
Numerik gewöhnlicher Differentialgleichungen

Oliver Ernst

Professur Numerische Mathematik

Wintersemester 2016/17



Inhalt I

1 Einleitung
1.1 Volterras Prinzip
1.2 Begriffe und theoretische Resultate
1.3 Lineare Differenzengleichungen
1.4 Matrixfunktionen
1.5 Systeme linearer Differentialgleichungen erster Ordnung
1.6 Die Fälschungen des Han van Meegeren
1.7 Weitere Beispiele
2 Numerische Methoden für Anfangswertprobleme
2.1 Das Euler-Verfahren
2.2 Eine Sammlung von Beispielverfahren
2.3 Konvergenz, Konsistenz und Stabilität
2.4 Der Hauptsatz
2.5 Einschrittverfahren
2.6 Numerische Experimente
3 Lineare Mehrschrittverfahren
3.1 Begriffe
3.2 Konsistenzordnung linearer Mehrschrittverfahren
Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2016/17 6 / 294



Inhalt II

3.3 Die erste Dahlquist-Barriere
3.4 Die Verfahren von Adams-Bashforth und Adams-Moulton
3.5 Prädiktor-Korrektor-Verfahren
3.6 Absolute Stabilität
3.7 BDF-Verfahren

4 Runge-Kutta-Verfahren
4.1 Konstruktion
4.2 Konsistenzordnung
4.3 Absolute Stabilität
4.4 Eingebettete Runge-Kutta-Verfahren
4.5 Implizite und halb-implizite Verfahren
4.6 Kollokationsmethoden

5 Steife Differentialgleichungen
5.1 Was sind steife Differentialgleichungen?
5.2 Stabilitätsbegriffe
5.3 Ordnungssterne
5.4 Lineare MSV für steife Probleme

Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2016/17 7 / 294



Inhalt III

5.5 RKV für steife Probleme
5.6 Nichtlineare Stabilitätstheorie

6 Ausblick

Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2016/17 8 / 294



Inhalt

1 Einleitung

2 Numerische Methoden für Anfangswertprobleme

3 Lineare Mehrschrittverfahren

4 Runge-Kutta-Verfahren

5 Steife Differentialgleichungen

6 Ausblick

Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2016/17 9 / 294



Inhalt

1 Einleitung
1.1 Volterras Prinzip
1.2 Begriffe und theoretische Resultate
1.3 Lineare Differenzengleichungen
1.4 Matrixfunktionen
1.5 Systeme linearer Differentialgleichungen erster Ordnung
1.6 Die Fälschungen des Han van Meegeren
1.7 Weitere Beispiele

2 Numerische Methoden für Anfangswertprobleme

3 Lineare Mehrschrittverfahren

4 Runge-Kutta-Verfahren

5 Steife Differentialgleichungen

6 Ausblick
Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2016/17 10 / 294



Volterras Prinzip
Umberto d’Anconas Beobachtung

Der Biologe Umberto d’Ancona (1896–1964) stellte 1925 den prozentualen Anteil
der Haie am Gesamtfang (Speisefische und Haie) im Hafen von Triest fest:
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Benachteiligt eingeschränkter Fischfang (1. Weltkrieg) die Speisefische?
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Volterras Prinzip
Volterras Räuber-Beute-Modell

D’Ancona konsultierte den Mathematiker Volterra1, der die Populationsdynamik
wie folgt modellierte: Seien

xptq : Beutepopulation zur Zeit t (Speisefische)
yptq : Räuberpopulation zur Zeit t (Haie).

Ohne Räuber würde sich die Beute nach dem Malthusianischen2 Gesetz

x1ptq “ a xptq pmit einer Konstanten a ą 0q,

vermehren, d.h. der Zuwachs wäre proportional zum Bestand bzw. das Wachstum
wäre exponentiell

xptq “ xp0q exppatq für t ě 0

(eingeschränkt realistisch, falls Population nicht sehr dicht und ausreichend Nahrung
vorhanden ist).

1Vito Volterra (1860–1940)
2Thomas Malthus (1766–1834)
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Volterras Prinzip
Interaktion von Räuber und Beute

Anzahl Räuber-Beute-Kontakte (pro Zeiteinheit):

b xptq yptq pmit einer Konstanten b ą 0q.

Insgesamt: x1ptq “ a xptq ´ b xptq yptq.

Analog: y1ptq “ ´c yptq ` d xptq yptq, mit weiteren Konstanten c, d ą 0.

Wir erhalten ein System zweier GDGen.

Man kann zeigen: dessen Lösungen sind periodisch: d.h. D T ą 0 sodass

xpt` T q “ xptq, ypt` T q “ yptq für alle t.

Mittelwerte: x :“
1

T

ż T

0

xptqdt “
c

d
, y :“

1

T

ż T

0

yptqdt “
a

b
.
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Volterras Prinzip
Zeitlicher Verlauf der Populationen
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Volterras Prinzip
Darstellung in der Phasenebene
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Volterras Prinzip
Auswirkung von Fischfang

Berücksichtige Fischfang:

x1ptq “ a xptq ´ b xptqyptq´e xptq “ pa´eqxptq ´ b xptqyptq,

y1ptq “ ´c yptq ` d xptqyptq´e yptq “ ´pc`eq yptq ` d xptqyptq,
pe ą 0q.

Gleiches System mit neuen Koeffizienten: aÑ a´ e und cÑ c` e.

Mittelwerte:
c` e

d
ą
c

d
(Beute),

a´ e

b
ă
a

b
(Räuber).

Volterras Prinzip: Moderater Fischfang (e ă a) steigert die durchschnittliche
Zahl der Speisefische und reduziert die durchschnittliche Zahl der Haie.
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Volterras Prinzip
Darstellung in der Phasenebene
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Begriffe
Gewöhnliche Differentialgleichung, Ordnung, implizit/explizit

Einen Ausdruck der Form

F
`

t, y, y1, y2, . . . , ypnq
˘

“ 0 (GDG)

mit einer Funktion F : Rn`2 Ą M Ñ R nennen wir eine gewöhnliche Differential-
gleichung (GDG) n-ter Ordnung. Eine Funktion y : R Ą I Ñ R heißt Lösung von
(GDG) über dem Intervall I, wenn y P CnpIq ist und für alle t P I gilt

F
`

t, yptq, y1ptq, y2ptq, . . . , ypnqptq
˘

“ 0.

• (GDG) besitzt die Ordnung n, weil n die Ordnung der höchsten auftretenden
Ableitung ist.

• Sie heißt gewöhnlich, weil nur Ableitungen der gesuchten Funktion y nach
einer Variablen auftreten.

• (GDG) heißt implizit — im Gegensatz zu einer expliziten GDG n-ter
Ordnung, die nach der höchsten Ableitung von y aufgelöst ist:

ypnq “ f
`

t, y, y1, . . . , ypn´1q
˘

.
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Begriffe
Systeme gewöhnlicher Differentialgleichungen

Wir werden fast ausschließlich Systeme von expliziten GDGen erster Ordnung be-
trachten (warum wir uns auf Systeme erster Ordnung beschränken können, wird
später erklärt):

y11 “ f1pt, y1, y2, . . . , ynq

y12 “ f2pt, y1, y2, . . . , ynq

... “
...

y1n “ fnpt, y1, y2, . . . , ynq

(DG)

mit den n unbekannten Funktionen y1, y2, . . . , yn. Jedes System von n Funktionen

y1 “ y1ptq, . . . , yn “ ynptq P C
1pIq,

das (DG) für alle t P I erfüllt, heißt Lösung von (DG) über I.
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Begriffe
Systeme gewöhnlicher Differentialgleichungen: Beispiel

Das System

y11 “ 1

y12 “ 2y1

besitzt die Lösungen

y1ptq “ t` α, y2ptq “ t2 ` 2αt` β pα, β P Rq

über p´8,8q.

Für eine eindeutige Lösung: Anfangsbedingungen, z.B.

y1p0q “ 1, y2p0q “ 2.

Dann ist
y1ptq “ t` 1, y2ptq “ t2 ` 2t` 2

die einzige Lösung.

Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2016/17 21 / 294



Begriffe
Vektorschreibweise

Allgemein: Die Aufgabenstellung, eine Lösung von (DG) zu finden, die die An-
fangsbedingung

y1pt0q “ y0,1, . . . , ynpt0q “ y0,n (AB)

erfüllt, heißt Anfangswertproblem (AWP) oder Anfangswertaufgabe für die gewöhn-
liche Differentialgleichung (DG).

Mit der Vektornotation

y :“

»

—

–

y1
...
yn

fi

ffi

fl

, f :“

»

—

–

f1
...
fn

fi

ffi

fl

, y0 :“

»

—

–

y0,1
...

y0,n

fi

ffi

fl

,

ergibt sich die Kurzschreibweise

y 1 “ f pt,yq, (DG’)
ypt0q “ y0. (AB’)
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Begriffe
Reduktion auf erste Ordnung

Bemerkung. GDGen höherer Ordnung lassen sich in (äquivalente) Systeme von
GDGen erster Ordnung umschreiben:
Aus

y3 ` 3y2 ` y1 “ sinptq

wird etwa
»

–

y11
y12
y13

fi

fl “

»

–

y2
y3

´3y3 ´ y2 ` sinptq

fi

fl

mit den neuen Variablen

y1 “ y, y2 “ y11 “ y1, y3 “ y12 “ y2.
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Begriffe
Äquivalentes autonomes System

Die explizite Abhängigkeit der rechten Seite von der unabhängigen Variable (hier
t) kann durch Hinzunahme einer zusätzlichen Gleichung bzw. Komponente des Lö-
sungsfunktionsvektors y beseitigt werden:

y4ptq “ t pd.h. y14ptq ” 1q, y4pt0q “ t0.

Im obigen Beispiel resultiert dies in der autonomen Differentialgleichung y 1 “ f pyq,
oder genauer:

y 1ptq “ f pyptqq, f pyq “

»

—

—

–

y2
y3

´3y3 ´ y2 ` sinpy4q
1

fi

ffi

ffi

fl

.
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Theoretische Grundlagen
Existenz und Eindeutigkeit der Lösung

Satz 1.1 (Picard-Lindelöf)

Gegeben ist die Anfangswertaufgabe

y 1 “ f pt,yq, ypt0q “ y0. (AWP)

Die rechte Seite f sei stetig im ‘Quader’

Q :“ tpt,yq : |t´ t0| ď a, }y ´ y0} ď bu, Q Ă Rn`1,

und es sei M :“ maxt}f pt,yq} : pt,yq P Qu.
Außerdem erfülle f in Q die Lipschitz-Bedingung

}f pt,yq ´ f pt, ỹq} ď L}y ´ ỹ} @ pt,yq, pt, ỹq P Q. (Lip)

Dann besitzt das Problem (AWP) genau eine Lösung über I :“ rt0 ´ α, t0 ` αs,
wobei α “ minta, b{Mu.

Emile Picard (1856–1941), Ernst Lindelöf (1870–1946), Rufolf Lipschitz (1832–1903).
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Theoretische Grundlagen
Existenz und Eindeutigkeit der Lösung

Bemerkungen.

(1) In der gesamten Vorlesung wird vorausgesetzt, dass die fundamentale
Bedingung (Lip) erfüllt ist.

(2) (AWP) besitzt in rt0 ´ a, t0 ` as eine eindeutige Lösung, wenn f die
Bedingung (Lip) in Q̃ “ tpt,yq : |t´ t0| ď a, }y} ă 8u erfüllt.

(3) Ist f auf Q bez. y stetig differenzierbar und bezeichnet fy “ rBfi{Byjs1ďi,jďn
die zugehörige Jacobi-Matrix, dann folgt aus dem Mittelwertsatz, dass die
Voraussetzungen von Satz 1.1 mit

L “ sup
pt,yqPQ

}fy pt,yq} ă 8

erfüllt sind.
(4) (AWP) besitzt auch dann noch Lösungen, wenn f nur als stetig auf Q

vorausgesetzt wird (Existenzsatz von Peano3). Deren Eindeutigkeit ist aber
nicht mehr gesichert.

3Giuseppe Peano (1858–1932)
Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2016/17 26 / 294

http://www-history.mcs.st-and.ac.uk/Biographies/Peano.html


Theoretische Grundlagen
Existenz- und Eindeutigkeit der Lösung: Beispiel

Beispiel:
y1 “ fpt, yq “

?
y, yp0q “ 0, Q “ Rˆ r0,8q,

mit den Lösungen

yλptq “

#

0, 0 ď t ď λ,

pt´ λq2{4, t ě λ,
pλ ě 0q.
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Theoretische Grundlagen
Stetige Abhängigkeit von den Daten

Satz 1.2

Die Anfangswertaufgabe

y 1 “ f pt,yq, ypt0q “ y0,

erfülle die Voraussetzungen von Satz 1.1. Über eine weitere Anfangswertaufgabe

y 1 “ f̃ pt,yq, ypt0q “ ỹ0,

setzen wir nur voraus, dass f̃ stetig in Q ist. Sind dann y und ỹ Lösungen dieser
Anfangswertaufgaben über dem Intervall I und gilt

}y0 ´ ỹ0} ď γ sowie }f pt,yq ´ f̃ pt,yq} ď δ @ pt,yq P Q,

so folgt für t P I

}yptq ´ ỹptq} ď γ eLpt´t0q `
δ

L

´

eLpt´t0q ´ 1
¯

.

(vgl. [Heuser, Satz 13.1])
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Lineare Differenzengleichungen
Bezeichnungen

Eine wichtige Rolle werden lineare Differenzengleichungen

yn`k ` αk´1yn`k´1 ` ¨ ¨ ¨ ` α0yn “ βn`k pn “ 0, 1, 2, . . . q (DzG)

spielen.

• Genauer spricht man hier von einer linearen Differenzengleichung der
Ordnung k mit konstanten Koeffizienten (die α’s hängen nicht von n ab).
(O.B.d.A. sei α0 ‰ 0).

• Die Gleichung heißt homogen, wenn βn`k “ 0 für alle n, andernfalls
inhomogen.

• Jede Folge tynun, die (DzG) erfüllt, heißt eine Lösung von (DzG).
• Gibt man sich k Startwerte y0, y1, . . . , yk´1 (beliebig) vor, kann man sich
mit (DzG) rekursiv eine solche Lösung berechnen.
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Lineare Differenzengleichungen
Lösungsstruktur, homogene Gleichung

Lemma 1.3

Die Lösungsmenge einer homogenen linearen Differenzengleichung der Ordnung k
ist ein Vektorraum der Dimension k.
Besitzt die Differenzengleichung darüber hinaus konstante Koeffizienten, so kann
man eine Basis dieses Lösungsraums mit Hilfe der Nullstellen des zugehörigen
charakteristischen Polynoms

pkpζq “ ζk ` αk´1ζ
k´1 ` ¨ ¨ ¨ ` α1ζ ` α0

angeben: Bezeichnen λj (1 ď j ď `) die Nullstellen von p (mit Vielfachheiten mj ,
ř`
j“1mj “ k), so bilden die k Folgen

pλnj qn, pnλ
n´1
j qn, . . . , pnpn´ 1q . . . pn´mj ` 2qλ

n´mj`1
j qn pj “ 1, 2, . . . , `q

eine solche Basis.
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Lineare Differenzengleichungen
Beschränkte Lösungen

Lemma 1.4

Für die homogene Differenzengleichung

yn`k ` αk´1yn`k´1 ` ¨ ¨ ¨ ` α0yn “ 0 pn “ 0, 1, 2, . . . q (˚)

sind die folgenden drei Aussagen äquivalent :
(1) Jede Lösung tynun von (˚) ist beschränkt.
(2) Für jede Lösung tynun von (˚) ist tyn{nun eine Nullfolge.
(3) Das zugehörige charakteristische Polynom p erfüllt die sogenannte

Stabilitätsbedingung:

ppλq “ 0 ñ |λ| ď 1,

ppλq “ 0 und |λ| “ 1 ñ λ ist einfach.
(Stab)
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Lineare Differenzengleichungen
Eine rekursive Abschätzung

Lemma 1.5

Es gebe Konstanten M,K ě 0, so dass die ersten Glieder der Vektorfolge pynqn
die Ungleichung

}yn`1} ď K}yn} `M pn “ 0, 1, . . . , n0q

erfüllen. Dann gilt die Abschätzung

}yn`1} ď Kn`1}y0} `

$

’

&

’

%

M
Kn`1 ´ 1

K ´ 1
, für K ‰ 1,

pn` 1qM, für K “ 1,

pn “ 0, 1, . . . , n0q.

(} ¨ } bezeichnet eine beliebige Norm.)
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Lineare Differenzengleichungen
Lösung der inhomogenen Gleichung

Gesucht ist eine explizite Darstellung der Lösung pznqn der inhomogenen Differen-
zengleichung

yn`k ` αk´1yn`k´1 ` ¨ ¨ ¨ ` α1yn`1 ` α0yn “ βn`k, n P N0,

die die k Anfangsbedingungen zn “ yn (n “ 0, 1, . . . , k ´ 1) erfüllt.
Antwort: Bezeichnen pypjqn qn, j “ 0, 1, . . . , k ´ 1, die Lösungen der homogenen
Gleichung

yn`k ` αk´1yn`k´1 ` ¨ ¨ ¨ ` α1yn`1 ` α0yn “ 0 pn “ 0, 1, . . .q,

die die Anfangsbedingungen ypjqn “ δn,j (Kronecker-Symbol) (n, j “ 0, 1, . . . , k´1)
erfüllen, so ist

zn “
k´1
ÿ

j“0

yjy
pjq
n `

n´k
ÿ

j“0

βj`ky
pk´1q
n´j´1 pn “ 0, 1, . . .q,

wobei βn`k “ 0 und ypk´1q
n “ 0 für n ă 0 gesetzt wird.
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Matrixfunktionen

In diesem Abschnitt sei A P Cnˆn stets eine quadratische Matrix.
Außerdem sei eine Funktion

f : D Ñ C, D Ă C,

gegeben. Wir klären hier, wann und wie die Matrix

fpAq P Cnˆn

definiert ist, und wiederholen einige ihrer Eigenschaften. Im Zusammenhang mit
GDGen von Interesse ist besonders exppAq, die Exponentialfunktion angewandt auf
A.

Für einige elementare Funktionen f ist fpAq kanonisch gegeben. Ist z.B. f P Pm

ein Polynom vom Grad m,

fpλq “ α0 ` α1λ` α2λ
2 ` ¨ ¨ ¨ ` αmλ

m pαj P C, j “ 0, 1, . . . ,mq,

so ist
fpAq “ α0I ` α1A` α2A

2 ` ¨ ¨ ¨ ` αmA
m P Cnˆn.
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Matrixfunktionen
Eigenschaften von fpAq für Polynome f

Lemma 1.6

Sei f P Pm.
(a) Hat A “ diagpA1,1, A2,2, . . . , Ak,kq Blockdiagonalstruktur mit quadratischen

Diagonalblöcken

Aj,j P Cnjˆnj , pj “ 1, 2, . . . , kq, n1 ` n2 ` ¨ ¨ ¨ ` nk “ n,

dann gilt
fpAq “ diagpfpA1,1q, fpA2,2q, . . . , fpAk,kqq.

(b) Ist T P Cnˆn invertierbar und B :“ TAT´1, dann gilt

fpBq “ TfpAqT´1.

(c) Ist λ ein Eigenwert von A mit zugehörigem Eigenvektor v , so ist fpλq ein
Eigenwert von fpAq mit zugehörigem Eigenvektor v :

Av “ λv ùñ fpAqv “ fpλqv .
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Matrixfunktionen
Beispiel: Potenzen eines Jordan-Blocks

Wir bestimmen mkpJq für das k-te Monom mkpλq “ λk und einen Jordan-Block4

J “ Jpλq “

»

—

—

—

—

—

–

λ 1
λ 1

. . . . . .
λ 1

λ

fi

ffi

ffi

ffi

ffi

ffi

fl

P Cnˆn.

Eine elementare Rechnung zeigt, dass mkpJq “ Jk eine obere Dreiecksmatrix mit
Toeplitz-Struktur5 ist. Der Eintrag in der j-ten Diagonale ist

ˆ

k

j

˙

λk´j “
kpk ´ 1q ¨ ¨ ¨ pk ´ j ` 1qλk´j

j!
“
m
pjq
k pλq

j!
pj “ 0, 1, . . . , n´ 1q.

4Camille Jordan (1838–1922)
5Otto Toeplitz (1881–1940)
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Matrixfunktionen
Beispiel: Potenzen eines Jordan-Blocks

Mit anderen Worten:

mkpJq “ Jk “

»

—

—

—

—

—

—

—

—

—

–

mkpλq m1kpλq ¨ ¨ ¨
m
pn´2q
k pλq

pn´2q!

m
pn´1q
k pλq

pn´1q!

mkpλq ¨ ¨ ¨
m
pn´3q
k pλq

pn´3q!

m
pn´2q
k pλq

pn´2q!

. . .
...

...
mkpλq m1kpλq

mkpλq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Jetzt sind wir in der Lage, fpAq für beliebiges f zu definieren: Sei dazu JA “

diagpJ1, J2, . . . , Jkq die Jordansche Normalform von A, A “ TJAT
´1. Die ein-

zelnen Jordan-Blöcke Jj “ Jjpλjq seien pnj ˆ njq-Matrizen. Das charakteristische
Polynom cA von A hat dann die Form

cApλq “
k
ź

j“1

pλ´ λjq
nj .
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Matrixfunktionen
Allgemeiner Fall

Wir sagen f ist auf A definiert, wenn f auf einer offenen Menge D definiert ist,
die das Spektrum ΛpAq “ tλ1, . . . , λku von A enthält, und außerdem f in λj
pnj ´ 1q-mal differenzierbar ist.

In diesem Fall setzen wir für j “ 1, 2, . . . , k

fpJjpλjqq :“

»

—

—

—

—

—

—

—

—

–

fpλjq f 1pλjq ¨ ¨ ¨
fpnj´2q

pλjq

pnj´2q!
fpnj´1q

pλjq

pnj´1q!

fpλjq ¨ ¨ ¨
fpnj´3q

pλjq

pnj´3q!
fpnj´2q

pλjq

pnj´2q!

. . .
...

...
fpλjq f 1pλjq

fpλjq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Cnjˆnj

und
fpAq :“ T diag

`

fpJ1q, fpJ2q, . . . , fpJkq
˘

T´1.
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Matrixfunktionen
Allgemeiner Fall

Bemerkungen.
(1) Ist fpλq “ α0 ` α1λ` ¨ ¨ ¨ ` αmλ

m ein Polynom, so gilt für die so definierte
Matrix fpAq: fpAq “ α0I ` α1A` ¨ ¨ ¨ ` αmA

m (natürlich ist ein Polynom
auf jeder Matrix definiert).

(2) Ist f “ p{q eine rationale Funktion mit p P Pm und q P Pk, so ist f genau
dann auf A definiert, wenn kein Eigenwert von A eine Polstelle von f ist. In
diesem Fall gilt fpAq “ ppAqrqpAqs´1 “ rqpAqs´1ppAq.

(3) Alle Aussagen von Lemma 1.6 gelten für jede beliebige Funktion f , wenn nur
f auf A definiert ist.

(4) Ist f analytisch in einer Umgebung von 0 und besitzt dort die Taylor6-Reihe
fpλq “

ř8

j“0 αjλ
j mit Konvergenzradius τ ą 0 (τ “ 8 ist erlaubt), so ist f

auf jeder Matrix A mit Spektralradius ρpAq ă τ definiert und es gilt

fpAq “
8
ÿ

j“0

αjA
j “ lim

mÑ8

m
ÿ

j“0

αjA
j .

6Brook Taylor (1685–1731)
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Matrixfunktionen
Beispiele: Neumannsche Reihe, Exponentialfunktion

Ein bekanntes Beispiel für die letzte Bemerkung ist die Neumannsche Reihe7

pI ´Aq´1 “

8
ÿ

j“0

Aj , falls ρpAq ă 1.

Die Exponentialfunktion einer Matrix A kann z.B. auch durch

exppAq “
8
ÿ

j“0

1

j!
Aj

definiert werden. (Die Reihe konvergiert für jede Matrix A, weil die zugehörige
skalare Reihe einen unendlichen Konvergenzradius besitzt.)
Bei GDGen ist es oft wichtig zu wissen, wie sich expptAq für t Ñ 8 verhält. Die
entscheidende Größe ist die Spektralabszisse αpAq von A:

αpAq :“ maxtRepλq : λ P ΛpAqu.

7Carl Neumann (1832–1925)
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Matrixfunktionen
Asymptotisches Verhalten der Matrix-Exponentialfunktion

Satz 1.7 (Asymptotisches Verhalten von expptAq)
Sei A P Cnˆn.
(a) Es ist limtÑ8 expptAq “ 0 genau dann, wenn αpAq ă 0 gilt.
(b) Wenn αpAq ą 0 ist, so ist expptAq für tÑ8 unbeschränkt.

Ist αpAq “ 0 und jeder Eigenwert λ von A mit Reλ “ αpAq halbeinfach, so
ist expptAq für tÑ8 beschränkt (aber i.A. nicht konvergent).

(c) Es gilt } expptAq} ě expptαpAqq für jede Matrixnorm.
Ist A normal, dann gilt } expptAq}2 “ expptαpAqq.

Für normale Matrizen ist } expptAq}2 also eine streng monoton fallende Funktion
von t ě 0, wenn αpAq ă 0.
Ist A nicht normal, so beobachtet man die üblichen Nichtnormalitätseffekte (voll-
kommen analog zum Verhalten von }Am}2, mÑ8, falls ρpAq ă 1).
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Matrixfunktionen
Asymptotisches verhalten der Matrix-Exponentialfunktion

0 1 2 3 4 5 6 7 8 9 10
10−5

10−4

10−3

10−2

10−1

100

101

102
|| exp(tA) ||, t −−> ∞

[ −1 0
0 −2 ] normal 

[ −1 50
0  −2 ] 

nicht normal 

hump 
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Matrixfunktionen
Auswertung von Matrixfunktionen

Zum Abschluss soll noch ein Algorithmus zur Berechnung von exppAq beschrieben
werden.
Beachte: exppAq “ limmÑ8

řm
j“0A

j{j! ist nur geeignet, wenn ρpAq sehr klein ist;
die Bestimmung von exppAq über die Jordansche Normalform von A ist numerisch
instabil oder zu aufwendig.
Der Algorithmus verwendet rationale Approximationen pk{`qexppζq “ pk,`pζq{qk,`pζq
vom Typ pk, `q (d.h. pk,` P Pk, qk,` P P`) an die Exponentialfunktion, sog. Padé-
Approximationen8. Diese sind eindeutig bestimmt durch die Vorschrift

exppζq ´ pk,`pζq{qk,`pζq “ O
`

ζk```1
˘

für ζ Ñ 0.

Beachte, dass hier die Taylor-Polynome für ` “ 0 als Spezialfall enthalten sind. Man
kann die Padé-Approximationen im Fall der Exponentialfunktion explizit angeben:

pk,`pζq “
k
ÿ

j“0

pk ` `´ jq!k!

pk ` `q!j!pk ´ jq!
ζj , qk,`pζq “

ÿ̀

j“0

pk ` `´ jq!`!

pk ` `q!j!p`´ jq!
ζj .

8Henri Padé (1863–1953)
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Matrixfunktionen
Taylorpolynome der Exponentialfunktion
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Matrixfunktionen
Padé-Approximationen an die Exponentialfunktion
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Matrixfunktionen
Auswertung von Matrixfunktionen

Satz 1.8 (Fehlerformel für Padé-Approximationen)

Für k, ` P N0 und A P Cnˆn gilt

exppAq ´ pk, `qexppAq

“
p´1q`

pk ` `q!
Ak```1rqk,`pAqs

´1

ż 1

0

ukp1´ uq` exppp1´ uqAqdu.

Das bedeutet, dass pk, `qexppAq
• sowohl für k Ñ8 bei festem `,
• als auch für `Ñ8 bei festem k,
• als auch für k Ñ8 bei festem k ´ `

gegen exppAq strebt.

Integrale über Matrizen A “ rai,jpuqs sind komponentenweise definiert:
ż

Apuqdu “

„
ż

ai,jpuqdu



.

Satz 1.8 zeigt, dass auch pk, `qexppAq nur dann eine akzeptable Näherung für exppAq ist,
wenn ρpAq nicht zu groß ist.
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Matrixfunktionen
Auswertung von Matrixfunktionen

Daher verwendet man einen Trick: Kommutieren die Matrizen A, B P Cnˆn, so gilt

exppA`Bq “ exppAq exppBq.

Insbesondere ist also

exppAq “ exppA{mqm für m “ 0, 1, 2, . . .

Das bedeutet, dass
Ek,` :“

“

pk, `qexppA{2
jq
‰2j

eine Approximation an exppAq darstellt, bei der die Padé-Approximation an der
Matrix A{2j ausgewertet wird, deren Spektralradius ρpAq{2j man durch die Wahl
von j steuern kann.
Die Berechnung von Ek,` erfordert j `maxtk, `u Multiplikationen mit A.
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Matrixfunktionen
Auswertung von Matrixfunktionen

Lemma 1.9

Sei }A}8{2j ď 1{2. Dann ist

} exppAq ´ Ek,`}8
} exppAq}8

ď εpk, `q}A}8 exppεpk, `q}A}8q

mit
εpk, `q “ 23´pk``q

k!`!

pk ` `q!pk ` `` 1q!
.

Bei festem d “ maxtk, `u (Arbeitsaufwand zur Berechnung von Ek,`), wird εpk, `q
durch die Wahl k “ ` “ d minimiert.
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Matrixfunktionen
Auswertung von Matrixfunktionen

Algorithmus 1 : Berechnung von exppAq.
Gegeben : A, δ ą 0.

1 j Ð maxt0, 1` floorplog2 }A}8qu.
2 AÐ A{2j .
3 Wähle ` minimal mit εp`, `q ď δ.
4 N Ð I, Z Ð I, X Ð I, cÐ 1.
5 for m “ 1 to ` do
6 cÐ cp`´m` 1q{pp2`´m` 1qmq.
7 X Ð AX; Z Ð Z ` cX; N Ð N ` p´1qmcX.

8 Bestimme LU-Zerlegung von N und löse damit NE “ Z nach E auf.
9 for m “ 1 to j do

10 E Ð EE
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Matrixfunktionen
Auswertung von Matrixfunktionen

• Dieser Algorithmus liefert eine Approximation E « exppAq derart, dass

E “ exppA`∆Aq, wobei }∆A}8 ď δ }A}8.

• Seine Komplexität beträgt etwa 2p`` j ` 1{3qn3 flops, vgl. [Moler & Van
Loan, 2003]9 und [Ward, 1977]10

• Für große dünnbesetzte Matrizen ist unser Algorithmus jedoch ungeeignet (er
verwendet die LU-Zerlegung einer Matrix der Dimension von A).

• Ähnlich wie bei linearen Gleichungssystemen, wo man selten an A´1 sondern
vielmehr an A´1b, b P Cn, interessiert ist, steht auch hier die Berechnung
von exppAqb im Vordergrund. Bei großen dünn besetzten Problemen muss
man auch dazu iterative Verfahren verwenden.

9C.B. Moler und C.F. Van Loan. Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later. SIAM Rev. 45, 3–49 (2003)

10R.C. Ward. Numerical computation of the matrix exponential with accuracy estimate. SIAM
J. Numer. Anal. 14 (4) 600–610 (1977).
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Systeme linearer Differentialgleichungen erster Ordnung

Nur wenige Systeme der Form (DG) bzw. AWPe der Form (AWP) kann man explizit
lösen. Selbst lineare Systeme erster Ordnung,

y11 “ a1,1ptqy1 ` a1,2ptqy2 ` ¨ ¨ ¨ ` a1,nptqyn ` b1ptq,

y12 “ a2,1ptqy1 ` a2,2ptqy2 ` ¨ ¨ ¨ ` a2,nptqyn ` b2ptq,

... “
...

y1n “ an,1ptqy1 ` an,2ptqy2 ` ¨ ¨ ¨ ` an,nptqyn ` bnptq

oder kürzer

y 1 “ Aptqy ` bptq mit Aptq “ rai,jptqs und bptq “ rbjptqs, (Lin)

gehören nur unter weiteren Einschränkungen zu diesen Ausnahmefällen.
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Systeme linearer Differentialgleichungen erster Ordnung
Hinreichende Bedingung für Lösbarkeit

Sind die Funktionen ai,jptq, bjptq stetig über einem Intervall I und ist }Aptq} ď L
für alle t P I (was wir ab jetzt stets voraussetzen), so besitzt (Lin) nach Satz 1.1
für jede Wahl der Anfangsbedingungen

ypt0q “ y0 pt0 P Iq

eine eindeutige Lösung.

Satz 1.10 (Lösungen linearer Systeme erster Ordnung)

Die Lösungen des homogenen Systems

y 1 “ Aptqy

bilden einen n-dimensionalen Unterraum des C1pIq. Die Differenz zweier
Lösungen des inhomogenen Systems

y 1 “ Aptqy ` bptq

löst das zugehörige homogene System.
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Systeme linearer Differentialgleichungen erster Ordnung
Konstante Koeffizienten, homogener Fall

Im Spezialfall konstanter Koeffizienten

ai,jptq “ ai,j für alle t

lassen sich diese Lösungen angeben. Dazu betrachten wir zunächst den homo-
genen Fall, bptq ” 0: Es seien u1,u2, . . . ,un die Einheitsvektoren im Rn. Für
j “ 1, 2, . . . , n löst

xjptq :“ expptAquj

das AWP
y 1 “ Ay , yp0q “ uj .

Darüber hinaus sind die Funktionen x1ptq,x2ptq, . . . ,xnptq linear unabhängig und
bilden deshalb eine Basis des Lösungsraums von y 1 “ Ay .
Schließlich ist die matrixwertige Funktion

X : RÑ Rnˆn, Xptq :“ rx1ptq|x2ptq| . . . |xnptqs

für alle t P R invertierbar und löst das Anfangswertproblem

X 1ptq “ AXptq, Xp0q “ I.
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Systeme linearer Differentialgleichungen erster Ordnung
Konstante Koeffizienten, inhomogener Fall

Um das inhomogene Anfangswertproblem y 1 “ Ay ` bptq (der Einfachheit halber
nehmen wir an, dass die Komponenten bjptq auf ganz R stetig sind), yp0q “ y0,
zu lösen, bedient man sich einer Technik, die unter dem Namen Variation der Kon-
stanten bekannt ist:
Die (eindeutige) Lösung ist gegeben durch

yptq “
n
ÿ

j“1

„
ż t

t0

Wjpsq

W psq
ds` y0,j



xjptq,

mit den Wronski-Determinanten11

W ptq “ det
“

x1ptq x2ptq ¨ ¨ ¨ xnptq
‰

,

Wjptq “ det
“

x1ptq ¨ ¨ ¨ xj´1ptq bptq xj`1ptq ¨ ¨ ¨ xnptq
‰

.

Bemerkung: Lautet die Anfangsbedingung ypt0q “ y0, so müssen anstelle der
Funktionen xj die Funktionen x̃jptq :“ expppt´ t0qAquj verwendet werden.

11Josef Wronski (1778–1853)
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Systeme linearer Differentialgleichungen erster Ordnung
Konstante Koeffizienten, inhomogener Fall

Eine weitere Lösungsdarstellung für inhomogene lineare Systeme mit konstanten
Koeffizienten, ebenfalls unter der Bezeichnung Variation der Konstanten bekannt,
lautet (mit Anfangsbedingung bei t “ t0)

yptq “ expppt´ t0qAqy0 `

ż t

t0

expppt´ τqAq bpτqdτ. (1.1)

Beachte: Diese Formel gilt auch wenn b neben t auch von y abhängt, d.h.

b “ bpt,yptqq.
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Systeme linearer Differentialgleichungen erster Ordnung
Linearisierung

Formel (1.1) gestattet auch die Lösung des linearisierten Problems: linearisiert man
die Differentialgleichung y 1 “ f pt,yq im Punkt pt0,y0q, ergibt sich (multivariate
Taylor-Entwicklung)

f pt,yq « f pt0,y0q
looomooon

“:b

` ftpt0,y0q
looomooon

“:a

pt´ t0q ` fy pt0,y0q
loooomoooon

“:A

py ´ y0q

und, als Approximation in der Nähe des Linearisierungspunktes, das linearisierte
AWP

y 1ptq “ Apy ´ y0q ` pt´ t0qa ` b, ypt0q “ y0. (1.2)

Formel (1.1) liefert als Lösung von (1.2)

yptq “ y0 ` pt´ t0qA
´1a `

ˆ

ept´t0qA ´ I

˙

pA´1b `A´2aq.
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Die Fälschungen des Han van Meegeren
Hintergrund

(vgl. [Braun, 1994])

• Im Mai 1945 entdeckten die Alliierten in der Kunstsammlung Hermann
Görings ein bis dahin unbekanntes Gemälde von Jan Vermeer van Delft
(1632–1675), nämlich „Christus und die Ehebrecherin“.

• Es dauerte nicht lange, bis der Maler Han van Meegeren als derjenige
ermittelt wurde, der (über Mittelsmänner) dieses Bild an Göring verkauft
hatte. Van Meegeren wurde wegen Kollaboration mit dem Feind verhaftet. Er
behauptete daraufhin, dieses Bild sowie vier weitere mutmaßliche Vermeers,
darunter „Christus und die Jünger in Emmaus“, selbst gemalt zu haben.

• Um diese Aussage zu bekräftigen, begann er im Gefängnis „Christus unter
den Schriftgelehrten“ im Stil Vermeers zu malen. Er ging dabei sehr geschickt
vor: Er kratzte von alten, wertlosen Gemälden die Farbe bis auf die Leinwand
ab, vermischte die alte (und äußerst harte) Farbe mit Phenolformaldehyd, um
mit ihr wieder malen zu können. Das fertige Bild wurde in einem Ofen
erhitzt, wobei das Aldehyd zu Bakelit erstarrte.
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Die Fälschungen des Han van Meegeren
Hintergrund

• Noch vor Vollendung seiner Arbeit erfuhr van Meegeren, dass die Anklage auf
Kollaboration fallen gelassen wurde und er stattdessen ein Verfahren wegen
Fälschung zu erwarten hatte. Er weigerte sich daraufhin, die Vermeer-Kopie
zu vollenden.

• Weil u.A. in einigen der angeblichen Vermeers-Bilder Phenolformaldehyd
nachgewiesen werden konnte (eine Substanz, die bis zum Ende des 19.
Jahrhunderts völlig unbekannt war), wurde van Meegeren trotzdem am
12.10.1947 zu einem Jahr Gefängnis wegen Fälschung verurteilt. Er starb
kurz darauf in der Haft.

• Dessen ungeachtet waren viele Experten immer noch der Meinung, dass es
sich bei „Christus und die Jünger in Emmaus“ um einen echten Vermeer
handelt (aufgrund der Expertise eines bekannten Kunsthistorikers erwarb die
Rembrandt-Gesellschaft dieses Werk für 174.000 US-$).

• Der Streit um die Authentizität dieses Gemäldes sollte schließlich 1967 von
einer Forschergruppe an der Carnegie Mellon Universität (Pittsburgh, PA)
entschieden werden.
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Die Fälschungen des Han van Meegeren
Bleiweiß und radioaktiver Zerfall

Deren Analyse basierte auf der Tatsache, dass Künstler seit mehr als 2000 Jah-
ren sog. Bleiweiß (Bleioxyd) verwenden, das kleine Bestandteile an radioaktivem
Blei-210 und Radium-226 enthält. Um die Pittsburgher Analyse zu verstehen, sind
elementare Kenntnisse über radioaktiven Zerfall erforderlich.

• Unter Radioaktivität versteht man den (ohne äußere Beeinflussung
erfolgenden) Zerfall instabiler Atomkerne gewisser radioaktiver Substanzen.

• Für jede radioaktive Substanz gibt es eine charakteristische
Übergangswahrscheinlichkeit λ (Zerfallskonstante), mit der im Mittel ein
Atom pro Zeiteinheit zerfällt. Sind zur Zeit t also Nptq radioaktive Atome
vorhanden, so zerfallen im Zeitintervall rt, t`∆ts durchschnittlich λNptq∆t
Atome.

• Für ∆tÑ 0 erhalten wir das Zerfallsgesetz

N 1ptq “ ´λNptq.
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Die Fälschungen des Han van Meegeren
Halbwertszeit

Die Zahl der nach einer gewissen Zeit ∆t, die seit dem Zeitpunkt t0 verstrichen ist,
noch vorhanden radioaktiven Atome ist deshalb

Npt0 `∆tq “ Npt0q expp´λ∆tq.

Die Halbwertszeit, d.h. die Zeitspanne, innerhalb der die Hälfte einer gegebenen
Menge radioaktiver Atome zerfällt, ergibt sich damit [setze Npt0 ` ∆tq{Npt0q “
1{2] zu

T1{2 “ ∆t “ logp2q{λ.
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Die Fälschungen des Han van Meegeren
Zerfallsreihe Uran-238

Da sich die Zerfallsprodukte radioaktiver Stoffe weiter umwandeln, bis ein stabiles
Endglied gebildet ist, entstehen sog. Zerfallsreihen.

Für uns ist die Zerfallsreihe von Uran-238 relevant12:

Uran-238 4.5¨109a
ÝÑ Thorium-234 24d

ÝÑ Protaktinium-234 1.2min
ÝÑ Uran-234

2.5¨105a
ÝÑ Thorium-230 8¨104a

ÝÑ Radium-226 1.6¨103a
ÝÑ Radon-222

3.8d
ÝÑ Polonium-218 3min

ÝÑ Blei-214 27min
ÝÑ Wismuth-214 20min

ÝÑ Polonium-214
1.5¨10´4s
ÝÑ Blei-210 22a

ÝÑWismuth-210 5d
ÝÑ Polonium-210

140d
ÝÑ Blei-206 (nicht radioaktiv)

12Halbwertszeiten in Jahren [a], Tagen [d], Minuten [min] oder Sekunden [s])
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Die Fälschungen des Han van Meegeren
Radioaktives Gleichgewicht

Innerhalb einer Zerfallsreihe stellt sich für die Zwischensubstanzen im Laufe der Zeit
ein Gleichgewichtszustand ein, das radioaktive Gleichgewicht. Voraussetzung dafür
ist, dass das Ausgangselement so langsam zerfällt, dass seine Menge als konstant
(oder seine Zerfallskonstante als 0) betrachtet werden kann. Um dies zu verdeutli-
chen, werden wir die Zerfallsreihe von Uran-238 etwas ökonomisieren,

Uran-238 4.5¨109a
ÝÑ Radium-226 1.6¨103a

ÝÑ Blei-210 22.4a
ÝÑ Blei-206,

so dass sie nur noch aus vier Elementen besteht. Wir bezeichnen mit N1ptq, N2ptq,
N3ptq die Anzahl der Atome von Uran-238, Radium-226 bzw. Blei-210 zur Zeit t
und berechnen aus den angegebenen Halbwertszeiten die zugehörigen Zerfallskon-
stanten,

λ1 “ 1.54 ¨ 10´10, λ2 “ 4.33 ¨ 10´4, λ3 “ 3.09 ¨ 10´2 (gemessen in a´1).
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Die Fälschungen des Han van Meegeren
Vereinfachtes Zerfallssystem

Zu lösen ist damit das System

N 11ptq “ ´λ1N1ptq,

N 12ptq “ ´λ2N2ptq ` λ1N1ptq,

N 13ptq “ ´λ3N3ptq ` λ2N2ptq,

oder kürzer N 1ptq “ AN ptq (mit Anfangsbedingungen N pt0q “ N0), wobei

A “

»

–

´λ1 0 0
λ1 ´λ2 0
0 λ2 ´λ3

fi

fl .

Wir können die Lösung dieses AWPs explizit angeben:

N ptq “ expptAqN0.
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Die Fälschungen des Han van Meegeren
Radioaktives Gleichgewicht des vereinfachten Zerfallssystems

0 2 4 6
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t [1e4 a]

N
(t)
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λ 
N

(t)
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Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2016/17 68 / 294



Die Fälschungen des Han van Meegeren
Radioaktives Gleichgewicht des vereinfachten Zerfallssystems

t [a] N1ptq N2ptq N3ptq
0 1 ¨ 100 1 ¨ 100 1 ¨ 100

101 1 ¨ 100 1 ¨ 100 7 ¨ 10´1

103 1 ¨ 100 6 ¨ 10´1 9 ¨ 10´3

105 1 ¨ 100 4 ¨ 10´7 9 ¨ 10´9

106 1 ¨ 100 4 ¨ 10´7 5 ¨ 10´9

107 1 ¨ 100 4 ¨ 10´7 5 ¨ 10´9

108 1 ¨ 100 4 ¨ 10´7 5 ¨ 10´9

109 9 ¨ 10´1 3 ¨ 10´7 4 ¨ 10´9

1011 2 ¨ 10´7 7 ¨ 10´14 1 ¨ 10´15

1012 1 ¨ 10´67 5 ¨ 10´74 6 ¨ 10´76
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Die Fälschungen des Han van Meegeren
Gleichgewichtswerte und Halbwertszeiten

Natürlich gilt limtÑ8Njptq “ 0 (j “ 1, 2, 3) (warum?), aber für eine sehr lange
Periode (etwa 105 ď t ď 108) scheint sich ein Gleichgewicht einzustellen. Die
„Gleichgewichtswerte“ sind (ziemlich genau) proportional zu den Halbwertszeiten
bzw. umgekehrt proportional zu den Zerfallskonstanten. Für t “ 107 gilt in unserem
Beispiel

N1ptq{N2ptq “ 2.812499 ¨ ¨ ¨ 106 “ λ2{λ1,

N1ptq{N3ptq “ 2.008927847142 ¨ ¨ ¨ 108 “ λ3{λ1,

N2ptq{N3ptq “ 7.1428571 ¨ ¨ ¨ 101 “ λ3{λ2.

Um diese Phänomene zu untersuchen, diagonalisieren wir A, AT “ TD mit D “

diagp´λ1,´λ2,´λ3q und

T “

»

—

–

1 0 0
λ1

λ2´λ1
1 0

λ1λ2

pλ2´λ1qpλ3´λ1q

λ2

λ3´λ2
1

fi

ffi

fl

.
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Die Fälschungen des Han van Meegeren
Analyse in der Eigenbasis

Dann ergibt sich

N ptq “ expptAqN0 “ T expptDqT´1N0 “ T expptDqÑ0,

wobei wir Ñ0 “ rÑ1, Ñ2, Ñ3s
T :“ T´1N0 gesetzt haben. Entscheidend ist das

Verhalten der einzigen Größe, die von t abhängt, nämlich von

expptDq “

»

–

expp´λ1tq 0 0
0 expp´λ2tq 0
0 0 expp´λ3qt

fi

fl .

Für t P r105, 108s gelten expp´λ1tq P r0.999984 . . . , 1s und expp´λ2tq, expp´λ3tq P
r0, 1.5 . . . 10´19s. In diesem Zeitintervall gilt also

N ptq “ T expptDqÑ0 « T

»

–

1 0 0
0 0 0
0 0 0

fi

fl Ñ0 “

»

—

–

Ñ1
λ1

λ2´λ1
Ñ1

λ1λ2

pλ2´λ1qpλ3´λ1q
Ñ1

fi

ffi

fl

.
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Die Fälschungen des Han van Meegeren
Radioaktives Gleichgewicht in Bleiweiß

Beachtet man noch λ1 ! λ2 ă λ3, so erhält man schließlich für t P r105, 108s

rN1ptq, N2ptq, N3ptqs
T « Ñ1r1, λ1{λ2, λ1{λ3s

T .

Zurück zur Altersbestimmung von Gemälden: Wie bereits erwähnt, enthalten fast
alle Gemälde Bleiweiß und damit die radioaktiven Substanzen Radium-226 und Blei-
210. Bleiweiß wird aus Blei gewonnen, welches wiederum durch Schmelzen von
Bleierz entsteht. Bei diesem Schmelzvorgang werden 90–95% des Radiums und
seiner Tochtersubstanzen mit der Schlacke entfernt, so dass Blei-210 von seinem
Nachschub abgeschnitten ist und sich mit Radium-226 nicht mehr im radioaktiven
Gleichgewicht befindet. Das Blei-210 zerfällt dann sehr schnell (da es eine kurze
Halbwertszeit von T1{2 “ 22a besitzt), bis es mit den Resten von Radium-226
wieder im Gleichgewicht ist (nach ca. 200 Jahren).
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Die Fälschungen des Han van Meegeren
Bleierz/Bleiweiß mit und ohne radioaktives Gleichgewicht
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Die Fälschungen des Han van Meegeren
Hintergrund

Seien jetzt t0 der Zeitpunkt, an dem das Bleiweiß hergestellt wurde, und (wie oben)
N2ptq, N3ptq die Mengen von Radium-226 bzw. Blei-210 (pro g Bleiweiß). Es gilt
N 13ptq “ ´λ3N3ptq ` λ2N2ptq. Da wir uns nur für eine Zeitspanne von 300 Jahren
interessieren und Radium-226 eine Halbwertszeit von T1{2 “ 1600 Jahren besitzt,
können wir annehmen, dass seine Zerfallsrate (Aktivität) ρ2 :“ λ2N2ptq konstant
ist. Die GDG vereinfacht sich zu N 13ptq “ ´λ3N3ptq`ρ2 bzw. zu N 13ptq`λ3N3ptq “
ρ2. Multiplizieren wir mit dem integrierenden Faktor exppλ3tq, so ergibt sich

d
dt rexppλ3tqN3ptqs “ ρ2 exppλ3tq,

was zu

N3ptq “
ρ2
λ3
r1´ expp´λ3pt´ t0qqs `N3pt0q expp´λ3pt´ t0qq (˚)

führt.N3ptq, λ3 und ρ2 sind bekannt (bzw. leicht zu messen). Wüssten wir die Größe
von N3pt0q, könnten wir t´ t0 (und damit das Alter des Gemäldes) bestimmen.
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Die Fälschungen des Han van Meegeren
Hintergrund

Natürlich ist es unmöglich, N3pt0q ohne Kenntnis von t0 zu ermitteln. Wir machen
von der Tatsache Gebrauch, dass N3pt0q, also die Menge an Blei-210 zum Zeitpunkt
der Herstellung des Bleiweißes, ein radioaktives Gleichgewicht mit dem Radium-226
im Bleierz bildete. Lösen wir also (˚) nach der Zerfallsrate λ3N3pt0q von Blei-210
zur Zeit t0 auf,

λ3N3pt0q “ λ3N3ptq exppλ3pt´ t0qq ´ ρ2 rexppλ3pt´ t0qq ´ 1s ,

und nehmen t´ t0 “ 300 a an,

λ3N3pt0q “ λ3Nptq expp300λ3q ´ ρ2 rexpp300λ3q ´ 1s

“ λ3Nptq2
150{11 ´ ρ2

”

2150{11 ´ 1
ı

[expp300λ3q “ expp300 logp2q{T1,2q “ expp300 logp2q{22q “ 2150{11]. Um λ3N3pt0q
zu berechnen, müssen wir die gegenwärtigen Zerfallsraten λ3N3ptq von Blei-210
bzw. ρ2 von Radium-226 bestimmen, was für einige mutmaßliche Bilder Vermeers
geschehen ist.
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Die Fälschungen des Han van Meegeren
Hintergrund

Zerfallsraten˚ von
Pb-210 Ra-226

„Christus und die Jünger in Emmaus“ 8.5 0.80
„Fußwaschung“ 12.6 0.26
„Die Notenleserin“ 10.3 0.30
„Die Mandolinenspielerin“ 8.2 0.17
„Die Spitzenklöpplerin“ 1.5 1.40
„Der Soldat und das lachende Mädchen“ 5.2 6.00

(˚ pro Minute und pro g Bleiweiß)
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Die Fälschungen des Han van Meegeren
Hintergrund
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Die Fälschungen des Han van Meegeren
Hintergrund

Legende:

(1,1) Han van Meegeren, „Christus und die Ehebrecherin“ (1941), ???

(1,2) Han van Meegeren, „Christus und die Jünger in Emmaus“ (1936/37), Museum
Boymans Van Beunningen, Rotterdam

(1,3) Han van Meegeren, „Fußwaschung Christi“ (1941), Rijksmuseum, Amsterdam

(1,4) Han van Meegeren, „Die Notenleserin“ (1935/36), Rijksmuseum, Amsterdam

(2,1) Han van Meegeren, „Die Mandolinenspielerin“ (1935/36), Rijksmuseum, Amsterdam

(2,2) Jan Vermeer, „Die Spitzenklöpplerin“ (ca. 1669/70), Louvre, Paris

(2,3) Jan Vermeer, „Der Soldat und das lachende Mädchen“ (ca. 1658), Frick Collection,
New York

(2,4) Jan Vermeer, „Brieflesendes Mädchen am offenen Fenster“ (ca. 1659),
Gemäldegalerie „Alte Meister“, Dresden

Quellen: http://www.cacr.caltech.edu/ roy/vermeer, http://www.mystudios.com/gallery/han/index.html
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Die Fälschungen des Han van Meegeren
Hintergrund

Für „Christus und die Jünger in Emmaus“ ergibt sich

λ3N3pt0q “ 8.5 ¨ 2150{11 ´ 0.8
”

2150{11 ´ 1
ı

« 98050.

Es bleibt die Frage, ob dies ein akzeptabler Wert für die Zerfallsrate von Blei-210
im radioaktiven Gleichgewicht ist. Man kann nachrechnen, dass, wenn das Blei zur
Zeit der Gewinnung mit einer Zerfallsrate von 100 pro Minute und g Bleiweiß zerfiel,
das Erz, aus dem es stammt, einen Urananteil von 0.014 % hatte. Dies ist eine sehr
hohe Urankonzentration. Andererseits gibt es (seltene) Erze, deren Urangehalt bei
2–3 % liegt. Um sicher zu gehen, nennen wir λ3N3pt0q deshalb unakzeptabel hoch,
wenn

λ3N3pt0q ą 100 ¨ 3{0.014 « 22000

gilt, was bei „Christus und die Jünger in Emmaus“ offenbar der Fall ist (zum Ver-
gleich beträgt der entsprechende Wert bei der „Spitzenklöpplerin“ λ3N3pt0q «
1275).
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Weitere Beispiele
Satellit im Kraftfeld von Erde und Mond

Wir betrachten die Bewegung eines Satelliten im Schwerefeld zweier großer Him-
melskörper (z.B. Erde und Mond).

Annahmen:
• Die Bewegung aller drei Körper findet in einer Ebene statt; die beiden großen
Körper rotieren in konstanter Entfernung und mit konstanter
Winkelgeschwindigkeit um ihren gemeinsamen Schwerpunkt.

• Der Satellit hat somit keinen Einfluss auf die Bahnen von Erde und Mond.

Bezüglich eines mitrotierenden Koordinatensystems (in welchem Erde und Mond
ruhen) mit Ursprung im gemeinsamen Schwerpunkt wird die Satellitenbahn px, yq “
pxptq, yptqq beschrieben durch ein System zweier GDGen:

x2 “ x` 2y1 ´ µ1
x` µ

rpx` µq2 ` y2s3{2
´ µ

x´ µ1

rpx´ µ1q2 ` y2s3{2
,

y2 “ y ´ 2x1 ´ µ1
y

rpx` µq2 ` y2s3{2
´ µ

y

rpx´ µ1q2 ` y2s3{2
.
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Weitere Beispiele
Satellit im Kraftfeld von Erde und Mond

• µ “ 1{82.45 bezeichnet den Anteil der Mondmasse an der Gesamtmasse von
Erde und Mond, µ1 “ 1´ µ die der Erde.

• Als Längeneinheit wählen wir die Erde-Mond-Entfernung, wobei der Mond auf
der positiven und die Erde auf der negativen reellen Achse platziert werden.

• Die Zeiteinheit ist gegeben durch die Winkelgeschwindigkeit der Rotation,
genauer rotiert der Mond ein Mal um die Erde in 2π Zeiteinheiten.

• Bekannt als restringiertes Dreikörperproblem, da der dritte Körper die ersten
beiden nicht beeinflusst.

• Anfangsbedingung zur Zeit t “ 0:

Satellit in Position pxp0q, yp0qq “ p1.2, 0q

mit Geschwindigkeit px1p0q, y1p0qq “ p0,´1.05q.
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Weitere Beispiele
Satellit im Kraftfeld von Erde und Mond

Umschreiben in System erster Ordnung:

y1 “ x, y2 “ y, y3 “ x1, y4 “ y1,

führt auf

y11 “ y3,

y12 “ y4,

y13 “ y1 ` 2y4 ´ µ
1 y1 ` µ

rpy1 ` µq2 ` y22s
3{2
´ µ

y1 ´ µ
1

rpy1 ´ µ1q2 ` y22s
3{2
,

y14 “ y2 ´ 2y3 ´ µ
1 y2
rpy1 ` µq2 ` y22s

3{2
´ µ

y2
rpy1 ´ µ1q2 ` y22s

3{2
,

mit Anfangsbedingungen

y1p0q “ 1.2, y2p0q “ y3p0q “ 0 and y4p0q “ ´1.05.

Lösung pxptq, yptqq “ py1ptq, y2ptqq: geschlossene Bahn mir Periode T « 6.19.
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Weitere Beispiele
Satellit im Kraftfeld von Erde und Mond
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Weitere Beispiele
Satellit im Kraftfeld von Erde und Mond
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Weitere Beispiele
Kinetik chemischer Reaktionsmechanismen

Drei Spezies S, T und U nehmen Teil an der autokatalytischen Reaktion

S
k1
ÝÑ T, T ` U

k2
ÝÑ S ` U, 2T

k3
ÝÑ T ` U.

Zeitlicher Verlauf der Konzentrationen y1 “ rSs, y2 “ rT s, y3 “ rU s beschrieben
durch System GDGen (Massenwirkungsgesetz)

y11 “ ´k1y1 ` k2y2y3,

y12 “ k1y1 ´ k2y2y3 ´ 2k3y
2
2 ` k3y

2
2 “ k1y1 ´ k2y2y3 ´ k3y

2
2 ,

y13 “ k3y
2
2 .

Reaktionsraten kj sind ein Maß für die Geschwindigkeit mit denen die jeweilige
Reaktion sich vollzieht. Sie differieren oft um mehrere Größenordnungen.

k1 “ 0.04, k2 “ 104, k3 “ 3 ¨ 107.
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Weitere Beispiele
Kinetik chemischer Reaktionsmechanismen

Für die Anfangebedingungen y1p0q “ 1; y2p0q “ y3p0q “ 0 erhalten wir:
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Substanz S
Substanz T
Substanz U

Beachte: wegen y11ptq ` y12ptq ` y13ptq “ 0 gilt für alle t ě t0 “ 0, die Erhaltungs-
gleichung

y1ptq ` y2ptq ` y3ptq “ y1p0q ` y2p0q ` y3p0q “ 1.
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Weitere Beispiele
Stabilität dynamischer Systeme

Die Stabilitätsanalyse nichtlinearer dynamischer Systeme

9u “ f puq, up0q “ u0, f : Cn Ñ Cn, (1.3)

geschieht meist durch Linearisierung um den (einen) stationären Zustand

u :“ lim
tÑ8

uptq.

Sofern ein solcher existiert ist er Lösung der Gleichung f puq “ 0.

Das dynamische System (1.3) heißt lokal stabil in u , falls ε ą 0 existiert mit

lim
tÑ8

uptq “ u , sofern }up0q ´ u} ă ε.

In vielen Fällen lässt sich die Frage nach der lokalen Stabilität von (1.3) durch
Analyse der Linearisierung

f puq « f puq `Apu ´ uq, A :“ f 1puq

klären, d.h. durch die Realteile der Eigenwerte von A.
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Weitere Beispiele
Chemische Reaktionskinetik: der Brusselator

Die Belousov-Zhabotinsky-Reaktion ist
ein Beispiel für einen sog. chemischen
Oszillator, bei dem sich zeitliche Os-
zillationen in einem chemischen Reak-
tionsmechanismus zeigen. BZ-Reaktion in einer Petri-Schale,

Wellenfromt in gelb markiert.

Ein mathematisches Modell der BZ-Reaktion ist der sog. Brusselator13, einer Evo-
lutionsgleichung der örtlichen Variation (in einer Raumkoordinate r P p0, 1q) der
Konzentration zweier miteinander reagierender Spezies x und y:

Btx “ D1Brrx`A´ pB ` 1qx` x2y, xp0, tq “ xp1, tq “ A.

Bty “ D2Brry `Bx´ x
2y, yp0, tq “ yp1, tq “

B

A
,

xpr, 0q “ x0prq, ypr, 0q “ y0prq.

13Brussels ` Oszillator, Ilya Prigogine FU Brüssel
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Weitere Beispiele
Chemische Reaktionskinetik: der Brusselator

Ein stationärer Zustand ist gegeben durch

x “ A, y “
B

A
.

Die Jacobi-Matrix an dieser Stelle ist gegeben durch

J “

„

D1Brr `B ´ 1 A2

´B D2Brr ´A
2



,

was nach Ortsdiskretisierung eine große, dünn besetzte Matrix ergibt.

Bifurkationsproblem: Ab welchem Wert von B setzt periodisches Verhalten ein?
Hierbei überqueren zwei konjugiert-komplexe Eigenwerte von J die imaginäre Achse.

(vgl. [Hairer, Norsett & Wanner, 1987, Abschnitt I.16])
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