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Interpolation
Das (allgemeine) Interpolationsproblem

Zu gegebener Funktion f : ra, bs Ñ C und gegebenen Stützstellen (Knoten)

a ď x0 ă x1 ă x2 ă ¨ ¨ ¨ ă xn ď b

soll eine „einfache“ Funktion p : ra, bs Ñ C konstruiert werden, die die Interpolati-
onsbedingungen

ppxiq “ fpxiq, i “ 0, 1, . . . , n

erfüllt.

Wozu?

• f ist nur an diskreten Punkten bekannt (Messwerte), aber eine geschlossene
Formel für f ist auf ganz ra, bs erwünscht (z.B. um f an Zwischenstellen
x P ra, bsztx0, x1, . . . , xnu auszuwerten),

• f ist „kompliziert“ und soll durch eine „einfache“ Funktion angenähert werden
(z.B. um die Ableitung f 1pxq, x P ra, bs, oder das Integral

şb

a
fpxqdx

näherungsweise zu bestimmen).
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Interpolation
Das (noch allgemeinere) Interpolationsproblem

Sei X ein linearer Raum sowie `1, . . . , `n P X˚ lineare Funktionale auf X. Zu
gegebenen Zahlen y1, . . . , yn ist ein Element x P X gesucht mit der Eigenschaft

`jpxq “ yj , j “ 1, . . . , n. (6.1)

Lemma 6.1
Sei dimX “ n. Sind x1, . . . , xn linear unabhängig in X sowie `1, . . . , `n linear
unabhängig in X˚, so gilt

detr`ipxjqs
n
i,j“1 ‰ 0. (6.2)

Gilt umgekehrt (6.2) und ist eine der beiden Mengen x1, . . . , xn oder `1, . . . , `n
linear unabhängig, so ist es auch die jeweils andere Menge.
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Interpolation
Das (noch allgemeinere) Interpolationsproblem

Satz 6.2
Sei X ein n-dimensionaler Raum und `1, . . . , `n P X˚. Dann besitzt die
Interpolationsaufgabe (6.1) genau dann für beliebige Zahlen y1, . . . , yn eine
eindeutige Lösung, wenn `1, . . . , `n linear unabhängig sind.

Beispiele:
(1) X “ spant1, x2u auf r´1, 1s; `jpfq “ fpxjq, j “ 1, 2; ´1 ď x1, x2 ď 1.
(2) Ist X ein linearer Raum d-variater Polynome und die Funktionale t`junj“1

gegeben durch die Auswertung an n verschiedenen Punkten im Rd, so sind
diese Funktionale nicht notwendig linear unabhängig.
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Polynominterpolation
Interpolation mit Polynomen

Zu gegebenen (paarweise verschiedenen) Knoten

a ď x0 ă x1 ă x2 ă ¨ ¨ ¨ ă xn ď b

und gegebenen Funktionswerten tfiuni“0 P C soll ein Interpolationspolynom

ppxq “ cnx
n ` cn´1x

n´1 ` ¨ ¨ ¨ ` c1x` c0 P Pn

(mit komplexen Koeffizienten c0, c1, . . . , cn, d.h. n` 1 Freiheitsgrade) vom Grad n
konstruiert werden, das die n` 1 Interpolationsbedingungen

ppxiq “ fi, i “ 0, 1, . . . , n,

erfüllt.
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Polynominterpolation
Lagrange-Grundpolynome

Satz 6.3

Die polynomiale Interpolationsaufgabe ist eindeutig lösbar. Mit den
Lagrange-Grundpolynomen [Joseph Louis Lagrange, 1736–1813]

`ipxq :“
n
ź

j“0
j‰i

x´ xj
xi ´ xj

P Pn

(beachte `ipxiq “ 1 und `ipxjq “ 0 für j ‰ i) lässt sich das Interpolationspolynom
in der Lagrange-Form

ppxq “
n
ÿ

i“0

fi `ipxq

darstellen.
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Polynominterpolation
Beispiel: Lagrange-Grundpolynome

Beispiel 1. Daten:

px0, f0q “ p´1,´1q, px1, f1q “ p0,´1q, px2, f2q “ p2, 2q.

Lagrange-Grundpolynome:

`0pxq “
xpx´ 2q

3
,

`1pxq “
px` 1qpx´ 2q

´2
,

`2pxq “
px` 1qx

6
.

Interpolationspolynom:

ppxq “ ´`0pxq ´ `1pxq ` 2`2pxq

“ 1
2x

2 ` 1
2x´ 1.
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Polynominterpolation
Rekursive Darstellung des Interpolationspolynoms

Die Auswertung der Lagrange-Formel ist aufwendig, wenn ein neues Datenpaar
hinzukommt. Eine rekursive Berechnung ist ökonomischer:

Lemma 6.4
Für eine beliebige Indexmenge 0 ď i0 ă i1 ă ¨ ¨ ¨ ă ik ď n bezeichne pi0,i1,...,ik
das (nach Satz 6.3 eindeutig bestimmte) Polynom vom Grad k, das die
Bedingungen

pi0,i1,...,ikpxij q “ fij , j “ 0, 1, . . . , k

erfüllt. Dann gilt die Rekursionsformel

pipxq “ fi,

pi0,i1,...,ikpxq “
px´ xi0qpi1,i2,...,ikpxq ´ px´ xikqpi0,i1,...,ik´1

pxq

xik ´ xi0
.
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Polynominterpolation
Aitken-Neville-Schema

Rechenschema (Algorithmus von Neville-Aitken, [Charles William Neville, ˚ 1941];
[Alexander Craig Aitken, 1895–1967] ):

xi k “ 0 k “ 1 k “ 2 k “ 3 k “ 4

x0 p0pxq “ f0
p0,1pxq

x1 p1pxq “ f1 p0,1,2pxq
p1,2pxq p0,1,2,3pxq

x2 p2pxq “ f2 p1,2,3pxq p0,1,2,3,4pxq
p2,3pxq p1,2,3,4pxq

x3 p3pxq “ f3 p2,3,4pxq
p3,4pxq

x4 p4pxq “ f4

(Berechnungsreihenfolge : p0 Ñ p1 Ñ p0,1 Ñ p2 Ñ p1,2 Ñ p0,1,2 Ñ ¨ ¨ ¨ )
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Polynominterpolation
Beispiel: Aitken-Neville-Schema

Beispiel 2 (vgl. Beispiel 1).

xi k “ 0 k “ 1 k “ 2

´1 ´1
px´p´1qqp´1q´px´0qp´1q

0´p´1q “ ´1

0 ´1 px´p´1qqp3x{2´1q´px´2qp´1q
2´p´1q

px´0q2´px´2qp´1q
2´0 “ 3

2x´ 1 “ 1
2x

2 ` 1
2x´ 1

2 2

Aufwand des Neville-Aitken Schemas (für Auswertung des Interpolationspolynoms
vom Grad n an einer Stelle x):
5
2n

2` 7
2n`1 Gleitpunktoperationen (falls die Differenzen x´xi (0 ď i ď n) vorab

bestimmt werden).
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Polynominterpolation
Tableau der dividierten Differenzen

Tableau der dividierten Differenzen von f (vgl. § 4.4):

xi k “ 0 k “ 1 k “ 2 k “ 3 k “ 4

x0 f0
f0,1

x1 f1 f0,1,2
f1,2 f0,1,2,3

x2 f2 f1,2,3 f0,1,2,3,4
f2,3 f1,2,3,4

x3 f3 f2,3,4
f3,4

x4 f4

mit
fi0,i1,...,ik :“

fi1,i2,...,ik ´ fi0,i1,...,ik´1

xik ´ xi0
pk ě 1q.
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Polynominterpolation
Newton-Darstellung des Interpolationspolynoms

Satz 6.5
(vgl. Satz 4.7 in § 4.4) Mit Hilfe der dividierten Differenzen lässt sich das (nach
Satz 6.3 eindeutig bestimmte) Interpolationspolynom p in Newton-Form

ppxq “ f0 ` f0,1px´ x0q ` f0,1,2px´ x0qpx´ x1q ` ¨ ¨ ¨

¨ ¨ ¨ ` f0,1,...,npx´ x0qpx´ x1q ¨ ¨ ¨ px´ xn´1q

darstellen.

Rechenaufwand:
• Zur Bestimmung der Differenzentafel: 3

2 pn
2 ` nq Gleitpunktoperationen.

• Zur Auswertung des Newtonschen Interpolationspolynoms mit dem
Horner-Schema ([William George Horner, 1786–1837]):
3n Gleitpunktoperationen (pro Auswertungspunkt).
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Polynominterpolation
Beispiel: Newton-Darstellung des Interpolationspolynoms

Beispiel 3 (vgl. Beispiele 1 und 2).

Dividierte Differenzen:

xi k “ 0 k “ 1 k “ 2

´1 ´1

f0,1 “
p´1q´p´1q
0´p´1q “ 0

0 ´1 f0,1,2 “
3{2´0
2´p´1q “

1

2

f1,2 “
2´p´1q
2´0 “ 3

2

2 2

Das bedeutet:

ppxq “ p´1q ` 0 px´ p´1qq `
1

2
px´ p´1qqpx´ 0q “

1

2
x2 `

1

2
x´ 1.
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Polynominterpolation
Baryzentrische Interpolationsformeln

Das zu den (paarweise verschiedenen) Interpolationsknoten tx0, x1, . . . , xnu gehö-
rende Knotenpolynom sei definiert durch

ωn`1pxq :“ px´ x0qpx´ x1q ¨ ¨ ¨ px´ xnq PPn`1.

Definiert man die baryzentrischen Gewichte twjunj“0 durch

wj :“
1

śn
k“0
k‰j
pxj ´ xkq

“
1

ω1n`1pxjq
, j “ 0, . . . , n, (6.3)

so gilt für die Lagrange Grundpolynome

`jpxq “ ωn`1pxq
wj

x´ xj
, j “ 0, . . . , n,

und hiermit lässt sich das Interpolationspolynom darstellen durch die . . .

Oliver Ernst (Numerische Mathematik) Numerische Mathematik Sommersemester 2015 294 / 338



Polynominterpolation
Baryzentrische Interpolationsformeln

erste baryzentrische Formel

ppxq “ ωn`1pxq
n
ÿ

j“0

fj
wj

x´ xj
.

Da die konstante Funktion f ” 1 exakt interpoliert wird gilt

1 “ ωn`1pxq
n
ÿ

j“0

wj
x´ xj

,

und somit nach Quotientenbildung und Kürzen die zweite baryzentrische Formel

ppxq “

n
ÿ

j“0

fj
wj

x´ xj
n
ÿ

j“0

wj
x´ xj

.
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Polynominterpolation
Baryzentrische Interpolationsformeln

Aufdatierung. Bei Hinzunahme von xn`1

wneu
j :“

walt
j

xj ´ xn`1
, j “ 0, . . . , n, p2n` 2 Flopsq.

wn`1 aus (6.3), n` 1 weitere Flops, falls xj ´ xn`1 gemerkt werden.

Aufwand.
• Berechnung von twjunj“0 erfordert

řn
j“1 3j “

3
2npn` 1q Flops.

• Bei gegebenen Gewichten twjunj“0 jede Auswertung von p in weiteren
5n` 4 “ Opnq Flops.

Weitere Vorteile.
• wj hängen nicht von den Daten fj ab, d.h. bei gegebenen Gewichten können
beliebige Funktionen f in Opnq Flops interpoliert werden.

• wj unabhängig von Knotennummerierung (vgl. dividierte Differenzen).
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Polynominterpolation
Baryzentrische Interpolationsformeln

Beispiel. Interpolation an äquidistanten Knoten in ra, bs führt auf

wj “ p´1q
j

ˆ

n

j

˙

j “ 0, 1, . . . , n

(modulo des gemeinsamen Faktors p´1qn

n!

´

n
b´a

¯n

).
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Polynominterpolation
Interpolationsfehler

Satz 6.6 (Fehler der Polynominterpolation)

Die Funktion f P Cn`1ra, bs werde durch das Polynom p P Pn interpoliert an den
paarweise verschiedenen Knoten tx0, x1, . . . , xnu Ă ra, bs. Deren Knotenpolynom
sei bezeichnet mit

ωn`1pxq “ px´ x0qpx´ x1q ¨ ¨ ¨ px´ xnq PPn`1.

Dann gibt es zu jedem x P ra, bs ein ξ “ ξpxq P pa, bq mit

fpxq ´ ppxq “
ωn`1pxq

pn` 1q!
f pn`1qpξq.

Mit Mn`1 :“ maxaďtďb |f
pn`1qptq| gilt somit für alle x P ra, bs die

Fehlerabschätzung

|fpxq ´ ppxq| ď
Mn`1

pn` 1q!
max
aďtďb

|ωn`1ptq|. (6.4)
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Polynominterpolation
Konvergenz einer Interpolationsfolge

Korollar 6.7
Die Funktion f P C8ra, bs mit

|f pnqpxq| ďM @x P ra, bs, @n P N, (6.5)

werde für jedes n P N durch das Polynom pn P Pn an der beliebigen Knotenfolge
tx
pnq
j unj“0 Ă ra, bs interpoliert. Dann gilt

max
xPra,bs

|fpxq ´ pnpxq| Ñ 0 für nÑ8.

Die sehr starke Forderung (6.5) ist erfüllt z.B. für ex, sinx, cosx und (natürlich) für
Polynome. Bereits für die rationale Funktion fpxq “ 1{x mit f pnqpxq “ ˘n!{xn`1

gilt (6.5) etwa auf dem Intervall r1, 2s schon nicht mehr.
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Polynominterpolation
„Optimale“ Knoten

Idee (motiviert durch Fehlerabschätzung): wähle Knoten a ď x0 ă x1 ă ¨ ¨ ¨ ă

xn ď b so, dass

max
aďtďb

|ωn`1ptq| “ max
aďtďb

n
ź

i“0

|t´ xi|

so klein wie möglich wird.

Lösung: Tschebyscheff-Knoten [Pafnuti Lwowitsch Tschebyscheff, 1821–1894]

x
(T)
i “

b´ a

2
cos

ˆ

2pn´ iq ` 1

2n` 2
π

˙

`
a` b

2
, i “ 0, 1, . . . , n,

mit

max
aďtďb

n
ź

i“0

|t´ x
(T)
i | “ 2

ˆ

b´ a

4

˙n

ă max
aďtďb

n
ź

i“0

|t´ xi|

für jede andere Wahl x0, . . . , xn der Knoten.
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Polynominterpolation
Knotenpolynome

Knotenpolynome mit äquidistanten und Tschebyscheff-Knoten:
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Polynominterpolation
Das Runge-Phänomen

Beispiel 4.(Runge6-Phänomen7) Interpoliere an n` 1 äquidistanten Stützstellen

fpxq “
1

1` x2
, ´5 ď x ď 5, (Runge-Funktion)
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6[Carl David Tolmé Runge, 1856–1927].
7C. Runge. Über emprirische Funktionen und die Interpolation zwischen äquidistanten

Ordinaten. Zeitschrift für Mathematik und Physik 46 (1901) pp. 224–243
Oliver Ernst (Numerische Mathematik) Numerische Mathematik Sommersemester 2015 302 / 338



Polynominterpolation
Das Runge-Phänomen

Beispiel 5. Interpoliere an n` 1 Tschebyscheff-Knoten

fpxq “
1

1` x2
, ´5 ď x ď 5.
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Polynominterpolation
Fazit: Das polynomiale Interpolationsproblem

• Durch eine geeignete Knotenwahl (Tschebyscheff-Knoten) lässt sich auch die
Runge-Funktion durch Interpolationspolynome beliebig genau annähern.

• Prinzipiell ist eine Approximation durch Interpolationspolynome aber nur
dann ratsam, wenn man mit wenigen Knoten (d.h. mit Polynomen niedrigen
Grades) ausreichend gute Ergebnisse erzielen kann. Das ist i.A. nur bei
extrem glatten Funktionen (wie etwa bei der Exponentialfunktion)
gewährleistet. (Die Runge-Funktion ist zwar in ganz R beliebig oft
differenzierbar, besitzt aber Pole in ˘

?
´1. Wie gut eine Funktion durch

reelle Interpolationspolynome genähert werden kann, hängt auch von der
Lage ihrer komplexen Singularitäten ab!)

• Polynome hohen Grades neigen zu Oszillationen und sind daher zur
Approximation oft unbrauchbar.
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Polynominterpolation
Konvergenz polynomialer Interpolation

Für äquidistante Knoten in r´5, 5s gilt limnÑ8 |ωn`1pzq|
1

n`1 “ Gpzq,

Gpzq “ exp

"

1

10
Re rpz ` 5q logpz ` 5q ´ pz ´ 5q logpz ´ 5qs ´ 1

*

.

i

−i

−xc xc

Re

Im

5 0 5
2

1

0

1

2

Höhenlinien von Gpzq, rot gekennzeichnet ist das Niveau von Gp˘iq, welches in ˘xc «

˘3.6333843024 die reelle Achse schneidet.
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Polynominterpolation
Konvergenz polynomialer Interpolation

Satz 6.8 (Runge, 1901)
Besitzt die Funktion f keine Singularität im Gebiet

Dρ :“ tz P C : Gpzq ď Gpρqu, ρ ą 0,

so gilt
pnpxq Ñ fpxq für nÑ8 gleichmäßig für x P p´ρ, ρq.
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Polynominterpolation
Eine Anwendung: Numerische Differentiation

Naheliegende Idee, um die n-te Ableitung einer komplizierten Funktion f anzunä-
hern:
(1) Bestimme ein Interpolationspolynom p vom Grad n für f .
(2) Differenziere p n-mal: ppnqpxq “ n! f0,1,...,n.

Beispiele:
(a) Knoten: x0 und x1 “ x0 ` h, d.h.

f 1px0q « p1px0q “ 1! f0,1 “
fpx0 ` hq ´ fpx0q

h
.

(b) Knoten: x0 “ x1 ´ h, x1 und x2 “ x1 ` h, d.h.

f2px1q « p2px1q “ 2! f0,1,2 “
fpx1 ` hq ´ 2fpx1q ` fpx1 ´ hq

h2
.
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Polynominterpolation
Eine Anwendung: Numerische Differentiation

Problematik: Numerische Auslöschung.
Für fpxq “ sinhpxq “ 1

2 pe
x ´ e´xq approximiere

0.636653582 . . . “ fp0.6q “ f2p0.6q «
fp0.6´ hq ´ 2fp0.6q ` fp0.6` hq

h2

für h “ 10´e, e “ 1, 2, . . ., im IEEE-double-Format
(Maschinengenauigkeit: eps “ 2´52 « 2.2 ¨ 10´16).

e f2p0.6q « e f2p0.6q «
1 0.63718430367986 5 0.63665517302525
2 0.63665888761277 6 0.63682392692499
3 0.63665363525534 7 0.64392935428259
4 0.63665358540632 8 2.22044604925031
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Polynominterpolation
Eine Anwendung: Numerische Differentiation

Diskretisierungsfehler „
1

12
f p4qp0.6qh2 «

1

20
10´2e,

Rundungsfehler « 4h´2eps “ 4 eps 102e.

Numerische Mathematik 269

Diskretisierungsfehler ≤ 1

12
f (4)(0.6) h2 ≈ 1

20
10−2e,

Rundungsfehler
.
= 4h−2eps ≈ 4 eps 102e.
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Diskretisierungsfehler

Rundungsfehler

Schrittweite

Fe
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optimale Schrittweite

6.1 Polynominterpolation Technische Universität Bergakademie Freiberg
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Spline-Interpolation
Splines

Splines sind „stückweise Polynome“.8

Idee: Um eine besser Polynomapproximation zu erzielen, wird hier nicht der Poly-
nomgrad erhöht, sondern die Unterteilung des Intervalls verfeinert.
Seien n` 1 Knoten in ra, bs gegeben: a “ x0 ă x1 ă ¨ ¨ ¨ ă xn´1 ă xn “ b. Mit

T :“ rx0, x1s Y rx1, x2s Y ¨ ¨ ¨ Y rxn´1, xns

bezeichnen wir die zugehörige Zerlegung des Intervalls ra, bs. Ein Spline vom Grad
k bez. T ist eine Funktion s P Ck´1ra, bs, die auf jedem Teilintervall von T mit
einem Polynom vom Grad k übereinstimmt:

s|rxi´1,xis P Pk für i “ 1, 2, . . . , n.

Satz 6.9
Die Menge S k

T aller Splines vom Grad k bez. T ist ein pn` kq-dimensionaler
linearer Raum.

8Wörtlich: Spezielle biegsame Kurvenlineale, die durch Halterungen gezwungen werden, auf
dem Zeichenpapier gegebene Punkte zu verbinden; wurden im Schiffsbau verwendet.
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Spline-Interpolation
Spline-Approximation der im Runge-Beispiel
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Spline-Interpolation
Lineare Spline-Interpolation

Einfachster Fall: k “ 1.

Ein Spline s vom Grad 1 (linearer Spline) ist charakterisiert durch die beiden Eigen-
schaften:
(1) Auf jedem Teilintervall rxi´1, xis von T ist s linear:

spxq “ αi ` βix für alle x P rxi´1, xis und i “ 1, 2, . . . , n.

(2) Auf ganz ra, bs ist s stetig, d.h. für i “ 1, 2, . . . , n´ 1

lim
xÑxi´

spxq “ αi ` βixi “ αi`1 ` βi`1xi “ lim
xÑxi`

spxq.

Interpolationsaufgabe: Zu vorgebener Zerlegung T “ rx0, x1s Y rx1, x2s Y ¨ ¨ ¨ Y
rxn´1, xns von ra, bs und zu vorgegebenen Werten f0, f1, . . . , fn bestimme man
einen linearen Spline s P S 1

T mit

spxiq “ fi für alle i “ 0, 1, . . . , n.
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Spline-Interpolation
Lineare Spline-Interpolation

Offensichtlich: Diese Aufgabe ist eindeutig lösbar:

spxq “ fi´1 `
fi ´ fi´1

xi ´ xi´1
px´ xi´1q für x P rxi´1, xis.
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Spline-Interpolation
Lineare Spline-Interpolation

Fehler des linearen Interpolationssplines: (f P C2ra, bs)

Lokal, d.h. für x P rxi´1, xis, gilt

|fpxq ´ spxq| “
1

2
|f2pζq| |px´ xi´1qpx´ xiq| ď

1

8
M2,i h

2
i

mit M2,i “ maxxi´1ďζďxi |f
2pζq| und hi “ xi ´ xi´1.

Global, d.h. für x P rx0, xns, erhalten wir

|fpxq ´ spxq| ď
1

8
M2 h

2
max

mit M2 “ max1ďiďnM2,i “ maxx0ďζďxn |f
2pζq| und hmax “ max1ďiďn hi.

Adaptive Knotenwahl. Stategie: Fehler etwa gleich auf jedem Teilintervall. D.h.:
Wähle hi invers proportional zu

a

M2,i (viele Knoten dort, wo die Krümmung von
f groß ist).
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Spline-Interpolation
Lineare Spline-Interpolation

Zur Implementierung.
Gegeben: x0, x1, . . . , xn und f0, f1, . . . , fn.
Gesucht: Wert spxq des linearen Interpolationssplines an der Stelle x.

• Bestimme gi´1 “ pfi ´ fi´1q{pxi ´ xi´1q für i “ 1, 2, . . . , n.
• Falls x P rxi´1, xis, dann spxq “ fi´1 ` gi´1 px´ xi´1q.

Problem: Gegeben x, in welchem Teilintervall rxi´1, xis liegt x?
Einfach, falls hi “ h (äquidistante Knoten):

i “

R

x´ x0
h

V

:“ min

"

k P N : k ě
x´ x0
h

*

.

Schwieriger bei beliebigen Knoten: binäres Suchen ergibt Komplexität von « log n.
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Spline-Interpolation
Kubische Spline-Interpolation

Gesucht ist ein interpolierender kubischer Spline s P S 3
T .

Charakteristische Eigenschaften:
(1) Auf jedem Teilintervall rxi´1, xis von T ist s kubisch:

spxq “ pipxq “ αi ` βipx´ xi´1q ` γipx´ xi´1q
2 ` δipx´ xi´1q

3.

(2) Auf ganz ra, bs ist s zweimal stetig differenzierbar, d.h.

pipxiq “ pi`1pxiq, p1ipxiq “ p1i`1pxiq, p2i pxiq “ p2i`1pxiq

für i “ 1, 2, . . . , n´ 1.
(3) Interpolationsbedingungen:

spxiq “ fi, i “ 0, 1, . . . , n.

Fazit: 3pn´ 1q ` pn` 1q “ 4n´ 2 Bedingungen, aber 4n Freiheitsgrade.
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Spline-Interpolation
Kubische Spline-Interpolation

Drei Möglichkeiten für die erforderlichen zwei Zusatzbedingungen.

Natürlicher Spline:
s2px0q “ s2pxnq “ 0 (N)

Hermitescher oder vollständiger Spline [Charles Hermite, 1822–1901]:

s1px0q “ f 10 und s1pxnq “ f 1n mit f 10, f
1
n P R. (H)

Periodischer Spline: Falls spx0q “ spxnq,

s1px0q “ s1pxnq und s2px0q “ s2pxnq. (P)
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Spline-Interpolation
Berechnung des kubischen Interpolationssplines

Auf jedem Teilintervall rxi´1, xis besitzt der kubische Spline die Darstellung

spxq “ pipxq “ αi ` βipx´ xi´1q ` γipx´ xi´1q
2 ` δipx´ xi´1q

3

mit Koeffizienten αi, βi, γi und δi, welche sich wiederum darstellen lassen durch
durch die Momente µi :“ s2pxiq und die Funktionswerte fi (i “ 0, 1, . . . , n):

αi “ fi´1, βi “
fi ´ fi´1

hi
´
hi
6
pµi ` 2µi´1q,

γi “
1

2
µi´1, δi “

µi ´ µi´1

6hi
,

wobei hi :“ xi ´ xi´1.

Mit anderen Woren: Ein kubischer Spline ist durch die Funktionswerte und die
Momente

fi, µi i “ 0, 1, . . . , n

eindeutig bestimmt.
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Spline-Interpolation
Berechnung des kubischen Interpolationssplines

Die pn` 1q Momente µi erfüllen die pn´ 1q linearen Gleichungen

hi
6
µi´1 `

hi ` hi`1

3
µi `

hi`1

6
µi`1 “

fi`1 ´ fi
hi`1

´
fi ´ fi´1

hi

(i “ 1, 2, . . . , n´ 1) und zwei Zusatzgleichungen:

pNq µ0 “ 0,

µn “ 0,

pHq
h1
3
µ0 `

h1
6
µ1 “

f1 ´ f0
h1

´ f 10,

hn
6
µn´1 `

hn
3
µn “ f 1n ´

fn ´ fn´1

hn
,

pPq µ0 “ µn,

h1
6
µ1 `

h1
6
µn´1 `

h1 ` hn
3

µn “
f1 ´ fn
h1

´
fn ´ fn´1

hn
.
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Spline-Interpolation
Berechnung des kubischen Interpolationssplines

Im Weiteren werden nur vollständige kubische Splines (Bedingung (H)) betrachtet,
analoge Aussagen gelten unter den Bedingungen (N) bzw. (P).

Die Momente des vollständigen kubischen Splines erfüllen das LGS (s.o.)

»

—

—

—

—

—

—

—

–

h1

3
h1

6
h1

6
h1`h2

3
h2

6

. . . . . . . . .
hn´1

6
hn´1`hn

3
hn
6

hn
6

hn
3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

µ0

µ1

...
µn´1

µn

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

d0
d1
...

dn´1

dn

fi

ffi

ffi

ffi

ffi

ffi

fl

(6.6)

mit d0 “
f1 ´ f0
h1

´ f 10, dj “
fj`1 ´ fj
hj`1

´
fj ´ fj´1

hj
p1 ď j ď nq,

und dn “ f 1n ´
fn ´ fn´1

hn
.
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Spline-Interpolation
Existenz, Eindeutigkeit, Fehler

Satz 6.10
Für jede Wahl der Knoten a “ x0 ă x1 ă ¨ ¨ ¨ ă xn “ b ist das Gleichungssystem
(6.6) eindeutig lösbar. D.h.: Zu jeder Knotenwahl gibt es genau einen
vollständigen kubischen Interpolationsspline für f .

Satz 6.11 (Fehler bei kubischer Spline-Interpolation)
Ist f P C4ra, bs und s P S 3

T der vollständige kubische Interpolationsspline für f ,
dann gelten

max
xPra,bs

|fpxq ´ spxq| ď
5

384
M4 h

4
max,

max
xPra,bs

|f 1pxq ´ s1pxq| ď
1

24
M4 h

3
max,

max
xPra,bs

|f2pxq ´ s2pxq| ď
3

8
M4 h

2
max

mit M4 :“ max
aďxďb

|f p4qpxq| und hmax :“ max
1ďiďn

hi “ max
1ďiďn

pxi ´ xi´1q.
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Spline-Interpolation
Fehlerdarstellung in H 2-Halbnorm

Wir definieren allgemein

H k “ H kpa, bq :“
 

f : ra, bs Ñ R : f, f 1, . . . , f pk´1q absolut stetig,

f pkq ex. f.ü , f pkq P L2pa, bq
(

und setzen für f P H 2,

|f |2 :“

˜

ż b

a

|f2pxq|2 dx

¸1{2

.

Lemma 6.12
Für f P H 2 und s P S 3

T gilt

|f ´ s|22 “|f |
2
2 ´ |s|

2
2

´ 2

#

rf 1pxq ´ s1pxqss2pxq
ˇ

ˇ

b

a
´

n
ÿ

i“1

rfpxq ´ spxqss3pxq
ˇ

ˇ

xi´

xi´1`

+

.
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Spline-Interpolation
Minimierung der Biegeenergie

Satz 6.13 (Minimierungseigenschaft kubischer Splines)

Ist f P H 2 und s P S 3
T ein zugehöriger kubischer Interpolationsspline, der eine

der drei Zusatzbedingungungen (N), (H) oder (P) erfüllt, dann folgt

|s|22 ď |f |
2
2

˜

“

ż b

a

f2pxq2 dx

¸

.

Interpretation von Satz 6.13. Unter allen Funktionen f P H 2 mit

fpxiq “ fi, i “ 0, 1, . . . , n,

minimiert der interpolierende kubische Spline mit einer der Zusatzbedingungen (H),
(N) oder (P) näherungsweise die Biegeenergie

EBpfq :“

ż b

a

f2pxq2

r1` f 1pxq2s3{2
dx «

ż b

a

f2pxq2 dx.
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Bestapproximation in Innenprodukträumen

Sei V ein Vektorraum über R oder C mit Innenprodukt p¨, ¨q. Dann wird durch
}v} :“ pv , vq1{2 (v P V ) eine Norm auf V definiert. Ist V bez. dieser Norm
vollständig, so heisst pV , p¨, ¨qq ein Hilbert-Raum.

Beispiele:

1.) Rn (Cn) mit Innenprodukt px ,yq “ yJx (px ,yq “ yHx ) ist ein
Hilbert-Raum. (Die vom Innenprodukt induzierte Norm ist die Euklid-Norm.)

2.) `2 :“
 

x “ txjujPN Ă C :
ř8

j“0 |xi|
2 ă 8

(

mit dem Innenprodukt
px ,yq “

ř8

j“1 xjyj ist ein Hilbert-Raum.

3.) C8 :“
 

x “ pxjqjPN P `
2 : xj “ 0 bis auf endlich viele j

(

mit dem
Innenprodukt px ,yq “

ř8

j“1 xjyj ist kein Hilbert-Raum.

4.) Cnˆn mit dem Innenprodukt pA,Bq “ tracepBHAq ist ein Hilbert-Raum.
(Die vom Innenprodukt induzierte Norm ist die Frobenius-Norm.)

5.) L2pa, bq “ tf : ra, bs Ñ C :
şb

a
|fpxq|2dx ă 8u mit dem Innenprodukt

pf, gq “
şb

a
fpxqgpxqdx ist ein Hilbert-Raum.
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Bestapproximation in Innenprodukträumen

Approximationsaufgabe: Sei U ein endlich-dimensionaler Teilraum des Innenpro-
duktraums V und v P V . Bestimme u‹ “ u‹pvq P U mit

}u‹ ´ v} ă }u ´ v} für alle u P U , u ‰ u‹.

u‹ heißt die Bestapproximation an v aus U .

Erinnerung. Sei U ein endlich-dimensionaler Teilraum des Innenproduktraums V .
Dann ist die Orthogonalprojektion auf U P : V Ñ U definiert durch

Pv “

#

v v P U ,

0 v P U K.

Ist tu1,u2, . . . ,unu eine Orthonormalbasis von U , so gilt

Pv “ pv ,u1qu1 ` pv ,u2qu2 ` ¨ ¨ ¨ ` pv ,unqun für alle v P V .
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Bestapproximation in Innenprodukträumen

Satz 6.14
Sei U ein endlich-dimensionaler Teilraum des Innenproduktraums V , P die
Orthogonalprojektion auf U und v P V .
Dann ist die Bestapproximation u‹ aus U an v gegeben durch u‹ “ Pv .
Die Bestapproximation ist eindeutig bestimmt und charakterisiert durch

u‹ ´ v K U .

Ist tu1,u2, . . . ,unu eine Orthonormalbasis von U , so gelten

u‹ “
n
ÿ

j“1

pv ,ujquj und }u‹} “

ˆ n
ÿ

j“1

|pv ,ujq|
2

˙1{2

ď }v}

sowie
}u‹ ´ v}2 “ }v}2 ´ }u‹}2.
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Bestapproximation in Innenprodukträumen

Beispiel. Die Bestapproximation an A P Rnˆn aus dem Unterraum der symmetri-
schen Matrizen (bez. der Frobenius-Norm) ist

AS :“ 1
2 pA`A

Jq (der symmetrische Anteil von A).

Beispiel. Der Raum Tn der trigonometrischen Polynome vom Grad n definiert
durch

Tn :“ spanteikt : k “ 0,˘1, . . . ,˘nu Ă L2p0, 2πq, (Bezeichnung: i2 “ ´1)

besitzt die Dimension 2n`1 . Die Funktionen t 1?
2π
eiktunk“´n bilden eine ON-Basis

von Tn. Die Bestapproximation an f P L2p0, 2πq aus Tn ist also

u˚nptq “
n
ÿ

k“´n

ake
ikt mit ak “

1

2π

ż 2π

0

fptqe´ikt dt.
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Bestapproximation in Innenprodukträumen

Bemerkung. Im Fall von ak “ a´k, k “ 0, 1, . . . , n, (z.B. wenn f reellwertig ist)
folgt mit α0 “ 2a0, αk “ 2Repakq, βk “ ´2 Impakq pk “ 1, 2, . . . , nq.

u‹nptq “
α0

2
`

n
ÿ

k“1

“

αk cospktq ` βk sinpktq
‰

.

Dies folgt aus

u‹nptq “
n
ÿ

k“´n

ake
ikt “ a0 `

n
ÿ

k“1

ake
ikt `

n
ÿ

k“1

a´ke
´ikt

“ a0 `
n
ÿ

k“1

`

akrcospktq ` i sinpktqs ` akrcospktq ´ i sinpktqs
˘

“ a0
loomoon

“:
α0
2

`

n
ÿ

k“1

“

2Repakq
looomooon

“:αk

cospktq´2 Impakq
loooomoooon

“:βk

sinpktq
‰

.
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Trigonometrische Interpolation
Trigonometrische Polynome

Seien

f0, f1, . . . , fm´1 P R und xj :“ 2πj{m, j “ 0, 1, . . . ,m´ 1,

d.h. x0 ă x1 ă ¨ ¨ ¨ ă xm´1 sind äquidistante Knoten aus r0, 2πq.

Gesucht ist ein reelles trigonometrisches Polynom vom Grad n,

tnpxq “
α0

2
`

n
ÿ

k“1

“

αk cospkxq ` βk sinpkxq
‰

,

das die m Interpolationsbedingungen

tnpxjq “ fj pj “ 0, 1, . . . ,m´ 1q (6.7)

erfüllt. Hierbei ist

n “

$

&

%

m
2 falls m gerade,

m´1
2 falls m ungerade.
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Trigonometrische Interpolation
Transformation auf den (komplexen) Einheitskreis

Vermöge der Abbildung

φ : r0, 2πq ÝÑ T :“ tz P C : |z| “ 1u, x ÞÑ z “ eix “ cosx` i sinx,

gehen die Knoten xj über in die m-ten Einheitswurzeln:

φpxjq “ e2πij{m “ re2πi{msj “ ωjm, j “ 0, 1, . . . ,m´ 1,

mit ωm :“ e2πi{m “ cos 2π
m ` i sin 2π

m .

Setzt man β0 “ 0 und für k “ 0, 1, . . . , n

C2 Q

„

ak
a´k



:“

„

1
2 pαk ´ iβkq
1
2 pαk ` iβkq



“
1

2

„

1 ´i
1 i

 „

αk
βk



, d.h.

R2 Q

„

αk
βk



“

„

1 1
i ´i

 „

ak
a´k



“

„

ak ` a´k
ipak ´ a´kq



“

„

2 Re ak
´2 Im ak



,

Oliver Ernst (Numerische Mathematik) Numerische Mathematik Sommersemester 2015 333 / 338



Trigonometrische Interpolation
Transformation auf den (komplexen) Einheitskreis

so folgt

tnpxq “
n
ÿ

k“´n

ake
ikx “

n
ÿ

k“´n

akz
k “ z´n

n
ÿ

k“´n

akz
k`n “ z´np2npzq

mit p2npzq “
řn
k“´n akz

k`n “
ř2n
j“0 aj´nz

j P P2n.

Wegen
p2npω

j
mq “ ωjnm tnpxjq

ist die trigonometrische Interpolationsaufgabe hiermit zurückgeführt auf eine (ge-
wohnliche) Interpolationsaufgabe für (algebraische) Polynome.
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Trigonometrische Interpolation
Transformation auf den (komplexen) Einheitskreis

Satz 6.15
Zu beliebig vorgegebenen paarweise verschiedenen Knoten
x0, x1, . . . , x2n P r0, 2πq und zu beliebigen Funktionswerten f0, f1, . . . , f2n P R
gibt es genau ein reelles trigonometrisches Polynom tn P Tn mit
tnpxjq “ fj pj “ 0, 1, . . . , 2nq.

Lemma 6.16
Für die m-ten Einheitswurzeln ωkm (k P Z, m P N) gelten:

(a) rωkms
j
“ ωkjm “ rωjms

k
pj P Zq,

b) ωk`m` “ ωkm p` P Z, ` ‰ 0q,

c) ωkm “ ω´km ,

d)
m´1
ÿ

j“0

ωkjm “

"

m, falls k “ 0 pmodmq,
0, falls k ‰ 0 pmodmq.
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Trigonometrische Interpolation
Algebraische Interpolation an den Einheitswurzeln

Satz 6.17

Das komplexe (algebraische) Interpolationspolynom

pm´1pzq “
m´1
ÿ

k“0

ckz
k P Pm´1

mit pm´1pω
j
mq “ fj P C pj “ 0, 1, . . . ,m´ 1q besitzt die Koeffizienten

ck “
1

m

m´1
ÿ

j“0

fjω
´kj
m , k “ 0, 1, . . . ,m´ 1. (6.8)

In Matrix-Vektor-Schreibweise
»

—

—

—

–

c0
c1
...

cm´1

fi

ffi

ffi

ffi

fl

“
1

m
Fm

»

—

—

—

–

f0
f1
...

fm´1

fi

ffi

ffi

ffi

fl
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Trigonometrische Interpolation
Algebraische Interpolation an den Einheitswurzeln

Satz 6.17 (Fortsetzung)
mit der Fourier-Matrix

Fm :“
“

ω´kjm

‰

0ďk,jďm´1
“

»

—

—

—

–

1 1 ¨ ¨ ¨ 1
1 ω´1

m ¨ ¨ ¨ ω´m`1
m

...
...

...
1 ω´m`1

m ¨ ¨ ¨ ω
´pm´1q2

m

fi

ffi

ffi

ffi

fl

.

Bemerkung. Mit den Bezeichnungen aus Satz 6.17 minimiert das „abgeschnittene“
Interpolationspolynom

pm,dpzq :“ c0 ` c1z ` ¨ ¨ ¨ ` cdz
d, 0 ď d ď m´ 1,

unter allen Polynomen q P Pd die Fehlerquadratsumme zur Interpolationsvorschrift:
m´1
ÿ

j“0

|fj ´ pm,dpω
j
mq|

2 ă

m´1
ÿ

j“0

|fj ´ qpω
j
mq|

2 für alle q P Pd, q ‰ pm,d.
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Trigonometrische Interpolation
Trigonometrische Interpolation, allgemeiner reeller Fall

Satz 6.18
Für m “ 2n oder m “ 2n` 1 gibt es zu beliebigen f0, f1, . . . , fm´1 P R ein
reelles trigonometrisches Interpolationspolynom

tnpxq “
α0

2
`

n
ÿ

k“1

“

αk cospkxq ` βk sinpkxq
‰

P Tn

vom Grad n, das die m Bedingungen

tnp2πj{mq “ fj pj “ 0, 1, . . . ,m´ 1q

erfüllt. Seine Koeffizienten sind gegeben durch

αk “
2

m

m´1
ÿ

j“0

fj cos
2πjk

m
bzw. βk “

2

m

m´1
ÿ

j“0

fj sin
2πjk

m
, pk “ 0, 1, . . . , nq.

Im Fall m “ 2n muss βn “ 0 gesetzt und αn halbiert werden.
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