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Interpolation

Das (allgemeine) Interpolationsproblem

Zu gegebener Funktion f : [a,b] — C und gegebenen Stiitzstellen (Knoten)
A<y <T1 <To<- <z, <b

soll eine ,einfache” Funktion p : [a,b] — C konstruiert werden, die die Interpolati-
onsbedingungen

p(x;) = f(x), 1=0,1,...,n
erfiillt.

Wozu?

e fist nur an diskreten Punkten bekannt (Messwerte), aber eine geschlossene
Formel fiir f ist auf ganz [a, b] erwiinscht (z.B. um f an Zwischenstellen
x € [a,b]\{xo, %1, ..., T,} auszuwerten),

e fist, kompliziert” und soll durch eine ,einfache” Funktion angenihert werden

(z.B. um die Ableitung f'(z), x € [a, b], oder das Integral Sz f(z)dx
n3herungsweise zu bestimmen).
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Interpolation

Das (noch allgemeinere) Interpolationsproblem

Sei X ein linearer Raum sowie ¢1,...,¢, € X* lineare Funktionale auf X. Zu
gegebenen Zahlen yq,...,y, ist ein Element 2 € X gesucht mit der Eigenschaft

li(z) = yj, j=1,...,n. (6.1)

Lemma 6.1

Sei dim X = n. Sind 1, ..., 2, linear unabhdngig in X sowie ¢1,..., ¢, linear
unabhingig in X*, so gilt

det[£;(x4)]} =1 # 0. (6.2)

Gilt umgekehrt (6.2) und ist eine der beiden Mengen 1, ..., x, oder ¢1,...,¢,
linear unabhangig, so ist es auch die jeweils andere Menge.
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Interpolation

Das (noch allgemeinere) Interpolationsproblem

Sei X ein n-dimensionaler Raum und /1, ..., ¢, € X*. Dann besitzt die

Interpolationsaufgabe (6.1) genau dann fiir beliebige Zahlen y1, ..., y, eine
eindeutige Losung, wenn /4, ..., ¢, linear unabhangig sind.
Beispiele:

(1) X =span{l,2?} auf [-1,1]; £;(f) = f(z;), j =1,2; =1 < 1,22 < 1.
(2) Ist X ein linearer Raum d-variater Polynome und die Funktionale {;}"_;

gegeben durch die Auswertung an n verschiedenen Punkten im R¢, so sind
diese Funktionale nicht notwendig linear unabhingig.
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Polynominterpolation

Interpolation mit Polynomen

Zu gegebenen (paarweise verschiedenen) Knoten
A<y <T1 <To<- <z, <b
und gegebenen Funktionswerten {f;}7, € C soll ein Interpolationspolynom
p(z) = cpa”™ + Cho1Z" N+t gzt g e P,

(mit komplexen Koeffizienten cg, c1, ..., cp, d.h. n + 1 Freiheitsgrade) vom Grad n
konstruiert werden, das die n + 1 Interpolationsbedingungen

p(xl):fu i:Oa17"'7n7

erfiillt.

Oliver Ernst (Numerische Mathematik) Numerische Mathematik Sommersemester 2015 285 / 338



Polynominterpolation

Lagrange-Grundpolynome

Die polynomiale Interpolationsaufgabe ist eindeutig |dsbar. Mit den
Lagrange-Grundpolynomen [Joseph Louis Lagrange, 1736-1813]
T — T
li(x) = L e,
j=0 T; — LL‘j
J#i

(beachte ¢;(x;) = 1 und ¢;(x;) = O fiir j # 1) lasst sich das Interpolationspolynom
in der Lagrange-Form

pa) = 3 i)

darstellen.
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Polynominterpolation

Beispiel: Lagrange-Grundpolynome

Beispiel 1. Daten:

(anfO) = (_13 _1)7 (xlafl) = (Oa _1)7 (z2af2) = (272)

Lagrange-Grundpolynome: 35

r(r—2 1

fo(@ = %, 250
z+1)(z—2

- £z

z+ 1)z osl

l(x) = —( 5 ) . .07

Interpolationspolynom: -osf

p(z) = —lo(x) — () + 265(x) |

— 1,2 1.
=s52°+ 32 1.
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Polynominterpolation

Rekursive Darstellung des Interpolationspolynoms

Die Auswertung der Lagrange-Formel ist aufwendig, wenn ein neues Datenpaar
hinzukommt. Eine rekursive Berechnung ist 6konomischer:

Lemma 6.4

Fiir eine beliebige Indexmenge 0 <ip <41 < - < i < n bezeichne p;, i, . 4,
das (nach Satz 6.3 eindeutig bestimmte) Polynom vom Grad k, das die
Bedingungen

ety om0 ) = s J=0,1,...,k

erfiillt. Dann gilt die Rekursionsformel
pi(z) = fi

(x - mio)pil,i2y~~~yik (.’L’) - (.’L’ — Ly, )pio,ilwnyik—l(:’v)

J}ik — a:io

Pigiv, ... ik (x) =
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Polynominterpolation

Aitken-Neville-Schema

Rechenschema (Algorithmus von Neville-Aitken, [Charles William Neville, % 1941];
[Alexander Craig Aitken, 1895-1967] ):

v | k=0 | k=1] k=2 | k=3 | k=4
zo | po(z) = fo
P0,1(5€)
z1 | pi(x) = fi P0,1,2(i€)
p1,2(37) P0,1,2,3(37)
X2 pz(l‘) = fa P1,2,3($) p0,1,2,3,4(96)
p2,3(7) P1,2,3,4(7)
r3 | p3(x) = f3 P2,3,4(x)
p374(x)
xy | pa() = fa

(Berechnungsreihenfolge : pg — p1 — po1 — p2 = P12 = Po1,2 — )

Oliver Ernst (Numerische Mathematik) Numerische Mathematik Sommersemester 2015 289 / 338



Polynominterpolation

Beispiel: Aitken-Neville-Schema

Beispiel 2 (vgl. Beispiel 1).

z | k=0| k=1 \ k=2
1] -1
(= (=1)(=D=(@-0)(=1) _ _4
o= (@—(=1)(32/2-1)— (z—2)(~1)
O 2=(—1)
COREACD oot | et e

2 2

Aufwand des Neville-Aitken Schemas (fiir Auswertung des Interpolationspolynoms
vom Grad n an einer Stelle z):

5n% + In+1 Gleitpunktoperationen (falls die Differenzen z —z; (0 < i < n) vorab
bestimmt werden).
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Polynominterpolation

Tableau der dividierten Differenzen

Tableau der dividierten Differenzen von f (vgl. § 4.4):

i |k=0|k=1|k=2| k=3 | k=4

xo | Jfo
fo1
T fi fo,1,2
fi,2 fo1,2,3
T2 fo fi,2,3 fo,1,2,3,4
fa,3 f1,2,3.4
x3 | f3 f2,3,4
f3,4
T4 fa

mit

— fil,i2)~~~7ik - fio,i1,-~,ik—1 (k? > 1).
xik — «Tio
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Polynominterpolation

Newton-Darstellung des Interpolationspolynoms

Satz 6.5

(vgl. Satz 4.7 in § 4.4) Mit Hilfe der dividierten Differenzen |ésst sich das (nach
Satz 6.3 eindeutig bestimmte) Interpolationspolynom p in Newton-Form

p(x) = fo+ for(x—z0) + for2(x —z)(x — 1) + -
coodk f0,1,.,,,n(I —zo)(x—21) (T —Tp_1)

darstellen.

Rechenaufwand:
e Zur Bestimmung der Differenzentafel: %(n2 + n) Gleitpunktoperationen.

e Zur Auswertung des Newtonschen Interpolationspolynoms mit dem
Horner-Schema ([William George Horner, 1786-1837]):
3n Gleitpunktoperationen (pro Auswertungspunkt).
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Polynominterpolation

Beispiel: Newton-Darstellung des Interpolationspolynoms

Beispiel 3 (vgl. Beispiele 1 und 2).

Dividierte Differenzen:

zi | k=0 k=1 | k=2

==y
fOl_ 1(_(1)1) :@

_ 1
0 -1 foi2 = Q?Z%_?)

2 2

Das bedeutet:
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Polynominterpolation

Baryzentrische Interpolationsformeln

Das zu den (paarweise verschiedenen) Interpolationsknoten {z¢,z1,...,z,} gehd-

rende Knotenpolynom sei definiert durch
Wnt1(z) == (z —zo)(x —21) - (T — 2p) € Prit1-

Definiert man die baryzentrischen Gewichte {w;}_, durch

1 1 .
Wj 1= =5 = , j=0,...,n,
T I k=o(zy — ) W ()
k#j
so gilt fiir die Lagrange Grundpolynome
w; )
gj(x):wn-'_l(x)x—]l'j’ .7207"'7’”’7

und hiermit l3sst sich das Interpolationspolynom darstellen durch die ...
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Polynominterpolation

Baryzentrische Interpolationsformeln

erste baryzentrische Formel

wj

p(a) = warr(@) O f;
i=0

.’E—Z'j

<

Da die konstante Funktion f = 1 exakt interpoliert wird gilt

Wy

1= Wn+1(x) Z

n
r—x;
j=0 J

und somit nach Quotientenbildung und Kiirzen die zweite baryzentrische Formel

Oliver Ernst (Numerische Mathematik) Numerische Mathematik Sommersemester 2015 295 / 338



Polynominterpolation

Baryzentrische Interpolationsformeln

Aufdatierung. Bei Hinzunahme von z,, 1

alt
neu ._ w;

, j=0,...,n, (2n+ 2 Flops).
Zj — Tn+1

Wy41 aus (6.3), n + 1 weitere Flops, falls ; — 2,1 gemerkt werden.

Aufwand.
o Berechnung von {w;}"_, erfordert }77_, 3j = 3n(n + 1) Flops.
o Bei gegebenen Gewichten {w;}”_, jede Auswertung von p in weiteren
5n +4 = O(n) Flops.
Weitere Vorteile.

e w; hangen nicht von den Daten f; ab, d.h. bei gegebenen Gewichten kdnnen
beliebige Funktionen f in O(n) Flops interpoliert werden.

e w,; unabhingig von Knotennummerierung (vgl. dividierte Differenzen).
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Polynominterpolation

Baryzentrische Interpolationsformeln

Beispiel. Interpolation an dquidistanten Knoten in [a, b] fiihrt auf
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Polynominterpolation

Interpolationsfehler

Satz 6.6 (Fehler der Polynominterpolation)

Die Funktion f € C"*1[a,b] werde durch das Polynom p € &, interpoliert an den
paarweise verschiedenen Knoten {z¢,x1,...,2,} < [a,b]. Deren Knotenpolynom
sei bezeichnet mit

wnt1(@) = (@ —z0)(®—21) (2 — 20) € Ppg1.

Dann gibt es zu jedem z € [a, b] ein £ = £(z) € (a,b) mit

@) = plo) = T o),

Mit M, 1 := maxa<i<p | fHD(2)] gilt somit fiir alle = € [a, b] die
Fehlerabschatzung

Mn+1
S+ a

X |wnt1(2)]- (6.4)

v
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Polynominterpolation

Konvergenz einer Interpolationsfolge

Korollar 6.7
Die Funktion f € C*[a,b] mit

|Ff™M ()| <M  Vzelab], VneN, (6.5)

werde fiir jedes n € N durch das Polynom p,, € &2, an der beliebigen Knotenfolge
{x;n) }'_o < [a, b] interpoliert. Dann gilt

max_|f(z) — pa(z)| >0 fir n— oo
z€[a,b]

v

Die sehr starke Forderung (6.5) ist erfiillt z.B. fiir ¥, sinz, cosz und (natiirlich) fiir
Polynome. Bereits fiir die rationale Funktion f(z) = 1/x mit f(™)(z) = +n!/z"*!
gilt (6.5) etwa auf dem Intervall [1, 2] schon nicht mehr.
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Polynominterpolation

,Optimale" Knoten

Idee (motiviert durch Fehlerabschitzung): wihle Knoten a < 29 < 1 < -+- <
n < b so, dass

max |w = max n t— x|
Jnax |wn1(t)] = max | | |t —ail
so klein wie moglich wird.

Lésung: Tschebyscheff-Knoten [Pafnuti Lwowitsch Tschebyscheff, 1821-1894]

b— 2(n—1i)+1 b
ng): acos (n—i) + e , =0,1,...,n,
2 2n + 2 2
mit .
max H|t—x(T)|=2 b—_a < max H|t—xl
ast<b 5 o ‘ 4 a<t<b
fiir jede andere Wahl zg, ..., z, der Knoten.
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Polynominterpolation

Knotenpolynome

Knotenpolynome mit dquidistanten und Tschebyscheff-Knoten:

0.8 .
/ — - aequidistante Knoten
| ! —— Tschebyscheff-Knoten

06 1 4
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Polynominterpolation

Das Runge-Phanomen

Beispiel 4.(Runge®-Phinomen”) Interpoliere an n + 1 dquidistanten Stiitzstellen

1 .
f(z) = Tr 22 -5< <5, (Runge-Funktion)
x
0%

6[Carl David Tolmé Runge, 1856-1927].
7C. Runge. Uber emprirische Funktionen und die Interpolation zwischen dquidistanten
Ordinaten. Zeitschrift fiir Mathematik und Physik 46 (1901) pp. 224-243

Oliver Ernst (Numerische Mathematik) Numerische Mathematik Sommersemester 2015 302 / 338



Polynominterpolation

Das Runge-Phanomen

Beispiel 5. Interpoliere an n + 1 Tschebyscheff-Knoten

f@) = —— s5<w<s
1422
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Polynominterpolation

Fazit: Das polynomiale Interpolationsproblem

e Durch eine geeignete Knotenwahl (Tschebyscheff-Knoten) I3sst sich auch die
Runge-Funktion durch Interpolationspolynome beliebig genau annihern.

e Prinzipiell ist eine Approximation durch Interpolationspolynome aber nur
dann ratsam, wenn man mit wenigen Knoten (d.h. mit Polynomen niedrigen
Grades) ausreichend gute Ergebnisse erzielen kann. Das ist i.A. nur bei
extrem glatten Funktionen (wie etwa bei der Exponentialfunktion)
gewahrleistet. (Die Runge-Funktion ist zwar in ganz R beliebig oft
differenzierbar, besitzt aber Pole in +4/—1. Wie gut eine Funktion durch
reelle Interpolationspolynome gendhert werden kann, hiangt auch von der
Lage ihrer komplexen Singularitdten ab!)

e Polynome hohen Grades neigen zu Oszillationen und sind daher zur
Approximation oft unbrauchbar.
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Polynominterpolation

Konvergenz polynomialer Interpolation

Fiir dquidistante Knoten in [—5, 5] gilt lim,,_,q |wn+1(z)|%+1 = G(2),

G(2) — exp {% Re[(z + 5) log(z + 5) — (= — 5) log(z — 5)] 1} .

2

—T.

ol I
-5 0 5
Re

~

Hohenlinien von G(z), rot gekennzeichnet ist das Niveau von G(+%), welches in +z. ~
+3.6333843024 die reelle Achse schneidet.
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Polynominterpolation

Konvergenz polynomialer Interpolation

Satz 6.8 (Runge, 1901)
Besitzt die Funktion f keine Singularitdt im Gebiet

D,:={zeC:G(2) <G(p)}, p>0,

so gilt
pn(x) — f(x) fir n — oo gleichmaRig fiir x € (—p, p).
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Polynominterpolation

Eine Anwendung: Numerische Differentiation

Naheliegende Idee, um die n-te Ableitung einer komplizierten Funktion f anzuna-
hern:

(1) Bestimme ein Interpolationspolynom p vom Grad n fiir f.
(2) Differenziere p n-mal: p{™(z) = n! fo1. n.

Beispiele:
(a) Knoten: z¢ und 21 = 29 + h, d.h.

f(zo +h) = f(zo)
- .

f'(zo) ~ p'(x0) = 1! fou =
(b) Knoten: xg = &1 — h, 1 und o = x1 + h, d.h.

flai+h) = 2f(@1) + flzr — h)

f”(xl) ~ p"(ﬂh) = 2!f0,1,2 = 12
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Polynominterpolation

Eine Anwendung: Numerische Differentiation

Problematik: Numerische Ausldschung.

Fiir f(x) = sinh(z) = 3(e® — e~*) approximiere

0.636653582. .. — £(0.6) = £(0.6) ~ 1061 = 2/(06) + f(0.6 + 1)

72
fir h =10"¢ e =1,2,..., im IEEE-double-Format
(Maschinengenauigkeit: eps = 2752 ~ 2.2 - 107 16).
e 17(0.6) ~ e 17(0.6) ~
1 | 0.63718430367986 || 5 | 0.63665517302525
2 | 0.63665888761277 || 6 | 0.63682392692499
3 | 0.63665363525534 || 7 | 0.64392935428259
4 | 0.63665358540632 || 8 | 2.22044604925031
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Polynominterpolation

Eine Anwendung: Numerische Differentiation

1
12
Rundungsfehler ~ 4h~2eps = 4 eps 102

1
Diskretisierungsfehler ~ F@(0.6)h? ~ %10_26,

10 ; . !
Rundungsfehler
10° |
optimale Schrittweite
10°
3
=
[
* -10
10
1 0—15
Diskretisierungsfehler
1 0_20 L L
10° 107 107 107

Schrittweite
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Spline-Interpolation

Splines

Splines sind , stiickweise Polynome" 2

Idee: Um eine besser Polynomapproximation zu erzielen, wird hier nicht der Poly-
nomgrad erhoht, sondern die Unterteilung des Intervalls verfeinert.
Seien n + 1 Knoten in [a,b] gegeben: a = 9 <21 <+ < zp_1 < x, = b. Mit

T = [zo,z1] U [21,22] U -+ U [2n_1, 25]

bezeichnen wir die zugehérige Zerlegung des Intervalls [a,b]. Ein Spline vom Grad
k bez. 7 ist eine Funktion s € C*~[a,b], die auf jedem Teilintervall von .7 mit
einem Polynom vom Grad k iibereinstimmt:

S|[wi—1,ﬂ7i] € Py firi= 1,2,...,n.

Die Menge .#% aller Splines vom Grad k bez. .7 ist ein (n + k)-dimensionaler
linearer Raum.

8Wortlich: Spezielle biegsame Kurvenlineale, die durch Halterungen gezwungen werden, auf
dem Zeichenpapier gegebene Punkte zu verbinden; wurden im Schiffsbau verwendet.
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Spline-Interpolation

Spline-Approximation der im Runge-Beispiel

T T
— Runge-Funktion
O Knoten
ir — — linearer Spline
— - kubischer Spline
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Spline-Interpolation

Lineare Spline-Interpolation

Einfachster Fall: k = 1.

Ein Spline s vom Grad 1 (linearer Spline) ist charakterisiert durch die beiden Eigen-
schaften:

(1) Auf jedem Teilintervall [z;_1, ;] von . ist s linear:
s(z) =a;+ Bz firallex e [z;—1,z;]und i =1,2,...,n.
(2) Auf ganz [a,b] ist s stetig, d.h. firi=1,2,...,n—1

lim s(x) = a; + Biz; = ajp1 + Biyrx; = lim s(z).

T—T;— T—x;+

Interpolationsaufgabe: Zu vorgebener Zerlegung .7 = [xg,z1] U [21,22] U -+ U
[Tn—1,Zn] von [a,b] und zu vorgegebenen Werten fo, f1,..., f, bestimme man
einen linearen Spline s € .5, mit

s(z;) = f; firallei=0,1,...,n.
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Spline-Interpolation

Lineare Spline-Interpolation

Offensichtlich: Diese Aufgabe ist eindeutig l&sbar:

s(x) = fi—1 + M (x —xi—1)  firze[x_1,z].
Tj — Tj—1

1t linearer Interpolationsspline R
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Spline-Interpolation

Lineare Spline-Interpolation

Fehler des linearen Interpolationssplines: (f € C?[a,b])

Lokal, d.h. fir x € [ZIIZ‘_l,ZIIi], gllt

1

SMQ,,» h?

[f(z) = s(z)] = %If”(()l (@ = zia) (2w — )| <

(O und hy = z; — ;.

Global, d.h. fiir x € [xg, z,], erhalten wir

mit My ; = maxy, | <¢<a;

[F(2) = s(x)] < =My B2

8 max
mit My = maxi<;<n Ma; = maxz <c<a, |f7(C)] und Amax = maxi<i<n hi.

Adaptive Knotenwahl. Stategie: Fehler etwa gleich auf jedem Teilintervall. D.h.:
Wahle h; invers proportional zu \/E (viele Knoten dort, wo die Kriimmung von
f groB ist).
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Spline-Interpolation

Lineare Spline-Interpolation

Zur Implementierung.
Gegeben: xg,z1,..., 2, und fo, f1,..., fa.
Gesucht: Wert s(z) des linearen Interpolationssplines an der Stelle x.

e Bestimme gi—1 = (f, — fi,l)/(xi — l’ifl) furi = 1,2,...,n.
e Falls z € [z;_1,x;], dann s(z) = fi_1 + gi—1 (x — 24_1).

Problem: Gegeben z, in welchem Teilintervall [z;_1, x;] liegt 27
Einfach, falls h; = h (dquidistante Knoten):

i = V_hxﬂ :=min{keN : k>‘”—hx°}.

Schwieriger bei beliebigen Knoten: binires Suchen ergibt Komplexitat von ~ logn.
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Spline-Interpolation

Kubische Spline-Interpolation

Gesucht ist ein interpolierender kubischer Spline s € ..
Charakteristische Eigenschaften:
(1) Auf jedem Teilintervall [2;_1, ;] von .7 ist s kubisch:

s(x) = pi(x) = ai + Bi(z — zi1) +vi(x — 1) + (2w — 2i-1)”.
(2) Auf ganz [a,b] ist s zweimal stetig differenzierbar, d.h.
pi@i) = piva(@i),  pi(we) = pia(@e), P (wi) = pis (1)

firi=1,2,...,n—1.
(3) Interpolationsbedingungen:

S(.Ti)=fi, i:O,l,...,n.

Fazit: 3(n — 1) + (n + 1) = 4n — 2 Bedingungen, aber 4n Freiheitsgrade.
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Spline-Interpolation

Kubische Spline-Interpolation

Drei Maglichkeiten fiir die erforderlichen zwei Zusatzbedingungen.
Natiirlicher Spline:
s"(20) = 5" (xn) =0 (N)
Hermitescher oder vollstdndiger Spline [Charles Hermite, 1822-1901]:
S(ao)=fo und  (x.)=f, mit fofLeR. (H)

Periodischer Spline: Falls s(xq) = s(z),

§'(zo) = §'(zn) und  §"(xg) = 5" (). (P)
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Spline-Interpolation

Berechnung des kubischen Interpolationssplines

Auf jedem Teilintervall [x;_1, z;] besitzt der kubische Spline die Darstellung
s(z) = pi(w) = a; + Bi(x — w-1) + viz — l’i—l)2 + 0i(x — l'i—l)B

mit Koeffizienten oy, 8;,v; und 9;, welche sich wiederum darstellen lassen durch
durch die Momente p; := s”(x;) und die Funktionswerte f; (i =0,1,...,n):

fi—ficr hi
@ = fi—1, Bi = —h‘l - - g(,uz + 2pi-1),
L PO
Vi 2,“’1—17 i 6h2 s

wobei h, =T —Ti—1-.

Mit anderen Woren: Ein kubischer Spline ist durch die Funktionswerte und die
Momente
fiaﬂi 7;20,17...,71

eindeutig bestimmt.
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Spline-Interpolation

Berechnung des kubischen Interpolationssplines

Die (n 4+ 1) Momente ; erfiillen die (n — 1) linearen Gleichungen

hi hi + hita hit1 S —fi fi— fima
6 Hi—-1 + 3 1223 + 6 Hiv1 = hi+1 hz
(i=1,2,...,n— 1) und zwei Zusatzgleichungen:
(N) Ho = 0’
tn =0,
h hl fl - fO /
H h o _
( ) 3 Ho + 6 H1 hl 0
% + ﬁ _ fn B fn—l
6 Hn—1 3 Hn n hn P
(P) Ho = Hn,
b o b PRI i Sl (R LR
6 M1 6 Hn—1 3 Hn hl hn
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Spline-Interpolation

Berechnung des kubischen Interpolationssplines

Im Weiteren werden nur vollstindige kubische Splines (Bedingung (H)) betrachtet,
analoge Aussagen gelten unter den Bedingungen (N) bzw. (P).

Die Momente des vollstandigen kubischen Splines erfiillen das LGS (s.0.)

rhy hy 7
3 6
hi  hitho ho Ho do
6 3 6 M1 dy
. : = : (6.6)
hn—1 hpn_1+hn h_n Mn—]_ dn—l
6 hsn h6n i d,
L 6 3
mit dp= DI dmh Lo oy
hq hji1 h;
fn fn 1
und —
f hn
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Spline-Interpolation

Existenz, Eindeutigkeit, Fehler

Satz 6.10

Fiir jede Wahl der Knoten a = o < 21 < -+ < z, = b ist das Gleichungssystem
(6.6) eindeutig l6sbar. D.h.: Zu jeder Knotenwahl gibt es genau einen
vollstandigen kubischen Interpolationsspline fiir f.

Satz 6.11 (Fehler bei kubischer Spline-Interpolation)

Ist f € C*[a,b] und s € .3 der vollstindige kubische Interpolationsspline fiir f,
dann gelten
5

Jmox |£(2) = s@)] < 57 Ma P
e [(0) = @) < 57 Ma b,
o |(@) = 5"(@)] < gMah
mit My = argg;{b |f(4) (@) und  Amax = lrél?é(n hi = 11252(71(% —Ti1).
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Spline-Interpolation

Fehlerdarstellung in s#2-Halbnorm

Wir definieren allgemein

HF = AF(a,b) = {f:[a,b] > R:f, ..., f*D absolut stetig,
f® ex fii, f0 e L*(a,b)}

b 1/2
fla = ( j |f"<x>|2dx) |
Lemma 6.12

Fiir f € 72 und s € 73 gilt
|f = sl =113 = Isl3
—2 { [f/(x) = 3'(35)]8”(33)|Z — Z [f(z) — 3(37)]8”’(3;‘)
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Spline-Interpolation

Minimierung der Biegeenergie

Satz 6.13 (Minimierungseigenschaft kubischer Splines)

Ist f € 72 und s € .73 ein zugehdriger kubischer Interpolationsspline, der eine
der drei Zusatzbedingungungen (N), (H) oder (P) erfillt, dann folgt

b
18 < 1713 <= | f”<x>2dw> .

Interpretation von Satz 6.13. Unter allen Funktionen f € J#2 mit
f(xz‘)=fi, 1=0,1,...,n,

minimiert der interpolierende kubische Spline mit einer der Zusatzbedingungen (H),
(N) oder (P) niherungsweise die Biegeenergie

- b f//($)2 N b .
Eg(f) ._L —[1 TP dz ~ L f"(2)? da.
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Bestapproximation in Innenproduktraumen

Sei ¥ ein Vektorraum iiber R oder C mit Innenprodukt (-,-). Dann wird durch
lv| := (v,v)Y? (v € ¥) eine Norm auf ¥ definiert. Ist # bez. dieser Norm
vollstandig, so heisst (¥, (+,)) ein Hilbert-Raum.

Beispiele:

1.) R™ (C™) mit Innenprodukt (z,y) =y 'z ((z,y) = yz) ist ein
Hilbert-Raum. (Die vom Innenprodukt induzierte Norm ist die Euklid-Norm.)

2.) 2 :={x ={z;}jencC: Z;O:O |zi|> < o0} mit dem Innenprodukt
(z,y) = Z;O=1 x;y; ist ein Hilbert-Raum.

3.) C°:={z = (zj)jen € £* : x; = 0 bis auf endlich viele j} mit dem
Innenprodukt (z,y) = >, 2;7; ist kein Hilbert-Raum.

4.) C™" mit dem Innenprodukt (A, B) = trace(B* A) ist ein Hilbert-Raum.
(Die vom Innenprodukt induzierte Norm ist die Frobenius-Norm.)

5.) L2(a,b) = {f : [a,b] - C : § |f(2)]>dz < o0} mit dem Innenprodukt
(f,9) = SZ f(x)g(z)dx ist ein Hilbert-Raum.
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Bestapproximation in Innenproduktraumen

Approximationsaufgabe: Sei % ein endlich-dimensionaler Teilraum des Innenpro-
duktraums ¥ und v € 7. Bestimme u* = u*(v) € Z mit

[u* —v| < |u— v fir alle w e 7, u # u”.
u* heiBt die Bestapproximation an v aus % .

Erinnerung. Sei % ein endlich-dimensionaler Teilraum des Innenproduktraums 7.
Dann ist die Orthogonalprojektion auf % P : ¥ — % definiert durch

v vVEY
Pv = ’
{0 vewt.

Ist {uy,ug, ..., u,} eine Orthonormalbasis von %, so gilt

Pv = (v,w)u; + (v,ug)ug + - + (v, up)u, firalleve?.
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Bestapproximation in Innenproduktraumen

Satz 6.14

Sei % ein endlich-dimensionaler Teilraum des Innenproduktraums ¥, P die
Orthogonalprojektion auf % und v € 7.

Dann ist die Bestapproximation u* aus % an v gegeben durch u* = Pw.
Die Bestapproximation ist eindeutig bestimmt und charakterisiert durch

u —v LY.
Ist {u;, us, ..., w,} eine Orthonormalbasis von %, so gelten
n n 1/2
- Nwwy wd = (Y lew) <ol
j=1 =1

J

sowie
Jlu* —o)? = [v]* - |u*]?.

Oliver Ernst (Numerische Mathematik) Numerische Mathematik Sommersemester 2015



Bestapproximation in Innenproduktraumen

Beispiel. Die Bestapproximation an A € R™*" aus dem Unterraum der symmetri-
schen Matrizen (bez. der Frobenius-Norm) ist

Ag:=2(A+ A") (der symmetrische Anteil von A).

Beispiel. Der Raum .7, der trigonometrischen Polynome vom Grad n definiert
durch

T, :=span{e* . k = 0,+1,...,4+n} c L*(0,27), (Bezeichnung: i*> = —1)

besitzt die Dimension 2n+1 . Die Funktionen {\/ngeikt}Z:fn bilden eine ON-Basis
von .7,,. Die Bestapproximation an f € L?(0,2m) aus .7, ist also

" ) 1 (2?7 .
ul(t) = Z age™  mit Ik = oo . f(t)e ™ dt.
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Bestapproximation in Innenproduktraumen

Bemerkung. Im Fall von a;, =a_;, k =0,1,...,n, (z.B. wenn f reellwertig ist)
folgt mit ag = 2ag, ar = 2Re(ag), B = —2Im(a) (k=1,2,...,n).

n
= —0 Z ay, cos(kt) + B sm(k:t)]
2
k=1
Dies folgt aus
uy (t) = Z age™ = ag + Z are™ + Z a_pe Kt
k=—n k=1 k=1

=agp+ i (ax[cos(kt) + isin(kt)] + ax[cos(kt) — isin(kt)])

i ) cos(kt) —2Im(ay,) sin(kt)].

=: 20 =10 =;ﬁk
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Trigonometrische Interpolation

Trigonometrische Polynome

Seien
fo, fi,.o s fm—1€eR und  zj:=2mj/m, j=0,1,...,m—1,
d.h. 29 <21 <+ < X1 sind dquidistante Knoten aus [0, 27).

Gesucht ist ein reelles trigonometrisches Polynom vom Grad n,
a n
tn(x) = -+ Z:] oy, cos(kx) + B sin(kz)],

das die m Interpolationsbedingungen

tn(l‘j) =fj (j=0,1,...,m—1) (67)

erfiillt. Hierbei ist
falls m gerade,

M= falls m ungerade.
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Trigonometrische Interpolation

Transformation auf den (komplexen) Einheitskreis
Vermdge der Abbildung

¢:[0,2r) — T:={2€C:|z| =1}, Tz = e =cosx +isinz,
gehen die Knoten z; iiber in die m-ten Einheitswurzeln:

d(xj) = e2mid/m — [627”'/7"]]' = w%, j=0,1,...,m—1,

2

H . p2mi/m _ 2m Pt 2T
mit w,, :=¢€ = Ccos - +¢sin

Setzt man 8y =0 und fir k=0,1,...,n

11 —3 (677
Al e

o 1 1 a ap + a_ 2 Rea
R [ﬂ:] N [Z _i] [a—kk] B [i(a]; —a_];)] - [—2Ima:]’
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Trigonometrische Interpolation

Transformation auf den (komplexen) Einheitskreis

so folgt

n
Z ape'® Z apzk = 27" Z apzFtm = 2" "pan(2)

k=—n k=—n k=—n

mit pon(2) = Yoo _, apz*t" = Z?Zo aj_nzl € Poy.
Wegen ' .
Pan(wh,) = wi! tn(z;)

ist die trigonometrische Interpolationsaufgabe hiermit zuriickgefiihrt auf eine (ge-
wohnliche) Interpolationsaufgabe fiir (algebraische) Polynome.
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Trigonometrische Interpolation

Transformation auf den (komplexen) Einheitskreis

Satz 6.15

Zu beliebig vorgegebenen paarweise verschiedenen Knoten

X0, L1, .- -, Tan € [0,27) und zu beliebigen Funktionswerten fo, fi1,..., fan € R
gibt es genau ein reelles trigonometrisches Polynom t,, € ;, mit

tn(mj):fj (]:0»1)’277’)

4

Fiir die m-ten Einheitswurzeln w®, (k € Z, m € N) gelten:
(@) Wbl =wl =[] (GeD),
b) Wk, —wk  (CeZ, {£0),

c) wkzwk

ki J m, falls k=0 (modm),
J) Z Wm = { 0, falls k%0 (modm).

v
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Trigonometrische Interpolation

Algebraische Interpolation an den Einheitswurzeln

Satz 6.17

Das komplexe (algebraische) Interpolationspolynom

m—1

Pm-1(2) = Z cxzt e Py

k=0
mit prm—1(wl,) = f;€C (j=0,1,...,m — 1) besitzt die Koeffizienten

1
_ LN k=01 -1 6.8
G = ijwm , =0,1,...,m—1. (6.8)
m -
7=0
In Matrix-Vektor-Schreibweise
Co fo
c1 1 fi
. = _Fm .
m
Cm—1 fmfl
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Trigonometrische Interpolation

Algebraische Interpolation an den Einheitswurzeln

Satz 6.17 (Fortsetzung)

mit der Fourier-Matrix
1 1 1
=il —m+1
iy 1w, e w ™
F = [wp, ]0<k,j<m—1 = : :
1 w-mtl .. w;(m_1)2
m

Bemerkung. Mit den Bezeichnungen aus Satz 6.17 minimiert das ,abgeschnittene”
Interpolationspolynom

pm,d(z)::CO+012+"'+CdZd7 0<d<sm-—1,

unter allen Polynomen ¢ € &2, die Fehlerquadratsumme zur Interpolationsvorschrift:

m—1
2 ..
Z\fj Prma(wl,) Z|f]—qwj)| fir alle g € Zq, ¢ # Pm.a-
7=0
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Trigonometrische Interpolation

Trigonometrische Interpolation, allgemeiner reeller Fall

Satz 6.18

Fiir m = 2n oder m = 2n + 1 gibt es zu beliebigen fy, f1,..., frn—1 € R ein
reelles trigonometrisches Interpolationspolynom

Z ay, cos(kx) +ﬂksm(k:c)] T

vom Grad n, das die m Bedingungen
t.(2mj/m) = f; (j=0,1,...,m—1)

erfiillt. Seine Koeffizienten sind gegeben durch
m—1
2 2
= — Z fj cos
m -
j=0

Im Fall m = 2n muss 5, = 0 gesetzt und «,, halbiert werden.

m—1

bzw. Z f;sin 27r]k (k=0,1,...,n).

v
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