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Gleitpunktarithmetik und Fehleranalyse

Einfiihrendes Beispiel: Berechnung von

7 = Umfang eines Kreises vom Radius r = %

U, := Umfang eines einbeschriebenen regelmaRigen n-Ecks
=nsin X y
n
(cos(21/n)/2,

sin(217n)/2)
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Gleitpunktarithmetik und Fehleranalyse

Einfiihrendes Beispiel: Berechnung von

Klar: -
lim U, = lim nsin— =7 (unbrauchbar!)
n—0o0 n—0o0 n
Setze
A, =Usn (Umfang des regelmiRigen 2"-Ecks).
Dann gelten:

Ay = Uy = 44/(1/2)2 + (1/2)2 =
Appr =27 \/2 —4/1—(4,/2)?), n =2,3,... (Rekursionsformel!)

[Archimedes von Syrakus, 287-212 v. Chr.]: A3 = 3.06.. .,
Ay =3.12...,
As =3.14....
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Gleitpunktarithmetik und Fehleranalyse

Einfiihrendes Beispiel: Berechnung von

Eine Fehlerabschatzung:
Zunichst gilt fiir h > 0:

h3
[sin(h) — h| < 3

Setze h = /N (und multipliziere mit N):

(Taylorformel).

3
|Nsin(n/N) — x| < ek
D.h. (N =2")
|A, — 7| < Gl (<1071 fiir n > 18).
647

Auf zum Rechner
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Gleitpunktarithmetik und Fehleranalyse

Einfiihrendes Beispiel: Berechnung von

Erniichterung: -
10°
107 ¢
10"
10°
10°
10"k
10
107
107

Die berechnete Folge {A,,} verhilt sich vollig anders als die ,wirkliche” Folge {A,,}!
Wie ist das moglich?
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Gleitpunktarithmetik und Fehleranalyse

Gleitpunktzahlen

Gleitpunktzahlen sind rationale Zahlen der Form

i(do.dldgdg . dp—l)b . be, wobei

beN(b>1) Basis,
m = (do.didads ... dp—1), Mantisse (zur Basis b) und
e€Z, emin < € < €max Exponent genannt werden.

Die Ziffern do,d1,ds,...,dp—1 sind jeweils ganze Zahlen zwischen 0 und b — 1,
womit fiir die Mantisse 0 < m < b(1 — b77) folgt.
Die Anzahl p € N der Ziffern heilt Mantissenlange.

Beispiel: Die Gleitpunktzahl 2 = (0.10101), - 271 besitzt die Dezimaldarstellung

21
(0274127402724 1-27 40270 +1.277) - 271 = =2 = 0.328125.
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Gleitpunktarithmetik und Fehleranalyse

Gleitpunktzahlen

Wahl der Basis: Verschiedene Werte von b sind moglich bzw. werden verwendet,
etwa
e b = 10: die ,Basis des tiglichen Lebens", wird auch intern von vielen
Taschenrechnern verwendet;
e b= 16: in den 60er und 70er Jahren von IBM Mainframe-Computern
(Baureihe 360/370) benutzt;
e b = 3: Forschungsrechner SETUN, Moskauer Staatsuniversitat, Ende der 50er
Jahre;

e b = 2: inzwischen auf allen Rechnern iiblich. Diese Wahl besitzt viele
Vorteile sowohl technischer als auch mathematischer Natur.
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Gleitpunktarithmetik und Fehleranalyse

Gleitpunktzahlen

Normalisierte Gleitpunktzahlen: Um mdglichst viele Stellen einer Gleitpunktzahl
in der Mantisse unterzubringen wird der Exponent so gewahlt, dass die erste Ziffer
der Mantisse (d.h. die erste giiltige Ziffer) von Null verschieden ist. Solche Zahlen
nennt man normalisiert; nicht normalisierte Zahlen werden auch subnormal oder
denormalisiert genannt.

Im Fall b = 2 ist die erste (hdchstwertige) Ziffer (=Bit) stets eine Eins, man kann
sich deren explizite Darstellung daher sparen (verstecktes Bit, hidden bit).
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Gleitpunktarithmetik und Fehleranalyse

Gleitpunktzahlen

Maschinengenauigkeit: Die kleinste normalisierte Gleitpunktzahl mit Mantissen-

lange p
xr = i(do.dldg .. 'dp—l)b x b®, do # 0,

welche noch groRer als Eins ist, lautet
(1.00...01), x b° = 1 4+ b=~ 1),
Den Abstand dieser Zahl zu Eins, also

€= bf(pfl),

bezeichnet man als Maschinengenauigkeit (machine epsilon).

Oliver Ernst (Numerische Mathematik) Numerische Mathematik Sommersemester 2015

64 / 108



Gleitpunktarithmetik und Fehleranalyse

Gleitpunktzahlen

Ulp: Allgemeiner definiert man fiir die obige Gleitpunktzahl
ulp(z) := (0.00...01), x b° = b~ P71 x b* = ¢ . p°.

Ulp steht fiir unit in the last place, d.h. Stellenwert der letzten Ziffer, und gibt den
Abstand zur betragsmaBig nachstgroleren Gleitpunktzahl an.

Sonderfall Null (b = 2): Ist das hochstwertige Bit versteckt, so stellt eine Mantisse
(Ldida...dp—1)2, di=---=dp-1=0

aus lauter Nullen nicht Null, sondern die Eins dar. Es ist daher erforderlich, einen
Wert des Exponenten fiir die Darstellung der Null zu reservieren.

(Altere Implementierungen arbeiteten aus diesem Grund ohne verstecktes Bit, muss-
ten dafiir aber bei gleicher Wortbreite eine um Eins kiirzere Mantissenlange in Kauf
nehmen.)

Auch die Frage, ob zwischen +0 unterschieden werden soll, hat praktische Konse-
quenzen [Kahan, 1987].
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Gleitpunktarithmetik und Fehleranalyse

Gleitpunktzahlen

Ein Spielzeugbeispiel: Wir betrachten das bindre Gleitpunktsystem bestehend aus
Zahlen der Form

i(do.d1d2)2 X 26, ec {—1,0, 1}.

Die normalisierten Mantissen dieses Systems sind

(1.00)y = 1 (1.01), = 1.25
(1.10); = 1.5 (1.11) = 1.75

Damit ergeben sich 24 normalisierte Gleitpunktzahlen, zusammen mit der Null also
25.

-4 -3 -2 -1 0 1 2 3 4
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Gleitpunktarithmetik und Fehleranalyse

Gleitpunktzahlen

Charakteristische GroBen dieses Systems:

Mantissenldnge: p=3
groBte normalisierte Zahl: Nipax = (1.11)3 x 21 = 3.5
kleinste normalisierte positive Zahl: Ny, = (1.00)2 x 271 = 0.5
Maschinengenauigkeit: e = (1.01)2 — (1.00)2 = 0.25
/2 e=-—1
ulp((do.dldg)g X 26) = € e=0
2¢  e=1.

Wir bemerken ferner:
e Die Abstande zwischen den Gleitpunktzahlen nehmen von der Null weg zu.

e Aufgrund der Normalisierung klafft eine Liicke zwischen Null und der
kleinsten normalisierten Zahl.
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Gleitpunktarithmetik und Fehleranalyse

Gleitpunktzahlen

Subnormale Zahlen: Die eben erwahnte Liicke kann geschlossen werden, wenn
wir fiir Zahlen mit Exponenten ey, auch denormalisierte Mantissen zulassen. In
unserem Beispiel kommen dadurch die sechs Zahlen

£(0.01)y x 271 =0.125, +(0.10)3 x 271 =0.25, +(0.11); x 27 = 0.375

hinzu. Der Abstand dieser Zahlen zur nachstgelegenen Gleitpunktzahl ist allerdings
grol relativ zu deren Betrag.

+
+
+
+
+
+
+
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Gleitpunktarithmetik und Fehleranalyse

Rundung

Sei
M := Menge der Zahlen eines Gleitpunktsystems =: ,Maschinenzahlen®.

Liegt eine EingangsgroRe (etwa 1/10 im Bindrsystem) oder ein Zwischenergebnis =
in R\M, so muss hierfiir ein Ersatz & € M bestimmt werden, ein Vorgang den wir
mit Rundung bezeichnen:

rd : R — M, x — rd(z).

Ublich: Rundung zur nichstgelegenen Maschinenzahl (kaufmannische Rundung): ist
(hier b = 10)
xr = ido.dldg e dp_ldp oo X 106

Mit enin < € < emax aber moglicherweise unendlich langer Mantisse, so setzen wir

- ~ d_1 fa||sd <4
d(z) := +do.dydy . ..dyq x 105, dy_q =4 P P
T (1‘) 0-Ud102 p—1 p—1 {dp1+1 faIIsdp>5
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Gleitpunktarithmetik und Fehleranalyse

Rundung

Ist dy—1 = 9, so entsteht ein Ubertrag und d,,_», mdglicherweise auch d,_s, ...
sowie e, missen modifiziert werden.

Fiir p = 4 bei b = 10 gilt etwa

rd(4.4499) = 4.450 x 10" und
rd(9.9999) = 1.000 x 10*.

Unschéne Eigenschaft dieser Rundung (hier stets e = 0):

rd(1.0005) = 1.001,
rd(rd(1.000 + 0.0005) — 0.0005) = rd(1.001 — 0.0005) = rd(1.0005) = 1.001.

Dieses Phanomen bezeichnet man als Drift.

Oliver Ernst (Numerische Mathematik) Numerische Mathematik Sommersemester 2015 71 / 108



Gleitpunktarithmetik und Fehleranalyse

Rundung

(Absoluter) Fehler bei Rundung: fiir eine Zahl z = +m x 10° im normalisierten
Bereich von M (d.h. 1 < m < 10, emin < € < emax) gilt

|z —rd(z)| < % - 10-P=1 x 10°.
Allgemein: (Basis b, 1 < m < b)
|z —rd(z)| < 3 -b7P7D x b = Lulp(a).
Relativer Fehler bei Rundung:

x —rd(x)

% Cp— (=1« pe

<

1 —(p-1) 1 .
< = =z =
< be 3 b 25 L U.

u heit Rundungseinheit (unit roundoff). Anders formuliert
rd(z) = (1+0)z  mit 0] < w.

Vorsicht: manchmal wird auch u als Maschinengenauigkeit definiert.
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Gleitpunktarithmetik und Fehleranalyse

Der IEEE-754 Standard

Nach eine Zeit des Wildwuchses im Bereich der Gleitpunkt-Arithmetik auf Com-
putern fand Ende der 70er Jahre ein Standardisierungsprozess statt. Dieser fiihrte
schlieBlich 1985 zur Verabschiedung des IEEE-754 Standards fiir binire Gleitpunk-
tarithmetik®, der inzwischen von nahezu allen Computerherstellern befolgt wird.

Der IEEE-Standard enthélt drei wesentliche Forderungen:

Darstellung. Konsistente Darstellung von Gleitpunktzahlen auf allen konformen
Maschinen

Rundung. Korrekt gerundete Gleitpunktoperationen beziiglich verschiedener
Rundungsmodi

Ausnahmen. Wohldefiniertes Verhalten bei Ausnahmesituationen (wie etwa
Division durch Null)

2|EEE = Institute for Electrical and Electronics Engineers
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Gleitpunktarithmetik und Fehleranalyse

Der IEEE-754 Standard

Sonderzahlen in IEEE 754:

+o0:

NaNs:

Manchmal ist es sinnvoll, mit Ausdriicken wie 1/0 weiterzurechnen,
anstatt das Programm abzubrechen. In IEEE-Arithmetik sind
hierfiir die Sonderzahlen +oo definiert, welche folgenden
Konventionen unterliegen:

a+0=0 (a>-w), a—w=-0 (a<ow0),
a-0=0 (a>0), a/0 = oo (a>0) usw.
Ist das Ergebnis einer arithmetischen Operation undefiniert, so wird

dieses auf den Wert NaN (Not a Number) gesetzt. Beispiele:
00 — 0, 0- 00, 0/0 etc.

. |IEEE-Arithmetik unterscheidet —0 von +0. So gilt a/(—0) = —o0,

(a > 0) und umgekehrt wenn a < 0. Achtung: Es gilt zwar
0 = —0, aber o0 # —o0. Aus diesem Grund ist a = b nicht
dquivalent mit 1/a = 1/b, etwa wenn a = 0 und b = —0.
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Gleitpunktarithmetik und Fehleranalyse

Der IEEE-754 Standard

Darstellung
IEEE-Arithmetik spezifiziert vier Formate fiir Gleitpunktzahlen:
e Single

Double (optional, aber vom C-Standard verlangt), so gut wie iiberall
verfligbar

Single-extended (optional)
o Double-extended (optional)
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Gleitpunktarithmetik und Fehleranalyse

Der IEEE-754 Standard

Single-Format (FORTRAN: REAL*4, C: float) = 1 Wort = 32 Bits,

|+ | Exp. | Mantisse \

0 1 9 31
Vorzeichen (1 Bit) 1 Bit, 0 =+, 1 = —

Exponent (8 Bits) Anstatt durch Vorzeichen-Betrag oder Zweierkomplement wird
der Exponent verschoben dargestellt (biased Exponent), d.h. der
Wert e des Exponenten ergibt sich aus

e=FE—127, 1<E <254, dh. —126 <e <127,

wobei E die durch die 8 Bits dargestellte Zahl bezeichnet.
Die Werte E' = 0,255 sind reserviert fiir Sonderzahlen: E = 0 fiir
subnormale Zahlen und Null, E = 255 fur +00 und NaN.

Mantisse (23 Bits) Diese Ziffern stellen den Bindrbruch dar.
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Gleitpunktarithmetik und Fehleranalyse

Der IEEE-754 Standard

Die IEEE Single-Zahlen im Uberblick

Bitmuster E im Exponenten dargestellte Gleitpunktzahl
(00000000)2 =0 +(0.d1dz . . . daz)e x 27120
(00000001)2 =1 i(ldldg - d23)2 x 2126

(01111111)2 =127 i(ldldg ‘e d23)2 X 20
(10000000), = 128 +(1l.dydy . .. da3)s x 21
(11111110)5 = 254 +(1.didy . .. da3)a x 2127
(11111111)4 = 255 +oo falls dy = -+ = daz = 0, sonst NaN
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Gleitpunktarithmetik und Fehleranalyse

Der IEEE-754 Standard

Charakteristische GroRBen von IEEE Single:

Mantissenldnge: p = 24
grolte normalisierte Zahl:

Nimax = (1.11...1)g x 2127 = 2(1 — 2724) x 2127 2128 & 3.4 x 10%®
kleinste normalisierte positive Zahl:

Ninin = (1.00...0) x 27126 = 27126 & 1.2 1038
kleinste positive Zahl:

Mpin = (0.0...01)y x 27126 = 27149 & 1.4 x 1074
Maschinengenauigkeit:

e=(1.0...01)2 — (1.0...00); =272 ~ 1.2 x 1077
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Gleitpunktarithmetik und Fehleranalyse

Der IEEE-754 Standard

Double-Format (FORTRAN: REAL*8, C: double) = 2 Worte = 64 Bits,

| + | Exp. | Man- I tisse \

0 1 11 32 63
d.h. 1 Bit Vorzeichen, 11-Bit Exponent und (1+)52-Bit Mantisse.

Charakteristika:

p=>53
emin = 1 — 1023 = —1022 emax = 2046 — 1023 = 1023
Npin = 271922 x 2.2 x 107308 Nopax ~ 21024 1 1.8 x 10308

Mypin = 27107 ~ 4.9 x 107324

e=2"%2~22x10"16
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Gleitpunktarithmetik und Fehleranalyse

Der IEEE-754 Standard

Rundung in IEEE Arithmetik

Zu x € R seien x_,x, € M die nichstgelegenenen Maschinenzahlen kleiner bzw.
groBer als z. IEEE-Arithmetik definiert rd(z) := «x falls x € M, andernfalls hangt
der Wert rd(x) vom aktuell eingestellten Rundungsmodus ab, welcher einer der
folgenden vier sein kann:

Abrunden. rd(z) = z_
Aufrunden. rd(z) = x4
Rundung zur Null. rd(z) = z_, falls z = 0 und rd(x) = 2 falls < 0.

Rundung zur ndchsten Maschinenzahl (Default). rd(z) erhalt den ndher an x
liegenden Wert unter x_ und = . Liegt = genau zwischen x_ und
x4, so wird diejenige Zahl als rd(x) gewahlt, deren
niedrigstwertiges Bit Null ist. (Dies verhindert Drift.)

Weitere Ausnahme: rd(z) = oo falls © > Npyax und rd(z) = —o0
falls £ < —Npax.
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Gleitpunktarithmetik und Fehleranalyse

Der IEEE-754 Standard

Ausnahmesituationen (exceptions)
IEEE-Arithmetik definiert fiinf Ausnahmesituationen sowie fiir jede dieser eine Stan-
dardreaktion:
invalid operation (ungiiltige Operation) 0/0, 00/00, 0 — 00, /—1 und dergleichen
division by zero (Division durch Null)

overflow (Exponentiiberlauf) Ergebnis einer Operation gréRer als Ny ax

underflow (Exponentunterlauf) Ergebnis einer Operation kleiner als Ny, Das
Weiterrechnen mit denormalisierten Maschinenzahlen bezeichnet
man als gradual underflow.

inexact (ungenaues Ergebnis) Resultat keine Maschinenzahl (dies ist
eigentlich keine Ausnahme)
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Gleitpunktarithmetik und Fehleranalyse

Der IEEE-754 Standard

IEEE-Philosophie bei Ausnahmesituationen

IEEE 754 fordert, dass beim Eintreten einer Ausnahmesituation ein Statusbit gesetzt
wird, welches explizit wieder geldscht werden muss (sticky bit). Ferner legt der
Standard nahe, dass dem Programmierer die Mdglichkeit gegeben wird, entweder die
Behandlung dieser Ausnahmesituation durch speziellen Code selbst zu bestimmen
(exception handling) oder die Ausnahmesituation zu ignorieren und weiterzurechnen
(exception masking).

Dies gestattet es, nur in (seltenen) problematischen Fillen auf aufwendigere Vari-
anten eines Programmcodes zuriickzugreifen, um korrekte Behandlung des Runde-
fehlers zu gewiahrleisten.
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Gleitpunktarithmetik und Fehleranalyse

Der IEEE-754 Standard

Standardreaktionen
invalid operation | Setze Ergebnis auf NaN
division by zero Setze Ergebnis auf too

overflow Setze Ergebnis auf +00 oder +Npmax
underflow Setze Ergebnis auf +0, +Nmin oder subnormal
inexact Setze Ergebnis auf korrekt gerundeten Wert

Exponentiiberlauf kann durch geeignete Skalierung oft — auf Kosten eines harmlosen
Unterlaufs — vermieden werden.

Beispiel: ¢ = v/a2 + b2 mit a = 10°° und b = 1 (Rechnung mit vier Dezimalstellen
in Mantisse und zwei Dezimalstellen im Exponent).

Standardauswertung verursacht Uberlauf. Besser:

c=sv(a/s)? + (b/s)?> mit s = max{|al, |b|}.
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Gleitpunktarithmetik und Fehleranalyse

Korrekt gerundete Gleitpunktarithmetik

Die Machinenzahlen M sind beziiglich der elementaren arithmetischen Operatio-
nen (Addition, Subtraktion, Multiplikation und Division) nicht abgeschlossen (selbst
wenn wir fiir die Exponenten beliebige Werte erlauben).

Beispiele:

e x =1.1-10Y ist eine Gleitpunktzahl zur Basis 10 mit der Mantissenlinge 2,
wihrend z -z = 1.21 - 107! eine dreistellige Mantisse besitzt.

e Im IEEE-Single Format sind 1 und 272 beides Maschinenzahlen, deren
Summe 1 + 2724 hingegen nicht.
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Gleitpunktarithmetik und Fehleranalyse

Korrekt gerundete Gleitpunktarithmetik

Fiir jede der Operationen o € {+, —, -, /} wird die entsprechende korrekt gerundete
Gleitpunktoperation definiert durch

fllzxoy) :=rd(xoy), z,yeM.
Fiir alle z,y € M gilt daher, falls weder Unter- noch Uberlauf eintritt,
flizoy) = (1+9)(zoy) mit |§] < u.

Auf dieser Annahme fuBt der GroRteil moderner Rundungsfehleranalyse.

Man beachte aber, dass die neuen Operationen den klassischen Gesetzen der Arith-
metik (wie etwa den Kommutativ-, Assoziativ- und Distributivgesetzen) nicht mehr
geniigen.

Z.B. in vierstelliger Gleitpunktarithmetik zur Basis 10:

=1.234-10%, y =1.234- 1071 e M, z + y = 1.2341234 - 103, d.h. fl(z + y) =
1.234 - 103, was fl(z + y) = x bedeutet, obwohl rd(y) # 0.

Oliver Ernst (Numerische Mathematik) Numerische Mathematik Sommersemester 2015 87 / 108



Gleitpunktarithmetik und Fehleranalyse

Korrekt gerundete Gleitpunktarithmetik

Gerundete Arithmetik im |IEEE-Standard
IEEE 754 verlangt folgende korrekt gerundete Operationen

e die vier Grundrechenarten
e Quadratwurzel und Rest bei Division
e Formatkonvertierungen

Die korrekte Rundung richtet sich nach dem Zielformat, was je nach Variablentyp

oder aktueller Hardware (Akkumulator, Register oder Speicherzelle) unterschiedlich
sein wird.
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Gleitpunktarithmetik und Fehleranalyse

Korrekt gerundete Gleitpunktarithmetik

Warum ist korrekte Rundung so wichtig?
Man betrachte etwa die folgenden vier Fragen:
Frage 1. Gilt fl(1-z) =x flirx e M ?
Frage 2: Gilt fl(z/x) = 1 fiir x € M, 2 # 0, « endlich 7
Frage 3: Gilt f1(0.5 - z) = fl(x/2) fir x e M ?
Frage 4: Folgt aus fl(z —y) =0 fir v,ye M auchx =y 7

In IEEE-Arithmetik kann man jede dieser Fragen bejahen. In den 60er und 70er
Jahren existierte zu jede Frage ein (jeweils weit verbreitetes) Computersystem, bei
welchem fiir bestimmte Daten die Antwort ,,nein” lautete.

Insbesondere kann man fiir IEEE-Arithmetik Frage 4 bejahen aufgrund der Verwen-
dung subnormaler Zahlen.
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Gleitpunktarithmetik und Fehleranalyse

Korrekt gerundete Gleitpunktarithmetik

Ein Blick in die Implementierung: Addition und Subtraktion
Gegeben: zwei IEEE-Single Zahlen z = m, x 2%, y = my, x 2%. Gilt e; = e,
so ergibt sich fl(z + y) aus (m, + m,) x 2° mit anschlieBender Normalisierung.
Beispiel: 3 + 2:
(1.10000000000000000000000)5 x 2!
+ (1.00000000000000000000000)5 x 2
= (10.10000000000000000000000)5 x 2*
Normalisierung: (1.01000000000000000000000)5 x 22.

Ist e; > e,, so miissen die Mantissen zuerst angepasst werden, z.B. bei 3 + 3/4:

(1.10000000000000000000000)5 x 2*
+ (0.01100000000000000000000)5 x 2*
= (1.11100000000000000000000), x 2.
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Korrekt gerundete Gleitpunktarithmetik

Hilfsziffern (guard digits)
Betrachte die Operation 3 4+ 3 x 2723:

(1.10000000000000000000000 )2 x 21

+( 0.00000000000000000000001 1 )a x 21

= (/1.10000000000000000000001|1 )2 x 21

Abgerundet: (1.10000000000000000000001 )a x 21
Aufgerundet: (1.10000000000000000000010 )2 x 21

In diesem Fall muss gerundet werden, da das Ergebnis keine Maschinenzahl ist.
Allerdings erfordert die Berechnung der korrekt gerundeten Resultats eine Hilfsziffer
rechts vom niedrigstwertigen Bit.

Bei der Rundung zur nachstgelegenen Maschinenzahl wiirde hier aufgerundet (warum?)
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Korrekt gerundete Gleitpunktarithmetik

Ausl6schung

Wir betrachten die Subtraktion der (benachbarten) Zahlen . = 1 und y = (1.11....1):
2-1.

(' 1.00000000000000000000000 ) x 20
—(0.11111111111111111111111J1 ) x 20
= (10.00000000000000000000000|1 Yo x 20

Normalisierung: (' 1.00000000000000000000000 Yo x 2724

Man spricht hier von Ausléschung, da sich alle Ziffern bis auf die letzte ,wegheben".
Auch hier ist eine Hilfsziffer unabdingbar fiir korrekte Rundung.
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Korrekt gerundete Gleitpunktarithmetik

Notwendigkeit mehrerer Hilfsziffern
Betrachte z —y mit z = 1 und y = (1.00...01)5 x 272°. Bei der Verwendung von

25 Hilfsziffern erhalten wir
( 1.00000000000000000000000 )a x 20
—( 0.00000000000000000000000|0100000000000000000000001 )5 x 2°
=(0.11111111111111111111111J1011111111111111111111111 )5 x 20
= (1.11111111111111111111111(0111111111111111111111110 )5 x 27+
= (1.11111111111111111111111 )2 X 21

(Der Rundungsmodus ist Rundung zur nichsten Maschinenzahl).

Weniger als 25 Hilfsziffern hatten hier nicht geniigt, um das korrekt gerundete
Ergebnis zu berechnen (nachpriifen!).

Bei Rechnern der Firma CRAY Research war bis vor kurzem die Subtraktion auf-
grund fehlender Hilfsziffern nicht korrekt gerundet.
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Korrekt gerundete Gleitpunktarithmetik

Man kommt aber mit weniger Hilfsbits aus:

Wir verwenden nun zwei Hilfsziffern und ein zusatzliches Hilfsbit, welches dann
gesetzt wird, wenn beim Shiften der Mantisse mindestens ein von Null verschiedenes
Bit verlorengegangen (d.h. jenseits der zweiten Hilfsziffer gewandert) ist. Dieses Bit
setzen wir vor der Subtraktion an die dritte Hilfsziffer:

( 1.00000000000000000000000 Yo x 20
—( 0.00000000000000000000000/011 )g x 20
= (0.11111111111111111111111)101 )g x 20
( )
( )

1.11111111111111111111111]01 g x 271
1.11111111111111111111111 g x 271

Normalisierung:

Rundung;:

Man kann zeigen, dass fiir korrekt gerundete Subtraktion nicht mehr als diese zwei
Hilfsziffern und das Hilfsbit (sticky bit) bendtigt werden.
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Korrekt gerundete Gleitpunktarithmetik

Multiplikation und Division:
Hier ist ein Anpassen der Mantissen nicht notwendig: Multiplikation von = = m,, x
2% mit y = m, x 2% ergibt

zy = (mymy) x 267,

Somit besteht die Multiplikationsoperation aus den drei Schritten Multiplikation der
Operandenmantissen, Addition der Operandenexponenten und Normalisierung des
Ergebnisses. (Analog bei Division).

Relative Geschwindigkeit von Multiplikation/Division im Vergleich zu Addition/Subtral
Im Prinzip gleich schnell in Hardware realisierbar, allerdings mit wesentlich mehr
Aufwand.

Aktueller Kompromiss beim Chipentwurf: Multiplikation ungefdhr so schnell wie
Addition/Subtraktion, Division deutlich langsamer.
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Numerische Stabilitdt und Fehleranalyse

Essei § = f1(f(z)) das in Gleitpunktarithmetik berechnete Ergebnis der Auswertung
einer Funktion y = f(x).
Wie beurteilt man die Qualitit von 37

e (Relativer) Vorwartsfehler: |(y — §)/y|.

o (Relativer) Riickwartsfehler: |(x — &)/z|, dabei ist & das (ein) Eingabedatum,
das bei rundungsfreier Rechnung zu § fiihrt: f(#) = § (Rundungsfehler
werden als Datenfehler interpretiert).

Mit Stérungstheorie kann man Vorwartsfehler durch Riickwértsfehler abschitzen.
Faustregel:

Vorwidrtsfehler < Konditionszahl x Riickwartsfehler.
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Numerische Stabilitdt und Fehleranalyse

(absoluter)

berechnet Vorwartsfehler

Daten Ergebnisse
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Numerische Stabilitdt und Fehleranalyse

Ein Algorithmus heilt

vorwartsstabil, wenn der Vorwartsfehler , klein® ist,

riickwartsstabil, wenn der Riickwartsfehler ,klein” ist; was ,klein” bedeutet, hangt
vom Problem und der Maschinengenauigkeit ab.

Die Kondition(szahl) eines Problems (hat nichts mit Gleitpunktarithmetik zu tun!!)
ist ein MalR dafiir, wie empfindlich das Ergebnis auf Stérungen der Daten reagiert.
Ein Problem ist gut (schlecht) konditioniert, wenn seine Konditionszahl klein (groR)
ist.
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Numerische Stabilitdt und Fehleranalyse

Bestimme y = f(z), Stérung der Daten: Az
= flz+Az) = f(x) + f'(z) Az + 5 f"(C)(Ax)>.
Az Kklein: § = f(x + Az) =~ f(z) + f(2)Az = y + f'(z)Az oder

flo+ Ax)— f(@)| y—y‘% 2f'(2)||Ax
f(z) y fl@) || @
(Relative) Konditionszahl von f an der Stelle z:
_|zf'(=)
)=y |
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Numerische Stabilitdt und Fehleranalyse

Beispiel. f(z) = log(z), d.h.: ¢f(x) =
und sehr groRe (positive) z, riesig fiir x ~ 1.

1 =0.01:  cp(zr) = 0.21715,

xo = 0.99:  cp(z2) = 99.4992,

xg =100.:  c¢s(x3) = 0.21715.

Wie wirkt sich eine relative Stérung von ¢, = (Az)/x = 0.001 aus?
Prognose:

moderat fiir sehr kleine

f(zg +0.001xy) — f(zk) 1
~ 0.001 cs(xx) = 0.001 | —F—|.
flax) () log ()
| k|| rel. Fehler | Prognose |

1] 2.1704-10=% | 2.1715-10~*
2 [[ 9.9945-1072 | 9.9499 - 102
3 || 2.1704-107% | 2.1715- 104
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Numerische Stabilitdt und Fehleranalyse

Allgemeiner: y = f(x1,22,...,2,). Absolute Stérungen der Daten, Az, (k =
1,2,...,n), verursachen absoluten Fehler im Ergebnis:

Ay = flx1+Ax,...,xn + Azy) — f(21,...,20) ~ deAxk,

k=1
0 o
dp = f@1, @2, Tn) (absolute Konditionszahlen von f).
axk
Relative Stérungen der Daten, e, = Axy/xp (k= 1,2,...,n), verursachen relati-

ven Fehler im Ergebnis:

fler + Az, .o xn + Axy) — f(21,. .0, 20) >
gy = ~ ¥ CkEk,
Y flxy, ... xn) 1;1 Wk
o = T Of (x1,x9,...,%p)

flzr, 29, .., 2p) ox,

(relative Konditionszahlen von f).
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Numerische Stabilitdt und Fehleranalyse

Beispiele. (Grundoperationen)

oy = f(x1,22) =21 - x2. D.h. ¢; =1 und ¢g = 1 (unproblematisch).

oy = f(x1,22) = x1/x2. D.h. ¢4 =1 und cg = —1 (unproblematisch).

oy = f(r1,72) =1 + x2. D.h. ¢; = z1/(x1 + T2) und co = x2/(71 + T2).

oy = f(x1,29) = a1 —x2. D.h. ¢y = 21/(x1 — x2) und cg = —xo/(z1 — z2).

Bei den Operationen + kénnen die Konditionszahlen riesig werden:

T1 ~ —xo: Addition schlecht konditioniert.

x1 ~ x2: Subtraktion schlecht konditioniert. (Auslschung!)

Etwa: z; = 3.14159, =5 = 3.14140. Az; = 1075, Azs = 21075, dh. ¢; ~
3.18 1075, e5 ~ 6.36 - 1075.

y = x1—x9 = 0.00019 (Ausléschung fiihrender Ziffern). (z1+Ax1) — (2o + Azs) =
0.00018. Also £, = 5.26 - 102,

Prognose: ¢; = 1.65-10%, co = —1.65-10%, |g,| & |c1e1 + ca2| < 1.65-10% (3.18 -
107% +6.36-107%) ~ 1.57- 10 L.
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Ein Beispiel

Die quadratische Gleichung
22 —br+c=0

hat die Lésungen

b+ Vb2 — 4c

T2 = B)

Fiir b = 3.6678 und ¢ = 2.0798 - 10~2
erhdlt man nach Rechnung mit fiinfstelliger Dezimalmantisse

#1 = 3.6673 (rel. Fehler: 4.7-107%), &y = 5.5-107* (rel. Fehler: 3.0 - 1072).

Warum?
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Ein Beispiel

Schritt Ergebnis rel. Fehler
1. b2 1.3453-10%! | 1.8-107°
2. 4c 8.3192-1073 | 0.0

3. 6% —4c 1.3445-10%! | 4.1-107°
4. /b2 — 4c 3.6667 - 107° | 9.3.106
5.b—+/b> —4c 1.1000-1073 | 3.0- 1072
6. (b— /b2 —4c)/2 | 5.5000-10"% | 3.0- 1072

5. b+/b2 —4c 7.3345-101Y | 4.7-10°6
6'. (b+ b2 —4c)/2 | 3.6673-10%°0 | 4.7-1076

7 13 = ¢/1y 5.6713-10"% | 1.1-10°°
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Ein Beispiel
Beispiel aus der Einleitung dieses Kapitels:

Aper =272 (1 /1= (An/2")2>]1/2.

N

Auslb';ghung!
Setze
1—4/1—(A,/27)2
R, =4 2( 2 Ay = 203/

Beachte: R,, = 4Z,, und Z, ist (die kleinere) Losung von

X2 X+ i (An/2")% = X% — X + (A,/2" )2 = 0.

Alter Trick:

n+1\2
o= — A2 p g Ay = 27/ R.

14+4/1—(A,/27)%
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Ein Beispiel

Fehler der Naeherungen an

10° \ \ \
O instabile Formel
10° F . g
stabile Formel
O stabile Formel single
-2 [elye]
10° - Fehlerschranke b
[e]
10" B
[o}ne]
10°

Maschinengenauigkeit single

-12]

10

-14]

10

-16

10

1078 1 1 1 1
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