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Volterras Prinzip

Umberto d'Anconas Beobachtung

Der Biologe Umberto d'Ancona (1896-1964) stellte 1925 den prozentualen Anteil
der Haie am Gesamtfang (Speisefische und Haie) im Hafen von Triest fest:

40

1914 1915 1916 1917 1918 1919 1920 1921

1922 1923

Benachteiligt eingeschrinkter Fischfang (1. Weltkrieg) die Speisefische?
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Volterras Prinzip

Volterras Rauber-Beute-Modell

D'Ancona konsultierte den Mathematiker Volterral, der die Populationsdynamik
wie folgt modellierte: Seien

x(t) : Beutepopulation zur Zeit ¢ (Speisefische)
y(t) : Réuberpopulation zur Zeit t (Haie).

Ohne Riuber wiirde sich die Beute nach dem Malthusianischen? Gesetz
7' (t) = ax(t) (mit einer Konstanten a > 0),

vermehren, d.h. der Zuwachs wére proportional zum Bestand bzw. das Wachstum
wire exponentiell

z(t) = x(0) exp(at) firt>=0

(eingeschrinkt realistisch, falls Population nicht sehr dicht und ausreichend Nahrung
vorhanden ist).

LVito Volterra (1860-1940)
2Thomas Malthus (1766-1834)
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Volterras Prinzip

Interaktion von Rauber und Beute
Anzahl Riuber-Beute-Kontakte (pro Zeiteinheit):
ba(t)y(t) (mit einer Konstanten b > 0).

Insgesamt:

(t) =az(t) —bx(t) y(t).

/
T
Analog: y'(t) = —cy(t) + dz(t)y(t), mit weiteren Konstanten ¢, d > 0.

Wir erhalten ein System zweier GDGen.
Man kann zeigen: dessen Ldsungen sind periodisch: d.h. 3 7" > 0 sodass

z(t+T)==z(t), yit+T)=y) fiir alle t.

Mittelwerte: T:=
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Volterras Prinzip

Zeitlicher Verlauf der Populationen

c/d

a/b
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Volterras Prinzip

Darstellung in der Phasenebene

Raeuber

albr---
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Volterras Prinzip

Auswirkung von Fischfang

Beriicksichtige Fischfang:

"(t) = ax(t) = bx(t)y(t)—ex(l) —( e)x(t) — ba(t)y(t),

x
(e > 0).
y'(t) = —cy(t) +da()y(t)—ey(t) = —(cte)y(t) +dz(t)y(t),
Gleiches System mit neuen Koeffizienten: @ — a —e und ¢ — ¢ + e.
. cte c a—e a .
Mittelwerte: T g (Beute), <3 (Rauber).

Volterras Prinzip: Moderater Fischfang (e < a) steigert die durchschnittliche
Zahl der Speisefische und reduziert die durchschnittliche Zahl der Haie. J
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Volterras Prinzip

Darstellung in der Phasenebene

— ohne Fischfang
— mit Fischfang

Raeuber

albr -

(a-e)/br -
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Begriffe

Gewdhnliche Differentialgleichung, Ordnung, implizit/explizit

Einen Ausdruck der Form
Fty,y.y",...,y") =0 (GDG)

mit einer Funktion I : R"*2 5 M — R nennen wir eine gewdhnliche Differential-
gleichung (GDG) n-ter Ordnung. Eine Funktion y : R > I — R heift Losung von
(GDG) iiber dem Intervall I, wenn y € C™(I) ist und fiir alle ¢ € I gilt

F(ty),y't),y"(1),....y"(t)) = 0.

e (GDG) besitzt die Ordnung n, weil n die Ordnung der hdchsten auftretenden
Ableitung ist.

e Sie heilt gewohnlich, weil nur Ableitungen der gesuchten Funktion y nach
einer Variablen auftreten.

e (GDG) heiBt implizit — im Gegensatz zu einer expliziten GDG n-ter
Ordnung, die nach der hochsten Ableitung von y aufgeldst ist:

y(n) = f(t7 Y, ylv ce ay(nil))'
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Begriffe

Systeme gewdhnlicher Differentialgleichungen

Wir werden fast ausschlieBlich Systeme von expliziten GDGen erster Ordnung be-
trachten (warum wir uns auf Systeme erster Ordnung beschrinken kénnen, wird
spater erklart):

yll = fl(t7y17y2a"'ayn)

/

Yoy = f2(t7ylay2a e 7?Jn)
(DG)

/

Yn = fn(t7 Y1, Y2, - - 7yn)
mit den n unbekannten Funktionen 41,4, ..., y,. Jedes System von n Funktionen
y1 =y1(t), - yn = yn(t) € CT(D),

das (DG) fiir alle ¢ € I erfiillt, heift Losung von (DG) iiber I.
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Begriffe

Systeme gewdhnlicher Differentialgleichungen: Beispiel

Das System

y=1

Ys = 2y1
besitzt die Lésungen

y(t) =t+a, wt)=t>+2at+p (o, B € R)
tiber (—o0, 00).
Fiir eine eindeutige Loésung: Anfangsbedingungen, z.B.
y1(0) =1, 32(0) =2.

Dann ist
y(t) =t +1, yot) =t + 2t +2

die einzige Losung.
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Begriffe

Vektorschreibweise

Aligemein: Die Aufgabenstellung, eine Lésung von (DG) zu finden, die die An-
fangsbedingung

y1(to) = yo,1, -- -5 Yn(to) = Yon (AB)

erfiillt, heift Anfangswertproblem (AWP) oder Anfangswertaufgabe fiir die gewdhn-
liche Differentialgleichung (DG).

Mit der Vektornotation
Y1 fi Yo,1
Yn fn Yo,n
ergibt sich die Kurzschreibweise

y/ = .f(t’ y)7 (DG')
y(to) = vo. (AB')
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Begriffe

Reduktion auf erste Ordnung

Bemerkung. GDGen hdherer Ordnung lassen sich in (dquivalente) Systeme von
GDGen erster Ordnung umschreiben:

Aus
y" +3y" +y = sin(t)
wird etwa
Y Y2
Y | = Y3
yh —3ys — y2 + sin(t)

mit den neuen Variablen

=y v2=v=vy, yp=y,=y"
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Begriffe

Aquivalentes autonomes System

Die explizite Abhingigkeit der rechten Seite von der unabhangigen Variable (hier
t) kann durch Hinzunahme einer zusatzlichen Gleichung bzw. Komponente des L&-
sungsfunktionsvektors y beseitigt werden:

ya(t) =t (dh. yy(t) =1), ya(to) = to-

Im obigen Beispiel resultiert dies in der autonomen Differentialgleichung y’ = f(y),
oder genauer:

Y2
vO=Fu0).  F@ =] 5 G
1
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Theoretische Grundlagen
Existenz und Eindeutigkeit der Losung

Satz 1.1 (Picard-Lindelof)

Gegeben ist die Anfangswertaufgabe

y/ = f(t) y)a y(tO) = Yo- (AWP)
Die rechte Seite f sei stetig im ‘Quader’
Q:={(t,y) : [t—to] <a, |y —w| <b}), QcR",

und es sei M := max{||f (¢, y)|| : (¢, y) € Q}.
AuRerdem erfiille f in @ die Lipschitz-Bedingung

If @t y) =@yl <Lly -3l V() (¢ y)eQ. (Lip)

Dann besitzt das Problem (AWP) genau eine Losung iiber I := [tg — o, to + ],
wobei o = min{a, b/M}.

Emile Picard (1856-1941), Ernst Lindelof (1870-1946), Rufolf Lipschitz (1832-1903).
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Theoretische Grundlagen

Existenz und Eindeutigkeit der Losung

Bemerkungen.

(1) In der gesamten Vorlesung wird vorausgesetzt, dass die fundamentale
Bedingung (Lip) erfiillt ist.

(2) (AWP) besitzt in [to — a,to + a] eine eindeutige Losung, wenn f die
Bedingung (Lip) in @ = {(t,y) : |t —to| < a, |y| < oo} erfilllt.

(3) Ist f auf Q bez. y stetig differenzierbar und bezeichnet f, = [0fi/0y;]i<i j<n
die zugehdrige Jacobi-Matrix, dann folgt aus dem Mittelwertsatz, dass die
Voraussetzungen von Satz 1.1 mit

L= sup [fy(t,y)| <o
(t,y)eQ

erfullt sind.

(4) (AWP) besitzt auch dann noch Lésungen, wenn f nur als stetig auf @
vorausgesetzt wird (Existenzsatz von Peano®). Deren Eindeutigkeit ist aber
nicht mehr gesichert.

3Giuseppe Peano (1858-1932)
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Theoretische Grundlagen

Existenz- und Eindeutigkeit der Ldsung: Beispiel

Beispiel:
Yy =fty) =+vy y0)=0,  Q=Rx][0,x0),

mit den Lésungen

Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2016/17 27 / 294



Theoretische Grundlagen

Stetige Abhangigkeit von den Daten

Satz 1.2

Die Anfangswertaufgabe
¥y =fty), ylto)=1,

erfiille die Voraussetzungen von Satz 1.1. Uber eine weitere Anfangswertaufgabe

yl = f(t7 y>7 y(tO) = Yo,

setzen wir nur voraus, dass f stetig in Q ist. Sind dann y und § Ldsungen dieser
Anfangswertaufgaben iiber dem Intervall I und gilt

lyo — 9ol < v sowie |[f(t,y)—f(t,y)| <d V(ty)eQ,
so folgt fiir t € I
)
AP <~ eLt—t0) Lit—to) _
ly(t) — g <~ve + 7 (e 1).

(vgl. [Heuser, Satz 13.1])
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Lineare Differenzengleichungen

Bezeichnungen

Eine wichtige Rolle werden lineare Differenzengleichungen

Yn+k + O 1Yn+k—1 + -+ aglYn = ﬂn-ﬁ—k (TL = 07 1, 27 e ) (DZG)

spielen.

e Genauer spricht man hier von einer linearen Differenzengleichung der

Ordnung k mit konstanten Koeffizienten (die a's hdngen nicht von n ab).
(O.B.d.A. sei ap # 0).

e Die Gleichung heit homogen, wenn (3, = 0 fiir alle n, andernfalls

inhomogen.
o Jede Folge {yn}n, die (DzG) erfiillt, heift eine Losung von (DzG).
e Gibt man sich k Startwerte yg, y1, ..., yp—1 (beliebig) vor, kann man sich

mit (DzG) rekursiv eine solche L3sung berechnen.
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Lineare Differenzengleichungen

Losungsstruktur, homogene Gleichung

Die Lésungsmenge einer homogenen linearen Differenzengleichung der Ordnung &
ist ein Vektorraum der Dimension k.

Besitzt die Differenzengleichung dariiber hinaus konstante Koeffizienten, so kann
man eine Basis dieses Lésungsraums mit Hilfe der Nullstellen des zugehérigen
charakteristischen Polynoms

pre(Q) = ¢+ ap 1T 4 anC + g
angeben: Bezeichnen \; (1 < j < ¢) die Nullstellen von p (mit Vielfachheiten m,

Z§=1 m; = k), so bilden die k Folgen

ANy (AT Dy ooy (= 1) (= my + DA™, (G =1,2,...,0)

eine solche Basis.
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Lineare Differenzengleichungen

Beschrankte Losungen

Lemma 1.4

Fiir die homogene Differenzengleichung
Yn+k T Ok—1Ynsk—1 + -+ oyn =0 (n=0,1,2,...) (*)

sind die folgenden drei Aussagen aquivalent :
(1) Jede Losung {y,}n von () ist beschrankt.
(2) Fir jede Losung {yn}n von () ist {yn/n}, eine Nullfolge.

(3) Das zugehdrige charakteristische Polynom p erfiillt die sogenannte
Stabilitatsbedingung:

PN =0 = <1,

Stab
p(A) =0und [A] =1 = X\ ist einfach. (Stab)
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Lineare Differenzengleichungen

Eine rekursive Abschatzung

Lemma 1.5

Es gebe Konstanten M, K > 0, so dass die ersten Glieder der Vektorfolge (y, ),
die Ungleichung

Iynsall < Kllyal + M (n=0,1,...,n0)

erfiillen. Dann gilt die Abschatzung

Kntl 1
: M2 " fir K #1,
Hyn+1”<Kn+ HyOH+ K-1 (n=0717"'7n0)'

(n+1)M, fiir K =1,

(| - | bezeichnet eine beliebige Norm.)
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Lineare Differenzengleichungen

Loésung der inhomogenen Gleichung

Gesucht ist eine explizite Darstellung der Lésung (z,), der inhomogenen Differen-
zengleichung

Yn+k T Qk—1Yn+k—1 T+ + A1Ynt1 + Yn = 5n+k7 n € Ny,

die die k& Anfangsbedingungen z, =y, (n =0,1,...,k — 1) erfillt.
Antwort: Bezeichnen (ySL]))n, j=0,1,...,k — 1, die Lésungen der homogenen
Gleichung

Yntk + A 1Ynik—1 + -+ 01Ynt1 + QYn = 0 (n = 0, ]-7 .. ')7

die die Anfangsbedingungen yT(Lj) = 0p,; (Kronecker-Symbol) (n,j = 0,1,...,k—1)

erfiillen, so ist
k—1 n—k .
] -1
Zp = Z vy + Z ﬁj+kyfl_j_)1 (n=0,1,...),
=0 i=0

wobei 5, 1r = 0 und yﬁlk_l) = 0 fiir n < 0 gesetzt wird.
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Matrixfunktionen

In diesem Abschnitt sei A € C"*" stets eine quadratische Matrix.
AuBerdem sei eine Funktion

f:D—C, DcC,
gegeben. Wir klaren hier, wann und wie die Matrix

definiert ist, und wiederholen einige ihrer Eigenschaften. Im Zusammenhang mit

GDGen von Interesse ist besonders exp(A), die Exponentialfunktion angewandt auf
A.

Fiir einige elementare Funktionen f ist f(A) kanonisch gegeben. Ist z.B. f € &,
ein Polynom vom Grad m,

fO) =a0+ A+ aX? + -+ ap ™ (q;eC,j=0,1,...,m),

So ist
f(A)=Oéo[+0(1A+a2A2+_..+amAme(cnxn.
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Matrixfunktionen

Eigenschaften von f(A) fiir Polynome f

Lemma 1.6

Sei f e Z,,.

(a) Hat A = diag(A1,1, A2, ..., Akr) Blockdiagonalstruktur mit quadratischen
Diagonalblocken

Aj’je(C"jX"j, (j=1,2,...,k), ny+ng +- - +ng=n,

dann gilt
f(A) = diag(f(A11), f(A2,2),- -, f(Akk))-
(b) Ist T € C™*™ invertierbar und B := TAT !, dann gilt

F(B) = THAT™,

(c) Ist A ein Eigenwert von A mit zugehorigem Eigenvektor v, so ist f(\) ein
Eigenwert von f(A) mit zugehorigem Eigenvektor v:

Av = \v = f(A)v = f(N)v.

V.
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Matrixfunktionen

Beispiel: Potenzen eines Jordan-Blocks

Wir bestimmen my(J) fiir das k-te Monom my,(\) = A* und einen Jordan-Block*

Al
Al
J=J\) = e Cmm.
Al
A

Eine elementare Rechnung zeigt, dass my(.J) = J* eine obere Dreiecksmatrix mit
Toeplitz-Struktur® ist. Der Eintrag in der j-ten Diagonale ist

i = (Gj=01,....,n—1).

J

4Camille Jordan (1838-1922)
50tto Toeplitz (1881-1940)
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Matrixfunktionen

Beispiel: Potenzen eines Jordan-Blocks

Mit anderen Worten:

(n—2) A (n—1) A 7]

mp(A) mp() e e e
(n=3) (y (n=2) ()

mi(A) - m?n—?))(!) mfn—2)(!)

me(N) mi)
my(A) |

Jetzt sind wir in der Lage, f(A) fiir beliebiges f zu definieren: Sei dazu J4 =
diag(J1, Ja, ..., Ji) die Jordansche Normalform von A, A = TJAsT~!. Die ein-
zelnen Jordan-Blocke J; = J;();) seien (n; x n;)-Matrizen. Das charakteristische
Polynom ¢4 von A hat dann die Form

k
caN) = [ =xy)m.
j=1
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Matrixfunktionen

Allgemeiner Fall

Wir sagen [ ist auf A definiert, wenn f auf einer offenen Menge D definiert ist,
die das Spektrum A(A) = {X\1,..., A} von A enthdlt, und auBerdem f in A;
(n; — 1)-mal differenzierbar ist.

In diesem Fall setzen wir fiir j = 1,2,...,k

(FO0) POy e L LG
(ni=3) (. (nj—=2)(y .
f) - f(rjprg()!]) f(;jfz()lj)
F(J5(A5)) = . : : e Cronm
f(A) '(A)
i f)

und

f(A) =T diag(f(J1), f(Ja), -, F(Jk)) T
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Matrixfunktionen

Allgemeiner Fall

Bemerkungen.

(1) Ist f(A) = ag + a1 A+ -+ 4+ a; A™ ein Polynom, so gilt fiir die so definierte
Matrix f(A): f(A) = aol + a1 A+ -+ + a, A™ (natiirlich ist ein Polynom
auf jeder Matrix definiert).

(2) lIst f = p/q eine rationale Funktion mit p € £, und g € &, so ist f genau
dann auf A definiert, wenn kein Eigenwert von A eine Polstelle von f ist. In
diesem Fall gilt f(A) = p(A)[a(A)]~" = [q(A)] " p(A).

(3) Alle Aussagen von Lemma 1.6 gelten fiir jede beliebige Funktion f, wenn nur
f auf A definiert ist.

(4) lst f analytisch in einer Umgebung von 0 und besitzt dort die Taylor®-Reihe
f) = Z?:o a ;A mit Konvergenzradius 7 > 0 (7 = o ist erlaubt), so ist f
auf jeder Matrix A mit Spektralradius p(A) < 7 definiert und es gilt

0 m
F(A) = D oAl = Tim 3o A7,
Jj=0 Jj=0

%Brook Taylor (1685-1731)
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Matrixfunktionen

Beispiele: Neumannsche Reihe, Exponentialfunktion

Ein bekanntes Beispiel fiir die letzte Bemerkung ist die Neumannsche Reihe’
w .
(I—A)t=> A, falls p(4) < 1.
j=0

Die Exponentialfunktion einer Matrix A kann z.B. auch durch

[e0]
exp(4 Z

definiert werden. (Die Reihe konvergiert fiir jede Matrix A, weil die zugehdrige
skalare Reihe einen unendlichen Konvergenzradius besitzt.)
Bei GDGen ist es oft wichtig zu wissen, wie sich exp(tA) fiir ¢ — oo verhilt. Die
entscheidende GroRe ist die Spektralabszisse a(A4) von A:

bl,_\

a(A) := max{Re(\) : A e A(A)}.

7Carl Neumann (1832-1925)
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Matrixfunktionen
Asymptotisches Verhalten der Matrix-Exponentialfunktion

Satz 1.7 (Asymptotisches Verhalten von exp(tA))
Sei Ae C™*™.

(a) Esist lim; o exp(tA) = 0 genau dann, wenn «(4) < 0 gilt.
(b) Wenn «(A) > 0 ist, so ist exp(tA) fiir ¢ — o0 unbeschrinkt.

Ist «(A) = 0 und jeder Eigenwert A von A mit Re A = a(A) halbeinfach, so
ist exp(tA) fiir ¢ — o0 beschrankt (aber i.A. nicht konvergent).

(c) Es gilt | exp(tA)| = exp(ta(A)) fiir jede Matrixnorm.
Ist A normal, dann gilt | exp(tA)|2 = exp(ta(A)).

Fiir normale Matrizen ist | exp(tA)|2 also eine streng monoton fallende Funktion
von ¢ = 0, wenn «(A4) < 0.

Ist A nicht normal, so beobachtet man die uiblichen Nichtnormalititseffekte (voll-
kommen analog zum Verhalten von ||[A™ |3, m — oo, falls p(4) < 1).
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Matrixfunktionen

Asymptotisches verhalten der Matrix-Exponentialfunktion

[| exp(tA) ||, t —> o0

hump

[—1 50

nicht normal
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Matrixfunktionen

Auswertung von Matrixfunktionen

Zum Abschluss soll noch ein Algorithmus zur Berechnung von exp(A) beschrieben
werden.

Beachte: exp(A) = limy, .o ;- A7/j!ist nur geeignet, wenn p(A) sehr klein ist;
die Bestimmung von exp(A) iiber die Jordansche Normalform von A ist numerisch
instabil oder zu aufwendig.

Der Algorithmus verwendet rationale Approximationen (k/¢)exp(¢) = Pr,e(€)/qr,e(¢)
vom Typ (k,£) (d.h. pxe € P, que € P) an die Exponentialfunktion, sog. Padé-
Approximationen®. Diese sind eindeutig bestimmt durch die Vorschrift

exp(C) — Pre(€)/qr,e(¢) = O (CFHH) fiir ¢ — 0.

Beachte, dass hier die Taylor-Polynome fiir £ = 0 als Spezialfall enthalten sind. Man
kann die Padé-Approximationen im Fall der Exponentialfunktion explizit angeben:

k k+g ])lkl , d k+€—j)‘€'

J
Zk+ 0l j).c’ ar.e(C & (k+ 05— ))!

j.

pke

8Henri Padé (1863-1953)
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Matrixfunktionen

Taylorpolynome der Exponentialfunktion

25
20
15
10
5
0
—exp
-5 —Taylor 1|
—Taylor 2
Taylor 3||
-10 ——Taylor 4
—Taylor 5
_1 5 L L L L L L T
-5 -4 -3 -2 -1 0 1 2 3
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Matrixfunktionen

Padé-Approximationen an die Exponentialfunktion

25
20+
15F
10+
5,
0 -
_5F
—exp
—Pade 1,1 |
~10/| — pade 2,2
Pade 3,3
_15 T Il L L L L L
-5 -4 -3 -2 -1 0 1 2 3

Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2016/17 47 / 294



Matrixfunktionen

Auswertung von Matrixfunktionen

Satz 1.8 (Fehlerformel fiir Padé-Approximationen)

Fir k,¢ € Ng und A € C**™ gilt
exp(A) — (k, O)exp(A)

_1)¢ 1
- (,i +1 )e)! AR g (A f uF(1 — )’ exp((1 — u)4) du.

Das bedeutet, dass (k, £)exp(A)
e sowohl fiir k — oo bei festem ¢,
e als auch fiir £ — o0 bei festem k,
e als auch fiir K — oo bei festem k& — ¢

gegen exp(A) strebt.

Integrale iiber Matrizen A = [a; ;(u)] sind komponentenweise definiert:

JA(u) du — U a5 () du] .

Satz 1.8 zeigt, dass auch (k,{)exp(A) nur dann eine akzeptable Naherung fiir exp(A) ist,
wenn p(A) nicht zu groR ist.
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Matrixfunktionen

Auswertung von Matrixfunktionen

Daher verwendet man einen Trick: Kommutieren die Matrizen A, B € C"*", so gilt
exp(A + B) = exp(A) exp(B).
Insbesondere ist also
exp(A) = exp(4/m)™ firm=0,1,2,...

Das bedeutet, dass ‘
g o= (k) exp(4/20)]

eine Approximation an exp(A) darstellt, bei der die Padé-Approximation an der
Matrix A/27 ausgewertet wird, deren Spektralradius p(A)/27 man durch die Wahl
von j steuern kann.

Die Berechnung von Ej, ; erfordert j + max{k, ¢} Multiplikationen mit A.
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Matrixfunktionen

Auswertung von Matrixfunktionen

Sei |Alx/27 < 1/2. Dann ist

H eXP(A) - Ek,ZHOO
| exp(A)] oo

< e(k, )| Al exp(e(k, £) | Al 0)
mit

k!
(k+OWk+ e+ 1)

Bei festem d = max{k, ¢} (Arbeitsaufwand zur Berechnung von Ej ), wird e(k, ¢)
durch die Wahl k = ¢ = d minimiert.

s(k,ﬂ) _ 23—(k+l)

v
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Matrixfunktionen

Auswertung von Matrixfunktionen

Algorithmus 1 : Berechnung von exp(A).

Gegeben : A, § > 0.
j <« max{0, 1 + floor(log, | Al )}
A— A/27.
Wiahle ¢ minimal mit e(¢,¢) < 6.
N—I 71 X<«1I c«1.
for m =1to /¢ do
c—c(l—m+1)/((20 —m+ 1)m).
LX<—AX; Z<«—Z+cX; NN+ (—1)mX.
Bestimme LU-Zerlegung von N und lése damit NE = Z nach E auf.
9 form=1to jdo
0 | E<FEE

N o s, WN =

©
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Matrixfunktionen

Auswertung von Matrixfunktionen

Dieser Algorithmus liefert eine Approximation E ~ exp(A) derart, dass
E =exp(A+ AA), wobei [[AA|x <d|A]c.

e Seine Komplexitit betrigt etwa 2(¢ + j + 1/3)n? flops, vgl. [Moler & Van
Loan, 2003]° und [Ward, 1977]%°

e Fiir groe diinnbesetzte Matrizen ist unser Algorithmus jedoch ungeeignet (er
verwendet die LU-Zerlegung einer Matrix der Dimension von A).

e Ahnlich wie bei linearen Gleichungssystemen, wo man selten an A~! sondern
vielmehr an A=1'b, b € C", interessiert ist, steht auch hier die Berechnung
von exp(A)b im Vordergrund. Bei groRen diinn besetzten Problemen muss
man auch dazu iterative Verfahren verwenden.

9C.B. Moler und C.F. Van Loan. Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later. SIAM Rev. 45, 3—49 (2003)

10R.C. Ward. Numerical computation of the matrix exponential with accuracy estimate. SIAM
J. Numer. Anal. 14 (4) 600-610 (1977).
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Systeme linearer Differentialgleichungen erster Ordnung

Nur wenige Systeme der Form (DG) bzw. AWPe der Form (AWP) kann man explizit
[6sen. Selbst lineare Systeme erster Ordnung,

Yy =a11(t)yr + ar2(t)y2 + -+ a1,0(O)yn + b1(2),
Yy = az 1 (t)y1 + az2(t)y2 + -+ - + a2 (t)yn + b2(1),

y; = an,l(t)yl + an,Q(t)yQ et an,n(t)yn + by (t)

oder kiirzer
y' = A{t)y +b(t) mit A(t) = [a;;(t)] und b(t) = [b;(t)], (Lin)

gehdren nur unter weiteren Einschrankungen zu diesen Ausnahmefillen.
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Systeme linearer Differentialgleichungen erster Ordnung

Hinreichende Bedingung fiir Ldsbarkeit

Sind die Funktionen a; ;(t), b;(t) stetig tiber einem Intervall I und ist |A(t)| < L
fiir alle ¢ € I (was wir ab jetzt stets voraussetzen), so besitzt (Lin) nach Satz 1.1
fiir jede Wahl der Anfangsbedingungen

y(to) =y  (toel)

eine eindeutige Ldsung.

Satz 1.10 (Losungen linearer Systeme erster Ordnung)

Die Lésungen des homogenen Systems

y' = Alt)y
bilden einen n-dimensionalen Unterraum des C(I). Die Differenz zweier
Losungen des inhomogenen Systems

y = A(t)y + b(t)
|6st das zugehdrige homogene System.

y
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Systeme linearer Differentialgleichungen erster Ordnung

Konstante Koeffizienten, homogener Fall

Im Spezialfall konstanter Koeffizienten
a;j(t) = a;; fiir alle ¢

lassen sich diese Lésungen angeben. Dazu betrachten wir zunichst den homo-
genen Fall, b(t) = 0: Es seien uy, uy, ..., u, die Einheitsvektoren im R™. Fiir
j=1,2,...,nlost
x;(t) ;== exp(tA)u;

das AWP

y' =Ay,  y(0)=u;.
Dariiber hinaus sind die Funktionen x; (t), 22(t), ..., @, (t) linear unabhingig und
bilden deshalb eine Basis des Lésungsraums von y’ = Ay.
Schlieklich ist die matrixwertige Funktion

X :R— R™™" X(t) :=[21(t)|22(t)] . .. |2 (1)]
fiir alle £ € R invertierbar und l6st das Anfangswertproblem
X'(t) = AX(t), X(0)=1.
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Systeme linearer Differentialgleichungen erster Ordnung

Konstante Koeffizienten, inhomogener Fall

Um das inhomogene Anfangswertproblem y’ = Ay + b(¢) (der Einfachheit halber
nehmen wir an, dass die Komponenten b;(t) auf ganz R stetig sind), y(0) = yo,
zu |8sen, bedient man sich einer Technik, die unter dem Namen Variation der Kon-
stanten bekannt ist:

Die (eindeutige) L3sung ist gegeben durch

Zn] [ "t W(s)

y(t) = t W(S) ds + yo’jjl a:j(t),

Jj=1

mit den Wronski-Determinantenl!

Wj (t) = det [xl (t) e ilij_l (t) b(t) :cj+1(t) s Zl:n(t)] .

Bemerkung: Lautet die Anfangsbedingung y(ty) = yo, so miissen anstelle der
Funktionen x; die Funktionen &;(t) := exp((t — t9)A)u; verwendet werden.

11 Josef Wronski (1778-1853)
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Systeme linearer Differentialgleichungen erster Ordnung

Konstante Koeffizienten, inhomogener Fall

Eine weitere Lésungsdarstellung fiir inhomogene lineare Systeme mit konstanten

Koeffizienten, ebenfalls unter der Bezeichnung Variation der Konstanten bekannt,
lautet (mit Anfangsbedingung bei ¢t = t()

t

y(t) = exp((t — to) A)yo + f exp((t — 7)A) b(r) dr. (11)

to
Beachte: Diese Formel gilt auch wenn b neben ¢ auch von y abhingt, d.h.

b= b(t? y(t))
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Systeme linearer Differentialgleichungen erster Ordnung

Linearisierung

Formel (1.1) gestattet auch die Ldsung des linearisierten Problems: linearisiert man

die Differentialgleichung y' = f (¢, y) im Punkt (¢o, yo), ergibt sich (multivariate
Taylor-Entwicklung)

f(t,y) ~ f(to, yo) + fi(to, yo)(t —to) + fy(to, %) (¥ — o)
=:b =:a =:A

und, als Approximation in der Nihe des Linearisierungspunktes, das linearisierte
AWP

y'(t) = A(y —yo) + (t —to)a + b, y(to) = Yo (1.2)
Formel (1.1) liefert als Lésung von (1.2)

y(t) =yo+ (t—to) A "a + (e(t_tO)A — I) (A™'b + A 2a).
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Die Falschungen des Han van Meegeren

Hintergrund

(vgl. [Braun, 1994])

e Im Mai 1945 entdeckten die Alliierten in der Kunstsammlung Hermann
Gorings ein bis dahin unbekanntes Gemalde von Jan Vermeer van Delft
(1632-1675), ndmlich ,,Christus und die Ehebrecherin”.

e Es dauerte nicht lange, bis der Maler Han van Meegeren als derjenige
ermittelt wurde, der (iiber Mittelsmanner) dieses Bild an Goring verkauft
hatte. Van Meegeren wurde wegen Kollaboration mit dem Feind verhaftet. Er
behauptete daraufhin, dieses Bild sowie vier weitere mutmaBliche Vermeers,
darunter ,,Christus und die Jiinger in Emmaus”, selbst gemalt zu haben.

e Um diese Aussage zu bekriftigen, begann er im Geféngnis ,Christus unter
den Schriftgelehrten” im Stil Vermeers zu malen. Er ging dabei sehr geschickt
vor: Er kratzte von alten, wertlosen Gemailden die Farbe bis auf die Leinwand
ab, vermischte die alte (und duBerst harte) Farbe mit Phenolformaldehyd, um
mit ihr wieder malen zu kdnnen. Das fertige Bild wurde in einem Ofen
erhitzt, wobei das Aldehyd zu Bakelit erstarrte.
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Die Falschungen des Han van Meegeren

Hintergrund

e Noch vor Vollendung seiner Arbeit erfuhr van Meegeren, dass die Anklage auf
Kollaboration fallen gelassen wurde und er stattdessen ein Verfahren wegen
Falschung zu erwarten hatte. Er weigerte sich daraufhin, die Vermeer-Kopie
zu vollenden.

e Weil u.A. in einigen der angeblichen Vermeers-Bilder Phenolformaldehyd
nachgewiesen werden konnte (eine Substanz, die bis zum Ende des 19.
Jahrhunderts véllig unbekannt war), wurde van Meegeren trotzdem am
12.10.1947 zu einem Jahr Gefdngnis wegen Falschung verurteilt. Er starb
kurz darauf in der Haft.

e Dessen ungeachtet waren viele Experten immer noch der Meinung, dass es
sich bei ,Christus und die Jiinger in Emmaus” um einen echten Vermeer
handelt (aufgrund der Expertise eines bekannten Kunsthistorikers erwarb die
Rembrandt-Gesellschaft dieses Werk fiir 174.000 US-$).

e Der Streit um die Authentizitat dieses Gemaldes sollte schlieRlich 1967 von
einer Forschergruppe an der Carnegie Mellon Universitat (Pittsburgh, PA)
entschieden werden.
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Die Falschungen des Han van Meegeren

Bleiweil und radioaktiver Zerfall

Deren Analyse basierte auf der Tatsache, dass Kiinstler seit mehr als 2000 Jah-
ren sog. Bleiweif (Bleioxyd) verwenden, das kleine Bestandteile an radioaktivem
Blei-210 und Radium-226 enthilt. Um die Pittsburgher Analyse zu verstehen, sind
elementare Kenntnisse tiber radioaktiven Zerfall erforderlich.

o Unter Radioaktivitdt versteht man den (ohne duRere Beeinflussung
erfolgenden) Zerfall instabiler Atomkerne gewisser radioaktiver Substanzen.

e Fiir jede radioaktive Substanz gibt es eine charakteristische
Ubergangswahrscheinlichkeit A (Zerfallskonstante), mit der im Mittel ein
Atom pro Zeiteinheit zerfallt. Sind zur Zeit ¢ also N(t) radioaktive Atome
vorhanden, so zerfallen im Zeitintervall [t,t + At] durchschnittlich AN (¢) At
Atome.

e Fiir At — 0 erhalten wir das Zerfallsgesetz

N'(t) = =AN(t).
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Die Falschungen des Han van Meegeren

Halbwertszeit

Die Zahl der nach einer gewissen Zeit At, die seit dem Zeitpunkt ty verstrichen ist,
noch vorhanden radioaktiven Atome ist deshalb

N(ty + At) = N(to) exp(—AAL).

Die Halbwertszeit, d.h. die Zeitspanne, innerhalb der die Halfte einer gegebenen
Menge radioaktiver Atome zerfillt, ergibt sich damit [setze N (to + At)/N(tg) =
1/2] zu
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Die Falschungen des Han van Meegeren

Zerfallsreihe Uran-238

Da sich die Zerfallsprodukte radioaktiver Stoffe weiter umwandeln, bis ein stabiles
Endglied gebildet ist, entstehen sog. Zerfallsreihen.

Fiir uns ist die Zerfallsreihe von Uran-238 relevant!?:

Uran-238 31972 Thorium-234 249 Protaktinium-234 2™" Uran-234

23962 Thorium-230 %192 Radium-226 #1%* Radon-222
254 Polonium-218 2™ Blei-214 ™" Wismuth-214 "™ Polonium-214

L5107 B10i 210 223 Wismuth-210 =% Polonium-210

149 BJei-206 (nicht radioaktiv)

12Halbwertszeiten in Jahren [a], Tagen [d], Minuten [min] oder Sekunden [s])
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Die Falschungen des Han van Meegeren

Radioaktives Gleichgewicht

Innerhalb einer Zerfallsreihe stellt sich fiir die Zwischensubstanzen im Laufe der Zeit
ein Gleichgewichtszustand ein, das radioaktive Gleichgewicht. Voraussetzung dafiir
ist, dass das Ausgangselement so langsam zerfillt, dass seine Menge als konstant
(oder seine Zerfallskonstante als 0) betrachtet werden kann. Um dies zu verdeutli-
chen, werden wir die Zerfallsreihe von Uran-238 etwas okonomisieren,

Uran-238 *32%°2 Radium-226 419" Blei-210 2% Blei-206,

so dass sie nur noch aus vier Elementen besteht. Wir bezeichnen mit Ny (t), Nao(t),
N3 (t) die Anzahl der Atome von Uran-238, Radium-226 bzw. Blei-210 zur Zeit ¢
und berechnen aus den angegebenen Halbwertszeiten die zugehorigen Zerfallskon-
stanten,

A =1.54-10719 Xy =4.33-107%, A3 =3.09- 1072 (gemessen in a™ ).
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Die Falschungen des Han van Meegeren

Vereinfachtes Zerfallssystem

Zu l6sen ist damit das System

Ni(t) = =AM (D),
Né(t) _)\QNQ(t) + )\1N1(t),
Nj(t) = —AsN3(t) + A2Na (1),
oder kiirzer N'(t) = AN (¢) (mit Anfangsbedingungen N (¢o) = Np), wobei
-2 0 0
A= A =X O
0 A2 —As

Wir kénnen die Losung dieses AWPs explizit angeben:

N (t) = exp(tA) N,

Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2016/17 67 / 294



Die Falschungen des Han van Meegeren

Radioaktives Gleichgewicht des vereinfachten Zerfallssystems

—&— Uranium-232
—— Radium-226
—=— Blei-210

t[le4 a]

Oliver Ernst (Numerische Mathematik) ODE
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Die Falschungen des Han van Meegeren

Radioaktives Gleichgewicht des vereinfachten Zerfallssystems

tRl [Nt [ Na()) | Ns(D)

0 1-10° 1-100 1-10°

10t | 1-10° 1-10° 7107t
103 | 1-10° 6-1071 | 9.107°3
10° | 1-10° 4.1077 [ 9-107Y
106 | 1-10° 4.1077 | 5-107Y
107 | 1-10° 4.1077 | 5-107Y
108 | 1-10° 4.1077 | 5-107°
109 | 9-107' |3-1077 | 4-107°
101 | 2.1077 | 7-107 | 1.10715
1012 | 1-107%7 | 5-107™ | 6-1076
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Die Falschungen des Han van Meegeren

Gleichgewichtswerte und Halbwertszeiten

Natiirlich gilt lim¢_,, N;(t) = 0 (j = 1,2,3) (warum?), aber fiir eine sehr lange
Periode (etwa 10° < t < 10%) scheint sich ein Gleichgewicht einzustellen. Die
.Gleichgewichtswerte” sind (ziemlich genau) proportional zu den Halbwertszeiten
bzw. umgekehrt proportional zu den Zerfallskonstanten. Fiir t = 107 gilt in unserem
Beispiel

Ni(t)/No(t) = 2.812499 - - - 10° = Xy /Aq,
Ni(t)/N3(t) = 2.008927847142 - - - 10% = A3/\1,
Ny (t)/N3(t) = 7.1428571 - -- 10" = A\3/\o.

Um diese Phanomene zu untersuchen, diagonalisieren wir A, AT = TD mit D =
diag(—A1, —A2, —A3) und

1 0 0
A
T = —1—)\2_>\1 1 0
A1 o

A2
(A2=A1)(Az—=A1)  Az—A2
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Die Falschungen des Han van Meegeren

Analyse in der Eigenbasis

Dann ergibt sich
N(t) = exp(tA)Ny = T exp(tD)T ' Ny = T exp(tD) Ny,

wobei wir Ny = [Nl,NQ,Ng]T := T~ N, gesetzt haben. Entscheidend ist das
Verhalten der einzigen GroRe, die von ¢ abhingt, namlich von

exp(—Ait) 0 0
exp(tD) = 0 exp(—Aat) 0
0 0 exp(—As3)t

Fiirt € [10°, 108] gelten exp(—A1t) € [0.999984 ..., 1] und exp(—Aat), exp(—Ast) €
[0,1.5...10719]. In diesem Zeitintervall gilt also

1 0 0
N(t) = Texp(tD)No~T |0 0 0| No=|  x25M
0 0 O

(>\2—/\1)(/\3—>\1)N1
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Die Falschungen des Han van Meegeren

Radioaktives Gleichgewicht in Bleiweill

Beachtet man noch \; « Ay < A3, so erhilt man schlieBlich fiir t € [10°, 108]
[N1(t), No(t), Na(t)]" ~ Ni[1, A1/X2, A1 /As] T

Zuriick zur Altersbestimmung von Gemalden: Wie bereits erw3hnt, enthalten fast
alle Gemilde Bleiweifl und damit die radioaktiven Substanzen Radium-226 und Blei-
210. Bleiweil wird aus Blei gewonnen, welches wiederum durch Schmelzen von
Bleierz entsteht. Bei diesem Schmelzvorgang werden 90-95% des Radiums und
seiner Tochtersubstanzen mit der Schlacke entfernt, so dass Blei-210 von seinem
Nachschub abgeschnitten ist und sich mit Radium-226 nicht mehr im radioaktiven
Gleichgewicht befindet. Das Blei-210 zerféllt dann sehr schnell (da es eine kurze
Halbwertszeit von 77, = 22a besitzt), bis es mit den Resten von Radium-226
wieder im Gleichgewicht ist (nach ca. 200 Jahren).
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Die Falschungen des Han van Meegeren

Bleierz/Bleiweil mit und ohne radioaktives Gleichgewicht

10° . . . . . 10
— - Radium-226 (Bleierz)
~ - Blei-210 (Bleierz)
—— Radium-226 (Bleiweiss)
10' — Blei-210 (Bleiweiss) R T R T e
iy
—+ - Radium-226 (Bleierz)
N - Blei-210 (Bleierz)
= P \ —— Radium-226 (Bleiweiss)
10k - i 107 e —=— Blei-210 (Bleiwei

107" !
u_
@ 1 -
=

100 150 200 250 300
tlal

10
0 50 100 150 200 250 300 0 50

tla]
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Die Falschungen des Han van Meegeren

Hintergrund

Seien jetzt to der Zeitpunkt, an dem das BleiweiR hergestellt wurde, und (wie oben)
Ns(t), N5(t) die Mengen von Radium-226 bzw. Blei-210 (pro g BleiweiR). Es gilt
Ni(t) = —A3N3(t) + A2Na(t). Da wir uns nur fiir eine Zeitspanne von 300 Jahren
interessieren und Radium-226 eine Halbwertszeit von T;/, = 1600 Jahren besitzt,
kdnnen wir annehmen, dass seine Zerfallsrate (Aktivitdt) ps := A2 Na(t) konstant
ist. Die GDG vereinfacht sich zu N4 (t) = —A3N3(t) + p2 bzw. zu N5 () +A3N3(t) =
p2. Multiplizieren wir mit dem integrierenden Faktor exp(Ast), so ergibt sich

A lexp(Ast)N3(t)] = p2 exp(Ast),

was zu

N3(t) = )p\—z [1 —exp(=As(t —t0))] + N3(to) exp(—As(t —to)) (*)

fiihrt. N3(t), A3 und py sind bekannt (bzw. leicht zu messen). Wiissten wir die GroRe
von N3 (o), kénnten wir t — to (und damit das Alter des Gemildes) bestimmen.
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Die Falschungen des Han van Meegeren

Hintergrund

Natiirlich ist es unméglich, N3(to) ohne Kenntnis von to zu ermitteln. Wir machen
von der Tatsache Gebrauch, dass N3 (), also die Menge an Blei-210 zum Zeitpunkt
der Herstellung des Bleiweifes, ein radioaktives Gleichgewicht mit dem Radium-226
im Bleierz bildete. Ldsen wir also () nach der Zerfallsrate A3 N5(to) von Blei-210
zur Zeit tg auf,

A3N3(to) = A3N3(t) exp(As(t —to)) — p2 [exp(As(t — to)) — 1],
und nehmen t — ty = 300 a an,
>\3N3 (to) = >\3N(t) eXp(300)\3) — P2 [exp(300)\3) — 1]
_ >\3N(t)2150/11 — s [2150/11 . 1]
[exp(300)3) = exp(3001og(2)/T12) = exp(3001log(2)/22) = 215011 Um A3 N3(to)
zu berechnen, miissen wir die gegenwartigen Zerfallsraten A3Ns(t) von Blei-210

bzw. py von Radium-226 bestimmen, was fiir einige mutmaRliche Bilder Vermeers
geschehen ist.
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Die Falschungen des Han van Meegeren

Hintergrund

Zerfallsraten® von

Pb-210 | Ra-226
,Christus und die Jiinger in Emmaus" 8.5 0.80
,FuBwaschung" 12.6 0.26
Die Notenleserin" 10.3 0.30
,Die Mandolinenspielerin" 8.2 0.17
,Die Spitzenkldpplerin® 1.5 1.40
.,Der Soldat und das lachende Madchen" 5.2 6.00

(* pro Minute und pro g BleiweiR)
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Die Falschungen des Han van Meegeren
Hintergrund
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Die Falschungen des Han van Meegeren

Hintergrund

Legende:

(1.1)

Han van Meegeren, ,Christus und die Ehebrecherin” (1941), 777

Han van Meegeren, ,Christus und die Jiinger in Emmaus" (1936/37), Museum
Boymans Van Beunningen, Rotterdam

Han van Meegeren, ,FuBwaschung Christi" (1941), Rijksmuseum, Amsterdam

Han van Meegeren, ,Die Notenleserin” (1935/36), Rijksmuseum, Amsterdam

Han van Meegeren, ,Die Mandolinenspielerin” (1935/36), Rijksmuseum, Amsterdam
Jan Vermeer, ,Die Spitzenkldpplerin” (ca. 1669/70), Louvre, Paris

Jan Vermeer, ,Der Soldat und das lachende Madchen" (ca. 1658), Frick Collection,
New York

Jan Vermeer, ,Brieflesendes Madchen am offenen Fenster” (ca. 1659),
Gemildegalerie , Alte Meister”, Dresden

Quellen: http://www.cacr.caltech.edu/ roy/vermeer, http://www.mystudios.com/gallery/ha
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Die Falschungen des Han van Meegeren

Hintergrund

Fiir ,Christus und die Jiinger in Emmaus” ergibt sich
AsNa(to) = 8.5 - 215011 _ (.8 [2150/11 — 1] ~ 98050.

Es bleibt die Frage, ob dies ein akzeptabler Wert fiir die Zerfallsrate von Blei-210
im radioaktiven Gleichgewicht ist. Man kann nachrechnen, dass, wenn das Blei zur
Zeit der Gewinnung mit einer Zerfallsrate von 100 pro Minute und g Bleiweils zerfiel,
das Erz, aus dem es stammt, einen Urananteil von 0.014 % hatte. Dies ist eine sehr
hohe Urankonzentration. Andererseits gibt es (seltene) Erze, deren Urangehalt bei
2-3 % liegt. Um sicher zu gehen, nennen wir A3 N3(to) deshalb unakzeptabel hoch,
wenn
A3N3(to) > 100 - 3/0.014 ~ 22000

gilt, was bei ,Christus und die Jiinger in Emmaus" offenbar der Fall ist (zum Ver-
gleich betrdgt der entsprechende Wert bei der ,Spitzenklopplerin® A3N5(tg) =~
1275).
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Weitere Beispiele

Satellit im Kraftfeld von Erde und Mond

Wir betrachten die Bewegung eines Satelliten im Schwerefeld zweier groBer Him-
melskérper (z.B. Erde und Mond).

Annahmen:

e Die Bewegung aller drei Korper findet in einer Ebene statt; die beiden groRen
Kérper rotieren in konstanter Entfernung und mit konstanter
Winkelgeschwindigkeit um ihren gemeinsamen Schwerpunkt.

e Der Satellit hat somit keinen Einfluss auf die Bahnen von Erde und Mond.

Beziiglich eines mitrotierenden Koordinatensystems (in welchem Erde und Mond
ruhen) mit Ursprung im gemeinsamen Schwerpunkt wird die Satellitenbahn (z,y) =
(x(t),y(t)) beschrieben durch ein System zweier GDGen:

+ 1 x—

o =ax+ 2 — v - ,

Vol @+ w2+ P2 M — )2 + 2P
Yy Y

"o —21’,— / o )
vy Ma+r 2+ P2 M-+ g2
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Weitere Beispiele

Satellit im Kraftfeld von Erde und Mond

o 11 = 1/82.45 bezeichnet den Anteil der Mondmasse an der Gesamtmasse von
Erde und Mond, p/ = 1 — p die der Erde.

e Als Langeneinheit wihlen wir die Erde-Mond-Entfernung, wobei der Mond auf
der positiven und die Erde auf der negativen reellen Achse platziert werden.

e Die Zeiteinheit ist gegeben durch die Winkelgeschwindigkeit der Rotation,
genauer rotiert der Mond ein Mal um die Erde in 27 Zeiteinheiten.

e Bekannt als restringiertes Dreikorperproblem, da der dritte Korper die ersten
beiden nicht beeinflusst.

e Anfangsbedingung zur Zeit t = 0:
Satellit in Position (2(0),y(0)) = (1.2,0)
mit Geschwindigkeit  (2(0),%'(0)) = (0, —1.05).
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Weitere Beispiele

Satellit im Kraftfeld von Erde und Mond

Umschreiben in System erster Ordnung:

Y11=, Y2=Y, Ys=T, Ys4=Y,
fihrt auf
yi = Y3,
y/2 = Y4,
) Y1+ p B v — 1
[(yr + )2 + 93132 Ty — )2 + 93132

Y2 —u Y2
vt sl Tl — ) g

Yh=y1 +2ys — p

Yo=Yz —2ys — 1’
[(
mit Anfangsbedingungen

y1(0) = 1.2, 22(0) =y3(0) =0 and y4(0) =—1.05.

Losung (x(t),y(t)) = (y1(t),y2(t)): geschlossene Bahn mir Periode T' ~ 6.19.
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Weitere Beispiele

Satellit im Kraftfeld von Erde und Mond

t=4.0652

1=5.3304

0.6

0.4

t=0.86132

I
-1.5 -1 -0.5 0 0.5 1 1.5
(t
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Weitere Beispiele

Satellit im Kraftfeld von Erde und Mond

8

Geschwindigkeit in x-Richtung
6 = = = Geschwindigkeit in y-Richtung g
4 i
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Weitere Beispiele

Kinetik chemischer Reaktionsmechanismen

Drei Spezies S, T' und U nehmen Teil an der autokatalytischen Reaktion

Ny of T+U ' 54U, or X, 74U

Zeitlicher Verlauf der Konzentrationen y; = [S], y2 = [T], y3 = [U] beschrieben
durch System GDGen (Massenwirkungsgesetz)

Yy = —k1y1 + kayoys,
Yy = kiyr — kayoys — 2ksys + ksys = kiyr — kayoys — ksy3,
Y = k3y3.

Reaktionsraten k; sind ein MaR fiir die Geschwindigkeit mit denen die jeweilige
Reaktion sich vollzieht. Sie differieren oft um mehrere GréRBenordnungen.

ki =004, ky=10% ks=3-10".
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Weitere Beispiele

Kinetik chemischer Reaktionsmechanismen

Fiir die Anfangebedingungen y;(0) = 1;y2(0) = y3(0) = 0 erhalten wir:

—— Substanz S
1 —— Substanz T
—— Substanz U
0.8
0.6
=
0.4r
0.2f
0
. . . .
0 200 400 600 800 1000

t

Beachte: wegen v/ (t) + y5(t) + y5(t) = 0 gilt fiir alle t > ¢y = 0, die Erhaltungs-
gleichung
y1(t) + y2(t) + y3(t) = y1(0) + y2(0) + y3(0) = 1.

Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2016/17 87 / 294



Weitere Beispiele

Stabilitdat dynamischer Systeme

Die Stabilitdtsanalyse nichtlinearer dynamischer Systeme
w=f(u), u(0)=u, f:C"->C" (1.3)
geschieht meist durch Linearisierung um den (einen) stationdren Zustand

U= tli)r{.lo u(t).

Sofern ein solcher existiert ist er Losung der Gleichung f(u) = 0.

Das dynamische System (1.3) heit lokal stabil in @, falls € > 0 existiert mit

tlim u(t) = w, sofern |u(0) — | <.
—00

In vielen Fillen l3sst sich die Frage nach der lokalen Stabilitat von (1.3) durch
Analyse der Linearisierung

flu)~f(@) + Alu—w),  A:=f'(u)

kldren, d.h. durch die Realteile der Eigenwerte von A.
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Weitere Beispiele

Chemische Reaktionskinetik: der Brusselator

Die Belousov-Zhabotinsky-Reaktion ist
ein Beispiel fiir einen sog. chemischen
Oszillator, bei dem sich zeitliche Os- ‘ ‘
zillationen in einem chemischen Reak- T Sa0s = ls0s
tionsmechanismus zeigen. BZ-Reaktion in einer Petri-Schale,
Wellenfromt in gelb markiert.

Ein mathematisches Modell der BZ-Reaktion ist der sog. Brusselator!3, einer Evo-
lutionsgleichung der &rtlichen Variation (in einer Raumkoordinate r € (0,1)) der
Konzentration zweier miteinander reagierender Spezies z und y:

0ix = D10ppx + A — (B + 1)z + 22y, x(0,t) = z(1,¢t) = A.

B
01y = Dy0pry + Bx — 2y, y(0.t) = y(1,1) = =,
m(r, 0) = (E()(T‘), y(T7 0) = yO(T)'

13Brussels + Oszillator, llya Prigogine FU Briissel
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Weitere Beispiele

Chemische Reaktionskinetik: der Brusselator

Ein stationdrer Zustand ist gegeben durch

T=A 7=

|

Die Jacobi-Matrix an dieser Stelle ist gegeben durch

J— D0 + B—1 A?
o -B D50,y — A%

was nach Ortsdiskretisierung eine groRe, diinn besetzte Matrix ergibt.

Bifurkationsproblem: Ab welchem Wert von B setzt periodisches Verhalten ein?
Hierbei iiberqueren zwei konjugiert-komplexe Eigenwerte von J die imaginare Achse.

(Vg|. [Hairer, Norsett & Wanner, 1987, Abschnitt |.16])
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