7)++6(2—7)+—ﬁ(2—7)+
T2
_ —57 0<7<1,
—%T3+%T2—%T+% 1<7<2.

Wie man leicht nachpriift gilt G(7) < 0 fiir 7 € [0, 2].
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Peano-Kern, Beispiel

Peano-Kern G(7) des Verfahrens (3.2):
0

-0.01 1

-0.03 1
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Peano-Kern, Beispiel

Ist y € C*(I), so gilt nach Satz 3.4

2
F Bl = (L)1) = 1 || Gyt + 7h) ar
0

h3
< B3 4oy @ (g,
< B7|Cy max |y*(2)] = 5 max [y (t)]

Alternativ folgt mit der Holder-Ungleichung

1/v

2 1/p 2
LRyl < 1 U |G(7’)|“d7’] U |y(4)(tn+7'h)|”d7'] 7
0 0

falls 1/p+ 1/v = 1.
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Peano-Kern, Beispiel

Fiir p = 1, v = oo ergibt sich (entspricht Satz 3.4)

tn <t<t,+2h

sl <= [[(Go0r| s, w000

= (4) t
24 tnsgi%fwh'y ( )l

sowie fiir = o0, v = 1:

|+ Ry < <h3 Jnax, |G (T [J ly@ (t, +Th)|d7']

125

3 (4)
2592h f ly\Y (tn, + Th)|dT.
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Lineare Mehrschrittverfahren

Peano-Kern, globaler Fehler

Mit Hilfe von Satz 3.4 kann man auch Abschitzungen fiir den globalen Diskretisie-
rungsfehler angeben. Sei

= y(tn) = Un, Un = Un(h),
wobei die Folge (¥ )nen, die durch Rundungsfehler gestérte Differenzengleichung

Z Qjfnij = h Z Bif (tnsjs Unss)  +  UnKRTTE 0] < 1

3=0 lokaler Rundungsfehler

erfiillt. Wir setzen
k k
A= Z la, B:= Z |3;
=0 j=0
sowie fir den Fehler der Startwerte

E:= max |egj.
0<j<k—1
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Lineare Mehrschrittverfahren

Peano-Kern, globaler Fehler

Bezeichnet (7;),en, die Folge der Koeffizienten der Potenzreihe

1 1 B i o
CFp(¢71) ok + g1+ +aglh jzonJ ’
so gilt, sofern p die Wurzelbedingung erfiillt ist,

I' := sup |y;| < .
j=0

Wir setzen ferner
T'* .= —F
1 — h[Bk|L
mit der Lipschitz-Konstanten L der rechten Seite f(¢,y).
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Lineare Mehrschrittverfahren

Peano-Kern, globaler Fehler

Unter der Annahme, dass
h|Bk|L < 1 (3.3)

ldsst sich dann zeigen!”, dass
lenl < T* [KAE + (tn — to) (52 (y(tn); h) + hTK)] exp(I* BL(t, — to))-

Mit Hilfe der Peano-Kern-Darstellung fiir den lokalen Fehler £ (y(t,,); h) aus Satz 3.4
ergibt sich

len| < T*[kAE + (tn, — to)(WPGY + hiK)] exp(T* BL(t, — to)). (3.4)

Details in [Lambert, 1991; §3.6], [Henrici, 1962; §5.3-4] .

17Hier wird wie schon in Kapitel 2 auf die Lésungsdarstellung fiir inhomogene lineare
Differenzengleichungen zuriickgegriffen.
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Lineare Mehrschrittverfahren

Bemerkungen

(1) (3.3) ist fiir explizite LMV stets erfiillt, fiir implizite ist es eine hinreichende
Bedingung fiir die eindeutige Losbarkeit der Verfahrensgleichung.

(2) (3.4) zeigt den Einfluss von lokalem Fehler, Startfehler und Rundefehler;
Insbesondere implizieren E = O(h?), Konsistenzordnung p sowie ¢ = p fiir
den Gesamtfehler ||le, | = O(hP).

(3) Fiir den Startfehler findet keine Fehlerakkumulation statt, d.h. fiir die
Anlaufrechnung geniigt ein Verfahren der Konsistenzordnung p — 1.

(4) Das Rundungsfehlermodell K h9*1 ist unrealistisch; wir beobachten jedoch,
dass man eine h-Potenz beim Ubergang zum globalen Fehler verliert.
Realistischer wire eine absolute Schranke e fiir den (lokalen) Rundungsfehler,
was im globalen auf einen Anteil ~ ¢/h fiihrt. (Konsequenz?)

(5) Ist die Wurzelbedingung nicht erfiillt, so ist T nicht endlich.

(6) (3.4) fordert das Verstandnis der Fehlerentwicklung, ist in der Praxis aber
kaum von Nutzen. Obwohl die einzelnen Terme — zumindest a posteriori —
geschatzt werden kdnnen, wird der globale Fehler durch (3.4) oft stark
liberschatzt.
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Lineare Mehrschrittverfahren

Die erste Dahlquist-Barriere

e Was ist die maximale Ordnung eines konvergenten linearen
k-Schritt-Verfahrens?

o 2k + 2 freie Parameter {ay;, 5;}4_,
2k + 1 nach Normierung, 2k fiir ein explizites Verfahren.

e Konsistenz der Ordnung p fiihrt auf p + 1 homogene lineare Gleichungen fiir
die Koeffizienten. Bis zu welcher Ordnung p liegt auch Stabilitdt vor? Erste
Vermutung: p = 2k [p = 2k — 1] im impliziten [expliziten] Fall?

e 1956 beantwortet in

CONVERGENCE AND STABILITY
IN THE NUMERICAL INTEGRATION OF ORDINARY
DIFFERENTIAL EQUATIONS

GERMUND DAHLQUIST

1. Introduction and summary

1.1. Stat t of the probl Consider a class of difference equations

(L1) o4¥nip + Opa¥nin—1 + oo + %¥n = BBifrsx + - + Bofa),
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Lineare Mehrschrittverfahren

Maximale Konsistenzordnung

Nach Satz 3.2 ist die Konsistensordnung eines LMV von mindestens p dquivalent
damit, dass die Funktion

wxﬁ=%%—

an der Stelle { = 1 eine Nullstelle der Vielfachheit mindestens p besitzt.

a(¢), (Jarg¢| < m, log1 = 0)

Als einfache Folgerung hieraus |aRt sich ein zweites charakteristisches Polynom o
bei gegebenem ersten charakteristischen Polynom p optimal wahlen:

Sei p e P, mit p(1) = 0 sowie £ € {0,1,...,k}. Dann gibt es genau ein Polynom
o € &Py sodass das zugehédrige LMV die Konsistenzordnung mindestens ¢ besitzt.

Von praktischem Interesse lediglich

{=Fk—-1 fiihrt auf bestmogliches explizites Verfahren,
L=k " " implizites
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Die erste Dahlquist-Barriere

Ausgangspunkt der Analyse der maximalen Konsistenzordnung eines stabilen LMV
sind wieder dessen charakteristischen Polynome p(¢) und o(¢). Folgende Variablen-
substitution ist hierbei hilfreich:

z+1

(=1, -

— (3.5)

PN
I‘-i-

sowie die hierdurch bestimmten Polynome

R(z) — (Z_1> Zf] S(z) <Z51>ka(g)=§obﬂj.

Fiir ein stabiles LMV mit mindestens Konsistenzordnung p = 0 gilt
(a) ax = 0 sowie ap_; = 2'7%p/(1) # 0.

(b) Alle von Null verschiedenen Koeffizienten von R(z) besitzen das gleiche
Vorzeichen.
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Lineare Mehrschrittverfahren

Die erste Dahlquist-Barriere

Ein LMV besitzt genau dann die Konsistenzordnung p, wenn

R(2) <1og z J_r 1)1 = 8(2) = Cps1 (%)pk +0 <(§>pk+1> , Z— 0.

(3.6)

v

Fiir die Koeffizienten der Laurent-Reihe

1 —1
<1ogz+ ) _Z_m_H B
z—1

gilt 12,41 > 0 fiir alle j > 0.

(3.7)
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Lineare Mehrschrittverfahren

Die erste Dahlquist-Barriere

Satz 3.9 (Dahlquist-Barriere)

Fiir die Konsistenzordnung p eines stabilen linearen k-Schritt-Verfahrens gilt

k+ 2, falls k gerade,
p<A{k+1, fallsk ungerade,
k, falls 5k/ak < 0.
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Lineare Mehrschrittverfahren

Die erste Dahlquist-Barriere

Optimalitat bei der Ordnung LMV hat strukturelle Eigenschaften zur Folge:

Stabile LMV mit (maximaler) Konisistenzordnung k + 2 sind symmetrisch, d.h.

o = —Qf—j und ﬁj = ﬁk,j, _7 = 0, .. .,k}. (38)

Beachte: Bei (stabilen) symmetrischen LMV gilt p(¢) = —¢*p(1/¢). Mit € ist somit
auch 1/¢ Nullstelle von p, d.h. alle Nullstellen von p liegen auf dem Einheitskreis
und sind somit einfach.

Ist & gerade, dann ist ein stabiles lineares k-Schritt-Verfahren mit optimaler
Konsistenzordnung k + 2 nur schwach stabil, d.h. alle Nullstellen des ersten
charakteristischen Polynoms haben Betrag 1.
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Die erste Dahlquist-Barriere

(Jedes) stabile k-Schritt-Verfahren (k = 2¢) mit Konsistenzordnung k+2 kann man
wie folgt konstruieren:

(1) Setze
(k=2)/2

p(Q) = -+ [] €=¢)EC—=1¢)

j=1
mit paarweise verschiedenen ¢, |(;| =1, Im(; > 0.
(2) Bestimme die ersten Koeffizienten der Taylor-Entwicklung
1\ K
(552) o (222)

z+1 =
z—1 j

© k
bjz)  und setze S(z):= Y bzl
log = ’ ;) ’

(3) Setze
¢+1
o(¢):=(¢— 1)k5 <m> .
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Die erste Dahlquist-Barriere

e Das einzige stabile Zweischrittverfahren der Ordnung 4 ist die
Simpson-Regel8

Yn+2 — Yn = %(fn+2 + 4fn+1 + fn)
e Fir k=4 ist z.B.
Yota — Yn = as(56fnsa — 31fnss + 96f,40 — 3Lfoy1 + 56f,)

ein stabiles Verfahren der Ordnung 6.

e In der Praxis spielen diese Beispiele (wie alle linearen 2¢-Schritt-Verfahren der
Ordnung 2¢ + 2) keine Rolle (vgl. dazu Abschnitt 6).

18Thomas Simpson (1710-1761)
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Die Verfahren von Adams-Bashforth und Adams-Moulton

Die Idee der Adams-Bashforth-Verfahren!?

tnt1

Y(ter) — y(tn) = f T ynde = f Fty () dt.

n n

Ersetze f (¢, y(t)) durch ein Polynom g_1(t) € &% _1, das die k Datenpaare

(tnafn)a (tn—la.fn—l)v ey (tn—k+17fn—k+1)
interpoliert. In der Lagrange®®-Darstellung ist dieses durch
k—1

qkl anjnl

=0 nj_tn 4
L#j

gegeben.

19 John Couch Adams (1819-1892), Francis Bashforth, 1819-1912)
20 Joseph-Louis Lagrange (1736-1813)
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Lineare Mehrschrittverfahren
Die Verfahren von Adams-Bashforth und Adams-Moulton

k-te Adams-Bashforth-Formel

k—1
Yn+l = Yn + h Z ﬂk,jfn—j (A_B)
=0
1 (terr bzl th_s tTy s+
. STt g = ds.
mi /Bk,J h J;n E tn—j = U —i? 0 g 4 =7 ’
é;j L#5

Die Adams-Moulton-Verfahren?! konstruiert man fast genauso. Der einzige Unter-
schied besteht darin, dass ein Interpolationspolynom g vom Grad k& zu den (k+1)
Daten

(tn+17fn+1)’ (tn,fn)’ (tn—l,fn—l)a cee (tn—k+17fn—k+1)

als Approximation an f (¢, y(t)) verwendet wird.

21Forest Ray Moulton (1872-1952),
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Die Verfahren von Adams-Bashforth und Adams-Moulton

k-te Adams-Moulton-Formel:

k 0
Yntl1 = Yn + h Z 6:7jfn+1—j mit ﬁ;ck,j = f
—il 7

Jj=0

k
s+/
- ds. (A-M)
0 t—j

0]

Das Adams-Bashforth-Verfahren (A-B) ist ein explizites lineares
k-Schritt-Verfahren. Es ist stabil und besitzt die Konsistenzordnung k.
Das Adams-Moulton-Verfahren (A-M) ist ein implizites lineares
k-Schritt-Verfahren. Es ist stabil und besitzt die Konsistenzordnung & + 1.
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Die Verfahren von Adams-Bashforth und Adams-Moulton

Koeffizienten fiir Adams-Bashforth-Verfahren:

k
1] 1
3 1
2 2 2
23 16 5
3| 6 12 1
4| 88 30 3w _9
24 24 24 24
5 1901 _ 2774 2616 _ 1274 251
720 720 720 720 720
6 4277 _ 7923 9982 _ 7298 2877 _ 475
1440 1440 1440 1440 1440 1440

Beispielsweise ist
Yn+1 = Yn + %(&fn _fn—l)
das Adams-Bashforth-Verfahren fiir & = 2.
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Die Verfahren von Adams-Bashforth und Adams-Moulton

Koeffizienten fiir Adams-Moulton-Verfahren:

2
1 T
L 3 3
5 8 1
2 3 13 —13
3| o9 19 5 1
24 24 24 24
4| 20 61 264 106 _ 10
720 720 720 720 720
5 | 475 1427 798 482 173 27
1440 1440 1440 1440 1440 1440
6 19087 65112 _ 46461 37504 _ 20211 6312 _ 863
60480 60480 60480 60480 60480 60480 60480

Beispielsweise ist

h
Yn+1 = Yn + §(fn+1 + fn) (Trapezregel)
das Adams-Moulton-Verfahren fiir £ = 1 und

h
Yn+1 = Yn + E(5fn+1 + an - fn—l)
das fiir k = 2.
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Die Verfahren von Nystrém und Milne-Simpson

Natirlich kann man auch in

tntk

ywa=j Ft () dt

tntk—e

tntk
yuMw—ymHF0=f

tntk—re

(¢ =1,2,...) den Integrand durch ein Interpolationspolynom ersetzen, um lineare
Mehrschrittverfahren zu konstruieren. (Fiir £ = 1 ergeben sich die Adams-Formeln.)
Fiir £ = 2 erhalt man so die expliziten Nystrom-Verfahren, z.B. die Mittelpunktsregel

Ynt2 — Yn = 2hfn+1,

bzw. die impliziten Milne-Simpson-Verfahren, wie etwa die Simpson-Regel

Yn+2 — Yn = % <.fn+2 + 4fn+1 + fn) .
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Adams-Bashforth

Integration

Interpolation

n+k-2 n+k-1 n+k

Nystroem

Integration

Interpolation

n+k-2 n+k-1 n+k

Oliver Ernst (Numerische Mathematik)

Interpolation und Integration bei den Adams-artigen LMV

ODE

Adams-Moulton

Integration

Interpolation

n+k-2 n+k-1 n+k

Milne-Simpson

Integration

Interpolation

n+k-2 n+k-1 n+k
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Pradiktor-Korrektor-Verfahren

Lost man ein AWP durch ein implizites Mehrschrittverfahren, so muss in jedem
Zeitschritt ein Gleichungssystem der Form

Yn+k = hﬂkf(trH—kv yn+k) + c

(vgl. Abschnitt 1) gelost werden. Ist h|S;|L < 1, so konvergiert die Fixpunktitera-
tion
v v—1
yijk:hﬁkf(tn+k,y,(t+k))+c v=12...
gegen die (eindeutige) Losung. Einen Startwert yr(ﬂr)k kann man mit einem expliziten
Verfahren berechnen. Man verwendet dazu ein Verfahren gleicher Ordnung.
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Pradiktor-Korrektor-Verfahren

Kombiniert man etwa die (k + 1)-te Adams-Bashforth-Formel (Pradiktor) mit der
k-ten Adams-Moulton-Formel (Korrektor), so liest sich ein Zeitschritt des resultie-
renden Pradiktor-Korrektor-Verfahrens wie folgt:

(P) yr(ﬁy)l Yn + hzj =0 BkJrl,]fn g
Forv=0,1,2,...
fn+1 = f( n+1, yy(lj.)1),
K): (v+1) _ h (V) h
(K): i1’ = Yo + W35Sy + Z] 1 B jFnv1-j-

Man bricht die Iteration (K) ab, wenn Hyfbﬁl) — T(Lljr)l .geniigend klein" ist.
Dann setzt man y,41 = yfl':;l und (fiir weitere Zeitschritte) f,41 = foi)l (oder

alternativ: fr41 = f(tnt1, yﬁ”ﬁll)))
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Pradiktor-Korrektor-Verfahren

e In der Praxis kann man so nur selten vorgehen, da véllig unklar ist, wie viele
Schritte von (K) durchgefiihrt werden miissen, um das Abbruchkriterium zu
erfiillen. Stattdessen wird man nur eine feste (kleine) Zahl i von diesen
Iterationsschritten durchfiihren.

e Bezeichnen p bzw. p* die Konsistenzordnungen von Pradiktor und Korrektor
(in unserem Beispiel p = p* = k), dann ist die Konsistenzordnung des
zusammengesetzten Verfahrens gleich der des Korrektors, wenn p > p* oder

uw>p* —p gilt.
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Lineare Mehrschrittverfahren

Absolute Stabilitat, einfiihrendes Beispiel

Der Begriff absolute Stabilitat befasst sich anstelle der Stabilitat eines Verfahrens
im Grenzwert h — 0, mit dessen Verhalten fiir lange Integrationsintervalle bei fester
Schrittweite h > 0.

Qualitativ: wie klein muss man bei gegebener AWA und gegebenem Verfahren die
Schrittweite wahlen, damit die numerische Approximation der Lésung sich zumin-
dest qualitativ richtig verhalt.

Beispiel 1: Fiir die AWA
y'(t) = —sint,  y(0) =1 (3.9)

mit Lésung y(t) = cost (und L = 0) betrigt das Residuum R,,;1 des expliziten
Euler-Verfahrens an der Stelle ¢,,

2 2

Rt = Z((ta):h) =~ 3/ (1) + O(0*) = & cost + O(1?),

sodass der globale Fehler fiir t € [t, tend] beschrankt ist durch (vgl. Beweis Satz 2.1)

max |e,| <h max |cost| = h.
d

to<nh<tqd to<t<t.,
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Absolute Stabilitat, einfiihrendes Beispiel

Fiir einen Fehler |e| < 1073 bei der Integration bis teng = 2 miiBte also eine
Schrittweite von h = 1073 ausreichen. Man erhilt fiir N = 2000

yn = —4.166014 - 107, |y(2) — yn| = 4.547667 - 10~ 2.
Beispiel 2: Wir modifizieren obige AWA zu
y'(t) = My — cost) —sint, y(0) =1 (3.10)

mit derselben Ldsung y(t) = cost. Man rufe sich in Erinnerung, dass beim expliziten
Euler-Verfahren der globale Fehler der Rekursion

lent1] < (14 hL)|e,| + O(h?)

geniigt, mit L der Lipschitz-Konstanten der rechten Seite. Fiir A = —10 erhalten
wir nun

yn = —4.170721-107",  |y(2) —yn| = 1.611611-107°.
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Absolute Stabilitat, einfiihrendes Beispiel

Beispiel 3: Wir betrachten obiges Beispiel fiir A
sich

—2100. In diesem Fall ergibt

yn = 1.597768 - 1075, |y(2) — yn| = 1.452516 - 107°.

Verschiedene Schrittweiten fiir dieses AWP liefern

h Fehler bei teng = 2
0.001 1.7¢ + 76
0.000976 3.1e + 36
0.00095 8.6e — 04
0.0008 7.3e — 04
0.0004 3.6e — 04
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Absolute Stabilitat

o Bekanntlich streben die Lésungen y(t) von y’' = Ay, A € R™*™ (konstant)
gegen O fiir t — oo, wenn Re A < 0 fiir alle Eigenwerte A von A gilt.

o Wir suchen Bedingungen an ein numerisches Verfahren (zundchst LMV), so
dass die Naherungsldsungen dasselbe asymptotische Verhalten besitzen.

e Dazu eine Bezeichnung: Seien p und o die charakteristischen Polynome eines
LMV: dann heiBt

Stabilitatspolynom des Verfahrens.
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Lineare Mehrschrittverfahren
Absolute Stabilitat

Lemma 3.13

Es seien {y,} die Naherungen eines linearen k-Schritt-Verfahrens

k k
Z QjYntj = h Z Bifnt; (m=0,1,2,...)

j=0 j=0
zur Lésung von y’ = Ay (inkl. Anfangsbedingungen). Bei festem h gilt
lim |y, =0
n—0o0

genau dann, wenn alle Nullstellen von 7(¢; k) = 7(¢; h)) (als Polynom in ¢
betrachtet) betragsmaRig echt kleiner als 1 sind und zwar fiir jedes A € A(A).
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Absolute Stabilitat

e Das Verfahren heiRt absolut stabil fiir k, wenn alle Nullstellen ¢ von m(-; h)
die Beziehung |¢| < 1 erfiillen.

e Die Menge
Ay = {heC : n(-h) hat nur Nullstellen in |¢| < 1}

heiBt Stabilitdtsgebiet des Verfahrens.
e Das Verfahren heift A-stabil (absolut stabil), wenn %24 die linke Halbebene
{Re( < 0} enthilt.
Bemerkungen.
(1) Fiir jedes konvergente LMV gibt es ein Ay > 0, so dass Z4 N [O,ﬁo] = .
2) |
p(e’?)
o(et?)’

a,%g{i}ec:ﬁ: o<¢><2w}.
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Absolute Stabilitat

. Adams-Bashforth, k=1 . Adams-Bashforth, k=2
08 08
06 06
04 04
02 02
02 -02
04 0.4
-06 0]
08 03|
I 15 -1 05 o 05 " -15 = 05 0 05
Adams-Bashforth, k=3 Adams-Bashforth, k=4
1 1
08 08
06 06
04 04
02 02
02 -02]
04 0.4
-06 0]
-08 -08
I -15 -1 -05 0 05 T -15 -1 05 [} 05
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Absolute Stabilitat

‘Adams-Moulton, k=1 ‘Adams-Moulton, k=2
3 3
2] 2]
1 1
-1 -1
-2 -2
-3 -3
-7 6 -5 -4 -3 -2 -1 [ -7 6 -5 -4 -3 -2 -1 [
Adams-Moulton, k=3 Adams-Moulton, k=4
3] 3]
2] 2]
1 1]
-1 -1
-2 -2
-3 -3
-7 -6 -5 -4 -3 -2 -1 o -7 -6 -5 -4 -3 -2 -1 o

Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2016/17 / 294



Lineare Mehrschrittverfahren

Zweite Dahlquist-Barriere

Ein LMV mit charakteristischen Polynomen p(¢) und o(¢) heilt irreduzibel, falls
p(€) und o(¢) keine gemeinsamen Nullstellen besitzen.

Lemma 3.14

Ist ein lineares Mehrschrittverfahren A-stabil, so gilt

P(Q)
Re L0

Fiir irreduzible LMV gilt auch die Umkehrung, d.h. (3.11) impliziert A-Stabilitt.

>0 fir|¢|>1. (3.11)

y

Satz 3.15 (Dahlquist, 1963)

Fiir die Konsistenzordnung p eines A-stabilen LMV gilt p < 2. Gilt p = 2, so gilt
fiir die Fehlerkonstante des Verfahrens C' < —=. Die Trapezregel ist das einzige
A-stabile LMV mit Fehlerkonstante C' = —iz
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BDF-Verfahren

Idee der BDF-Verfahren (Backward Differentiation Formulas), oder auch Gear-
Verfahren2:

Um eine N&herung fiir y(¢,4+1) zu gewinnen, approximieren wir t — f(t, y(t))
durch das Interpolationspolynom Py € &2 mit den k + 1 Wertepaaren

(tj,f<tj,yj))=(tj,fj>, j=n—k+1,...,n+1.

Es ergibt sich

k k
v (0 = 16 0) 20 = 3 6 (0 ey miv 60 = 222,
= 2

Jetzt approximieren wir y/(t,+1) ~ P (tns1) = Z;LO (%) €5(0)yn+1—; und set-
zen diese Naherung ein in
Plé(tn-ﬁ-l) ~ yl(tn+1) = -f(tn-ﬁ-la yn+1) ~ f(tn-‘rla yn+1> = fn+1

22Charles William Gear, (1935-)
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Lineare Mehrschrittverfahren

BDF-Verfahren

und erhalten die Verfahrensgleichung eines linearen k-Schritt-Verfahrens
k
D U(=(0) Ynsr1—j = hfnga,
j=0

das BDF(k)-Verfahren. In Standardform:

k Z’-(O) h
Ynt1 T A Ynij1 = — a1
o ;%(m A

Nach Konstruktion besitzt es die Konsistenzordnung k.

Satz 3.16 (Stabilitdt von BDF-Verfahren)

Das BDF(k)-Verfahren ist genau dann stabil (und damit konvergent), wenn &k < 6.

Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2016/17 191 / 294



Lineare Mehrschrittverfahren

BDF-Verfahren

Koeffizienten und Fehlerkonstanten der BDF-Verfahren:

k| a6 as ay as o o ag | B | Crsr
1 1 -1 1 —%
4 1 2 2

2 1 -3 3 3 9
18 9 2 6 | 3

3 L =4 T Tir | ot 3
4 { _48 36 _1 3 | 12| 1>
25 % 25 25 | 25 125

5 | 300 300 _200 75 _12 | 60 | _ 10
137 137 37 137 37 | 137 37

6| 1 _se0 450 _a0 225 _ 72 1o | 60 | _20
47 147 147 117 147 147 | 147 343

Fiir k = 1 erhalt man das implizite Euler-Verfahren yp41 = Yn + Af (tnt1s Ynt1)-
BDF-Verfahren zeichnen sich durch ,,groRe” Stabilititsbereiche aus.
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BDF-Verfahren

BDF(1) BDF(2)
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BDF-Verfahren

BDF(3) BDF(4)
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BDF-Verfahren

BDF(5) BDF(6)
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