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Lineare Mehrschrittverfahren
Begriffe

Verfahren der Bauart
kÿ

j“0

↵jyn`j “ h
kÿ

j“0

�jfn`j , wobei fn`j :“ f ptn`j ,yn`jq, (LMV)

heißen lineare Mehrschrittverfahren, genauer lineare k-Schritt-Verfahren.
• O.B.d.A. sei ↵k “ 1 und p↵0,�0q ‰ p0, 0q.
• Falls �k “ 0, ist (LMV) explizit, sonst implizit.
• Bei impliziten Verfahren muss in jedem Zeitschritt ein (i.Allg. nichtlineares)

Gleichungssystem der Form

yn`k “ h�kf ptn`k,yn`kq `
k´1ÿ

j“0

ph�jfn`j ´ ↵jyn`jq “ gpyn`kq ` c

gelöst werden. Wegen

}gpvq ´ gpwq} “ h|�k|}f ptn`k, vq ´ f ptn`k,wq} § h |�k|L }v ´ w}
besitzt dies eine eindeutige Lösung, wenn h |�k|L † 1, die mit
Fixpunktiteration bestimmt werden kann.
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Lineare Mehrschrittverfahren
Begriffe

Das Polynom
�p⇣q :“ �0 ` �1⇣ ` ¨ ¨ ¨ ` �k⇣

k P Pk

heißt zweites charakteristisches Polynom von (LMV) und

L pz ptq;hq :“
kÿ

j“0

“
↵jz pt ` jhq ´ h�jz

1pt ` jhq‰
, z P C1pIq

der mit (LMV) assoziierte Differenzenoperator.
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Lineare Mehrschrittverfahren
Begriffe

Lemma 3.1

Ist z genügend oft differenzierbar, so gilt

L pz ptq;hq “ C0z ptq ` C1z
1ptqh ` ¨ ¨ ¨ ` Cqz

pqqptqhq ` ¨ ¨ ¨

mit C0 “
kÿ

j“0

↵j “ ⇢p1q, C1 “
kÿ

j“0

rj↵j ´ �js “ ⇢1p1q ´ �p1q

und Cq “
kÿ

j“0

”
jq

q! ↵j ´ jq´1

pq´1q!�j

ı
pq “ 2, 3, . . .q.

Für die Koeffizienten der analogen Entwicklung

L pz pt ` ⌧hq;hq “
8ÿ

j“0

Djz
pjqpt ` ⌧hqhj

gelten Cq “ ∞q
j“0

⌧j

j! Dq´j (q “ 0, 1, . . .).
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Lineare Mehrschrittverfahren
Begriffe

• Der lineare Differenzenoperator L entspricht im Wesentlichen dem
bekannten Residuum: Rn`k “ L pyptnq;hq.

• Das lineare Mehrschrittverfahren (LMV) besitzt die genaue
Konsistenzordnung p, wenn

C0 “ C1 “ ¨ ¨ ¨ “ Cp “ 0 und Cp`1 ‰ 0

gelten. Mit den Bezeichnungen von Lemma 3.1 ist das äquivalent zu
D0 “ D1 “ ¨ ¨ ¨ “ Dp “ 0 und Dp`1 ‰ 0.

Cp`1 (“ Dp`1) heißt dann die Fehlerkonstante des Verfahrens.
• Beachte, dass (LMV) genau dann konsistent ist (mit anderen Worten: seine

Konsistenzordnung beträgt mindestens p “ 1), wenn ⇢p1q “ 0 und
⇢1p1q “ �p1q erfüllt sind.

• (LMV) ist damit genau dann konvergent, wenn ⇢ die Wurzelbedingung erfüllt
und ⇢p1q “ 0 sowie ⇢1p1q “ �p1q gelten (was insbesondere ⇢1p1q “ �p1q ‰ 0

impliziert).
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Lineare Mehrschrittverfahren
Konsistenzordnung

Satz 3.2

Für jedes lineare k-Schritt-Verfahren sind die folgenden fünf Aussagen äquivalent:
(a) Das k-Schritt-Verfahren besitzt (mindestens) die Konsistenzordnung p.

(b) q!Cq “ ∞k
j“0

“
jq↵j ´ qjq´1�j

‰ “ 0 pq “ 0, 1, . . . , pq.
(c) Das k-Schritt-Verfahren ist konsistent mit y1 “ y, yp0q “ 1, von (mindestens)

der Ordnung p.
(d) Die Funktion

⇢p⇣q
logp⇣q ´ �p⇣q

hat in ⇣ “ 1 eine (mindestens) p-fache Nullstelle.
(e) L pz ptq;hq “ 0 für alle Polynome z P Pp.
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Lineare Mehrschrittverfahren
Peano-Kern

Satz 3.3

Das lineare k-Schritt-Verfahren (LMV) zur Lösung von (AWP) besitze die
Konsistenzordnung p. Dann lässt sich der zugehörige Differenzenoperator in der
Peano-Form

L pyptq;hq “
ª t`kh

t
Gpt, sqy pp`1qpsqds “ hp`1

ª k

0

˜Gp⌧qy pp`1qpt ` ⌧hqd⌧

schreiben, falls y P Cpp`1qpIq. Die Kerne G bzw. ˜G haben die Form

Gpt, sq “ L
´ pt´sqp`

p! ;h
¯

“
kÿ

j“0

„
↵j

pt`jh´sqp`
p! ´ h�j

pt`jh´sqp´1
`

pp´1q!

⇢
,

˜Gp⌧q “
kÿ

j“0

„
↵j

pj´⌧qp`
p! ´ �j

pj´⌧qp´1
`

pp´1q!

⇢
.
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Lineare Mehrschrittverfahren
Peano-Kern, Beispiel

Satz 3.3 erlaubt Abschätzungen des lokalen Diskretisierungsfehlers:

Beispiel: Für das stabile Zweischrittverfahren

yn`2 ´ yn`1 “ h
12 p5fn`2 ` 8fn`1 ´ fnq

der Konsistenzordnung 3 (C0 “ C1 “ C2 “ C3 “ 0, C4 “ ´1{24) erhalten wir

Gpt, sq “ pt`2h´sq3`
6 ´ pt`h´sq3`

6 ´ h
5pt`2h´sq2`

24 ´ h
pt`h´sq2`

3 ` h
pt´sq2`

24

“
$
&

%

pt`2h´sq2
6 pt ` 3

4h ´ sq, t ` h § s § t ` 2h,

´ 1
24 pt ´ sq2h, t § s § t ` h.

Ist y P Cp4qpIq, so gilt

| 1hRn`2| “ | 1hL pyptnq;hq| “ 1
h

ˇ̌
ˇ̌
ˇ

ª tn`2h

tn

Gptn, sqyp4qpsqds
ˇ̌
ˇ̌
ˇ ,
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Lineare Mehrschrittverfahren
Peano-Kern, Beispiel

und mit der Hölder-Ungleichung folgt

| 1hRn`2| § 1
h

«ª tn`2h

tn

|Gptn, sq|µds
�1{µ «ª tn`2h

tn

|yp4qpsq|⌫ds
�1{⌫

,

falls 1{µ ` 1{⌫ “ 1. Für µ “ 1, ⌫ “ 8 ergibt sich

| 1hRn`2| § ´ 1
h

«ª tn`2h

tn

Gptn, sqds
�

max

tn§s§tn`2h
|yp4qpsq|

“ 1
24h

3
max

tn§s§tn`2h
|yp4qpsq|.

Und für µ “ 8, ⌫ “ 1:

| 1hRn`2| § 1
h max

tn§s§tn`2h
|Gptn, sq|

«ª tn`2h

tn

|yp4qpsq|ds
�

“ 125
2592h

3

„ª 2

0
|yp4qptn ` ⌧hq|d⌧

⇢
.
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Lineare Mehrschrittverfahren
Peano-Kern, Beispiel

t t+h t+2h

0

125 h4/2592

Peano−Kern G(t,s)
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Lineare Mehrschrittverfahren
Peano-Kern, globaler Fehler

Mit Hilfe von Satz 3.3 kann man auch Abschätzungen für den globalen Diskretisie-
rungsfehler angeben. Sei

en :“ yptnq ´ ˜ynphq
mit

kÿ

j“0

↵j ˜yn`j “
kÿ

j“0

f ptn`j , ˜yn`jq ` ✓nKhp`1, }✓n}8 § 1.

Setzt man

M1 :“ ∞k
j“0|↵j |, M2 :“ ∞k

j“0|�j |, E :“ max0§j§k´1}ej},
M3 :“ “

supj“0,1,...|�j |‰ {p1 ´ h|�k|Lq,
wobei 1{p⇣k⇢p⇣´1qq “ 1{p↵k ` ↵k´1⇣ ` ¨ ¨ ¨ ` ↵0⇣

kq “ ∞8
j“0 �j⇣

j , dann ist

}en} § M3

“
kM1E ` ptn ´ t0qp 1

hL pyptnq;hq ` hpKq‰
exppM2M3Lptn ´ t0qq.

Beachte: E “ Ophpq und Konsistenzordnung p implizieren }en} “ Ophpq.
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Lineare Mehrschrittverfahren
Begriffe

Abschließende Bemerkungen zur erreichbaren Konsistenzordnung bei Mehrschritt-
verfahren (vgl. Abschnitt 2):

(1) Zu vorgegebenen pk, `q P N2
0 (` § k) gibt es eindeutig bestimmte Polynome

⇢p⇣q “
kÿ

j“0

↵j⇣
j P Pk, p↵k “ 1q und �p⇣q “

ÿ̀

j“0

�j⇣
j ,

so dass das zugehörige lineare k-Schritt-Verfahren die Konsistenzordnung
k ` ` besitzt.

(2) Zu vorgegebenem ⇢p⇣q “ ∞k
j“0 ↵k⇣

k mit ⇢p1q “ 0 und vorgegebenem
0 § ` § k gibt es genau ein Polynom �p⇣q “ ∞`

j“0 �j⇣
j , so dass das

zugehörige lineare k-Schritt-Verfahren die Konsistenzordnung ` ` 1 besitzt.

Es gibt also stabile lineare k-Schritt-Verfahren der Konsistenzordnung k ` 1.
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Lineare Mehrschrittverfahren
Die erste Dahlquist-Barriere

• Was ist die maximale Ordnung eines konvergenten linearen
k-Schritt-Verfahrens?

•
2k ` 2 freie Parameter t↵j ,�jukj“0, 2k ` 1 nach Normierung, 2k für ein
explizites Verfahren.

• Konsistenz der Ordnung p führt auf p ` 1 homogene lineare Gleichungen für
die Koeffizienten. Bis zu welcher Ordnung p liegt auch Stabilität vor? Erste
Vermutung: p “ 2k [p “ 2k ´ 1] im impliziten [expliziten] Fall?

• 1956 beantwortet in
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Lineare Mehrschrittverfahren
Die erste Dahlquist-Barriere

Ausgangspunkt der Analyse der maximalen Konsistenzordnung eines stabilen LMV
sind wieder dessen charakteristischen Polynome ⇢p⇣q und �p⇣q. Folgende Variablen-
substitution ist hierbei hilfreich:

⇣ “ z ` 1

z ´ 1

, z “ ⇣ ` 1

⇣ ´ 1

,

sowie die hierdurch bestimmten Polynome

Rpzq “
ˆ
z ´ 1

2

˙k

⇢p⇣q “
kÿ

j“0

ajz
j , Spzq “

ˆ
z ´ 1

2

˙k

�p⇣q “
kÿ

j“0

bjz
j .

Lemma 3.4

Für ein stabiles LMV mit mindestens Konsistenzordnung p “ 0 gilt
(a) ak “ 0 sowie ak´1 “ 2

1´k⇢1p1q ‰ 0.
(b) Alle von Null verschiedenen Koeffizienten von Rpzq besitzen das gleiche

Vorzeichen.
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Lineare Mehrschrittverfahren
Die erste Dahlquist-Barriere

Lemma 3.5

Ein LMV besitzt genau dann die Konsistenzordnung p, wenn

Rpzq
ˆ
log

z ` 1

z ´ 1

˙´1

´ Spzq “ Cp`1

ˆ
2

z

˙p´k

` O

˜ˆ
2

z

˙p´k`1
¸
, z Ñ 8.

(3.1)

Lemma 3.6

Für die Koeffizienten der Laurent-Reihe
ˆ
log

z ` 1

z ´ 1

˙´1

“ z

2

´ µ1

z
´ µ3

z3
´ µ5

z5
´ . . . (3.2)

gilt µ2j`1 ° 0 für alle j • 0.
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Lineare Mehrschrittverfahren
Die erste Dahlquist-Barriere

Satz 3.7 (Dahlquist-Barriere)

Für die Konsistenzordnung p eines stabilen linearen k-Schritt-Verfahrens gilt

p §
$
’&

’%

k ` 2, falls k gerade,
k ` 1, falls k ungerade,
k, falls �k{↵k § 0.
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Lineare Mehrschrittverfahren
Die erste Dahlquist-Barriere

Satz 3.8

Stabile LMV mit (maximaler) Konisistenzordnung k ` 2 sind symmetrisch, d.h.

↵j “ ´↵k´j und �j “ �k´j , j “ 0, . . . , k. (3.3)

Korollar 3.9

Ist k gerade, dann ist ein stabiles lineares k-Schritt-Verfahren mit optimaler
Konsistenzordnung k ` 2 nur schwach stabil, d.h. alle Nullstellen des ersten
charakteristischen Polynoms haben Betrag 1.
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Lineare Mehrschrittverfahren
Die erste Dahlquist-Barriere

(Jedes) stabile k-Schritt-Verfahren (k “ 2`) mit Konsistenzordnung k`2 kann man
wie folgt konstruieren:
(1) Setze

⇢p⇣q :“ p⇣ ´ 1qp⇣ ` 1q
pk´2q{2π

j“1

p⇣ ´ ⇣jqp⇣ ´ ⇣jq

mit paarweise verschiedenen ⇣j , |⇣j | “ 1, Im ⇣j ° 0.
(2) Bestimme die ersten Koeffizienten der Taylor-Entwicklung

`
z´1
2

˘k
⇢

´
z`1
z´1

¯

log

z`1
z´1

“
8ÿ

j“0

bjz
j und setze Spzq :“

kÿ

j“0

bjz
j .

(3) Setze

�p⇣q :“ p⇣ ´ 1qkS
ˆ
⇣ ` 1

⇣ ´ 1

˙
.
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Lineare Mehrschrittverfahren
Die erste Dahlquist-Barriere

• Das einzige stabile Zweischrittverfahren der Ordnung 4 ist die
Simpson-Regel17

yn`2 ´ yn “ h
3 pfn`2 ` 4fn`1 ` fnq.

• Für k “ 4 ist z.B.

yn`4 ´ yn “ h
90 p56fn`4 ´ 31fn`3 ` 96fn`2 ´ 31fn`1 ` 56fnq

ein stabiles Verfahren der Ordnung 6.
• In der Praxis spielen diese Beispiele (wie alle linearen 2`-Schritt-Verfahren der

Ordnung 2` ` 2) keine Rolle (vgl. dazu Abschnitt 5).

17
Thomas Simpson (1710–1761)
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Lineare Mehrschrittverfahren
Die Verfahren von Adams-Bashforth und Adams-Moulton

Die Idee der Adams-Bashforth-Verfahren18:

yptn`1q ´ yptnq “
ª tn`1

tn

y 1ptqdt “
ª tn`1

tn

f pt,yptqqdt.

Ersetze f pt,yptqq durch ein Polynom qk´1ptq P Pk´1, das die k Datenpaare

ptn, fnq, ptn´1, fn´1q, . . . , ptn´k`1, fn´k`1q
interpoliert. In der Lagrange19-Darstellung ist dieses durch

qk´1ptq “
k´1ÿ

j“0

fn´j

k´1π

`“0
`‰j

t ´ tn´`

tn´j ´ tn´`

gegeben.

18
John Couch Adams (1819–1892), Francis Bashforth, 1819–1912)

19
Joseph-Louis Lagrange (1736–1813)
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Lineare Mehrschrittverfahren
Die Verfahren von Adams-Bashforth und Adams-Moulton

k-te Adams-Bashforth-Formel

yn`1 “ yn ` h
k´1ÿ

j“0

�k,jfn´j (A-B)

mit �k,j “ 1

h

ª tn`1

tn

k´1π

`“0
`‰j

t ´ tn´`

tn´j ´ tn´`
dt “

ª 1

0

k´1π

`“0
`‰j

s ` `

` ´ j
ds.

Die Adams-Moulton-Verfahren20 konstruiert man fast genauso. Der einzige Unter-
schied besteht darin, dass ein Interpolationspolynom qk vom Grad k zu den pk` 1q
Daten

ptn`1, fn`1q, ptn, fnq, ptn´1, fn´1q, . . . , ptn´k`1, fn´k`1q
als Approximation an f pt,yptqq verwendet wird.

20
Forest Ray Moulton (1872–1952),

Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2014/15 162 / 278

http://www-history.mcs.st-and.ac.uk/Biographies/Moulton.html


Lineare Mehrschrittverfahren
Die Verfahren von Adams-Bashforth und Adams-Moulton

k-te Adams-Moulton-Formel:

yn`1 “ yn ` h
kÿ

j“0

�˚
k,jfn`1´j mit �˚

k,j “
ª 0

´1

kπ

`“0
`‰j

s ` `

` ´ j
ds. (A-M)

Satz 3.10

Das Adams-Bashforth-Verfahren (A-B) ist ein explizites lineares
k-Schritt-Verfahren. Es ist stabil und besitzt die Konsistenzordnung k.
Das Adams-Moulton-Verfahren (A-M) ist ein implizites lineares
k-Schritt-Verfahren. Es ist stabil und besitzt die Konsistenzordnung k ` 1.
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Lineare Mehrschrittverfahren
Die Verfahren von Adams-Bashforth und Adams-Moulton

Koeffizienten für Adams-Bashforth-Verfahren:

k
1 1
2 3

2 ´ 1
2

3 23
12 ´ 16

12
5
12

4 55
24 ´ 59

24
37
24 ´ 9

24

5 1901
720 ´ 2774

720
2616
720 ´ 1274

720
251
720

6 4277
1440 ´ 7923

1440
9982
1440 ´ 7298

1440
2877
1440 ´ 475

1440

Beispielsweise ist
yn`1 “ yn ` h

2 p3fn ´ fn´1q
das Adams-Bashforth-Verfahren für k “ 2.
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Lineare Mehrschrittverfahren
Die Verfahren von Adams-Bashforth und Adams-Moulton

Koeffizienten für Adams-Moulton-Verfahren:
k
1 1

2
1
2

2 5
12

8
12 ´ 1

12

3 9
24

19
24 ´ 5

24
1
24

4 251
720

646
720 ´ 264

720
106
720 ´ 19

720

5 475
1440

1427
1440 ´ 798

1440
482
1440 ´ 173

1440
27

1440

6 19087
60480

65112
60480 ´ 46461

60480
37504
60480 ´ 20211

60480
6312
60480 ´ 863

60480

Beispielsweise ist

yn`1 “ yn ` h

2

pfn`1 ` fnq (Trapezregel)

das Adams-Moulton-Verfahren für k “ 1 und

yn`1 “ yn ` h

12

p5fn`1 ` 8fn ´ fn´1q
das für k “ 2.
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Lineare Mehrschrittverfahren
Die Verfahren von Adams-Bashforth und Adams-Moulton

Natürlich kann man auch in

yptn`kq ´ yptn`k´`q “
ª tn`k

tn`k´`

y 1ptqdt “
ª tn`k

tn`k´`

f pt,yptqq dt

(` “ 1, 2, . . .) den Integrand durch ein Interpolationspolynom ersetzen, um lineare
Mehrschrittverfahren zu konstruieren. (Für ` “ 1 ergeben sich die Adams-Formeln.)
Für ` “ 2 erhält man so die expliziten Nyström-Verfahren, z.B. die Mittelpunktsregel

yn`2 ´ yn “ 2hfn`1,

bzw. die impliziten Milne-Simpson-Verfahren, wie etwa die Simpson-Regel

yn`2 ´ yn “ h
3 pfn`2 ` 4fn`1 ` fnq .
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Die Verfahren von Adams-Bashforth und Adams-Moulton

n n+k−2 n+k−1 n+k

Interpolation

Integration

Adams−Bashforth

n n+k−2 n+k−1 n+k

Interpolation

Integration

Adams−Moulton

n n+k−2 n+k−1 n+k

Interpolation

Integration

Nystroem

n n+k−2 n+k−1 n+k

Interpolation

Integration

Milne−Simpson
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Lineare Mehrschrittverfahren
Prädiktor-Korrektor-Verfahren

Löst man ein AWP durch ein implizites Mehrschrittverfahren, so muss in jedem
Zeitschritt ein Gleichungssystem der Form

yn`k “ h�kf ptn`k,yn`kq ` c

(vgl. Abschnitt 1) gelöst werden. Ist h|�k|L † 1, so konvergiert die Fixpunktitera-
tion

y
p⌫q
n`k “ h�kf ptn`k,y

p⌫´1q
n`k q ` c ⌫ “ 1, 2 . . .

gegen die (eindeutige) Lösung. Einen Startwert y p0q
n`k kann man mit einem expliziten

Verfahren berechnen. Man verwendet dazu ein Verfahren gleicher Ordnung.
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Lineare Mehrschrittverfahren
Prädiktor-Korrektor-Verfahren

Kombiniert man etwa die pk ` 1q-te Adams-Bashforth-Formel (Prädiktor) mit der
k-ten Adams-Moulton-Formel (Korrektor), so liest sich ein Zeitschritt des resultie-
renden Präadiktor-Korrektor-Verfahrens wie folgt:

(P): y p0q
n`1 “ yn ` h

∞k
j“0 �k`1,jfn´j ,

For ⌫ “ 0, 1, 2, . . .:

f p⌫q
n`1 “ f ptn`1,y

p⌫q
n`1q,

(K): y p⌫`1q
n`1 “ yn ` h�˚

k,0f
p⌫q
n`1 ` h

∞k
j“1 �

˚
k,jfn`1´j .

Man bricht die Iteration (K) ab, wenn }y p⌫`1q
n`1 ´ y p⌫q

n`1} „genügend klein“ ist.
Dann setzt man yn`1 “ y p⌫`1q

n`1 und (für weitere Zeitschritte) fn`1 “ f p⌫q
n`1 (oder

alternativ: fn`1 “ f ptn`1,y
p⌫`1q
n`1 qq.

Oliver Ernst (Numerische Mathematik) ODE Wintersemester 2014/15 170 / 278



Lineare Mehrschrittverfahren
Prädiktor-Korrektor-Verfahren

• In der Praxis kann man so nur selten vorgehen, da völlig unklar ist, wie viele
Schritte von (K) durchgeführt werden müssen, um das Abbruchkriterium zu
erfüllen. Stattdessen wird man nur eine feste (kleine) Zahl µ von diesen
Iterationsschritten durchführen.

• Bezeichnen p bzw. p˚ die Konsistenzordnungen von Prädiktor und Korrektor
(in unserem Beispiel p “ p˚ “ kq, dann ist die Konsistenzordnung des
zusammengesetzten Verfahrens gleich der des Korrektors, wenn p • p˚ oder
µ ° p˚ ´ p gilt.
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Lineare Mehrschrittverfahren
Absolute Stabilität, einführendes Beispiel

Der Begriff absolute Stabilität befasst sich nicht mit der Stabilität eines Verfahrens
im Grenzwert h Ñ 0, sondern mit dessen Verhalten für lange Integrationen bei
fester Schrittweite h ° 0.

Qualitativ: wie klein muss man bei gegebenem AWP und gegebenem Verfahren die
Schrittweite wählen, damit die numerische Approximation der Lösung sich zumin-
dest qualitativ richtig verhält.

Beispiel 1: Die AWA
y1ptq “ ´ sin t, yp0q “ 1 (3.4)

besitzt die Lösung yptq “ cos t. Für das Residuum Rn`1 des expliziten Euler-
Verfahrens für dieses AWP beträgt an der Stelle t

Rn`1 “ L pyptnq;hq “ ´h2

2

y2ptnq ` Oph3q “ h2

2

cos tn ` Oph3q,
sodass der globale Fehler auf t P rt0, tend

s beschränkt ist durch (vgl. Beweis Satz 2.1)

max

t0§nh§tend
|en| § hpt

end

´ t0q max

t0§t§tend
| cos t| “ h.
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Lineare Mehrschrittverfahren
Absolute Stabilität, einführendes Beispiel

Für einen Fehler |e| § 10

´3 bei der Integration bis t
end

“ 2 müßte also eine
Schrittweite von h “ 10

´3 ausreichen. Man erhält für N “ 2000

yN “ ´4.166014e ´ 01, |yp2q ´ yN | “ 4.547667e ´ 04.

Beispiel 2: Wir modifizieren obige AWA zu

y1ptq “ �py ´ cos tq ´ sin t, yp0q “ 1 (3.5)

mit derselben Lösung yptq “ cos t. Man rufe sich in Erinnerung, dass beim expliziten
Euler-Verfahren der globale Fehler der Rekursion

|en`1| § p1 ` hLq|en| ` Oph2q
genügt, mit L der Lipschitz-Konstanten der rechten Seite. Für � “ ´10 erhalten
wir

yN “ ´4.170721e ´ 01, |yp2q ´ yN | “ 1.611611e ´ 05.
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Lineare Mehrschrittverfahren
Absolute Stabilität, einführendes Beispiel

Beispiel 3: Wir betrachten obiges Beispiel für � “ ´2100. In diesem Fall ergibt
sich

yN “ 1.597768e ` 76, |yp2q ´ yN | “ 1.452516e ` 76.

Verschiedene Schrittweiten für dieses AWP liefern

h Fehler bei t
end

“ 2

0.001 1.7e ` 76

0.000976 3.1e ` 36

0.00095 8.6e ´ 04

0.0008 7.3e ´ 04

0.0004 3.6e ´ 04
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Lineare Mehrschrittverfahren
Absolute Stabilität

• Bekanntlich streben die Lösungen yptq von y 1 “ Ay , A P Rmˆm (konstant)
gegen 0 für t Ñ 8, wenn Re� † 0 für alle Eigenwerte � von A gilt.

• Wir suchen Bedingungen an ein numerisches Verfahren (zunächst lineare
Mehrschrittverfahren), so dass die Näherungslösungen dasselbe asymptotische
Verhalten besitzen.

• Dazu eine Bezeichnung: Seien ⇢ und � die charakteristischen Polynome eines
linearen Mehrschrittverfahrens; dann heißt

⇡p⇣, ˆhq :“ ⇢p⇣q ´ ˆh�p⇣q, ˆh “ h�

Stabilitätspolynom des Verfahrens.
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Lineare Mehrschrittverfahren
Absolute Stabilität

Lemma 3.11

Es seien tynu die Näherungen eines linearen k-Schritt-Verfahrens

kÿ

j“0

↵jyn`j “ h
kÿ

j“0

�jfn`j pn “ 0, 1, 2, . . .q

zur Lösung von y 1 “ Ay (inkl. Anfangsbedingungen). Bei festem h gilt

lim

nÑ8
}yn} “ 0

genau dann, wenn alle Nullstellen von ⇡p⇣, ˆhq “ ⇡p⇣,�hq (als Polynom in ⇣
betrachtet) betragsmäßig echt kleiner als 1 sind und zwar für jedes � P ⇤pAq.
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Lineare Mehrschrittverfahren
Absolute Stabilität

• Das Verfahren heißt absolut stabil für ˆh, wenn alle Nullstellen ⇣ von ⇡p¨, ˆhq
die Beziehung |⇣| † 1 erfüllen.

• Die Menge

RA :“ tˆh P C : ⇡p¨, ˆhq hat nur Nullstellen in |⇣| † 1u
heißt Stabilitätsgebiet des Verfahrens.

• Das Verfahren heißt A-stabil (absolut stabil), wenn RA die linke Halbebene
tRe ⇣ † 0u enthält.

Bemerkungen.
(1) Für jedes konvergente lineare Mehrschrittverfahren gibt es ein ˆh0 ° 0, so dass

RA X r0, ˆh0s “ H.
(2)

BRA Ñ B
"
ˆh P C :

ˆh “ ⇢pexppi�qq
�pexppi�qq , 0 § � § 2⇡

*
.
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Lineare Mehrschrittverfahren
Absolute Stabilität
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Lineare Mehrschrittverfahren
Absolute Stabilität
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Lineare Mehrschrittverfahren
Absolute Stabilität

Ein LMV mit charakteristischen Polynomen ⇢p⇣q und �p⇣q heißt irreduzibel, falls
⇢p⇣q und �p⇣q keine gemeinsamen Nullstellen besitzen.

Satz 3.12 (Zweite Dahlquist-Barriere)

Ist ein lineares Mehrschrittverfahren A-stabil, so gilt

Re

⇢p⇣q
�p⇣q • 0 für |⇣| • 1. (3.6)

Für irreduzible LMV gilt auch die Umkehrung, d.h. (3.6) impliziert A-Stabilität.

Satz 3.13 (Dahlquist, 1963)

Für die Konsistenzordnung p eines A-stabilen LMV gilt p § 2. Gilt p “ 2, so gilt
für die Fehlerkonstante des Verfahrens C § ´ 1

12 . Die Trapezregel ist das einzige
A-stabile LMV mit Fehlerkonstante C “ ´ 1

12 .
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Lineare Mehrschrittverfahren
BDF-Verfahren

Die Idee der BDF-Verfahren (Backward Differentiation Formulas), oder auch Gear-
Verfahren21:
Um eine Näherung für yptn`1q zu gewinnen, approximieren wir fpt,yptqq durch
das Interpolationspolynom Pk P Pk mit den k ` 1 Daten

ptn`1,yn`1q, ptn,ynq, . . . , ptn´k`1,yn´k`1q.
Es ergibt sich

Pkptq “
kÿ

j“0

`j

ˆ
tn`1 ´ t

h

˙
yn`1´j mit `jptq “

kπ

s“0
s‰j

t ´ s

j ´ s
.

Jetzt nähern wir y 1ptn`1q durch

P 1
kptn`1q “

kÿ

j“0

`´ 1
h

˘
`1
jp0qyn`1´j

21
Charles William Gear, (1935–)
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Lineare Mehrschrittverfahren
BDF-Verfahren

an und setzen diese Näherung in y 1ptn`1q “ f ptn,yn`1q “ fn`1 ein:

kÿ

j“0

p´`1
jp0qqyn`1´j “ hfn`1

ist ein lineares k-Schritt-Verfahren (das k-te BDF-Verfahren). Wir schreiben es in
der Standardform

yn`1 `
kÿ

j“1

p`1
jp0q{`1

0p0qq “ h{p´`1
0p0qqfn`1.

Nach Konstruktion besitzt es die Konsistenzordnung k.

Satz 3.14 (Stabilität von BDF-Verfahren)

Das k-te BDF-Verfahren ist genau dann stabil (und damit konvergent), wenn
k § 6 gilt.
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Lineare Mehrschrittverfahren
BDF-Verfahren

Koeffizienten und Fehlerkonstanten der BDF-Verfahren:

k ↵6 ↵5 ↵4 ↵3 ↵2 ↵1 ↵0 �k Ck`1

1 1 ´1 1 ´ 1
2

2 1 ´ 4
3

1
3

2
3 ´ 2

9

3 1 ´ 18
11

9
11 ´ 2

11
6
11 ´ 3

22

4 1 ´ 48
25

36
25 ´ 16

25
3
25

12
25 ´ 12

125

5 1 ´ 300
137

300
137 ´ 200

137
75
137 ´ 12

137
60
137 ´ 10

137

6 1 ´ 360
147

450
147 ´ 400

147
225
147 ´ 72

147
10
147

60
147 ´ 20

343

Für k “ 1 erhält man das implizite Euler-Verfahren yn`1 “ yn ` hf ptn`1,yn`1q.
BDF-Verfahren zeichnen sich durch „große“ Stabilitätsbereiche aus.
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BDF-Verfahren
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BDF-Verfahren
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