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Gleitpunktarithmetik und Fehleranalyse
Einführendes Beispiel: Berechnung von π

π “ Umfang eines Kreises vom Radius r “ 1
2

Un :“ Umfang eines einbeschriebenen regelmäßigen n-Ecks
“ n sin π

n

1/2

x

y
(cos(2π/n)/2,

sin(2π/n)/2)
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Gleitpunktarithmetik und Fehleranalyse
Einführendes Beispiel: Berechnung von π

Klar:
lim
nÑ8

Un “ lim
nÑ8

n sin
π

n
“ π (unbrauchbar!)

Setze
An “ U2n (Umfang des regelmäßigen 2n-Ecks).

Dann gelten:

A2 “ U4 “ 4
a

p1{2q2 ` p1{2q2 “ 2
?

2,

An`1 “ 2n
b

2p1´
a

1´ pAn{2nq2q, n “ 2, 3, . . . (Rekursionsformel!)

[Archimedes von Syrakus, 287–212 v. Chr.]: A3 “ 3.06 . . .,
A4 “ 3.12 . . .,
A5 “ 3.14 . . . .
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Gleitpunktarithmetik und Fehleranalyse
Einführendes Beispiel: Berechnung von π

Eine Fehlerabschätzung:

Zunächst gilt für h ą 0:

| sinphq ´ h| ď
h3

6
(Taylorformel).

Setze h “ π{N (und multipliziere mit N):

|N sinpπ{Nq ´ π| ď
π3

6 ¨N2
.

D.h. pN “ 2n):

|An ´ π| ď
π3

6 ¨ 4n
pă 10´10 für n ě 18q.

Auf zum Rechner . . .
Oliver Ernst (Numerische Mathematik) Numerische Mathematik Sommersemester 2015 58 / 108



Gleitpunktarithmetik und Fehleranalyse
Einführendes Beispiel: Berechnung von π

Ernüchterung:

0 5 10 15 20 25 30
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n

Fehler |A
n
−π|              

Fehlerschranke π3/(6*(4n))

Die berechnete Folge tAnu verhält sich völlig anders als die „wirkliche“ Folge tAnu!
Wie ist das möglich?
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Gleitpunktarithmetik und Fehleranalyse
Gleitpunktzahlen

Gleitpunktzahlen sind rationale Zahlen der Form

˘pd0.d1d2d3 . . . dp´1qb ¨ b
e, wobei

b P N (b ą 1) Basis,
m :“ pd0.d1d2d3 . . . dp´1qb Mantisse (zur Basis b) und
e P Z, emin ď e ď emax Exponent genannt werden.

Die Ziffern d0, d1, d2, . . . , dp´1 sind jeweils ganze Zahlen zwischen 0 und b ´ 1,
womit für die Mantisse 0 ď m ď bp1´ b´pq folgt.
Die Anzahl p P N der Ziffern heißt Mantissenlänge.

Beispiel: Die Gleitpunktzahl x “ p0.10101q2 ¨ 2
´1 besitzt die Dezimaldarstellung

`

0 ¨ 20 ` 1 ¨ 2´1 ` 0 ¨ 2´2 ` 1 ¨ 2´3 ` 0 ¨ 2´4 ` 1 ¨ 2´5
˘

¨ 2´1 “
21

64
“ 0.328125.
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Gleitpunktarithmetik und Fehleranalyse
Gleitpunktzahlen

Wahl der Basis: Verschiedene Werte von b sind möglich bzw. werden verwendet,
etwa

• b “ 10: die „Basis des täglichen Lebens“, wird auch intern von vielen
Taschenrechnern verwendet;

• b “ 16: in den 60er und 70er Jahren von IBM Mainframe-Computern
(Baureihe 360/370) benutzt;

• b “ 3: Forschungsrechner SETUN, Moskauer Staatsuniversität, Ende der 50er
Jahre;

• b “ 2 : inzwischen auf allen Rechnern üblich. Diese Wahl besitzt viele
Vorteile sowohl technischer als auch mathematischer Natur.
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Gleitpunktarithmetik und Fehleranalyse
Gleitpunktzahlen

Normalisierte Gleitpunktzahlen: Um möglichst viele Stellen einer Gleitpunktzahl
in der Mantisse unterzubringen wird der Exponent so gewählt, dass die erste Ziffer
der Mantisse (d.h. die erste gültige Ziffer) von Null verschieden ist. Solche Zahlen
nennt man normalisiert; nicht normalisierte Zahlen werden auch subnormal oder
denormalisiert genannt.
Im Fall b “ 2 ist die erste (höchstwertige) Ziffer (=Bit) stets eine Eins, man kann
sich deren explizite Darstellung daher sparen (verstecktes Bit, hidden bit).
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Gleitpunktarithmetik und Fehleranalyse
Gleitpunktzahlen

Maschinengenauigkeit: Die kleinste normalisierte Gleitpunktzahl mit Mantissen-
länge p

x “ ˘pd0.d1d2 . . . dp´1qb ˆ b
e, d0 ‰ 0,

welche noch größer als Eins ist, lautet

p1.00 . . . 01qb ˆ b
0 “ 1` b´pp´1q.

Den Abstand dieser Zahl zu Eins, also

ε :“ b´pp´1q,

bezeichnet man als Maschinengenauigkeit (machine epsilon).
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Gleitpunktarithmetik und Fehleranalyse
Gleitpunktzahlen

Ulp: Allgemeiner definiert man für die obige Gleitpunktzahl

ulppxq :“ p0.00 . . . 01qb ˆ b
e “ b´pp´1q ˆ be “ ε ¨ be.

Ulp steht für unit in the last place, d.h. Stellenwert der letzten Ziffer, und gibt den
Abstand zur betragsmäßig nächstgrößeren Gleitpunktzahl an.

Sonderfall Null (b “ 2): Ist das höchstwertige Bit versteckt, so stellt eine Mantisse

p1.d1d2 . . . dp´1q2, d1 “ ¨ ¨ ¨ “ dp´1 “ 0

aus lauter Nullen nicht Null, sondern die Eins dar. Es ist daher erforderlich, einen
Wert des Exponenten für die Darstellung der Null zu reservieren.
(Ältere Implementierungen arbeiteten aus diesem Grund ohne verstecktes Bit, muss-
ten dafür aber bei gleicher Wortbreite eine um Eins kürzere Mantissenlänge in Kauf
nehmen.)

Auch die Frage, ob zwischen ˘0 unterschieden werden soll, hat praktische Konse-
quenzen [Kahan, 1987].
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Gleitpunktarithmetik und Fehleranalyse
Gleitpunktzahlen

Ein Spielzeugbeispiel: Wir betrachten das binäre Gleitpunktsystem bestehend aus
Zahlen der Form

˘pd0.d1d2q2 ˆ 2e, e P t´1, 0, 1u.

Die normalisierten Mantissen dieses Systems sind

p1.00q2 “ 1 p1.01q2 “ 1.25

p1.10q2 “ 1.5 p1.11q2 “ 1.75

Damit ergeben sich 24 normalisierte Gleitpunktzahlen, zusammen mit der Null also
25.

−4 −3 −2 −1 0 1 2 3 4
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Gleitpunktarithmetik und Fehleranalyse
Gleitpunktzahlen

Charakteristische Größen dieses Systems:

Mantissenlänge: p “ 3
größte normalisierte Zahl: Nmax “ p1.11q2 ˆ 21 “ 3.5
kleinste normalisierte positive Zahl: Nmin “ p1.00q2 ˆ 2´1 “ 0.5
Maschinengenauigkeit: ε “ p1.01q2 ´ p1.00q2 “ 0.25

ulpppd0.d1d2q2 ˆ 2eq “

$

’

&

’

%

ε{2 e “ ´1

ε e “ 0

2ε e “ 1.

Wir bemerken ferner:
• Die Abstände zwischen den Gleitpunktzahlen nehmen von der Null weg zu.
• Aufgrund der Normalisierung klafft eine Lücke zwischen Null und der
kleinsten normalisierten Zahl.
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Gleitpunktarithmetik und Fehleranalyse
Gleitpunktzahlen

Subnormale Zahlen: Die eben erwähnte Lücke kann geschlossen werden, wenn
wir für Zahlen mit Exponenten emin auch denormalisierte Mantissen zulassen. In
unserem Beispiel kommen dadurch die sechs Zahlen

˘p0.01q2 ˆ 2´1 “ 0.125, ˘p0.10q2 ˆ 2´1 “ 0.25, ˘p0.11q2 ˆ 2´1 “ 0.375

hinzu. Der Abstand dieser Zahlen zur nächstgelegenen Gleitpunktzahl ist allerdings
groß relativ zu deren Betrag.

−4 −3 −2 −1 0 1 2 3 4
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Gleitpunktarithmetik und Fehleranalyse
Rundung

Sei
M :“ Menge der Zahlen eines Gleitpunktsystems “: „Maschinenzahlen“.

Liegt eine Eingangsgröße (etwa 1{10 im Binärsystem) oder ein Zwischenergebnis x
in RzM, so muss hierfür ein Ersatz x̃ P M bestimmt werden, ein Vorgang den wir
mit Rundung bezeichnen:

rd : RÑM, x ÞÑ rdpxq.

Üblich: Rundung zur nächstgelegenen Maschinenzahl (kaufmännische Rundung): ist
(hier b “ 10)

x “ ˘d0.d1d2 . . . dp´1dp . . .ˆ 10e

mit emin ď e ď emax aber möglicherweise unendlich langer Mantisse, so setzen wir

rdpxq :“ ˘d0.d1d2 . . . d̃p´1 ˆ 10e, d̃p´1 “

#

dp´1 falls dp ď 4,

dp´1 ` 1 falls dp ě 5.
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Gleitpunktarithmetik und Fehleranalyse
Rundung

Ist dp´1 “ 9, so entsteht ein Übertrag und dp´2, möglicherweise auch dp´3, . . .
sowie e, müssen modifiziert werden.

Für p “ 4 bei b “ 10 gilt etwa

rdp4.4499q “ 4.450ˆ 100 und

rdp9.9999q “ 1.000ˆ 101.

Unschöne Eigenschaft dieser Rundung (hier stets e “ 0):

rdp1.0005q “ 1.001,

rdprdp1.000` 0.0005q ´ 0.0005q “ rdp1.001´ 0.0005q “ rdp1.0005q “ 1.001.

Dieses Phänomen bezeichnet man als Drift.
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Gleitpunktarithmetik und Fehleranalyse
Rundung

(Absoluter) Fehler bei Rundung: für eine Zahl x “ ˘m ˆ 10e im normalisierten
Bereich von M (d.h. 1 ď m ă 10, emin ď e ď emax) gilt

|x´ rdpxq| ď 1
2 ¨ 10´pp´1q ˆ 10e.

Allgemein: (Basis b, 1 ď m ă b)

|x´ rdpxq| ď 1
2 ¨ b

´pp´1q ˆ be “ 1
2 ulppxq.

Relativer Fehler bei Rundung:

ˇ

ˇ

ˇ

ˇ

x´ rdpxq

x

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

1
2 ¨ b

´pp´1q ˆ be

mˆ be

ˇ

ˇ

ˇ

ˇ

ˇ

ď 1
2 ¨ b

´pp´1q “ 1
2ε “: u.

u heißt Rundungseinheit (unit roundoff). Anders formuliert

rdpxq “ p1` δqx mit |δ| ď u.

Vorsicht: manchmal wird auch u als Maschinengenauigkeit definiert.
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Gleitpunktarithmetik und Fehleranalyse
Der IEEE-754 Standard

Nach eine Zeit des Wildwuchses im Bereich der Gleitpunkt-Arithmetik auf Com-
putern fand Ende der 70er Jahre ein Standardisierungsprozess statt. Dieser führte
schließlich 1985 zur Verabschiedung des IEEE-754 Standards für binäre Gleitpunk-
tarithmetik2, der inzwischen von nahezu allen Computerherstellern befolgt wird.

Der IEEE-Standard enthält drei wesentliche Forderungen:

Darstellung. Konsistente Darstellung von Gleitpunktzahlen auf allen konformen
Maschinen

Rundung. Korrekt gerundete Gleitpunktoperationen bezüglich verschiedener
Rundungsmodi

Ausnahmen. Wohldefiniertes Verhalten bei Ausnahmesituationen (wie etwa
Division durch Null)

2IEEE = Institute for Electrical and Electronics Engineers
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Gleitpunktarithmetik und Fehleranalyse
Der IEEE-754 Standard

Sonderzahlen in IEEE 754:

˘8: Manchmal ist es sinnvoll, mit Ausdrücken wie 1{0 weiterzurechnen,
anstatt das Programm abzubrechen. In IEEE-Arithmetik sind
hierfür die Sonderzahlen ˘8 definiert, welche folgenden
Konventionen unterliegen:

a`8 “ 8 pa ą ´8q, a´8 “ ´8 pa ă 8q,

a ¨ 8 “ 8 pa ą 0q, a{0 “ 8 pa ą 0q usw.

NaNs: Ist das Ergebnis einer arithmetischen Operation undefiniert, so wird
dieses auf den Wert NaN (Not a Number) gesetzt. Beispiele:
8´8, 0 ¨ 8, 0{0 etc.

´0: IEEE-Arithmetik unterscheidet ´0 von `0. So gilt a{p´0q “ ´8,
pa ą 0q und umgekehrt wenn a ă 0. Achtung: Es gilt zwar
0 “ ´0, aber 8 ‰ ´8. Aus diesem Grund ist a “ b nicht
äquivalent mit 1{a “ 1{b, etwa wenn a “ 0 und b “ ´0.
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Gleitpunktarithmetik und Fehleranalyse
Der IEEE-754 Standard

Darstellung
IEEE-Arithmetik spezifiziert vier Formate für Gleitpunktzahlen:

• Single
• Double (optional, aber vom C-Standard verlangt), so gut wie überall
verfügbar

• Single-extended (optional)
• Double-extended (optional)
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Gleitpunktarithmetik und Fehleranalyse
Der IEEE-754 Standard

Single-Format (FORTRAN: REAL*4, C: float) = 1 Wort = 32 Bits,

˘ Exp. Mantisse

0 1 9 31

Vorzeichen (1 Bit) 1 Bit, 0 “ `, 1 “ ´

Exponent (8 Bits) Anstatt durch Vorzeichen-Betrag oder Zweierkomplement wird
der Exponent verschoben dargestellt (biased Exponent), d.h. der
Wert e des Exponenten ergibt sich aus

e “ E ´ 127, 1 ď E ď 254, d.h. ´ 126 ď e ď 127,

wobei E die durch die 8 Bits dargestellte Zahl bezeichnet.
Die Werte E “ 0, 255 sind reserviert für Sonderzahlen: E “ 0 für
subnormale Zahlen und Null, E “ 255 für ˘8 und NaN.

Mantisse (23 Bits) Diese Ziffern stellen den Binärbruch dar.
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Gleitpunktarithmetik und Fehleranalyse
Der IEEE-754 Standard

Die IEEE Single-Zahlen im Überblick

Bitmuster E im Exponenten dargestellte Gleitpunktzahl
p00000000q2 “ 0 ˘p0.d1d2 . . . d23q2 ˆ 2´126

p00000001q2 “ 1 ˘p1.d1d2 . . . d23q2 ˆ 2´126

...
...

p01111111q2 “ 127 ˘p1.d1d2 . . . d23q2 ˆ 20

p10000000q2 “ 128 ˘p1.d1d2 . . . d23q2 ˆ 21

...
...

p11111110q2 “ 254 ˘p1.d1d2 . . . d23q2 ˆ 2127

p11111111q2 “ 255 ˘8 falls d1 “ ¨ ¨ ¨ “ d23 “ 0, sonst NaN
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Gleitpunktarithmetik und Fehleranalyse
Der IEEE-754 Standard

Charakteristische Größen von IEEE Single:

Mantissenlänge: p “ 24
größte normalisierte Zahl:

Nmax “ p1.11 . . . 1q2 ˆ 2127 “ 2p1´ 2´24q ˆ 2127 « 2128 « 3.4ˆ 1038

kleinste normalisierte positive Zahl:
Nmin “ p1.00 . . . 0q2 ˆ 2´126 “ 2´126 « 1.2ˆ 10´38

kleinste positive Zahl:
Mmin “ p0.0 . . . 01q2 ˆ 2´126 “ 2´149 « 1.4ˆ 10´45

Maschinengenauigkeit:
ε “ p1.0 . . . 01q2 ´ p1.0 . . . 00q2 “ 2´23 « 1.2ˆ 10´7
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Gleitpunktarithmetik und Fehleranalyse
Der IEEE-754 Standard

Double-Format (FORTRAN: REAL*8, C: double) = 2 Worte = 64 Bits,

˘ Exp. Man- tisse

0 1 11 32 63
d.h. 1 Bit Vorzeichen, 11-Bit Exponent und (1+)52-Bit Mantisse.

Charakteristika:

p “ 53

emin “ 1´ 1023 “ ´1022 emax “ 2046´ 1023 “ 1023

Nmin “ 2´1022 « 2.2ˆ 10´308 Nmax « 21024 « 1.8ˆ 10308

Mmin “ 2´1074 « 4.9ˆ 10´324

ε “ 2´52 « 2.2ˆ 10´16
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Gleitpunktarithmetik und Fehleranalyse
Der IEEE-754 Standard

Rundung in IEEE Arithmetik
Zu x P R seien x´, x` P M die nächstgelegenenen Maschinenzahlen kleiner bzw.
größer als x. IEEE-Arithmetik definiert rdpxq :“ x falls x P M, andernfalls hängt
der Wert rdpxq vom aktuell eingestellten Rundungsmodus ab, welcher einer der
folgenden vier sein kann:

Abrunden. rdpxq “ x´

Aufrunden. rdpxq “ x`

Rundung zur Null. rdpxq “ x´, falls x ě 0 und rdpxq “ x` falls x ď 0.
Rundung zur nächsten Maschinenzahl (Default). rdpxq erhält den näher an x

liegenden Wert unter x´ und x`. Liegt x genau zwischen x´ und
x`, so wird diejenige Zahl als rdpxq gewählt, deren
niedrigstwertiges Bit Null ist. (Dies verhindert Drift.)
Weitere Ausnahme: rdpxq “ 8 falls x ą Nmax und rdpxq “ ´8
falls x ă ´Nmax.
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Gleitpunktarithmetik und Fehleranalyse
Der IEEE-754 Standard

Ausnahmesituationen (exceptions)
IEEE-Arithmetik definiert fünf Ausnahmesituationen sowie für jede dieser eine Stan-
dardreaktion:
invalid operation (ungültige Operation) 0{0, 8{8, 8´8,

?
´1 und dergleichen

division by zero (Division durch Null)
overflow (Exponentüberlauf) Ergebnis einer Operation größer als Nmax

underflow (Exponentunterlauf) Ergebnis einer Operation kleiner als Nmin Das
Weiterrechnen mit denormalisierten Maschinenzahlen bezeichnet
man als gradual underflow.

inexact (ungenaues Ergebnis) Resultat keine Maschinenzahl (dies ist
eigentlich keine Ausnahme)
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Gleitpunktarithmetik und Fehleranalyse
Der IEEE-754 Standard

IEEE-Philosophie bei Ausnahmesituationen
IEEE 754 fordert, dass beim Eintreten einer Ausnahmesituation ein Statusbit gesetzt
wird, welches explizit wieder gelöscht werden muss (sticky bit). Ferner legt der
Standard nahe, dass dem Programmierer die Möglichkeit gegeben wird, entweder die
Behandlung dieser Ausnahmesituation durch speziellen Code selbst zu bestimmen
(exception handling) oder die Ausnahmesituation zu ignorieren und weiterzurechnen
(exception masking).
Dies gestattet es, nur in (seltenen) problematischen Fällen auf aufwendigere Vari-
anten eines Programmcodes zurückzugreifen, um korrekte Behandlung des Runde-
fehlers zu gewährleisten.
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Gleitpunktarithmetik und Fehleranalyse
Der IEEE-754 Standard

Standardreaktionen
invalid operation Setze Ergebnis auf NaN
division by zero Setze Ergebnis auf ˘8
overflow Setze Ergebnis auf ˘8 oder ˘Nmax

underflow Setze Ergebnis auf ˘0, ˘Nmin oder subnormal
inexact Setze Ergebnis auf korrekt gerundeten Wert

Exponentüberlauf kann durch geeignete Skalierung oft – auf Kosten eines harmlosen
Unterlaufs – vermieden werden.
Beispiel: c “

?
a2 ` b2 mit a “ 1060 und b “ 1 (Rechnung mit vier Dezimalstellen

in Mantisse und zwei Dezimalstellen im Exponent).
Standardauswertung verursacht Überlauf. Besser:

c “ s
a

pa{sq2 ` pb{sq2 mit s “ maxt|a|, |b|u.
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Gleitpunktarithmetik und Fehleranalyse
Korrekt gerundete Gleitpunktarithmetik

Die Machinenzahlen M sind bezüglich der elementaren arithmetischen Operatio-
nen (Addition, Subtraktion, Multiplikation und Division) nicht abgeschlossen (selbst
wenn wir für die Exponenten beliebige Werte erlauben).

Beispiele:
• x “ 1.1 ¨ 100 ist eine Gleitpunktzahl zur Basis 10 mit der Mantissenlänge 2,
während x ¨ x “ 1.21 ¨ 10´1 eine dreistellige Mantisse besitzt.

• Im IEEE-Single Format sind 1 und 2´24 beides Maschinenzahlen, deren
Summe 1` 2´24 hingegen nicht.
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Gleitpunktarithmetik und Fehleranalyse
Korrekt gerundete Gleitpunktarithmetik

Für jede der Operationen ˝ P t`,´, ¨, {u wird die entsprechende korrekt gerundete
Gleitpunktoperation definiert durch

flpx ˝ yq :“ rdpx ˝ yq, x, y PM.

Für alle x, y PM gilt daher, falls weder Unter- noch Überlauf eintritt,

flpx ˝ yq “ p1` δqpx ˝ yq mit |δ| ď u.

Auf dieser Annahme fußt der Großteil moderner Rundungsfehleranalyse.
Man beachte aber, dass die neuen Operationen den klassischen Gesetzen der Arith-
metik (wie etwa den Kommutativ-, Assoziativ- und Distributivgesetzen) nicht mehr
genügen.
Z.B. in vierstelliger Gleitpunktarithmetik zur Basis 10:
x “ 1.234 ¨ 103, y “ 1.234 ¨ 10´1 P M, x ` y “ 1.2341234 ¨ 103, d.h. flpx ` yq “
1.234 ¨ 103, was flpx` yq “ x bedeutet, obwohl rdpyq ‰ 0.
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Gerundete Arithmetik im IEEE-Standard
IEEE 754 verlangt folgende korrekt gerundete Operationen

• die vier Grundrechenarten
• Quadratwurzel und Rest bei Division
• Formatkonvertierungen

Die korrekte Rundung richtet sich nach dem Zielformat, was je nach Variablentyp
oder aktueller Hardware (Akkumulator, Register oder Speicherzelle) unterschiedlich
sein wird.
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Warum ist korrekte Rundung so wichtig?
Man betrachte etwa die folgenden vier Fragen:

Frage 1: Gilt flp1 ¨ xq “ x für x PM ?
Frage 2: Gilt flpx{xq “ 1 für x PM, x ‰ 0, x endlich ?
Frage 3: Gilt flp0.5 ¨ xq “ flpx{2q für x PM ?
Frage 4: Folgt aus flpx´ yq “ 0 für x, y PM auch x “ y ?

In IEEE-Arithmetik kann man jede dieser Fragen bejahen. In den 60er und 70er
Jahren existierte zu jede Frage ein (jeweils weit verbreitetes) Computersystem, bei
welchem für bestimmte Daten die Antwort „nein“ lautete.
Insbesondere kann man für IEEE-Arithmetik Frage 4 bejahen aufgrund der Verwen-
dung subnormaler Zahlen.
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Ein Blick in die Implementierung: Addition und Subtraktion
Gegeben: zwei IEEE-Single Zahlen x “ mx ˆ 2ex , y “ my ˆ 2ey . Gilt ex “ ey,
so ergibt sich flpx ` yq aus pmx `myq ˆ 2ex mit anschließender Normalisierung.
Beispiel: 3` 2:

p1.10000000000000000000000q2 ˆ 21

` p1.00000000000000000000000q2 ˆ 21

“ p10.10000000000000000000000q2 ˆ 21

Normalisierung: p1.01000000000000000000000q2 ˆ 22.

Ist ex ą ey, so müssen die Mantissen zuerst angepasst werden, z.B. bei 3` 3{4:

p1.10000000000000000000000q2 ˆ 21

` p0.01100000000000000000000q2 ˆ 21

“ p1.11100000000000000000000q2 ˆ 21.
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Hilfsziffern (guard digits)
Betrachte die Operation 3` 3ˆ 2´23:

p 1.10000000000000000000000 q2 ˆ 21

`p 0.00000000000000000000001|1 q2 ˆ 21

“ p 1.10000000000000000000001|1 q2 ˆ 21

Abgerundet: p 1.10000000000000000000001 q2 ˆ 21

Aufgerundet: p 1.10000000000000000000010 q2 ˆ 21.

In diesem Fall muss gerundet werden, da das Ergebnis keine Maschinenzahl ist.
Allerdings erfordert die Berechnung der korrekt gerundeten Resultats eine Hilfsziffer
rechts vom niedrigstwertigen Bit.
Bei der Rundung zur nächstgelegenen Maschinenzahl würde hier aufgerundet (warum?).
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Auslöschung
Wir betrachten die Subtraktion der (benachbarten) Zahlen x “ 1 und y “ p1.11. . . . 1q2ˆ
2´1.

p 1.00000000000000000000000 q2 ˆ 20

´p 0.11111111111111111111111|1 q2 ˆ 20

“ p 0.00000000000000000000000|1 q2 ˆ 20

Normalisierung: p 1.00000000000000000000000 q2 ˆ 2´24

Man spricht hier von Auslöschung, da sich alle Ziffern bis auf die letzte „wegheben“.
Auch hier ist eine Hilfsziffer unabdingbar für korrekte Rundung.

Oliver Ernst (Numerische Mathematik) Numerische Mathematik Sommersemester 2015 92 / 108



Gleitpunktarithmetik und Fehleranalyse
Korrekt gerundete Gleitpunktarithmetik

Notwendigkeit mehrerer Hilfsziffern
Betrachte x´ y mit x “ 1 und y “ p1.00 . . . 01q2ˆ 2´25. Bei der Verwendung von
25 Hilfsziffern erhalten wir

p 1.00000000000000000000000| q2 ˆ 20

´p 0.00000000000000000000000|0100000000000000000000001 q2 ˆ 20

“ p 0.11111111111111111111111|1011111111111111111111111 q2 ˆ 20

“ p 1.11111111111111111111111|0111111111111111111111110 q2 ˆ 2´1

“ p 1.11111111111111111111111 q2 ˆ 2´1

(Der Rundungsmodus ist Rundung zur nächsten Maschinenzahl).
Weniger als 25 Hilfsziffern hätten hier nicht genügt, um das korrekt gerundete
Ergebnis zu berechnen (nachprüfen!).
Bei Rechnern der Firma CRAY Research war bis vor kurzem die Subtraktion auf-
grund fehlender Hilfsziffern nicht korrekt gerundet.
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Man kommt aber mit weniger Hilfsbits aus:
Wir verwenden nun zwei Hilfsziffern und ein zusätzliches Hilfsbit, welches dann
gesetzt wird, wenn beim Shiften der Mantisse mindestens ein von Null verschiedenes
Bit verlorengegangen (d.h. jenseits der zweiten Hilfsziffer gewandert) ist. Dieses Bit
setzen wir vor der Subtraktion an die dritte Hilfsziffer:

p 1.00000000000000000000000 q2 ˆ 20

´p 0.00000000000000000000000|011 q2 ˆ 20

“ p 0.11111111111111111111111|101 q2 ˆ 20

Normalisierung: p 1.11111111111111111111111|01 q2 ˆ 2´1

Rundung: p 1.11111111111111111111111 q2 ˆ 2´1

Man kann zeigen, dass für korrekt gerundete Subtraktion nicht mehr als diese zwei
Hilfsziffern und das Hilfsbit (sticky bit) benötigt werden.
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Multiplikation und Division:
Hier ist ein Anpassen der Mantissen nicht notwendig: Multiplikation von x “ mxˆ

2ex mit y “ my ˆ 2ey ergibt

xy “ pmxmyq ˆ 2ex`ey .

Somit besteht die Multiplikationsoperation aus den drei Schritten Multiplikation der
Operandenmantissen, Addition der Operandenexponenten und Normalisierung des
Ergebnisses. (Analog bei Division).
Relative Geschwindigkeit von Multiplikation/Division im Vergleich zu Addition/Subtraktion:
Im Prinzip gleich schnell in Hardware realisierbar, allerdings mit wesentlich mehr
Aufwand.
Aktueller Kompromiss beim Chipentwurf: Multiplikation ungefähr so schnell wie
Addition/Subtraktion, Division deutlich langsamer.
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Es sei ŷ “ flpfpxqq das in Gleitpunktarithmetik berechnete Ergebnis der Auswertung
einer Funktion y “ fpxq.
Wie beurteilt man die Qualität von ŷ?

• (Relativer) Vorwärtsfehler: |py ´ ŷq{y|.
• (Relativer) Rückwärtsfehler: |px´ x̂q{x|, dabei ist x̂ das (ein) Eingabedatum,
das bei rundungsfreier Rechnung zu ŷ führt: fpx̂q “ ŷ (Rundungsfehler
werden als Datenfehler interpretiert).

Mit Störungstheorie kann man Vorwärtsfehler durch Rückwärtsfehler abschätzen.
Faustregel:

Vorwärtsfehler Æ Konditionszahl ˆ Rückwärtsfehler.
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x

x̂

y

ŷ

exakt

exakt

berechnet(absoluter)
Rückwärtsfehler

(absoluter)
Vorwärtsfehler

Daten Ergebnisse
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Ein Algorithmus heißt
vorwärtsstabil, wenn der Vorwärtsfehler „klein“ ist,
rückwärtsstabil, wenn der Rückwärtsfehler „klein“ ist; was „klein“ bedeutet, hängt
vom Problem und der Maschinengenauigkeit ab.
Die Kondition(szahl) eines Problems (hat nichts mit Gleitpunktarithmetik zu tun!!)
ist ein Maß dafür, wie empfindlich das Ergebnis auf Störungen der Daten reagiert.
Ein Problem ist gut (schlecht) konditioniert, wenn seine Konditionszahl klein (groß)
ist.
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Bestimme y “ fpxq, Störung der Daten: ∆x
ŷ “ fpx`∆xq “ fpxq ` f 1pxq∆x` 1

2f
2pζqp∆xq2.

∆x klein: ŷ “ fpx`∆xq « fpxq ` f 1pxq∆x “ y ` f 1pxq∆x oder
ˇ

ˇ

ˇ

ˇ

fpx`∆xq ´ fpxq

fpxq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ŷ ´ y

y

ˇ

ˇ

ˇ

ˇ

«

ˇ

ˇ

ˇ

ˇ

xf 1pxq

fpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

∆x

x

ˇ

ˇ

ˇ

ˇ

.

(Relative) Konditionszahl von f an der Stelle x:

cf pxq “

ˇ

ˇ

ˇ

ˇ

xf 1pxq

fpxq

ˇ

ˇ

ˇ

ˇ

.
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Beispiel. fpxq “ logpxq, d.h.: cf pxq “
ˇ

ˇ

ˇ

x{x
logpxq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

1
logpxq

ˇ

ˇ

ˇ
moderat für sehr kleine

und sehr große (positive) x, riesig für x « 1.
x1 “ 0.01: cf px1q “ 0.21715,
x2 “ 0.99: cf px2q “ 99.4992,
x3 “ 100.: cf px3q “ 0.21715.
Wie wirkt sich eine relative Störung von εx “ p∆xq{x “ 0.001 aus?
Prognose:

ˇ

ˇ

ˇ

ˇ

fpxk ` 0.001xkq ´ fpxkq

fpxkq

ˇ

ˇ

ˇ

ˇ

« 0.001 cf pxkq “ 0.001

ˇ

ˇ

ˇ

ˇ

1

logpxkq

ˇ

ˇ

ˇ

ˇ

.

k rel. Fehler Prognose
1 2.1704 ¨ 10´4 2.1715 ¨ 10´4

2 9.9945 ¨ 10´2 9.9499 ¨ 10´2

3 2.1704 ¨ 10´4 2.1715 ¨ 10´4
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Allgemeiner: y “ fpx1, x2, . . . , xnq. Absolute Störungen der Daten, ∆xk (k “
1, 2, . . . , n), verursachen absoluten Fehler im Ergebnis:

∆y “ fpx1 `∆x1, . . . , xn `∆xnq ´ fpx1, . . . , xnq „
n
ÿ

k“1

dk∆xk,

dk “
Bfpx1, x2, . . . , xnq

Bxk
pabsolute Konditionszahlen von fq.

Relative Störungen der Daten, εk “ ∆xk{xk (k “ 1, 2, . . . , n), verursachen relati-
ven Fehler im Ergebnis:

εy “
fpx1 `∆x1, . . . , xn `∆xnq ´ fpx1, . . . , xnq

fpx1, . . . , xnq
„

n
ÿ

k“1

ckεk,

ck “
xk

fpx1, x2, . . . , xnq

Bfpx1, x2, . . . , xnq

Bxk

(relative Konditionszahlen von f).
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Beispiele. (Grundoperationen)
‚ y “ fpx1, x2q “ x1 ¨ x2. D.h. c1 “ 1 und c2 “ 1 (unproblematisch).
‚ y “ fpx1, x2q “ x1{x2. D.h. c1 “ 1 und c2 “ ´1 (unproblematisch).
‚ y “ fpx1, x2q “ x1 ` x2. D.h. c1 “ x1{px1 ` x2q und c2 “ x2{px1 ` x2q.
‚ y “ fpx1, x2q “ x1 ´ x2. D.h. c1 “ x1{px1 ´ x2q und c2 “ ´x2{px1 ´ x2q.
Bei den Operationen ˘ können die Konditionszahlen riesig werden:
x1 « ´x2: Addition schlecht konditioniert.
x1 « x2: Subtraktion schlecht konditioniert. (Auslöschung!)
Etwa: x1 “ 3.14159, x2 “ 3.14140. ∆x1 “ 10´5, ∆x2 “ 2 ¨ 10´5, dh. ε1 «
3.18 ¨ 10´6, ε2 « 6.36 ¨ 10´6.
y “ x1´x2 “ 0.00019 (Auslöschung führender Ziffern). px1`∆x1q´px2`∆x2q “
0.00018. Also εy “ 5.26 ¨ 10´2.
Prognose: c1 “ 1.65 ¨ 104, c2 “ ´1.65 ¨ 104, |εy| « |c1ε1` c2ε2| ď 1.65 ¨ 104 p3.18 ¨
10´6 ` 6.36 ¨ 10´6q « 1.57 ¨ 10´1.
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Die quadratische Gleichung
x2 ´ bx` c “ 0

hat die Lösungen

x1{2 “
b˘

?
b2 ´ 4c

2
.

Für b “ 3.6678 und c “ 2.0798 ¨ 10´2

erhält man nach Rechnung mit fünfstelliger Dezimalmantisse

x̃1 “ 3.6673 (rel. Fehler: 4.7 ¨ 10´6q, x̃2 “ 5.5 ¨ 10´4 (rel. Fehler: 3.0 ¨ 10´2q.

Warum?
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Schritt Ergebnis rel. Fehler
1. b2 1.3453 ¨ 10`1 1.8 ¨ 10´5

2. 4c 8.3192 ¨ 10´3 0.0
3. b2 ´ 4c 1.3445 ¨ 10`1 4.1 ¨ 10´5

4.
?
b2 ´ 4c 3.6667 ¨ 10`0 9.3 ¨ 10´6

5. b´
?
b2 ´ 4c 1.1000 ¨ 10´3 3.0 ¨ 10´2

6. pb´
?
b2 ´ 4cq{2 5.5000 ¨ 10´4 3.0 ¨ 10´2

5’. b`
?
b2 ´ 4c 7.3345 ¨ 10`0 4.7 ¨ 10´6

6’. pb`
?
b2 ´ 4cq{2 3.6673 ¨ 10`0 4.7 ¨ 10´6

7. x2 “ c{x1 5.6713 ¨ 10´4 1.1 ¨ 10´6
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Beispiel aus der Einleitung dieses Kapitels:

An`1 “ 2n r2
´

1´
a

1´ pAn{2nq2
¯

looooooooooooomooooooooooooon

Auslöschung!

s1{2.

Setze

Rn :“ 4
1´

a

1´ pAn{2nq2

2
, d.h. An`1 “ 2n

a

Rn.

Beachte: Rn “ 4Zn und Zn ist (die kleinere) Lösung von

X2 ´X `
1

4
pAn{2

nq2 “ X2 ´X ` pAn{2
n`1q2 “ 0.

Alter Trick:

Zn “
2pAn{2

n`1q2

1`
a

1´ pAn{2nq2
, Rn “ 4Zn, An`1 “ 2n

a

Rn.
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