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6.1 Polynominterpolation

Das (allgemeine) Interpolationsproblem:

Zu gegebener Funktion f : [a,b] — C und gegebenen Stiutzstellen (Knoten)
a<xo<x<ax2<---<uz, <0bsoll eine ,einfache” Funktion p : [a,b] — C
konstruiert werden, die die Interpolationsbedingungen p(x;) = f(x;) (i =

0,1,...,n) erfll.

Wozu?

e f ist nur an diskreten Punkten bekannt (Messwerte), aber eine geschlos-
sene Formel flr f ist auf ganz [a, b] erwlnscht (z.B. um f an Zwischenstel-
len x € [a,b] \ {x0,21,...,x,} auszuwerten),

e f ist ,kompliziert* und soll durch eine ,einfache® Funktion angenahert
werden (z.B. um die Ableitung f'(x), = € |a, b], oder das Integral f; f(x)dx
naherungsweise zu bestimmen).
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Das polynomiale Interpolationsproblem:

Zu gegebenen (paarweise verschiedenen) Knoten
a<To <1 <X << xp, <D

und gegebenen Funktionswerten {f;}*_, € C soll ein Interpolationspoly-
nom

p(x) = +cp1z" + - d ez g € P,

(mit komplexen Koeffizienten c¢g, cq,...,¢c,, d.h. n + 1 Freiheitsgrade) vom
Grad n konstruiert werden, das die n + 1 Interpolationsbedingungen

p(:l:z-):fi, i:O,l,...,n,

erfallt.
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Satz 6.1. Die polynomiale Interpolationsaufgabe ist eindeutig I6sbar. Mit
den Lagrange-Grundpolynomen [JOSEPH LOUIS LAGRANGE (1736-1813)]

(beachte ¢;(x;) = 1 und ¢;(x;) = 0 fir j # i) lasst sich das Interpolations-
polynom in der Lagrange-Form

p(z) = Z fili(x)

darstellen.
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Beispiel 1. Daten: (o, fo) = (=1, 1), (z1, f1) = (0, —1), (22, f2) = (2,2).

3.5

Lagrange-

Grundpolynome: |
lo(x) = z(x — 2)/3, Al
l(x) =(x+1)(x-2)/(=2), *
lo(x) = (x4 1)x/6. T
Interpolationspolynom: of
pl) = ~Lo(x) — () +25(x)

=x°/2 +12/2 — 1.
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Die Auswertung der Lagrange-Formel ist aufwendig, wenn ein neues Da-
tenpaar hinzukommt. Eine rekursive Berechnung ist okonomischer:

Lemma 6.2. Fir eine beliebige Indexmenge 0 < i < i1 < -+ < i < n

bezeichne p,, ;, ... ;. das (nach Satz|6.1 eindeutig bestimmte) Polynom vom
Grad k, das die Bedingungen

pio,il,...,ik(xij) — fij (] — 0717'°°7k)
erfullt. Dann gilt die Rekursionsformel
pi(z) = fi

(T = Tig )Piy ig, i, (T) — (T — T4 )Digir . in_r (T)

.CEZ'k — Iy

Pig,i1,... ik (513) —
0
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Rechenschema (Algorithmus von Neville-Aitken, [CHARLES WILLIAM NEVILLE
(x 1941)]; [ALEXANDER CRAIG AITKEN (1895-1967)] ):

T k=0 k=1 k=2 k=3 k=4
zo | po(x) = fo
p0,1(£17)
1 | p1(z) = fi po,1,2(T)
P1,2(CI?) p0,1,2,3($)
T2 | p2(T) = f2 p1,2,3(7) P0,1,2,3,4(7)
p2,3(33) p1,2,3,4(33)
z3 | p3(x) = f3 p2,3,4(T)
p3,4(az)
T4 | pa(x) = fa

(Berechnungsreihenfolge : py — p1 — po.1 — P2 — P12 — Do12 — )

6.1 Polynominterpolation
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Beispiel 2 (vgl. Beispiel 1).

—1 —1
(2= (=1)(=1)=(@=0)(=1) _ _4
0—(—1)
r—(—1))(3x/2—1)—(x—2)(—1
0 1 (x—(=1))( 2/_(_1)) (x—2)(—1)
@=02—a=2)(=1) _ 3, P I P
2 2

Aufwand des Neville-Aitken Schemas (fur Auswertung des Interpolations-
polynoms vom Grad n an einer Stelle z):

%nz + %n + 1 Gleitpunktoperationen (falls die Differenzen z — x; (0 < i < n)
vorab bestimmt werden).
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Tableau der dividierten Differenzen von f (vgl. § 4.4):

z, | k=0|k=1|k=2| k=3 k=4

xo fo
Jo,1

L1 f1 f0,1,2
f1,2 fo,1,2.3

L2 f2 f1,2,3 f0,1,2,3,4
f2,3 f1,2,3,4

3 f3 f2,3.4
f3,4

T4 fa

mit
fiojil’”wik — f'5177’27-°'77'k fZOﬂzla ylk—1 (k‘ Z 1)

6.1 Polynominterpolation
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Satz 6.3. (vgl. Satz|4.7/in § 4.4) Mit Hilfe der dividierten Differenzen lasst
sich das (nach Satz|6.1| eindeutig bestimmte) Interpolationspolynom p in
Newton-Form

p(z) = fo+ foa(z —z0) + for2(x —zo) (@ — 1) + -

ot for,on(@—zo)(T—x1) (T — Tp1)
darstellen.
Rechenaufwand:
e Zur Bestimmung der Differenzentafel: £(n? + n) Gleitpunktoperationen.

e Zur Auswertung des Newtonschen Interpolationspolynoms mit dem
Horner-Schema ([WiLLIAM GEORGE HORNER (1786—1837)]):
3n Gleitpunktoperationen (pro Auswertungspunkt).
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Beispiel 3 (vgl. Beispiele 1 und 2).
Dividierte Differenzen:
—1 —1
_ (=H)—(=1) _
fO,l — (0_)(_(1) =10
_ 1
0| -1 fo12 = 23_/?_% . e
Ji2 = 2_2(__01) =3
2 2
Das bedeutet:
1 1, 1
p(z) =|(—-1)|+|0|x— (1)) + 5 (x —(—=1))(x —0) = 5%t 5% 1
6.1 Polynominterpolation
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Baryzentrische Interpolationsformeln. Das zu den (paarweise verschie-
denen) Interpolationsknoten {xg,z1,...,x,} gehdrende Knotenpolynom
sei definiert durch

wWnat(x) = (x —zo)(x —21) - (. — xp) € P,
Definiert man die baryzentrischen Gewichte {w; }"_, durch

1 1
Wi = —= = : 7=0,...,n, (6.1)
’ Hg;g(ﬂfg‘ —Tk)  Why(T)

so gilt fir die Lagrange Grundpolynome

w.
j . _
7=0,...,n,

lj(x) = w'n+1(37)x L
J

und hiermit Iasst sich das Interpolationspolynom darstellen durch die . ..
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erste baryzentrische Formel

w

p(x) = wn1 (@) Z fi

j
r — T,
j=0 J

Da die konstante Funktion f = 1 exakt interpoliert wird gilt

n

1 = wpi1(z) Z =

Y
ZE—ZIZ'j

7=0

und somit nach Quotientenbildung und Kirzen die zweite baryzentrische
Formel
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Aufdatierung. Bei Hinzunahme von x,, 14

walt
Wi = / : 7=0,...,n, (2n+ 2 Flops).
Lji — Tn+1

wp+1 aus (6.1), n + 1 weitere Flops, falls x; — z,,+1 gemerkt werden.

Aufwand.
e Berechnung von {w;}7_, erfordert 3_""_; 3j = 3n(n + 1) Flops.

e Bei gegebenen Gewichten {w;}”_, jede Auswertung von p in weiteren
5n + 4 = O(n) Flops.

Weitere Vorteile.

e w; hangen nicht von den Daten f; ab, d.h. bei gegebenen Gewichten
konnen beliebige Funktionen f in O(n) Flops interpoliert werden.

e w; unabhangig von Knotennummerierung (vgl. dividierte Differenzen).
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Beispiel. Interpolation an aquidistanten Knoten in [a, b] fihrt auf

wjz(—1)f(7) i=01,....n

J

(modulo des gemeinsamen Faktors (=2 (bfa) )
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Satz 6.4 (Fehler der Polynominterpolation). Die Funktion f € C"*|a,b]
werde durch das Polynom p € 22, interpoliert an den paarweise ver-
schiedenen Knoten {xg,x1,...,x,} C |a,b]. Deren Knotenpolynom sei
bezeichnet mit

wWnit1(x) = (x —xo)(x — 1) - (x — xp) € P

Dann gibt es zu jedem x € |a,b] ein { = &(x) € (a,b) mit

fla) = pla) = P} FOH(E),

Mit M, 1 == max,<;<p | fTV(t)| gilt somit fiir alle = € [a,b] die Fehlerab-
schatzung

My,
L max |wnpr(8)]: (6.2)

[f(z) = p(z)] < (n+ 1) a<t<b
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Korollar 6.5. Die Funktion f € C°|a, b] mit
M (z)| <M Vzelab], ¥neN, (6.3)

werde fir jedes n € N durch das Polynom p, € &2, an der beliebigen
Knotenfolge {x§”>}?zo C la, b] interpoliert. Dann gilt

m[ayl;)] |f(z) —pn(x)| =0 fir n — oo.
re|a,

Die sehr starke Forderung (6.3) ist erfullt z.B. far e”, sinz, cosx und
(natarlich) fir Polynome. Bereits fur die rationale Funktion f(z) = 1/x
mit f(")(x) = £n!/z"*1 gilt (6.3) etwa auf dem Intervall [1,2] schon nicht
mehr.
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»~<Optimale” Knoten: Idee (motiviert durch Fehlerabschatzung):
Wahle Knotena < zg < 21 < -+ < x,, < b S0, dass

max fwnp1 (1)) = max 111t -

so klein wie moglich wird.

Losung: Tschebyscheff-Knoten [PAFNUTIT L'VOVICH TSCHEBYSCHEFF (1821—
1894)]

— 2(n—1)+ 1 b
( b acos (n—i)+ 7 +a—|— 1 =20,1,...
2n + 2

mit

fir jede andere Wahl xy, . .., z,, der Knoten.
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Knotenpolynome mit aquidistanten und Tschebyscheff-Knoten:

0.8

\ — - aequidistante Knoten
" —— Tschebyscheff-Knoten
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Beispiel 4.(RungdﬂPhé’1nomerﬂ Interpoliere an n + 1 aquidistanten Stutzstellen

1 :
= —5<x< -
f(x) 5 22 (=5 <z <5) (Runge-Funktion)

1
o
-1 . -1 1
-5 (0] 5 -5 (0] 5

a[CARL DAVID TOLME RUNGE (1856—1927)].
°C. Runge. Uber emprirische Funktionen und die Interpolation zwischen dquidistanten Or-
dinaten. Zeitschrift fir Mathematik und Physik 46 (1901) pp. 224—243
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Beispiel 5. Interpoliere an n + 1 Tschebyscheff-Knoten

1
= —5H<xr<5h
f@) == (-5<a<5)
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Fazit.

e Durch eine geeignete Knotenwahl (Tschebyscheff-Knoten) lasst sich
auch die Runge-Funktion durch Interpolationspolynome beliebig genau
annahern.

e Prinzipiell ist eine Approximation durch Interpolationspolynome aber
nur dann ratsam, wenn man mit wenigen Knoten (d.h. mit Polynomen
niedrigen Grades) ausreichend gute Ergebnisse erzielen kann. Das
ist I.A. nur bei extrem glatten Funktionen (wie etwa bei der Exponen-
tialfunktion) gewabhrleistet. (Die Runge-Funktion ist zwar in ganz R
beliebig oft differenzierbar, besitzt aber Pole in £/—1. Wie gut eine
Funktion durch reelle Interpolationspolynome genahert werden kann,
hangt auch von der Lage ihrer komplexen Singularitaten ab!)

e Polynome hohen Grades neigen zu Oszillationen und sind daher zur
Approximation oft unbrauchbar.
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Fir aquidistante Knoten in [—5, 5] gilt limy,_ 0 [wns1 (2)|77T = G(2),

G(z) = exp {i Re[(z +5)log(z+5) — (2 — 5)log(z — 5)] — 1} .

10

2 I I I
1 —c k
E of — — 1
-1 ——; 7

2 | ,

-5 0 5

Re

Hohenlinien von G(z), rot gekennzeichnet ist das Niveau von G(=:), welches in
+x. ~ +£3.6333843024 die reelle Achse schneidet.
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Satz 6.6 (Runge, 1901). Besitzt die Funktion f keine Singularitat im Gebiet
D,:={z€C:G(z) <G(p)}, p>0,
So gilt

pn(x) — f(x) fur n — oo gleichmaiig firx € [—p, p].

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik

280

Eine Anwendung: Numerische Differentiation.

Naheliegende ldee, um die n-te Ableitung einer komplizierten Funktion f
anzunahern:

(1) Bestimme ein Interpolationspolynom p vom Grad n far f.
(2) Differenziere p n-mal: p{™) (z) = n! fo1... n.

Beispiele:
(a) Knoten: xo und 1 = zg9 + h, d.h.

f(330+h)—f(330).

fl(zo) = p'(x0) = 1! fo1 = ;
(b) Knoten: xg = 21 — h, 1 und x5 = 1 + h, d.h.

flwy+h) —2f(x1) + f(x1 —h)
h? '

f(x1) = p"(x1) =2 for12 =

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013
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Problematik: Numerische Ausloschung.

Fir f(z) = sinh(x) = 3(e* — e~ *) approximiere

0.636653582 ... — £(0.6) = £(0.6) ~ 100 =1 =27(0.6) + J(0.6+ 1)

h2
fr h =107¢,e=1,2,..., im I[IEEE-double-Format
(Maschinengenauigkeit: eps = 27°2 ~ 2.2 - 10719).
f(0.6) ~ f(0.6) ~

0.63665517302525
0.63682392692499
0.64392935428259
2.22044604925031

0.6371843036/7986
0.63665888761277
0.63665363525534
0.63665358540632

A WO DD 2
oo N O oo
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Diskretisierungsfehler 50
Rundungsfehler ~ 4h “eps = 4 eps 107

1 1
~ 1—2f(4)(().6) h? o~ — 1072,

10°
¢ Rundungsfehler
10° |
optimale Schrittweite
107
9
<
()
- -10
10
107"°
Diskretisierungsfehler
10_20 I I I
107° 107° 107" 107

Schrittweite

TU Chemnitz, Sommersemester 2013
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6.2 Spline-Interpolation

Splines sind ,stlickweise Polynome®. (Wortlich: Spezielle biegsame Kurven-
lineale, die durch Halterungen gezwungen werden, auf dem Zeichenpapier
gegebene Punkte zu verbinden; wurden im Schiffsbau verwendet.)

Idee: Um die Gute der Approximation zu verbesseren, wird hier nicht der
Polynomgrad erhoht, sondern die Unterteilung des Intervalls verfeinert.

Seien n + 1 Knoten in [a,b] gegeben: a = 2y < 1 < -+ < xp_1 <
T, = b. Mit  := |zg, 21| U [x1,22] U --- U [2y,—1, x,,] Dezeichnen wir die
zugehorige Zerlegung des Intervalls [a, b]. Ein Spline vom Grad k bez. .7
ist eine Funktion s € C*~1[a, b], die auf jedem Teilintervall von .7 mit einem
Polynom vom Grad k Ubereinstimmit:

Sllwi_1 2] € P furi=1,2,...,n.

Satz 6.7. Die Menge % aller Splines vom Grad k bez. 7 ist ein (n + k)-
dimensionaler linearer Raum.
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Im Runge-Beispiel:

T T T T T T T T T
—— Runge-Funktion

O Knoten
11 : — - linearer Spline
-— - kubischer Spline
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6.2.1 Lineare Spline-Interpolation

Einfachster Fall: £ = 1. Ein Spline s vom Grad 1 (linearer Spline) ist
charakterisiert durch die beiden Eigenschaften:
1. Auf jedem Teilintervall [x;_1, z;] von 7 ist s linear:

S(CIJ) = + BZZE for alle x € [:1:7;_1, ZIJZ] und ¢ = 1,2,...,n.
2. Auf ganz [a, b] ist s stetig, d.h. fari=1,2,...,n—1

lim s(x)=qa; + Bix; = a1 + Bivix; = lim s(x).
rT—T;— r—x;+

Interpolationsaufgabe: Zu vorgebener Zerlegung 7 = [xg, 1] U [z1, 2] U
- U |zn_1,x,] VvON |a,b] und zu vorgegebenen Werten fy, f1,..., fn be-
stimme man einen linearen Spline s € .Z mit

S(ZCZ) =f; foralle:=0,1,...,n.
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Offensichtlich: Diese Aufgabe ist eindeutig losbar:

Ji — Ji—1

xz_

s(x) = fi—1 + (x —x;—q) fOrz € |x;_1,x;].

1.2

1F linearer Interpolationsspline B

0.8

0.6

0.4r

021

! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fehler des linearen Interpolationssplines: (f € C?[a, b))

Lokal, d.h. flr x € [x;_1, x;]:

£(@) = 5@ = 51Ol = zi2) (@ — 2] < S Mo b

f”(C)’ und hz = T; — Tj_1-

mit Mg,i = MaXy, <(<xz;

Global, d.h. fir = € [z, x,]:

max

(@) = s(2)] < My 3

mit Mo = maxi<;<n MQ’Z' — MaXy,<c<z, |f”(C)‘ und Ao = maXi<;<n h;.

Adaptive Knotenwahl. Stategie: Fehler etwa gleich auf jedem Teilintervall.
D.h.: Wahle h; invers proportional zu /Ms ; (viele Knoten dort, wo die
Krimmung von f grof3 ist).
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Zur Implementierung.
Gegeben: xg, z1,...,x, und fo, f1,..., fn.

Gesucht: Wert s(z) des linearen Interpolationssplines an der Stelle .
Bestimme gi—1 = (fz — fz_l)/(ib‘z — ZEi_l) fr ¢ = 1,2,...,n.

Falls x € [ZUZ'_l,QZ‘i], dann S(ZU) = fz'—l + gi—1 (ZL‘ — Sl?z'_l).

Problem: Gegeben x, in welchem Teilintervall [x; 1, x;] liegt x?

Einfach, falls h; = h (aquidistante Knoten):

] = [:U—h%—‘ ::min{kEN : kzw—hﬂfo}.

Schwieriger bei beliebigen Knoten:
Binares Suchen ergibt Komplexitat von ~ log, n.
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6.2.2 Kubische Spline-Interpolation

Gesucht ist ein interpolierender kubischer Spline s € .75..
Charakteristische Eigenschaften:

(1) Auf jedem Teilintervall [x;_1, x;] von 7 ist s kubisch:
s(x) =pi(x) = o + Bi(@ —wim1) +vi(z — 2i21)® 4+ 6i(x — @i1)”.
(2) Auf ganz |a, b] ist s zweimal stetig differenzierbar, d.h.:
pi(xi) = pit1(x:),  pi(xi) = pigr(@a),  pi(2:) = iy (@)
fri=1,2,...,n—1.
(3) Interpolationsbedingungen:
s(x;) = fi, i=0,1,...,n.

Fazit: 3(n — 1) + (n + 1) = 4n — 2 Bedingungen, aber 4n Freiheitsgrade.
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Drei Moglichkeiten fur die erforderlichen zwei Zusatzbedingungen.

Naturlicher Spline:

s"(x9) = s"(x,) =0 (N)
Hermitescher oder vollstandiger Spline [CHARLES HERMITE (1822—1901)]:
s'(xo)=f, und s (z,)=f mit fi,f €R. (H)

Periodischer Spline: Falls s(zq) = s(x,),

s'(xg) = s (z,) und s"(xzg) = 5" (x,). (P)
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Berechnung des kubischen Interpolationssplines.

Auf jedem Teilintervall [x;_1, x;] hat der kubische Spline die Form
s(x) =pi(x) = a; + Bi(x — xi—1) + vi(T — %—1)2 + di(x — %‘—1)3-

Die Koeffizienten lassen sich durch die Momente u; := s”(z;) und die

Funktionswerte f; (: = 0,1,...,n) darstellen:
fz’ - Ji1—1 h'z,
1 — Ji—1; T — o ( 2 1—1)5
a; = fi-1 B P o (it 24i-1)

wobel h; ;= x; — x;_1.

M. a. W.: Ein kubischer Spline ist durch die Funktionswerte f; und die
Momente u; (i = 0,1,...,n) eindeutig bestimmt.
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Die (n + 1) Momente p; erflllen die (n — 1) linearen Gleichungen
%M_l N hi +3h7;+1 Z_ hig1 iy — fzzlz; fi fi —hi¢—1
(:=1,2,...,n— 1) und zwei Zusatzgleichungen:
(N) po =0,
pin, = 0,
(H) Lo+ T = L0 gy
%”un_l + %”un — g _hf”_l,
(P) Ho = Hn,
%Ml + %Nn—l ¢ gh” n = fl}:lf” L _hf”‘l.

6.2 Spline-Interpolation
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Im Folgenden werden nur vollstandige kubische Splines (Bedingung (H))
betrachtet, analoge Aussagen gelten unter den Bedingungen (N) bzw. (P).

Die Momente des vollstandigen kubischen Splines erflllen das LGS (s.0.)

s 11wl [ do]
Sl s o d1
; = : (6.4)
hn6—1 hn—é‘i’hn h6n Lin—1 dn—l
| h?” h?n_ | Hn | dn
h P hj
und dn _ fr,/q, o fn _hfn—l.
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Satz 6.8. Fur jede Wahl der Knotena = ©o < x1 < --- < x, = b ist das
Gleichungssystem (6.4) eindeutig Iésbar. D.h.: Zu jeder Knotenwahl gibt es
genau einen vollstandigen kubischen Interpolationsspline fur f.

Satz 6.9 (Fehler bei kubischer Spline-Interpolation). Ist f € C*[a, ] und
s € .5 der vollstdndige kubische Interpolationsspline fir f, dann gelten

5
_ <~ M.KA

xrg[%]\f(w) s(@) = oo Malmax
1

2y ) = @< gy Mo o
3

max |f"(z) —s"(x)] < =Myh?_

x€[a,b] 8

- - (4) _ o N
mit M, : arélxa%(b‘f ()] und hpax : 1r£151§><nh7, 12%}(”(56@ Ti_1).
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f—sla=If2 -

-,

Wir definieren allgemein

HF = 5 (a,b) = {f:[a,b] = R:f, f,..., fF Y absolutstetig ,

und setzen fur f € s#2,

) 1/2
[fl2 = (/ If”(:v)Qde> -

Lemma 6.10. Fir f € 7% und s € .75 gilt

)5

D)l =Y (@) - s@)s" (@ +} .

f&ex. fu, f* e L?(a,b)}

6.2 Spline-Interpolation
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Satz 6.11 (Minimierungseigenschaft kubischer Splines). Ist f € s#* und
s € 3 ein zugehdriger kubischer Interpolationsspline, der eine der drei
Zusatzbedingungungen (N), (H) oder (P) erfillt, dann folgt

b
v (= [ o)

Interpretation von Satz|6.11] Unter allen Funktionen f ¢ 572 mit

f(x1>:f7,7 i:O,l,...,n,

minimiert der interpolierende kubische Spline mit einer der Zusatzbedin-
gungen (H), (N) oder (P) naherungsweise die Biegeenergie

Ep(f) 3:/ab[ _|_f;, S/de’\“/ f(z
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6.3 Bestapproximation in Innenproduktraumen

Sei 7 ein Vektorraum Uber R oder C mit Innenprodukt (-,-). Dann wird
durch [|v]| := (v, v)Y2 (v € ¥) eine Norm auf ¥ definiert. Ist 7" bez. dieser
Norm vollstandig, so heisst (7, (-,-)) ein Hilbert-Raum.

Beispiele:

1.) R™ (C™) mit Innenprodukt (z,y) = y' = ((z,y) = y =) ist ein Hilbert-
Raum. (Die vom Innenprodukt induzierte Norm ist die Euklid-Norm.)

2.) 2 := {z = {zj}jen C C : 372 |z4]*> < oo} mit dem Innenprodukt
(z,y) = > .~ ©;7; ist ein Hiloert-Raum.

3.) C* :={z = (zj)jen € ¢* : x; = 0 bis auf endlich viele j} mit dem
Innenprodukt (z,y) = >~ ;7 ist kein Hilbert-Raum.

4.) C**™ mit dem Innenprodukt (A, B) = tr(B* A) ist ein Hilbert-Raum.
(Die vom Innenprodukt induzierte Norm ist die Frobenius-Norm.)

5.) L?(a b) = {f : [a b = C : [|f(x)]2dz < oo} mit dem Innenprodukt

f f(x)g(z)dx ist ein Hilbert-Raum.

6.3 Bestapproximation in Innenproduktraumen TU Chemnitz, Sommersemester 2013



Numerik 298

Approximationsaufgabe: Sei % ein endlich-dimensionaler Teilraum des
Innenproduktraums 7 und v € #. Bestimme u* = u*(v) € Z mit

|u™ — v < ||u— v faralle u € Z, u # u™.

u* heif3t die Bestapproximation an v aus %.

Erinnerung. Sei % ein endlich-dimensionaler Teilraum des Innenproduk-
traums 7. Dann ist die Orthogonalprojektion auf % P : ¥V — % definiert

durch
cU
Py — v (Y y
0 veu+.
Ist {uy, uo, ..., u,} eine Orthonormalbasis von %, so qilt

Pv = (v,w)u + (v,u2)us +--- + (v, u,)u, firallev e 7.
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Satz 6.12. Sei % ein endlich-dimensionaler Teilraum des Innenproduk-
traums V', P die Orthogonalprojektion auf 27 und v € 7.

Dann ist die Bestapproximation u* aus 7/ an v gegeben durch u* = Pv.
Die Bestapproximation ist eindeutig bestimmt und charakterisiert durch

u* —v LY.
Ist{uy, us,...,u,} eine Orthonormalbasis von %/, so gelten
n n 1/2
w =3 (v u)u und  ut| = (Z \(v,um?) < |lo|
j=1 j=1
sowie
Ju* —v||? = [Jv]|* — [|u*|?.
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Beispiel. Die Bestapproximation an A € R™*"™ aus dem Unterraum der
symmetrischen Matrizen (bez. der Frobenius-Norm) ist

Ag:=2(A+A") (der symmetrische Anteil von A).

Beispiel. Der Raum .7, der trigonometrischen Polynome vom Grad n
definiert durch

T, =span{e’* . k =0,+1,...,+n} c L?(0,2r), (Bezeichnung:i®= —1)

besitzt die Dimension 2n + 1 . Die Funktionen {\/LQ_ﬂeikt}}g:_n bilden eine
ON-Basis von .7,. Die Bestapproximation an f € L?(0,2x) aus .7, ist also
— En: ape™  mit  ay = L f(t)e " dt.
2

k=—n
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Bemerkung. Im Fallvona, =a_;, Kk =10,1,...,n, (z.B. wenn f reellwertig
ist) folgt mit ag = 2ag, ar = 2Re(ar), B = —2Im(ag) (k=1,2,...,n).

() = % + Z v, cos(kt) + By sin(kt)].

Uu
k=1
Dies folgt aus
u;’;(t) _ Z akeikt — ag + Zakeikt 4+ Z a_ke—ikt
k=—n k=1 k=1
=ao+ » _(alcos(kt) + isin(kt)] + ax[cos(kt) — isin(kt)])
k=1
= ag —I—Z 2 Re(ay) cos(kt) 21m(ak)sm(kt)]
2-70 = 5k
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6.4 Trigonometrische Interpolation

Seien
fo, fi,-- s fme1€R und  z;:=2mj/m, j=0,1,...,m—1,

d.h. zg < z; < --- < x,,—1 Sind aquidistante Knoten aus |0, 27).

Gesucht ist ein reelles trigonometrisches Polynom vom Grad n,

tn(x) = % + Z [ak cos(kx) + B sin(kx)},
k=1

das die m Interpolationsbedingungen

tn(a:j) :fj (j:(),l,...,m—l) (65)

.

6.4 Trigonometrische Interpolation TU Chemnitz, Sommersemester 2013
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Transformation auf den (komplexen) Einheitskreis:

Die Knoten x; gehen Uber in die m-ten Einheitswurzeln:

2117 /M 2w /m17 ] .
¢(x;) =e irm — e /]J—wfn, j=0,1,...,m—1,
i . p2mi/m __ 27 - i 27
mit w,, :=e€ = cos -~ + ¢sin ~>.

Setztman 5o =0und firk =0,1,...,n
Qg _ (Ozk — ’Lﬁk) _ 1 1 —2| |og d.h
a_j (o + i) 201 i | |Bk|

C? >

N DN

¢:[0,27r) — T:={2€C:|z| =1}, x+> 2=¢e" =cosz+isinz.
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Q 1 1 a ar + a_ 2 Rea
R2 5 kl_ ko k k| _ k |

Bk ) —1 a_ig i(ak — a_k;) —2Im ap

so folgt

mn mn mn
tn(x) = Z are? = Z apz’ =z7" Z ap 2" = 2" "pon(2)

k=—n k=—n k=—n

Mit po,, (2) = > 1 apz"t" = Z?Zo aj—nzl € Pop.

Wegen

pan(Wl,) = wi? t,(x;)

Ist die trigonometrische Interpolationsaufgabe hiermit zurtckgefuhrt auf
eine (gewohnliche) Interpolationsaufgabe fur (algebraische) Polynome.

6.4 Trigonometrische Interpolation TU Chemnitz, Sommersemester 2013



Numerik

305

Satz 6.13. Zu beliebig vorgegebenen paarweise verschiedenen Knoten
To,T1,. .., T2, € |0, 2m) und zu beliebigen Funktionswerten fy, f1,..., fon €
R gibt es genau ein reelles trigonometrisches Polynomt,, € 7, mitt,(x;) =

fj (j:O,l,...,Zn).

Lemma 6.14. Fiir die m-ten Einheitswurzeln w* (k ¢ Z, m € N) gelten:

a) Wk =wk=[wi]" (jen),
b) wkl, =Wk (L eZ,1+#0),
c)  wh =wk,

J) mz_lwkj ) m, falls k=0 (modm),
0, falls k0 (modm).
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m—1

k=0

(=0,1,...,m

mit pp,—1(wi,) = f; €C
1 m—1
— kI L
Ck m jgo f]wm Y

In Matrix-Vektor-Schreibweise

Co
C1 1
— _Fm
m

Pm-1(2) = > crz" € Py
— 1) besitzt die Koeffizienten

—0,1,...

fo
h

fm—l

Satz 6.15. Das komplexe (algebraische) Interpolationspolynom

,m — 1.

(6.6)

6.4 Trigonometrische Interpolation
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mit der Fourier-Matrix

vorschrift:

Z |fj pmd w]

Bemerkung. Mit den Bezeichnungen aus Satz [6.15 minimiert das ,abge-
schnittene® Interpolationspolynom

pm,d(z)3:CO—|—C1Z—|—---—|—cdzd, 0<d<m-—1,

unter allen Polynomen ¢q € &, die Fehlerquadratsumme zur Interpolations-

1 1 1]
1 w;@l w;lm—i—l
1 w;bm—i—l L. w;@(m_l)Q

2 < Z £ —qw?)|? furalle g € Py, q # pm.a-

6.4 Trigonometrische Interpolation
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Satz 6.16. Furm = 2n oder m = 2n + 1 gibt es zu beliebigen
fo, f1,---, fm—1 € R ein reelles trigonometrisches Interpolationspolynom

to(x) = % + 3 [ay cos(kx) + By sin(ke)] € F,
k=1

vom Grad n, das die m Bedingungen
tn(2mg/m) = f; (=0,1,...,m—1)

erfullt. Seine Koeffizienten sind gegeben durch

m—1 . m—1 .
2 2wk 2 . 2mjk
:_E - bzw. :—E : , (k=0,1,...,n).
Qg m [ cos m Bk m fjsin m ( n)

Im Fall m = 2n muss ,, = 0 gesetzt und «,, halbiert werden.
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6.5 Schnelle Fourier-Transformation (FFT)

Seien {wj,}7,' die m-ten Einheitswurzeln, (wp, := *™/™).
Wir unterscheiden zwei grundlegende Aufgabenstellungen:

Diskrete Fourier-Analyse: Bestimme zu vorgegebenen Funktionswerten
fos- .., fm_1 € C die Koeffizienten c, . .

m—1

p(z) =) c;2

J:

mit  p(wl,) = f; (j=0,....,m—1).

Wir wissen: Mit der Fourier-Matrix F,,, := [w..*]o<k. j<m—1 € C™*™ gilt

Co fo
C1 1 f1
= —F,
m :
_Cm—l_ _fm—l_

., cm—1 des Interpolationspolynoms

6.5 Schnelle Fourier-Transformation (FFT)
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Diskrete Fourier-Synthese (inverse Aufgabe): Bestimme zu vorgebenen
Koeffizienten ¢y, ..., c,,_1 € C die Funktionswerte fy,..., f,,_1 des Poly-
noms p(z) = 2?2_01 c;z? an den m-ten Einheitswurzeln w? ... .wm~ 1

Offensichtlich:

Jo Co
J1 C1
= W,
_fm—l_ _Cm—l_
mit der Matrix W, = [wfr{:ogk,jgm_l — FWI;I(: Fm) e Cmxm,

6.5 Schnelle Fourier-Transformation (FFT)
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Lemma 6.17. Fir die Fourier-Matrix F,,, = |w Cmxm

gelten:

(a) F! = F,, (aber F2 +£ F,, firm > 21),

(b) F2F,, = mlI,,, d.h. die Spalten von F,, sind orthogonal und besitzen
alle die Euklid-Norm +/m.

(c) Bt = o Fil = - Fon.

y
TNo<k,j<m—1 €

m

Diskrete Fourier-Transformationen (d.h. diskrete Fourier-Analysen und
Synthesen) mussen in der Praxis oft berechnet werden (Signalverarbei-
tung, Losung der Poisson-Gleichung etc.).

Die ,naive” Berechnung einer Fourier-Transformation (Matrix-Vektor Pro-

dukt mit F,,,/m bzw. W,,) erfordert offenbar O(m?) komplexe Multiplikatio-
nen. Bei Anwendung der schnellen Fourier-Transformation (FFT) reduziert
sich dieser Aufwand auf O(m log m)?|

aJames William Cooley(x1926) and John Wilder Tukey (1915-2000): An algorithm for the
machine calculation of complex Fourier series, Math. Comp. 19, 297-301 (1965).
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Diese Verbesserung kann nicht Gberbewertet werden:

Jt [the FFT] has changed the face of science and engineering so much
that it is not an exaggeration to say that life as we know it would be very
different without the FFT.”

[Charles Van Loan, Computational Frameworks for the Fast Fourier Transform,
SIAM, Philadelphia 1992, p. ix]

Wir setzen (aus schreibtechnischen Grinden) im Folgenden

. 2 2
Cm = Wm = e 2T/ M _ og (—W> — ¢ sin (—W> :
m m

so dass F,, = [¢(*]o<k j<m—1. AuBerdem sei m gerade.
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Die Idee der FFT (fir m = 8): Mit ( := (g ist

I S S T s T e e
I
N
I
o0
I
—_
N
I
—_
o
I
)
S
I
N
=~
I
)
00
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—_ = e e el e el

1

1

C4

1
CS
CG

G
<:4

1
CG

1
C7

Wegen ¢® =1, d.h. ¢ = ¢¥, wenn j — k (ohne Rest) durch 8 teilbar ist, folgt
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Jetzt nummerieren wir die Zeilen von Fg um: zuerst werden die mit ge-
radem (0,2,4,6), danach die mit ungeradem Index (1,3,5,7) gezahlt. Die
zugehorige Pemutationsmatrix wird mit P bezeichnet.

1 1 1 1}/1 1 1 1
1 ¢* ¢t ¢ 1 ¢ ¢ ¢
1 ¢+ 1 ¢*|1 ¢t 1 ¢t
1 ¢% ¢+ ¢|1 ¢¢ ¢t ¢ Bi1 DBipo
PFy = _
1 ¢ ¢ ¢¢t ¢ ¢ ] Ba1 Bap
1 ¢ ¢® ¢ ¢t ¢ ¢ ¢
1 ¢> ¢ ¢t ¢ ¢ ¢
1 ¢" ¢ ¢t ¢ ¢
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Bi1=DB12=

1
C4
1
<4

11
1G4
NG

1 G

1
<=6
C4
CQ

o O O =

1
&

4
4

G4

oS O iy O

1
G

6
4

9
4

Wir untersuchen die einzelnen Blocke: Wegen ¢ = (g ist (? = (4, d.h.

Aus den Spalten 0,1,2 bzw. 3 von By ; klammern* wir ¢, ¢!, ¢* bzw. ¢?

= FyDy.

6.5 Schnelle Fourier-Transformation (FFT)
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Analog
1 1 1 1][¢r 0o 0 o
1 ¢ ¢t ¢° |0 ¢ 0 0
Boo = ) ) ; = Fy(¢*Dy) = —F4Dy.
1 ¢t 1 ¢ ¢ 0
_1 C6 C4 42_ I 0 C?_
Insgesamt erhalten wir
F. F F, O||I I
PF8: 4 4 4 4 4
FyDy —FyDy O Fy| |Dy —Dy

6.5 Schnelle Fourier-Transformation (FFT)
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Satz 6.18. Seien m gerade, o die folgende (even/odd) Permutation
c=100,2....,m—2,1,3,...,m — 1]

und P = P, die zugehorige Permutationsmatrix.
Dann besitzt die zeilenpermutierte Fourier-Matrix F,, die Zerlegung

Frjs O
O  Fnp

Fm/2 Fm/2 Im/2 Im/2

PF,, =

Fm/QDm/Q _Fm/2Dm/2 Dm/2 _Dm/2

Dabei bezeichnet D,, ;» die Diagonalmatrix
Dy, /o = diag ( R G- ,gﬂ”,j/2—1> c ¢(m/2)x(m/2)

mit ¢, = Wy, = e~ 2™4/m,

] |
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Berechne jetzt y = F,,,x fur ein x € C™ (m gerade). Gemal3 der Zerlegung
von F,,, aus Satz|6.18|unterteilen wir dies in zwei Schritte:

1. Reduktionsschritt: Berechne
I I,
” — m/2 /2 T
Dm/2 _Dm/2

Im Fall m = 8 ergibt sich:

Zo = Lo + T4, Z1 = X1 + Ts, Zo = T9 + Tg, 23 = X3 + X7

z4 = (0 — T4), 25 = (T1 — 25)Cm, 26 = (T2 — $6)C§p zr = (23 — 377)@,?3,7,
(m /2 komplexe Multiplikationen und m komplexe Additionen).

2. Teilprobleme: Berechne
Frz(0:m/2—-1) und F,, z(m/2:m—1)

(zwei Fourier-Transformationen der Dimension m/2).
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Ist m = 2P eine Zweierpotenz, so ist m /2 ebenfalls gerade und die beiden
Fourier-Transformationen der Dimension m /2 konnen auf vier Fourier-
Transformationen der Dimension m /4 reduziert werden.

Der Aufwand zur Reduktion betragt 2-m /4 = m /2 komplexe Multiplikationen
(und 2 - m/2 = m komplexe Additionen). Dieser Prozess wird solange
fortgesetzt bis man eine Multiplikation mit F,,, auf m Multiplikationen mit
Fy = [1] reduziert hat (eine Multiplikation mit £ erfordert offenbar keinen
Aufwand).

Dieses Reduktionsverfahren hei3t schnelle Fourier-Transformation (FFT =
Fast Fourier Transform).

Satz 6.19. Zur Durchfiihrung einer schnellen Fourier-Transformation der
Ordnung m = 2P sind

2P = 5

und mlog,(m) komplexe Additionen erforderlich.

ogo(m) komplexe Multiplikationen
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Die naive Berechnung einer Fourier-Transformation der Lange m = 2°

durch F,,z erfordert also 2°™!/p-mal mehr Multiplikationen als ihre Be-

rechnung durch FFT. Wenn z.B. flr p = 20 die FFT-Version eine Sekunde
benotigt, so bendtigt £,z etwa 29 Stunden.

Verbleibendes Problem: Bestimmt man y = F,,x durch FFT, so erhalt
man zunachst eine permutierte Version y = QQy von y mit einer Permutati-
onsmatrix Q € R™*™,

Es gilt: Besitzt fir m = 2P der Index i € {0, 1, ..., m—1} die Binardarstellung
1= bp_12p—1 + -4+ b222 + b12 + by =: [bp_l ... bo by bo]g, und ist

7’(’&) = [b() bl bg ce bp_l]g = b02p_1 -+ b12p_2 -+ 622p_3 + -+ bp_l
(bit reversal), dann gelten

Yi = Yri)y UnNd g = Y.
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6.6 Anwendungen der FFT

Schnelle Berechnung einer Faltung: Sei

S = {:13:{...,:Uo,xl,...,ajm_l,...} .y EC}

der Raum der doppelseitigen m-periodischen Folgen. .#,,, istisomorph zum
C™. Auf ., sind zwei Multiplikationen definiert:

Hadamard-Produkt: [z ® y]x = Tryk,

m—1
Faltung oder Cauchy-Produkt: [z * ylx = ) jyk—;.

7=0

Lemma 6.20 (Faltungssatz). Firx,y € .%,, gelten

Fp(zxy) = (Fnz)© (Fny),
mFm(wa) — (me)*(Fm )
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Ist m = 2P, so kann die Faltung wegen

_ I -

m*y:le[(me)Q(Fm )] = EFm[(me)Q(me)]
durch drei FFT’s, also mit m(1.51log,(m) + 1) komplexen Multiplikationen,
bestimmt werden (konventionelle Berechnung erfordert m? Multiplikatio-
nen). Dies wird zur Multiplikation gro3er ganzer Zahlen und zur Multiplika-
tion von Polynomen eingesetzt.
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besitzt.

A = circul(ag, - .

. 7am—1) —

ao

ai

as

a2

Eine Matrix A € C™*™ heif3t zirkulant, wenn sie die Form

ai

ao

6.6 Anwendungen der FFT
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Lemma 6.21. Mit Hilfe der (zirkulanten) Shiftmatrix
S := circul(0,1,0...,0) € C™*™
kann jede zirkulante Matrix A = circul(ag, a1, .. .,am,_1) in der Form
A =p(S,,) = aoly + a1 Sy +asS2 + - ap_1 ST,

d.h. als Polynom in S,,,, geschrieben werden.

Die Eigenwerte )\; von A sind deshalb durch

)\j:p(w%) = p (exp (2mij/m)) (j=0,1,....,m—1)

gegeben.

O . 2- ( 1)'
e J J m—1)J
V; [wm,wm,wm,...,wm :|

ist ein zugehoriger Eigenvektor.
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Lemma 6.22. Seien a = [ao,al,...,am_l]T e C™, A = circul(a) und
x € C™. Dann ist

Alz =ax .

Satz 6.23. Seien a,b € C™ und A = circul(a).
Dann gelten:

(a) det(A) # 0 < alle Komponenten von F,, a sind von 0 verschieden.

(b) Das LGS A"z = b ist genau dann Iésbar, wenn [F,,a]; = 0 stets
[Fb]; =0 impliziert ( =0,1,...,m —1).

(c) Ist ATz = b ldsbar, so gilt fiir jede Lésung x*:

[Fmx™|; = [Fmb];/[Fmal;

faralle j € {0,1,...,m—1} mit[F,,al; # 0. Ist [F,,a]; = 0 (und folglich
[Fb]; =0), so kann [F,,x*|; beliebig gewahlt werden.
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Mit Hilfe der FFT kann das Produkt einer zirkulanten Matrix der Dimension
m mit einem Vektor also in nur m(1.51log,(m) + 1) komplexen Multiplikatio-
nen berechnet werden (vgl. Lemma|6.22).

Dartberhinaus kann ein m-dimensionales lineares Gleichungssystem
A"z = b mit einer zirkulanten Koeffizientenmatrix

A", A =circul(a),

I.W. durch 3 FFT’s (in ebenfalls m(1.5log,(m) + 1) komplexen Multiplikatio-
nen) gelost werden (vgl. Satz|6.23): Ist A invertierbar, so gilt

ATb = (Fnb) ./ (Fra),

wobei ./ komponentenweise Division bezeichnet.
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6.7 Mustererkennung und Rekonstruktion von Signalen

Interpretiere die m Ecken eines Polygons, (zo,v0),---, (Tm_1,Ym—1), als
komplexe Zahlen: fo = zo + o, - .., fr—1 = Tm—1 + WYm—_1 (? = —1).

Das Ergebnis einer diskreten Fourier-Analyse dieser Zahlen

1
[607617 K 7Cm—1]—|— - EFm[f()?fl’ " '7fm—1]—|_

nennt man diskretes komplexes Spektrum des Polygons. Es spiegelt geo-
metrische Eigenschaften des Polygons wider und kann daher zur Klassifi-
kation von Formen (Mustererkennung) verwendet werden.

Lage- und grof3enunabhangig ist das normierte Amplitudenspektrum

ar = |cp+2/c1] (k=0,...,m—3).
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Gegeben: Signal f (Dimension m = 1024),
k =8 (16, 32).

Aufgabe: Unterlege f mit Rauschen, bestimme die
k groessten Fourier-Koeffizienten und
rekonstruiere aus diesen das Signal.

f _rausch = f + .l1xrandn(size(f));
c = fft(f_rausch);

[ignore,j] = sort(abs(c));

ind = [m-k+1:m];

c_compr = zeros(size(c));
c_compr(j(ind)) = c(j(ind));
recon = ifft(c_compr);
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