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Lineare Mehrschrittverfahren

Begriffe

Verfahren der Bauart
k k
Z QjYntj = h Z Bifn+i,  wobei foyj = f(tnts, Yntj), (LMV)
j=0 7=0

heiBen lineare Mehrschrittverfahren, genauer lineare k-Schritt-Verfahren.
e 0.B.d.A. sei ap = 1 und (ap, o) # (0,0).
e Falls 5, = 0, ist (LMV) explizit, sonst implizit.
e Bei impliziten Verfahren muss in jedem Zeitschritt ein (i.Allg. nichtlineares)
Gleichungssystem der Form

k=1
Ynik = hBif (tniks Ynik) + O (hBiFats — itni) = 9(Yni) + €
=0

geldst werden. Wegen

lg(v) = g(w)|| = hlB||f (tnik, v) = F (tnik, w)| < BBk L v — w]|

besitzt dies eine eindeutige Ldsung, wenn h|S;| L < 1, die mit
Fixpunktiteration bestimmt werden kann.
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Lineare Mehrschrittverfahren

Begriffe

Das Polynom
o(C) :=Bo+ il + - + B¢t € Py,

heit zweites charakteristisches Polynom von (LMV) und
k
L(z(t);h) = > [az(t + jh) — hp;2'(t+ jh)|, =z e C(I)
§=0

der mit (LMV) assoziierte Differenzenoperator.
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Lineare Mehrschrittverfahren
Begriffe

Ist z geniigend oft differenzierbar, so gilt

ZL(z(t);h) = Coz(t) + C12' ()h + - + Cyz D (t)hI +
k
mit Cp = Z a; = p(1 Z jaj — B =p'(1) — (1)

k
ind Gy = 3 [Say — d8] @=2.3..).

Jj=0

Fiir die Koeffizienten der analogen Entwicklung

ZL(z(t+Th);h ZD 2D (t + Th)hI
7=0
gelten C;, = ZJ 0;, —j (@=0,1,...).
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Lineare Mehrschrittverfahren

Begriffe

e Der lineare Differenzenoperator .£ entspricht im Wesentlichen dem
bekannten Residuum: R, = Z(y(tn); h).

e Das lineare Mehrschrittverfahren (LMV) besitzt die genaue
Konsistenzordnung p, wenn

Co=01="-=cp=0 undeH?éO
gelten. Mit den Bezeichnungen von Lemma 3.1 ist das dquivalent zu
D0=D1:"'=Dp=0 unde+17éO.

Cp+1 (= Dp+1) heiBt dann die Fehlerkonstante des Verfahrens.

e Beachte, dass (LMV) genau dann konsistent ist (mit anderen Worten: seine
Konsistenzordnung betrdgt mindestens p = 1), wenn p(1) = 0 und
p'(1) = o(1) erfiillt sind.

e (LMV) ist damit genau dann konvergent, wenn p die Wurzelbedingung erfiillt
und p(1) = 0 sowie p'(1) = o(1) gelten (was insbesondere p/'(1) = o (1) # 0
impliziert).
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Lineare Mehrschrittverfahren

Konsistenzordnung

Satz 3.2

Fiir jedes lineare k-Schritt-Verfahren sind die folgenden fiinf Aussagen dquivalent:
(a) Das k-Schritt-Verfahren besitzt (mindestens) die Konsistenzordnung p.
(b) ¢Cy =X [i%y — qj%'B] =0 (¢=0,1,...,p).

(c) Das k-Schritt-Verfahren ist konsistent mit ¢’ = y, y(0) = 1, von (mindestens)
der Ordnung p.

(d) Die Funktion
p(0)
-0
log(C) &
hat in ¢ = 1 eine (mindestens) p-fache Nullstelle.
(e) Z(z(t);h) = 0 fiir alle Polynome z € 2,
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Lineare Mehrschrittverfahren

Peano-Kern

Satz 3.3

Das lineare k-Schritt-Verfahren (LMV) zur Lésung von (AWP) besitze die

Konsistenzordnung p. Dann l3sst sich der zugehdrige Differenzenoperator in der
Peano-Form

t+kh

Lyt = |

k
G(t,s)y P+ (s)ds = hPH? f G(r)y®+V(t + Th)dr
t 0

schreiben, falls y € C»*1)(I). Die Kerne G bzw. G haben die Form

k . o=
G(ts) zg((t s)? h) Z [aj (t+jh—s)". Y (t+3h 5)” ]’

p! (p—1)!
7=0

K P Tpl
Z[ (- r) ﬂ]]_),].

W
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Lineare Mehrschrittverfahren

Peano-Kern, Beispiel

Satz 3.3 erlaubt Abschatzungen des lokalen Diskretisierungsfehlers:

Beispiel: Fiir das stabile Zweischrittverfahren

Yn+2 — Yn41 = 1_h2(5fn+2 + 8Fns1 — fn)

der Konsistenzordnung 3 (Cy = C; = Cy = C3 =0, Cy = —1/24) erhalten wir

3 3 5 . )
G(t,s) = (t+2;g—s)+ _ (t+h6—8)+ _ h5(t+22i;—s)+ _ h(t-‘rhg—s)+ N h(t_QZ)+

W2 (4 3h—g), i+ h<s<t+2h,

— 2 (t — s)2h, t<s<t+h.

Ist y € CM(I), so gilt

tn+2h
J G(tn, s)y(4)(s)ds ,

n

|%Rn+2| = ‘%"?(y(tn)vh” = %
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Lineare Mehrschrittverfahren

Peano-Kern, Beispiel

und mit der Holder-Ungleichung folgt

n

tn+2h Vi r 4. 4+2n v
|+ Rni2| < U |G(tn,s)|ﬂds] U |y(4)(3)|1/ds] ,
t t

n

falls 1/u+ 1/v = 1. Fiir p = 1, v = o0 ergibt sich

tn+2h
lj G(tn, s)ds] max |y(4)(s)|
t

ip < —
|h 77.+2| = tn<s<t,+2h

==

n

— 153 (4)
24h tn<£ré%§+2h|y (5)|

Und fiir p = o0, v = 1:

tn+2h
1 1 4
Rl < &, _max 169 || O ls
2
= 22513 [L ly ™ (t,, + Th)|d7'] .
Oliver Ernst (Numerische Mathematik) ODE

Wintersemester 2014/15

148 / 278
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Peano-Kern, Beispiel

Peano-Kern Git,s)

125 h*/2592

t t+h t+2h
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Lineare Mehrschrittverfahren

Peano-Kern, globaler Fehler

Mit Hilfe von Satz 3.3 kann man auch Abschitzungen fiir den globalen Diskretisie-
rungsfehler angeben. Sei

mit

k k
D s = Y Fltnijs Unig) + O KBPT 0,0 < 1.
j=0 j=0

Setzt man

k k
My =30 olajl, My =3 olB;], E = maxo<;j<k-1]ej],

Ms = [Sllpj=0,1,...|7j|] /(1 - h|5k|L)a
wobei 1/(¢¥p(¢™1)) = 1/(ak + ar—1C + -+ + aoCF) = 377 7;¢7, dann ist
lenl| < M3 [EMLE + (tn — to) (2 (y(tn); h) + WP K)] exp(Ma M3 L(t,, — to)).

Beachte: E = O(h?) und Konsistenzordnung p implizieren |le,,| = O(hP).
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Lineare Mehrschrittverfahren

Begriffe

AbschlieBende Bemerkungen zur erreichbaren Konsistenzordnung bei Mehrschritt-
verfahren (vgl. Abschnitt 2):

(1) Zu vorgegebenen (k,¢) € N3 (¢ < k) gibt es eindeutig bestimmte Polynome

k

4
PO =Dl e Py, (e =1) und o(¢) =) B¢,
7=0

Jj=0

so dass das zugehorige lineare k-Schritt-Verfahren die Konsistenzordnung
k + ¢ besitzt.

(2) Zu vorgegebenem p(() = Z?:o axC* mit p(1) = 0 und vorgegebenem
0 < £ < k gibt es genau ein Polynom o(¢) = Zﬁ:o B;¢?, so dass das
zugehdrige lineare k-Schritt-Verfahren die Konsistenzordnung ¢ + 1 besitzt.

Es gibt also stabile lineare k-Schritt-Verfahren der Konsistenzordnung &k + 1.

Oliver Ernst (Numerische Mathematik) Wintersemester 2014/15 151 / 278



Inhalt

@ Einleitung
® Numerische Methoden fiir Anfangswertprobleme

© Lineare Mehrschrittverfahren

3.2 Die erste Dahlquist-Barriere

O Runge-Kutta-Verfahren

@ Steife Differentialgleichungen

Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2014/15 152 / 278



Lineare Mehrschrittverfahren

Die erste Dahlquist-Barriere

e Was ist die maximale Ordnung eines konvergenten linearen
k-Schritt-Verfahrens?

e 2k + 2 freie Parameter {o;, 3, }fzo, 2k + 1 nach Normierung, 2k fiir ein
explizites Verfahren.

e Konsistenz der Ordnung p fiihrt auf p + 1 homogene lineare Gleichungen fiir
die Koeffizienten. Bis zu welcher Ordnung p liegt auch Stabilitdt vor? Erste
Vermutung: p = 2k [p = 2k — 1] im impliziten [expliziten] Fall?

e 1956 beantwortet in

CONVERGENCE AND STABILITY
IN THE NUMERICAL INTEGRATION OF ORDINARY
DIFFERENTIAL EQUATIONS

GERMUND DAHLQUIST

1. Introduction and summary

1.1. Stat t of the probl Consider a class of difference equations

(L1) o4¥nip + Opa¥nin—1 + o + %¥n = BBifrsx + - + Bofa),
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Lineare Mehrschrittverfahren

Die erste Dahlquist-Barriere

Ausgangspunkt der Analyse der maximalen Konsistenzordnung eines stabilen LMV
sind wieder dessen charakteristischen Polynome p(¢) und o(¢). Folgende Variablen-
substitution ist hierbei hilfreich:
z+1 ¢+1
(= e=at,
-1 (-1

sowie die hierdurch bestimmten Polynome

R(z) — (Z_1> Zf] S(z) <Z51>ka(g)=§obﬂj.

Fiir ein stabiles LMV mit mindestens Konsistenzordnung p = 0 gilt
(a) ar = 0 sowie a1 = 2'7%p/(1) # 0.

(b) Alle von Null verschiedenen Koeffizienten von R(z) besitzen das gleiche
Vorzeichen.
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Lineare Mehrschrittverfahren

Die erste Dahlquist-Barriere

Ein LMV besitzt genau dann die Konsistenzordnung p, wenn

R(2) <1og z J_r 1)1 = 8(2) = Cps1 (%)pk +0 <(§>pk+1> , Z— 0.

(3.1)

v

Fiir die Koeffizienten der Laurent-Reihe

1 —1
<1ogz+ ) _Z_m_H B
z—1

gilt 12,41 > 0 fiir alle j > 0.

(32)
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Lineare Mehrschrittverfahren

Die erste Dahlquist-Barriere

Satz 3.7 (Dahlquist-Barriere)

Fiir die Konsistenzordnung p eines stabilen linearen k-Schritt-Verfahrens gilt

k+ 2, falls k gerade,
p<A{k+1, fallsk ungerade,
k, falls 5k/ak < 0.
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Lineare Mehrschrittverfahren

Die erste Dahlquist-Barriere

Satz 3.8
Stabile LMV mit (maximaler) Konisistenzordnung k + 2 sind symmetrisch, d.h.

o = —Qf—j und ﬂj = Bk—j’ j = 0, .. .,k). (33)

4

Korollar 3.9

Ist k& gerade, dann ist ein stabiles lineares k-Schritt-Verfahren mit optimaler
Konsistenzordnung k + 2 nur schwach stabil, d.h. alle Nullstellen des ersten
charakteristischen Polynoms haben Betrag 1.
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Lineare Mehrschrittverfahren

Die erste Dahlquist-Barriere

(Jedes) stabile k-Schritt-Verfahren (k = 2¢) mit Konsistenzordnung k+2 kann man
wie folgt konstruieren:

(1) Setze
(k=2)/2

p(Q) = -+ [] €=¢)EC—1¢)

j=1
mit paarweise verschiedenen ¢, |(;| = 1, Im(; > 0.
(2) Bestimme die ersten Koeffizienten der Taylor-Entwicklung
1\ K
(552) o (222)

z+1 =
z—1 j

© k
bjz)  und setze S(z):= Y bz
log = ’ ;) ’

(3) Setze

o0):= (¢~ 15 (£57)).

Oliver Ernst (Numerische Mathematik) Wintersemester 2014/15 158 / 278



Lineare Mehrschrittverfahren

Die erste Dahlquist-Barriere

e Das einzige stabile Zweischrittverfahren der Ordnung 4 ist die
Simpson-Regel'?

Yn+2 — Yn = %(fn+2 + 4fn+1 + fn)
e Fir k =4 ist z.B.
Yota — Yn = as(56fn1a — 31fnss + 96f,40 — 3Lfyy1 + 56f,)

ein stabiles Verfahren der Ordnung 6.

e In der Praxis spielen diese Beispiele (wie alle linearen 2¢-Schritt-Verfahren der
Ordnung 2¢ + 2) keine Rolle (vgl. dazu Abschnitt 5).

17Thomas Simpson (1710-1761)
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Lineare Mehrschrittverfahren

Die Verfahren von Adams-Bashforth und Adams-Moulton

Die Idee der Adams-Bashforth-Verfahrenl®

tnt1

Y(ter) — y(tn) = f yndt = f Fty () dt.

n n

Ersetze f (¢, y(t)) durch ein Polynom gi_1(t) € &% _1, das die k Datenpaare

(tnafn)a (tn—la.fn—l)v ey (tn—k+17fn—k+1)
interpoliert. In der Lagrange!?-Darstellung ist dieses durch
k—1

qkl anjnl

=0 nj_tn 4
L#j

gegeben.

18 John Couch Adams (1819-1892), Francis Bashforth, 1819-1912)
19 Joseph-Louis Lagrange (1736-1813)
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Lineare Mehrschrittverfahren
Die Verfahren von Adams-Bashforth und Adams-Moulton

k-te Adams-Bashforth-Formel

k—1
Yn+l = Yn + h Z ﬂk,jfn—j (A_B)
=0
1 (terr bzl oy th_s PT s+
. STt g = ds.
mi /Bk,J h J;n E tn—j = Ui} 0 g £ =7 ’
é;j L7

Die Adams-Moulton-Verfahren®® konstruiert man fast genauso. Der einzige Unter-
schied besteht darin, dass ein Interpolationspolynom g vom Grad k& zu den (k+ 1)
Daten

(tn+17fn+1)’ (tn,fn)’ (tn—l,fn—l)a cee (tn—k+17fn—k+1)

als Approximation an f (¢, y(t)) verwendet wird.

20Forest Ray Moulton (1872-1952),
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Die Verfahren von Adams-Bashforth und Adams-Moulton

k-te Adams-Moulton-Formel:

k 0
Yni1 = Yn + h Z 6:7jfn+1—j mit ﬁ;ck,j = f
—il 7

Jj=0

k
s+
- ds. (A-M)
0 =7

0]

Das Adams-Bashforth-Verfahren (A-B) ist ein explizites lineares
k-Schritt-Verfahren. Es ist stabil und besitzt die Konsistenzordnung k.
Das Adams-Moulton-Verfahren (A-M) ist ein implizites lineares
k-Schritt-Verfahren. Es ist stabil und besitzt die Konsistenzordnung & + 1.
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Die Verfahren von Adams-Bashforth und Adams-Moulton

Koeffizienten fiir Adams-Bashforth-Verfahren:

k
1] 1
3 1
2 2 2
23 16 5
3| 6 12 1
4| 88 30 3w _9
24 24 24 24
5 1901 _ 2774 2616 _ 1274 251
720 720 720 720 720
6 4277 _ 7923 9982 _ 7298 2877 _ 475
1440 1440 1440 1440 1440 1440

Beispielsweise ist
Yn+1 = Yn + %(&fn _fn—l)
das Adams-Bashforth-Verfahren fiir & = 2.
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Die Verfahren von Adams-Bashforth und Adams-Moulton

Koeffizienten fiir Adams-Moulton-Verfahren:

2
1 T
L 3 3
5 8 1
2 3 13 —13
3| o9 19 5 1
24 24 24 24
4| 20 616 264 106 _ 10
720 720 720 720 720
5 | 475 1427 798 482 173 27
1440 1440 1440 1440 1440 1440
6 19087 65112 _ 46461 37504 _ 20211 6312 _ 863
60480 60480 60480 60480 60480 60480 60480

Beispielsweise ist

h
Yn+1 = Yn + §(fn+1 + fn) (Trapezregel)
das Adams-Moulton-Verfahren fiir £ = 1 und

h
Yn+1 = Yn + E(5fn+1 + an - fn—l)
das fiir k = 2.
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Die Verfahren von Adams-Bashforth und Adams-Moulton

Natirlich kann man auch in

tntk

ywa=j Flt (1)) dt

tntk—e

tntk
yuMw—ymHF0=f

tntk—re

(¢ =1,2,...) den Integrand durch ein Interpolationspolynom ersetzen, um lineare
Mehrschrittverfahren zu konstruieren. (Fiir £ = 1 ergeben sich die Adams-Formeln.)
Fiir £ = 2 erhalt man so die expliziten Nystrom-Verfahren, z.B. die Mittelpunktsregel

Ynt2 — Yn = 2hfn+1,

bzw. die impliziten Milne-Simpson-Verfahren, wie etwa die Simpson-Regel

Yn+2 — Yn = % <.fn+2 + 4fn+1 + fn) .
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Adams-Bashforth

Integration
Interpolation
n+k-2 n+k-1 n+k
Nystroem
Integration
Interpolation
n+k-2 n+k-1 n+k

Oliver Ernst (Numerische Mathematik)

Die Verfahren von Adams-Bashforth und Adams-Moulton

ODE

Adams-Moulton

Integration
Interpolation
n+k-2 n+k-1 n+k
Milne-Simpson
Integration
Interpolation
n+k-2 n+k-1 n+k
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Pradiktor-Korrektor-Verfahren

Lost man ein AWP durch ein implizites Mehrschrittverfahren, so muss in jedem
Zeitschritt ein Gleichungssystem der Form

Yn+k = hﬂkf(trH—kv yn+k) + c

(vgl. Abschnitt 1) gelost werden. Ist h|S;|L < 1, so konvergiert die Fixpunktitera-
tion
v v—1
yijk:hﬁkf(tn+k,y,(t+k))+c vr=12...
gegen die (eindeutige) Losung. Einen Startwert yr(ﬂr)k kann man mit einem expliziten
Verfahren berechnen. Man verwendet dazu ein Verfahren gleicher Ordnung.
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Pradiktor-Korrektor-Verfahren

Kombiniert man etwa die (k + 1)-te Adams-Bashforth-Formel (Pradiktor) mit der
k-ten Adams-Moulton-Formel (Korrektor), so liest sich ein Zeitschritt des resultie-
renden Praadiktor-Korrektor-Verfahrens wie folgt:

(P) yr(ﬁy)l Yn + hzj =0 BkJrl,]fn g
Forv=0,1,2,...
fn+1 = f( n+1, yy(lj.)1),
K): (v+1) _ h (V) h
(K): i1’ = Yo + W35S + Z] 1 B jFnv1-j-

Man bricht die Iteration (K) ab, wenn Hyfbﬁl) — T(Lljr)l .geniigend klein" ist.
Dann setzt man y,41 = yfl':;l und (fiir weitere Zeitschritte) f,41 = foi)l (oder

alternativ: fr41 = f(tnt1, yﬁ”ﬁll)))
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Pradiktor-Korrektor-Verfahren

e In der Praxis kann man so nur selten vorgehen, da véllig unklar ist, wie viele
Schritte von (K) durchgefiihrt werden miissen, um das Abbruchkriterium zu
erfiillen. Stattdessen wird man nur eine feste (kleine) Zahl i von diesen
Iterationsschritten durchfiihren.

e Bezeichnen p bzw. p* die Konsistenzordnungen von Pradiktor und Korrektor
(in unserem Beispiel p = p* = k), dann ist die Konsistenzordnung des
zusammengesetzten Verfahrens gleich der des Korrektors, wenn p > p* oder

uw>p* —p gilt.
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Lineare Mehrschrittverfahren

Absolute Stabilitat, einfiihrendes Beispiel

Der Begriff absolute Stabilitat befasst sich nicht mit der Stabilitat eines Verfahrens
im Grenzwert h — 0, sondern mit dessen Verhalten fiir lange Integrationen bei
fester Schrittweite h > 0.

Qualitativ: wie klein muss man bei gegebenem AWP und gegebenem Verfahren die
Schrittweite wahlen, damit die numerische Approximation der Lésung sich zumin-
dest qualitativ richtig verhalt.

Beispiel 1: Die AWA

y'(t) = —sint, y(0) =1 (3.4)
besitzt die Losung y(t) = cost. Fiir das Residuum R, des expliziten Euler-
Verfahrens fiir dieses AWP betragt an der Stelle ¢

2 2

R, = ZL(y(ty);h) = —% Y (tn) + O(R3) = % cost, + O(h®),

sodass der globale Fehler auf ¢ € [tg, tend] beschrankt ist durch (vgl. Beweis Satz 2.1)

max |ep| < h(tend —to) max |cost| = h.
nd

to<nh<t g to<t<t,,
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Lineare Mehrschrittverfahren

Absolute Stabilitat, einfiihrendes Beispiel

Fiir einen Fehler |e| < 1073 bei der Integration bis teng = 2 miiBte also eine
Schrittweite von h = 1073 ausreichen. Man erhilt fiir N = 2000

yn = —4.166014e — 01, [y(2) — yn| = 4.547667e — 04.
Beispiel 2: Wir modifizieren obige AWA zu
y'(t) = My — cost) —sint, y(0) =1 (3.5)

mit derselben Lésung y(t) = cost. Man rufe sich in Erinnerung, dass beim expliziten
Euler-Verfahren der globale Fehler der Rekursion

lent1] < (14 hL)|e,| + O(h?)

geniigt, mit L der Lipschitz-Konstanten der rechten Seite. Fiir A = —10 erhalten
wir
yn = —4.170721e — 01, |y(2) — yn| = 1.611611e — 05.
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Lineare Mehrschrittverfahren

Absolute Stabilitat, einfiihrendes Beispiel

Beispiel 3: Wir betrachten obiges Beispiel fiir A
sich

—2100. In diesem Fall ergibt

yn = 1.597768¢ + 76, |y(2) — yn|

Verschiedene Schrittweiten fiir dieses AWP liefern

1.452516e + 76.

h Fehler bei teng = 2
0.001 1.7¢ + 76
0.000976 3.1e + 36
0.00095 8.6e — 04
0.0008 7.3e — 04
0.0004 3.6e — 04

Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2014/15 175 / 278



Lineare Mehrschrittverfahren

Absolute Stabilitit

o Bekanntlich streben die Lésungen y(t) von y’ = Ay, A € R™*™ (konstant)
gegen O fiir t — oo, wenn Re A < 0 fiir alle Eigenwerte A von A gilt.

e Wir suchen Bedingungen an ein numerisches Verfahren (zunichst lineare
Mehrschrittverfahren), so dass die Ndherungslosungen dasselbe asymptotische
Verhalten besitzen.

e Dazu eine Bezeichnung: Seien p und o die charakteristischen Polynome eines
linearen Mehrschrittverfahrens; dann heifit

7(¢h) = p(Q) —ho(C),  h=h\

Stabilitatspolynom des Verfahrens.
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Lineare Mehrschrittverfahren
Absolute Stabilitat

Lemma 3.11

Es seien {y,} die Naherungen eines linearen k-Schritt-Verfahrens

k k
Z QjYntj = h Z Bifnt; (m=0,1,2,...)

j=0 j=0
zur Lésung von y’ = Ay (inkl. Anfangsbedingungen). Bei festem h gilt
lim |y, =0
n—0o0

genau dann, wenn alle Nullstellen von (¢, k) = (¢, Ah) (als Polynom in ¢
betrachtet) betragsmaRig echt kleiner als 1 sind und zwar fiir jedes A € A(A).
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Lineare Mehrschrittverfahren

Absolute Stabilitit

e Das Verfahren heiRt absolut stabil fiir k, wenn alle Nullstellen ¢ von m(-, h)
die Beziehung |¢| < 1 erfiillen.

e Die Menge
Ay = {heC : n(-,h) hat nur Nullstellen in |¢| < 1}

heiBt Stabilitdtsgebiet des Verfahrens.
o Das Verfahren heifft A-stabil (absolut stabil), wenn %24 die linke Halbebene
{Re( < 0} enthilt.
Bemerkungen.
(1) Fiir jedes konvergente lineare Mehrschrittverfahren gibt es ein hg > 0, so dass
%A M [O,ho] = @
2 |
plexp(ig))

G%Aga{he(Ch=U(eTW,O<¢<27r}
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Lineare Mehrschrittverfahren

Absolute Stabilitit

Adams-Bashforth, k=1 Adams-Bashforth, k=2
1 1
03| 08|
0| 06|
04 0.4]
02| 02|
-02) -02
04 -04
05| -08
-08 -08

R -15 -1 -05 ) 05 i -15 -1 -05 0 05

Adams-Bashforth, k=3 Adams-Bashforth, k=4

1 1
08 08|
0| 06|
04 0.4]
02| 02|
-02) -02
-0.4| -0.4
-06 -08
-0 -08

= 15 -1 05 ) 05 R 15 -1 05 0 05
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Lineare Mehrschrittverfahren

Absolute Stabilitit

Adams-Moulton, k=1

3
2
1
-1
-2
-3|
-7 -6 -5 -4 -3 -2 -1 0
Adams-Moulton, k=3
3
2)
1
-1
-2
3]
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Adams-Moulton, k=2

3
2
1
-1
-2|
-3
-7 -6 -5 -4 -3 -2 -1
Adams-Moulton, k=4
3
2)
1
-1
-2
-3
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Lineare Mehrschrittverfahren

Absolute Stabilitit

Ein LMV mit charakteristischen Polynomen p(¢) und o(¢) heilt irreduzibel, falls
p(¢) und o(¢) keine gemeinsamen Nullstellen besitzen.

Satz 3.12 (Zweite Dahlquist-Barriere)

Ist ein lineares Mehrschrittverfahren A-stabil, so gilt

P(¢)
Re L0

Fiir irreduzible LMV gilt auch die Umkehrung, d.h. (3.6) impliziert A-Stabilitat.

>0 fir|¢|>1. (3.6)

Satz 3.13 (Dahlquist, 1963)

Fiir die Konsistenzordnung p eines A-stabilen LMV gilt p < 2. Gilt p = 2, so gilt
fiir die Fehlerkonstante des Verfahrens C' < —=5. Die Trapezregel ist das einzige
A-stabile LMV mit Fehlerkonstante C' = —iz
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Lineare Mehrschrittverfahren

BDF-Verfahren

Die Idee der BDF-Verfahren (Backward Differentiation Formulas), oder auch Gear-
Verfahren?!:

Um eine Naherung fiir y(t,+1) zu gewinnen, approximieren wir f(¢,y(¢)) durch
das Interpolationspolynom Py € & mit den k + 1 Daten

(tn+17 yn+1); (tna yn)a sy (tn—k+17 yn—k:+1)~

Es ergibt sich

k k
tny1 — ¢ . t—s
Pk(t) = Z fj (nT> Ynt1—; Mit Ej(t) H i S

i

Jetzt nihern wir y’(¢,,4+1) durch
k
n+1 Z —% yn+1—j
j=0

21Charles William Gear, (1935-)
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Lineare Mehrschrittverfahren

BDF-Verfahren

an und setzen diese N3herung in y'(t,+1) = f(tn, Ynt1) = for1 ein:
k
Z(—ﬁ}(O))ynH_j = hfnn1
j=0

ist ein lineares k-Schritt-Verfahren (das k-te BDF-Verfahren). Wir schreiben es in
der Standardform

k
yn+1 +

(5(0)/5(0)) = h/(=£6(0)) fr41-

j=1

Nach Konstruktion besitzt es die Konsistenzordnung k.

Satz 3.14 (Stabilitdt von BDF-Verfahren)

Das k-te BDF-Verfahren ist genau dann stabil (und damit konvergent), wenn
k < 6 gilt.
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Lineare Mehrschrittverfahren

BDF-Verfahren

Koeffizienten und Fehlerkonstanten der BDF-Verfahren:

k| a6 as ay a o o ag | B | Crsr
1 1 -1 1 —%
4 1 2 2

2 1 -3 3 3 9
18 9 2 6 | 3

3 L =4 T Tir | ot 3
4 { _48 36 _1 3 | 12| 1>
25 % 25 25 | 25 125

5 | 300 300 _200 75 _12 | 60 | _ 10
137 137 37 137 37 | 137 37

6| 1 _se0 450 _a0 225 _ 72 1o | 60 | _20
47 147 147 117 147 147 | 147 343

Fiir k = 1 erhalt man das implizite Euler-Verfahren yp41 = Yn + Af (tnt1s Ynt1)-
BDF-Verfahren zeichnen sich durch ,,groRe” Stabilititsbereiche aus.
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Lineare Mehrschrittverfahren
BDF-Verfahren

Gear, k=1
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Lineare Mehrschrittverfahren
BDF-Verfahren
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Lineare Mehrschrittverfahren
BDF-Verfahren

Gear, k=5
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