
Numerik 256

6 Interpolation und numerische Approximation

6.1 Polynominterpolation

6.2 Spline-Interpolation

6.3 Bestapproximation in Innenprodukträumen

6.4 Trigonometrische Interpolation

6.5 Schnelle Fourier-Transformation (FFT)

6.6 Anwendungen der FFT

6.7 Mustererkennung und Rekonstruktion von Signalen

6 Interpolation und numerische Approximation TU Chemnitz, Sommersemester 2013



Numerik 257

6.1 Polynominterpolation

Das (allgemeine) Interpolationsproblem:

Zu gegebener Funktion f : [a, b]→ C und gegebenen Stützstellen (Knoten)
a ≤ x0 < x1 < x2 < · · · < xn ≤ b soll eine ”einfache“ Funktion p : [a, b]→ C
konstruiert werden, die die Interpolationsbedingungen p(xi) = f(xi) (i =

0, 1, . . . , n) erf¸llt.

Wozu?

• f ist nur an diskreten Punkten bekannt (Messwerte), aber eine geschlos-
sene Formel für f ist auf ganz [a, b] erwünscht (z.B. um f an Zwischenstel-
len x ∈ [a, b] \ {x0, x1, . . . , xn} auszuwerten),
• f ist ”kompliziert“ und soll durch eine ”einfache“ Funktion angenähert
werden (z.B. um die Ableitung f ′(x), x ∈ [a, b], oder das Integral

∫ b
a
f(x)dx

näherungsweise zu bestimmen).

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 258

Das polynomiale Interpolationsproblem:

Zu gegebenen (paarweise verschiedenen) Knoten

a ≤ x0 < x1 < x2 < · · · < xn ≤ b

und gegebenen Funktionswerten {fi}ni=0 ∈ C soll ein Interpolationspoly-
nom

p(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0 ∈Pn

(mit komplexen Koeffizienten c0, c1, . . . , cn, d.h. n + 1 Freiheitsgrade) vom
Grad n konstruiert werden, das die n+ 1 Interpolationsbedingungen

p(xi) = fi, i = 0, 1, . . . , n,

erfüllt.

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 259

Satz 6.1. Die polynomiale Interpolationsaufgabe ist eindeutig lösbar. Mit
den Lagrange-Grundpolynomen [JOSEPH LOUIS LAGRANGE (1736–1813)]

`i(x) :=

n∏
j=0
j 6=i

x− xj
xi − xj

∈Pn

(beachte `i(xi) = 1 und `i(xj) = 0 für j 6= i) lässt sich das Interpolations-
polynom in der Lagrange-Form

p(x) =

n∑
i=0

fi`i(x)

darstellen.

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 260

Beispiel 1. Daten: (x0, f0) = (−1,−1), (x1, f1) = (0,−1), (x2, f2) = (2, 2).

Lagrange-
Grundpolynome:

`0(x) = x(x− 2)/3,

`1(x) = (x+ 1)(x− 2)/(−2),

`2(x) = (x+ 1)x/6.

Interpolationspolynom:

p(x) = −`0(x)− `1(x) + 2`2(x)

= x2/2 + x/2− 1.
−2 −1 0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

P

L
0

L
1

L
2

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 261

Die Auswertung der Lagrange-Formel ist aufwendig, wenn ein neues Da-
tenpaar hinzukommt. Eine rekursive Berechnung ist ökonomischer:

Lemma 6.2. Für eine beliebige Indexmenge 0 ≤ i0 < i1 < · · · < ik ≤ n

bezeichne pi0,i1,...,ik das (nach Satz 6.1 eindeutig bestimmte) Polynom vom
Grad k, das die Bedingungen

pi0,i1,...,ik(xij ) = fij (j = 0, 1, . . . , k)

erfüllt. Dann gilt die Rekursionsformel

pi(x) = fi,

pi0,i1,...,ik(x) =
(x− xi0)pi1,i2,...,ik(x)− (x− xik)pi0,i1,...,ik−1

(x)

xik − xi0
.

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 262

Rechenschema (Algorithmus von Neville-Aitken, [CHARLES WILLIAM NEVILLE

(∗ 1941)]; [ALEXANDER CRAIG AITKEN (1895–1967)] ):

xi k = 0 k = 1 k = 2 k = 3 k = 4

x0 p0(x) = f0

p0,1(x)

x1 p1(x) = f1 p0,1,2(x)

p1,2(x) p0,1,2,3(x)

x2 p2(x) = f2 p1,2,3(x) p0,1,2,3,4(x)

p2,3(x) p1,2,3,4(x)

x3 p3(x) = f3 p2,3,4(x)

p3,4(x)

x4 p4(x) = f4

(Berechnungsreihenfolge : p0 → p1 → p0,1 → p2 → p1,2 → p0,1,2 → · · · )

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 263

Beispiel 2 (vgl. Beispiel 1).

xi k = 0 k = 1 k = 2

−1 −1
(x−(−1))(−1)−(x−0)(−1)

0−(−1) = −1

0 −1 (x−(−1))(3x/2−1)−(x−2)(−1)
2−(−1)

(x−0)2−(x−2)(−1)
2−0 = 3

2x− 1 = 1
2x

2 + 1
2x− 1

2 2

Aufwand des Neville-Aitken Schemas (für Auswertung des Interpolations-
polynoms vom Grad n an einer Stelle x):
5
2n

2 + 7
2n+ 1 Gleitpunktoperationen (falls die Differenzen x− xi (0 ≤ i ≤ n)

vorab bestimmt werden).

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 264

Tableau der dividierten Differenzen von f (vgl. § 4.4):

xi k = 0 k = 1 k = 2 k = 3 k = 4

x0 f0

f0,1

x1 f1 f0,1,2

f1,2 f0,1,2,3

x2 f2 f1,2,3 f0,1,2,3,4

f2,3 f1,2,3,4

x3 f3 f2,3,4

f3,4

x4 f4

mit

fi0,i1,...,ik :=
fi1,i2,...,ik − fi0,i1,...,ik−1

xik − xi0
(k ≥ 1).

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 265

Satz 6.3. (vgl. Satz 4.7 in § 4.4) Mit Hilfe der dividierten Differenzen lässt
sich das (nach Satz 6.1 eindeutig bestimmte) Interpolationspolynom p in
Newton-Form

p(x) = f0 + f0,1(x− x0) + f0,1,2(x− x0)(x− x1) + · · ·
· · ·+ f0,1,...,n(x− x0)(x− x1) · · · (x− xn−1)

darstellen.

Rechenaufwand:

• Zur Bestimmung der Differenzentafel: 3
2 (n2 + n) Gleitpunktoperationen.

• Zur Auswertung des Newtonschen Interpolationspolynoms mit dem
Horner-Schema ([WILLIAM GEORGE HORNER (1786–1837)]):
3n Gleitpunktoperationen (pro Auswertungspunkt).

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 266

Beispiel 3 (vgl. Beispiele 1 und 2).
Dividierte Differenzen:

xi k = 0 k = 1 k = 2

−1 −1

f0,1 = (−1)−(−1)
0−(−1) = 0

0 −1 f0,1,2 = 3/2−0
2−(−1) =

1

2

f1,2 = 2−(−1)
2−0 = 3

2

2 2

Das bedeutet:

p(x) = (−1) + 0 (x− (−1)) +
1

2
(x− (−1))(x− 0) =

1

2
x2 +

1

2
x− 1.

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 267

Baryzentrische Interpolationsformeln. Das zu den (paarweise verschie-
denen) Interpolationsknoten {x0, x1, . . . , xn} gehörende Knotenpolynom
sei definiert durch

ωn+1(x) := (x− x0)(x− x1) · · · (x− xn) ∈Pn+1.

Definiert man die baryzentrischen Gewichte {wj}nj=0 durch

wj :=
1∏n

k=0
k 6=j

(xj − xk)
=

1

ω′n+1(xj)
, j = 0, . . . , n, (6.1)

so gilt für die Lagrange Grundpolynome

`j(x) = ωn+1(x)
wj

x− xj
, j = 0, . . . , n,

und hiermit lässt sich das Interpolationspolynom darstellen durch die . . .

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 268

erste baryzentrische Formel

p(x) = ωn+1(x)
n∑
j=0

fj
wj

x− xj
.

Da die konstante Funktion f ≡ 1 exakt interpoliert wird gilt

1 = ωn+1(x)
n∑
j=0

wj
x− xj

,

und somit nach Quotientenbildung und Kürzen die zweite baryzentrische
Formel

p(x) =

n∑
j=0

fj
wj

x− xj
n∑
j=0

wj
x− xj

.

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 269

Aufdatierung. Bei Hinzunahme von xn+1

wneu
j :=

walt
j

xj − xn+1
, j = 0, . . . , n, (2n+ 2 Flops).

wn+1 aus (6.1), n+ 1 weitere Flops, falls xj − xn+1 gemerkt werden.

Aufwand.

• Berechnung von {wj}nj=0 erfordert
∑n
j=1 3j = 3

2n(n+ 1) Flops.

• Bei gegebenen Gewichten {wj}nj=0 jede Auswertung von p in weiteren
5n+ 4 = O(n) Flops.

Weitere Vorteile.

• wj hängen nicht von den Daten fj ab, d.h. bei gegebenen Gewichten
können beliebige Funktionen f in O(n) Flops interpoliert werden.

• wj unabhängig von Knotennummerierung (vgl. dividierte Differenzen).

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 270

Beispiel. Interpolation an äquidistanten Knoten in [a, b] führt auf

wj = (−1)j
(
n

j

)
j = 0, 1, . . . , n

(modulo des gemeinsamen Faktors (−1)n
n!

(
n
b−a

)n
).

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 271

Satz 6.4 (Fehler der Polynominterpolation). Die Funktion f ∈ Cn+1[a, b]

werde durch das Polynom p ∈ Pn interpoliert an den paarweise ver-
schiedenen Knoten {x0, x1, . . . , xn} ⊂ [a, b]. Deren Knotenpolynom sei
bezeichnet mit

ωn+1(x) = (x− x0)(x− x1) · · · (x− xn) ∈Pn+1.

Dann gibt es zu jedem x ∈ [a, b] ein ξ = ξ(x) ∈ (a, b) mit

f(x)− p(x) =
ωn+1(x)

(n+ 1)!
f (n+1)(ξ).

Mit Mn+1 := maxa≤t≤b |f (n+1)(t)| gilt somit für alle x ∈ [a, b] die Fehlerab-
schätzung

|f(x)− p(x)| ≤ Mn+1

(n+ 1)!
max
a≤t≤b

|ωn+1(t)|. (6.2)

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 272

Korollar 6.5. Die Funktion f ∈ C∞[a, b] mit

|f (n)(x)| ≤M ∀x ∈ [a, b], ∀n ∈ N, (6.3)

werde für jedes n ∈ N durch das Polynom pn ∈ Pn an der beliebigen
Knotenfolge {x(n)j }nj=0 ⊂ [a, b] interpoliert. Dann gilt

max
x∈[a,b]

|f(x)− pn(x)| → 0 für n→∞.

Die sehr starke Forderung (6.3) ist erfüllt z.B. für ex, sinx, cosx und
(natürlich) für Polynome. Bereits für die rationale Funktion f(x) = 1/x

mit f (n)(x) = ±n!/xn+1 gilt (6.3) etwa auf dem Intervall [1, 2] schon nicht
mehr.

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 273

”Optimale“ Knoten: Idee (motiviert durch Fehlerabschätzung):
Wähle Knoten a ≤ x0 < x1 < · · · < xn ≤ b so, dass

max
a≤t≤b

|ωn+1(t)| = max
a≤t≤b

n∏
i=0

|t− xi|

so klein wie möglich wird.

Lösung: Tschebyscheff-Knoten [PAFNUTIĬ L’VOVICH TSCHEBYSCHEFF (1821–
1894)]

x(T)
i =

b− a
2

cos

(
2(n− i) + 1

2n+ 2
π

)
+
a+ b

2
, i = 0, 1, . . . , n,

mit

max
a≤t≤b

n∏
i=0

|t− x(T)
i | = 2

(
b− a

4

)n
< max
a≤t≤b

n∏
i=0

|t− xi|

für jede andere Wahl x0, . . . , xn der Knoten.

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 274

Knotenpolynome mit äquidistanten und Tschebyscheff-Knoten:

−1 0 1 2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
aequidistante Knoten
Tschebyscheff−Knoten

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 275

Beispiel 4.(Rungea-Phänomenb) Interpoliere an n+ 1 äquidistanten Stützstellen

f(x) =
1

1 + x2
(−5 ≤ x ≤ 5) (Runge-Funktion)

−5 0 5
−1

0

1

2

3

4

5

6

7

8
n=10

−5 0 5
−1

0

1

2

3

4

5

6

7

8
n=14

a[CARL DAVID TOLMÉ RUNGE (1856–1927)].
bC. Runge. Über emprirische Funktionen und die Interpolation zwischen äquidistanten Or-

dinaten. Zeitschrift für Mathematik und Physik 46 (1901) pp. 224–243

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 276

Beispiel 5. Interpoliere an n+ 1 Tschebyscheff-Knoten

f(x) =
1

1 + x2
(−5 ≤ x ≤ 5).

−5 0 5
−1

0

1

2

3

4

5

6

7

8
n=10

−5 0 5
−1

0

1

2

3

4

5

6

7

8
n=14

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 277

Fazit.

• Durch eine geeignete Knotenwahl (Tschebyscheff-Knoten) lässt sich
auch die Runge-Funktion durch Interpolationspolynome beliebig genau
annähern.

• Prinzipiell ist eine Approximation durch Interpolationspolynome aber
nur dann ratsam, wenn man mit wenigen Knoten (d.h. mit Polynomen
niedrigen Grades) ausreichend gute Ergebnisse erzielen kann. Das
ist i.A. nur bei extrem glatten Funktionen (wie etwa bei der Exponen-
tialfunktion) gewährleistet. (Die Runge-Funktion ist zwar in ganz R
beliebig oft differenzierbar, besitzt aber Pole in ±

√
−1. Wie gut eine

Funktion durch reelle Interpolationspolynome genähert werden kann,
hängt auch von der Lage ihrer komplexen Singularitäten ab!)

• Polynome hohen Grades neigen zu Oszillationen und sind daher zur
Approximation oft unbrauchbar.

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 278

Für äquidistante Knoten in [−5, 5] gilt limn→∞ |ωn+1(z)| 1
n+1 = G(z),

G(z) = exp

{
1

10
Re [(z + 5) log(z + 5)− (z − 5) log(z − 5)]− 1

}
.

i

−i

−xc xc

Re

Im

5 0 5
2

1

0

1

2

Höhenlinien von G(z), rot gekennzeichnet ist das Niveau von G(±i), welches in
±xc ≈ ±3.6333843024 die reelle Achse schneidet.

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 279

Satz 6.6 (Runge, 1901). Besitzt die Funktion f keine Singularität im Gebiet

Dρ := {z ∈ C : G(z) ≤ G(ρ)}, ρ > 0,

so gilt

pn(x)→ f(x) für n→∞ gleichmäßig für x ∈ [−ρ, ρ].

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 280

Eine Anwendung: Numerische Differentiation.

Naheliegende Idee, um die n-te Ableitung einer komplizierten Funktion f

anzunähern:

(1) Bestimme ein Interpolationspolynom p vom Grad n für f .
(2) Differenziere p n-mal: p(n)(x) = n! f0,1,...,n.

Beispiele:
(a) Knoten: x0 und x1 = x0 + h, d.h.

f ′(x0) ≈ p′(x0) = 1! f0,1 =
f(x0 + h)− f(x0)

h
.

(b) Knoten: x0 = x1 − h, x1 und x2 = x1 + h, d.h.

f ′′(x1) ≈ p′′(x1) = 2! f0,1,2 =
f(x1 + h)− 2f(x1) + f(x1 − h)

h2
.

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 281

Problematik: Numerische Auslöschung.

Für f(x) = sinh(x) = 1
2 (ex − e−x) approximiere

0.636653582 . . . = f(0.6) = f ′′(0.6) ≈ f(0.6− h)− 2f(0.6) + f(0.6 + h)

h2

für h = 10−e, e = 1, 2, . . ., im IEEE-double-Format
(Maschinengenauigkeit: eps = 2−52 ≈ 2.2 · 10−16).

e f ′′(0.6) ≈ e f ′′(0.6) ≈
1 0.63718430367986 5 0.63665517302525

2 0.63665888761277 6 0.63682392692499

3 0.63665363525534 7 0.64392935428259

4 0.63665358540632 8 2.22044604925031

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 282

Diskretisierungsfehler ∼ 1

12
f (4)(0.6)h2 ≈ 1

20
10−2e,

Rundungsfehler ≈ 4h−2eps = 4 eps 102e.

Numerische Mathematik 269

Diskretisierungsfehler ≤ 1

12
f (4)(0.6) h2 ≈ 1

20
10−2e,

Rundungsfehler
.
= 4h−2eps ≈ 4 eps 102e.

10−8 10−6 10−4 10−210−20

10−15

10−10

10−5

100

105

Diskretisierungsfehler

Rundungsfehler

Schrittweite

Fe
hl

er

optimale Schrittweite

6.1 Polynominterpolation Technische Universität Bergakademie Freiberg

6.1 Polynominterpolation TU Chemnitz, Sommersemester 2013



Numerik 283

6.2 Spline-Interpolation

Splines sind ”stückweise Polynome“. (Wörtlich: Spezielle biegsame Kurven-
lineale, die durch Halterungen gezwungen werden, auf dem Zeichenpapier
gegebene Punkte zu verbinden; wurden im Schiffsbau verwendet.)
Idee: Um die Güte der Approximation zu verbesseren, wird hier nicht der
Polynomgrad erhöht, sondern die Unterteilung des Intervalls verfeinert.

Seien n + 1 Knoten in [a, b] gegeben: a = x0 < x1 < · · · < xn−1 <

xn = b. Mit T := [x0, x1] ∪ [x1, x2] ∪ · · · ∪ [xn−1, xn] bezeichnen wir die
zugehörige Zerlegung des Intervalls [a, b]. Ein Spline vom Grad k bez. T

ist eine Funktion s ∈ Ck−1[a, b], die auf jedem Teilintervall von T mit einem
Polynom vom Grad k übereinstimmt:

s|[xi−1,xi] ∈Pk für i = 1, 2, . . . , n.

Satz 6.7. Die Menge S k
T aller Splines vom Grad k bez. T ist ein (n+ k)-

dimensionaler linearer Raum.

6.2 Spline-Interpolation TU Chemnitz, Sommersemester 2013



Numerik 284

Im Runge-Beispiel:

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Runge−Funktion  
Knoten          
linearer Spline 
kubischer Spline

6.2 Spline-Interpolation TU Chemnitz, Sommersemester 2013



Numerik 285

6.2.1 Lineare Spline-Interpolation

Einfachster Fall: k = 1. Ein Spline s vom Grad 1 (linearer Spline) ist
charakterisiert durch die beiden Eigenschaften:
1. Auf jedem Teilintervall [xi−1, xi] von T ist s linear:

s(x) = αi + βix für alle x ∈ [xi−1, xi] und i = 1, 2, . . . , n.

2. Auf ganz [a, b] ist s stetig, d.h. für i = 1, 2, . . . , n− 1

lim
x→xi−

s(x) = αi + βixi = αi+1 + βi+1xi = lim
x→xi+

s(x).

Interpolationsaufgabe: Zu vorgebener Zerlegung T = [x0, x1]∪ [x1, x2]∪
· · · ∪ [xn−1, xn] von [a, b] und zu vorgegebenen Werten f0, f1, . . . , fn be-
stimme man einen linearen Spline s ∈ S 1

T mit

s(xi) = fi für alle i = 0, 1, . . . , n.

6.2 Spline-Interpolation TU Chemnitz, Sommersemester 2013



Numerik 286

Offensichtlich: Diese Aufgabe ist eindeutig lösbar:

s(x) = fi−1 +
fi − fi−1
xi − xi−1

(x− xi−1) für x ∈ [xi−1, xi].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

linearer Interpolationsspline

x
0

x
1

x
2

x
3

x
4

6.2 Spline-Interpolation TU Chemnitz, Sommersemester 2013



Numerik 287

Fehler des linearen Interpolationssplines: (f ∈ C2[a, b])

Lokal, d.h. für x ∈ [xi−1, xi]:

|f(x)− s(x)| = 1

2
|f ′′(ζ)||(x− xi−1)(x− xi)| ≤

1

8
M2,i h

2
i

mit M2,i = maxxi−1≤ζ≤xi |f ′′(ζ)| und hi = xi − xi−1.

Global, d.h. für x ∈ [x0, xn]:

|f(x)− s(x)| ≤ 1

8
M2 h

2
max

mit M2 = max1≤i≤nM2,i = maxx0≤ζ≤xn |f ′′(ζ)| und hmax = max1≤i≤n hi.

Adaptive Knotenwahl. Stategie: Fehler etwa gleich auf jedem Teilintervall.
D.h.: Wähle hi invers proportional zu

√
M2,i (viele Knoten dort, wo die

Krümmung von f groß ist).

6.2 Spline-Interpolation TU Chemnitz, Sommersemester 2013



Numerik 288

Zur Implementierung.
Gegeben: x0, x1, . . . , xn und f0, f1, . . . , fn.

Gesucht: Wert s(x) des linearen Interpolationssplines an der Stelle x.

Bestimme gi−1 = (fi − fi−1)/(xi − xi−1) für i = 1, 2, . . . , n.

Falls x ∈ [xi−1, xi], dann s(x) = fi−1 + gi−1 (x− xi−1).

Problem: Gegeben x, in welchem Teilintervall [xi−1, xi] liegt x?

Einfach, falls hi = h (äquidistante Knoten):

i =

⌈
x− x0
h

⌉
:= min

{
k ∈ N : k ≥ x− x0

h

}
.

Schwieriger bei beliebigen Knoten:
Binäres Suchen ergibt Komplexität von ≈ log2 n.

6.2 Spline-Interpolation TU Chemnitz, Sommersemester 2013



Numerik 289

6.2.2 Kubische Spline-Interpolation

Gesucht ist ein interpolierender kubischer Spline s ∈ S 3
T .

Charakteristische Eigenschaften:

(1) Auf jedem Teilintervall [xi−1, xi] von T ist s kubisch:

s(x) = pi(x) = αi + βi(x− xi−1) + γi(x− xi−1)2 + δi(x− xi−1)3.

(2) Auf ganz [a, b] ist s zweimal stetig differenzierbar, d.h.:

pi(xi) = pi+1(xi), p′i(xi) = p′i+1(xi), p′′i (xi) = p′′i+1(xi)

für i = 1, 2, . . . , n− 1.

(3) Interpolationsbedingungen:

s(xi) = fi, i = 0, 1, . . . , n.

Fazit: 3(n− 1) + (n+ 1) = 4n− 2 Bedingungen, aber 4n Freiheitsgrade.

6.2 Spline-Interpolation TU Chemnitz, Sommersemester 2013



Numerik 290

Drei Möglichkeiten für die erforderlichen zwei Zusatzbedingungen.

Natürlicher Spline:
s′′(x0) = s′′(xn) = 0 (N)

Hermitescher oder vollständiger Spline [CHARLES HERMITE (1822–1901)]:

s′(x0) = f ′0 und s′(xn) = f ′n mit f ′0, f
′
n ∈ R. (H)

Periodischer Spline: Falls s(x0) = s(xn),

s′(x0) = s′(xn) und s′′(x0) = s′′(xn). (P)

6.2 Spline-Interpolation TU Chemnitz, Sommersemester 2013



Numerik 291

Berechnung des kubischen Interpolationssplines.

Auf jedem Teilintervall [xi−1, xi] hat der kubische Spline die Form

s(x) = pi(x) = αi + βi(x− xi−1) + γi(x− xi−1)2 + δi(x− xi−1)3.

Die Koeffizienten lassen sich durch die Momente µi := s′′(xi) und die
Funktionswerte fi (i = 0, 1, . . . , n) darstellen:

αi = fi−1, βi =
fi − fi−1

hi
− hi

6
(µi + 2µi−1),

γi =
1

2
µi−1, δi =

µi − µi−1
6hi

,

wobei hi := xi − xi−1.

M. a. W.: Ein kubischer Spline ist durch die Funktionswerte fi und die
Momente µi (i = 0, 1, . . . , n) eindeutig bestimmt.

6.2 Spline-Interpolation TU Chemnitz, Sommersemester 2013



Numerik 292

Die (n+ 1) Momente µi erfüllen die (n− 1) linearen Gleichungen

hi
6
µi−1 +

hi + hi+1

3
µi +

hi+1

6
µi+1 =

fi+1 − fi
hi+1

− fi − fi−1
hi

(i = 1, 2, . . . , n− 1) und zwei Zusatzgleichungen:

(N) µ0 = 0,

µn = 0,

(H)
h1
3
µ0 +

h1
6
µ1 =

f1 − f0
h1

− f ′0,
hn
6
µn−1 +

hn
3
µn = f ′n −

fn − fn−1
hn

,

(P) µ0 = µn,

h1
6
µ1 +

h1
6
µn−1 +

h1 + hn
3

µn =
f1 − fn
h1

− fn − fn−1
hn

.

6.2 Spline-Interpolation TU Chemnitz, Sommersemester 2013



Numerik 293

Im Folgenden werden nur vollständige kubische Splines (Bedingung (H))
betrachtet, analoge Aussagen gelten unter den Bedingungen (N) bzw. (P).

Die Momente des vollständigen kubischen Splines erfüllen das LGS (s.o.)

h1

3
h1

6
h1

6
h1+h2

3
h2

6

. . . . . . . . .
hn−1

6
hn−1+hn

3
hn
6

hn
6

hn
3





µ0

µ1

...

µn−1

µn


=



d0

d1
...

dn−1

dn


(6.4)

mit d0 =
f1 − f0
h1

− f ′0, dj =
fj+1 − fj
hj+1

− fj − fj−1
hj

(1 ≤ j ≤ n),

und dn = f ′n −
fn − fn−1

hn
.

6.2 Spline-Interpolation TU Chemnitz, Sommersemester 2013



Numerik 294

Satz 6.8. Für jede Wahl der Knoten a = x0 < x1 < · · · < xn = b ist das
Gleichungssystem (6.4) eindeutig lösbar. D.h.: Zu jeder Knotenwahl gibt es
genau einen vollständigen kubischen Interpolationsspline für f .

Satz 6.9 (Fehler bei kubischer Spline-Interpolation). Ist f ∈ C4[a, b] und
s ∈ S 3

T der vollständige kubische Interpolationsspline für f , dann gelten

max
x∈[a,b]

|f(x)− s(x)| ≤ 5

384
M4 h

4
max,

max
x∈[a,b]

|f ′(x)− s′(x)| ≤ 1

24
M4 h

3
max,

max
x∈[a,b]

|f ′′(x)− s′′(x)| ≤ 3

8
M4 h

2
max

mit M4 := max
a≤x≤b

|f (4)(x)| und hmax := max
1≤i≤n

hi = max
1≤i≤n

(xi − xi−1).

6.2 Spline-Interpolation TU Chemnitz, Sommersemester 2013



Numerik 295

Wir definieren allgemein

H k = H k(a, b) :=
{
f : [a, b]→ R :f, f ′, . . . , f (k−1) absolutstetig ,

f (k) ex. f.ü , f (k) ∈ L2(a, b)
}

und setzen für f ∈H 2,

|f |2 :=

(∫ b

a

|f ′′(x)|2 dx
)1/2

.

Lemma 6.10. Für f ∈H 2 und s ∈ S 3
T gilt

|f − s|22 =|f |22 − |s|22

− 2

{
[f ′(x)− s′(x)]s′′(x)|ba −

n∑
i=1

[f(x)− s(x)]s′′′(x)|xi−xi−1+

}
.

6.2 Spline-Interpolation TU Chemnitz, Sommersemester 2013



Numerik 296

Satz 6.11 (Minimierungseigenschaft kubischer Splines). Ist f ∈ H 2 und
s ∈ S 3

T ein zugehöriger kubischer Interpolationsspline, der eine der drei
Zusatzbedingungungen (N), (H) oder (P) erfüllt, dann folgt

|s|22 ≤ |f |22

(
=

∫ b

a

f ′′(x)2dx

)
.

Interpretation von Satz 6.11. Unter allen Funktionen f ∈H 2 mit

f(xi) = fi, i = 0, 1, . . . , n,

minimiert der interpolierende kubische Spline mit einer der Zusatzbedin-
gungen (H), (N) oder (P) näherungsweise die Biegeenergie

EB(f) :=

∫ b

a

f ′′(x)2

[1 + f ′(x)2]3/2
dx ≈

∫ b

a

f ′′(x)2 dx.

6.2 Spline-Interpolation TU Chemnitz, Sommersemester 2013



Numerik 297

6.3 Bestapproximation in Innenprodukträumen

Sei V ein Vektorraum über R oder C mit Innenprodukt (·, ·). Dann wird
durch ‖v‖ := (v , v)1/2 (v ∈ V ) eine Norm auf V definiert. Ist V bez. dieser
Norm vollständig, so heisst (V , (·, ·)) ein Hilbert-Raum.

Beispiele:

1.) Rn (Cn) mit Innenprodukt (x ,y) = y>x ((x ,y) = yHx ) ist ein Hilbert-
Raum. (Die vom Innenprodukt induzierte Norm ist die Euklid-Norm.)

2.) `2 :=
{
x = {xj}j∈N ⊂ C :

∑∞
j=0 |xi|2 < ∞

}
mit dem Innenprodukt

(x ,y) =
∑∞
j=1 xjyj ist ein Hilbert-Raum.

3.) C∞ :=
{
x = (xj)j∈N ∈ `2 : xj = 0 bis auf endlich viele j

}
mit dem

Innenprodukt (x ,y) =
∑∞
j=1 xjyj ist kein Hilbert-Raum.

4.) Cn×n mit dem Innenprodukt (A,B) = tr(BHA) ist ein Hilbert-Raum.
(Die vom Innenprodukt induzierte Norm ist die Frobenius-Norm.)

5.) L2(a, b) = {f : [a, b] → C :
∫ b
a
|f(x)|2dx < ∞} mit dem Innenprodukt

(f, g) =
∫ b
a
f(x)g(x)dx ist ein Hilbert-Raum.

6.3 Bestapproximation in Innenprodukträumen TU Chemnitz, Sommersemester 2013



Numerik 298

Approximationsaufgabe: Sei U ein endlich-dimensionaler Teilraum des
Innenproduktraums V und v ∈ V . Bestimme u∗ = u∗(v) ∈ U mit

‖u∗ − v‖ < ‖u − v‖ für alle u ∈ U , u 6= u∗.

u∗ heißt die Bestapproximation an v aus U .

Erinnerung. Sei U ein endlich-dimensionaler Teilraum des Innenproduk-
traums V . Dann ist die Orthogonalprojektion auf U P : V → U definiert
durch

Pv =

{
v v ∈ U ,

0 v ∈ U ⊥.

Ist {u1,u2, . . . ,un} eine Orthonormalbasis von U , so gilt

Pv = (v ,u1)u1 + (v ,u2)u2 + · · ·+ (v ,un)un für alle v ∈ V .

6.3 Bestapproximation in Innenprodukträumen TU Chemnitz, Sommersemester 2013



Numerik 299

Satz 6.12. Sei U ein endlich-dimensionaler Teilraum des Innenproduk-
traums V , P die Orthogonalprojektion auf U und v ∈ V .
Dann ist die Bestapproximation u∗ aus U an v gegeben durch u∗ = Pv .
Die Bestapproximation ist eindeutig bestimmt und charakterisiert durch

u∗ − v ⊥ U .

Ist {u1,u2, . . . ,un} eine Orthonormalbasis von U , so gelten

u∗ =

n∑
j=1

(v ,uj)uj und ‖u∗‖ =

( n∑
j=1

|(v ,uj)|2
)1/2

≤ ‖v‖

sowie
‖u∗ − v‖2 = ‖v‖2 − ‖u∗‖2.

6.3 Bestapproximation in Innenprodukträumen TU Chemnitz, Sommersemester 2013



Numerik 300

Beispiel. Die Bestapproximation an A ∈ Rn×n aus dem Unterraum der
symmetrischen Matrizen (bez. der Frobenius-Norm) ist

AS := 1
2 (A+A>) (der symmetrische Anteil von A).

Beispiel. Der Raum Tn der trigonometrischen Polynome vom Grad n

definiert durch

Tn := span{eikt : k = 0,±1, . . . ,±n} ⊂ L2(0, 2π), (Bezeichnung: i2 = −1)

besitzt die Dimension 2n + 1 . Die Funktionen { 1√
2π
eikt}nk=−n bilden eine

ON-Basis von Tn. Die Bestapproximation an f ∈ L2(0, 2π) aus Tn ist also

u∗n(t) =
n∑

k=−n
ake

ikt mit ak =
1

2π

∫ 2π

0

f(t)e−ikt dt.

6.3 Bestapproximation in Innenprodukträumen TU Chemnitz, Sommersemester 2013



Numerik 301

Bemerkung. Im Fall von ak = a−k, k = 0, 1, . . . , n, (z.B. wenn f reellwertig
ist) folgt mit α0 = 2a0, αk = 2 Re(ak), βk = −2 Im(ak) (k = 1, 2, . . . , n).

u∗n(t) =
α0

2
+

n∑
k=1

[
αk cos(kt) + βk sin(kt)

]
.

Dies folgt aus

u∗n(t) =
n∑

k=−n
ake

ikt = a0 +
n∑
k=1

ake
ikt +

n∑
k=1

a−ke
−ikt

= a0 +
n∑
k=1

(
ak[cos(kt) + i sin(kt)] + ak[cos(kt)− i sin(kt)]

)
= a0︸︷︷︸

=:
α0
2

+
n∑
k=1

[
2 Re(ak)︸ ︷︷ ︸

=:αk

cos(kt)−2 Im(ak)︸ ︷︷ ︸
=:βk

sin(kt)
]
.

6.3 Bestapproximation in Innenprodukträumen TU Chemnitz, Sommersemester 2013



Numerik 302

6.4 Trigonometrische Interpolation

Seien

f0, f1, . . . , fm−1 ∈ R und xj := 2πj/m, j = 0, 1, . . . ,m− 1,

d.h. x0 < x1 < · · · < xm−1 sind äquidistante Knoten aus [0, 2π).

Gesucht ist ein reelles trigonometrisches Polynom vom Grad n,

tn(x) =
α0

2
+

n∑
k=1

[
αk cos(kx) + βk sin(kx)

]
,

das die m Interpolationsbedingungen

tn(xj) = fj (j = 0, 1, . . . ,m− 1) (6.5)

erfüllt. Hierbei ist

n =

{
m
2 falls m gerade,
m−1
2 falls m ungerade.

6.4 Trigonometrische Interpolation TU Chemnitz, Sommersemester 2013



Numerik 303

Transformation auf den (komplexen) Einheitskreis:

φ : [0, 2π) −→ T := {z ∈ C : |z| = 1}, x 7→ z = eix = cosx+ i sinx.

Die Knoten xj gehen über in die m-ten Einheitswurzeln:

φ(xj) = e2πij/m = [e2πi/m]j = ωjm, j = 0, 1, . . . ,m− 1,

mit ωm := e2πi/m = cos 2π
m + i sin 2π

m .

Setzt man β0 = 0 und für k = 0, 1, . . . , n

C2 3
[
ak

a−k

]
:=

[
1
2 (αk − iβk)
1
2 (αk + iβk)

]
=

1

2

[
1 −i
1 i

][
αk

βk

]
, d.h.

6.4 Trigonometrische Interpolation TU Chemnitz, Sommersemester 2013



Numerik 304

R2 3
[
αk

βk

]
=

[
1 1

i −i

][
ak

a−k

]
=

[
ak + a−k

i(ak − a−k)

]
=

[
2 Re ak

−2 Im ak

]
,

so folgt

tn(x) =

n∑
k=−n

ake
ikx =

n∑
k=−n

akz
k = z−n

n∑
k=−n

akz
k+n = z−np2n(z)

mit p2n(z) =
∑n
k=−n akz

k+n =
∑2n
j=0 aj−nz

j ∈P2n.

Wegen
p2n(ωjm) = ωjnm tn(xj)

ist die trigonometrische Interpolationsaufgabe hiermit zurückgeführt auf
eine (gewohnliche) Interpolationsaufgabe für (algebraische) Polynome.

6.4 Trigonometrische Interpolation TU Chemnitz, Sommersemester 2013



Numerik 305

Satz 6.13. Zu beliebig vorgegebenen paarweise verschiedenen Knoten
x0, x1, . . . , x2n ∈ [0, 2π) und zu beliebigen Funktionswerten f0, f1, . . . , f2n ∈
R gibt es genau ein reelles trigonometrisches Polynom tn ∈ Tn mit tn(xj) =

fj (j = 0, 1, . . . , 2n).

Lemma 6.14. Für die m-ten Einheitswurzeln ωkm (k ∈ Z, m ∈ N) gelten:

a) [ωkm]
j

= ωkjm = [ωjm]
k

(j ∈ Z),

b) ωk`m` = ωkm (` ∈ Z, ` 6= 0),

c) ωkm = ω−km ,

d)
m−1∑
j=0

ωkjm =

{
m, falls k = 0 (modm),

0, falls k 6= 0 (modm).

6.4 Trigonometrische Interpolation TU Chemnitz, Sommersemester 2013



Numerik 306

Satz 6.15. Das komplexe (algebraische) Interpolationspolynom

pm−1(z) =
m−1∑
k=0

ckz
k ∈Pm−1

mit pm−1(ωjm) = fj ∈ C (j = 0, 1, . . . ,m− 1) besitzt die Koeffizienten

ck =
1

m

m−1∑
j=0

fjω
−kj
m , k = 0, 1, . . . ,m− 1. (6.6)

In Matrix-Vektor-Schreibweise
c0

c1
...

cm−1

 =
1

m
Fm


f0

f1
...

fm−1


6.4 Trigonometrische Interpolation TU Chemnitz, Sommersemester 2013



Numerik 307

mit der Fourier-Matrix

Fm :=
[
ω−kjm

]
0≤k,j≤m−1 =


1 1 · · · 1

1 ω−1m · · · ω−m+1
m

...
...

...

1 ω−m+1
m · · · ω

−(m−1)2
m

 .

Bemerkung. Mit den Bezeichnungen aus Satz 6.15 minimiert das ”abge-
schnittene“ Interpolationspolynom

pm,d(z) := c0 + c1z + · · ·+ cdz
d, 0 ≤ d ≤ m− 1,

unter allen Polynomen q ∈Pd die Fehlerquadratsumme zur Interpolations-
vorschrift:

m−1∑
j=0

|fj − pm,d(ωjm)|2 <
m−1∑
j=0

|fj − q(ωjm)|2 für alle q ∈Pd, q 6= pm,d.

6.4 Trigonometrische Interpolation TU Chemnitz, Sommersemester 2013



Numerik 308

Satz 6.16. Für m = 2n oder m = 2n+ 1 gibt es zu beliebigen
f0, f1, . . . , fm−1 ∈ R ein reelles trigonometrisches Interpolationspolynom

tn(x) =
α0

2
+

n∑
k=1

[
αk cos(kx) + βk sin(kx)

]
∈ Tn

vom Grad n, das die m Bedingungen

tn(2πj/m) = fj (j = 0, 1, . . . ,m− 1)

erfüllt. Seine Koeffizienten sind gegeben durch

αk =
2

m

m−1∑
j=0

fj cos
2πjk

m
bzw. βk =

2

m

m−1∑
j=0

fj sin
2πjk

m
, (k = 0, 1, . . . , n).

Im Fall m = 2n muss βn = 0 gesetzt und αn halbiert werden.

6.4 Trigonometrische Interpolation TU Chemnitz, Sommersemester 2013



Numerik 309

6.5 Schnelle Fourier-Transformation (FFT)

Seien {ωjm}m−1j=0 die m-ten Einheitswurzeln, (ωm := e2πi/m).

Wir unterscheiden zwei grundlegende Aufgabenstellungen:

Diskrete Fourier-Analyse: Bestimme zu vorgegebenen Funktionswerten
f0, . . . , fm−1 ∈ C die Koeffizienten c0, . . . , cm−1 des Interpolationspolynoms

p(z) =

m−1∑
j=0

cjz
j mit p(ωjm) = fj (j = 0, . . . ,m− 1).

Wir wissen: Mit der Fourier-Matrix Fm := [ω−kjm ]0≤k,j≤m−1 ∈ Cm×m gilt
c0

c1
...

cm−1

 =
1

m
Fm


f0

f1
...

fm−1

 .

6.5 Schnelle Fourier-Transformation (FFT) TU Chemnitz, Sommersemester 2013



Numerik 310

Diskrete Fourier-Synthese (inverse Aufgabe): Bestimme zu vorgebenen
Koeffizienten c0, . . . , cm−1 ∈ C die Funktionswerte f0, . . . , fm−1 des Poly-
noms p(z) =

∑m−1
j=0 cjz

j an den m-ten Einheitswurzeln ω0
m, . . . ω

m−1
m .

Offensichtlich: 
f0

f1
...

fm−1

 = Wm


c0

c1
...

cm−1


mit der Matrix Wm := [ωkjm ]0≤k,j≤m−1 = FHm (= Fm) ∈ Cm×m.

6.5 Schnelle Fourier-Transformation (FFT) TU Chemnitz, Sommersemester 2013



Numerik 311

Lemma 6.17. Für die Fourier-Matrix Fm = [ω−kjm ]0≤k,j≤m−1 ∈ Cm×m
gelten:

(a) F>m = Fm (aber FHm 6= Fm für m > 2!),
(b) FHmFm = mIm, d.h. die Spalten von Fm sind orthogonal und besitzen

alle die Euklid-Norm
√
m.

(c) F−1m = 1
mF

H
m = 1

mFm.

Diskrete Fourier-Transformationen (d.h. diskrete Fourier-Analysen und
Synthesen) müssen in der Praxis oft berechnet werden (Signalverarbei-
tung, Lösung der Poisson-Gleichung etc.).

Die ”naive“ Berechnung einer Fourier-Transformation (Matrix-Vektor Pro-
dukt mit Fm/m bzw. Wm) erfordert offenbar O(m2) komplexe Multiplikatio-
nen. Bei Anwendung der schnellen Fourier-Transformation (FFT) reduziert
sich dieser Aufwand auf O(m logm)a.

aJames William Cooley(∗1926) and John Wilder Tukey (1915–2000): An algorithm for the
machine calculation of complex Fourier series, Math. Comp. 19, 297–301 (1965).

6.5 Schnelle Fourier-Transformation (FFT) TU Chemnitz, Sommersemester 2013



Numerik 312

Diese Verbesserung kann nicht überbewertet werden:

”It [the FFT] has changed the face of science and engineering so much
that it is not an exaggeration to say that life as we know it would be very
different without the FFT.“

[Charles Van Loan, Computational Frameworks for the Fast Fourier Transform,
SIAM, Philadelphia 1992, p. ix]

Wir setzen (aus schreibtechnischen Gründen) im Folgenden

ζm := ωm = e−2πi/m = cos

(
2π

m

)
− i sin

(
2π

m

)
,

so dass Fm = [ζkjm ]0≤k,j≤m−1. Außerdem sei m gerade.

6.5 Schnelle Fourier-Transformation (FFT) TU Chemnitz, Sommersemester 2013



Numerik 313

Die Idee der FFT (für m = 8): Mit ζ := ζ8 ist

F8 =



1 1 1 1 1 1 1 1

1 ζ ζ2 ζ3 ζ4 ζ5 ζ6 ζ7

1 ζ2 ζ4 ζ6 ζ8 ζ10 ζ12 ζ14

1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21

1 ζ4 ζ8 ζ12 ζ16 ζ20 ζ24 ζ28

1 ζ5 ζ10 ζ15 ζ20 ζ25 ζ30 ζ35

1 ζ6 ζ12 ζ18 ζ24 ζ30 ζ36 ζ42

1 ζ7 ζ14 ζ21 ζ28 ζ35 ζ42 ζ49


.

6.5 Schnelle Fourier-Transformation (FFT) TU Chemnitz, Sommersemester 2013



Numerik 314

Wegen ζ8 = 1, d.h. ζj = ζk, wenn j− k (ohne Rest) durch 8 teilbar ist, folgt

F8 =



1 1 1 1 1 1 1 1

1 ζ ζ2 ζ3 ζ4 ζ5 ζ6 ζ7

1 ζ2 ζ4 ζ6 1 ζ2 ζ4 ζ6

1 ζ3 ζ6 ζ ζ4 ζ7 ζ2 ζ5

1 ζ4 1 ζ4 1 ζ4 1 ζ4

1 ζ5 ζ2 ζ7 ζ4 ζ ζ6 ζ3

1 ζ6 ζ4 ζ2 1 ζ6 ζ4 ζ2

1 ζ7 ζ6 ζ5 ζ4 ζ3 ζ2 ζ1


.

6.5 Schnelle Fourier-Transformation (FFT) TU Chemnitz, Sommersemester 2013



Numerik 315

Jetzt nummerieren wir die Zeilen von F8 um: zuerst werden die mit ge-
radem (0,2,4,6), danach die mit ungeradem Index (1,3,5,7) gezählt. Die
zugehörige Pemutationsmatrix wird mit P bezeichnet.

PF8 =



1 1 1 1 1 1 1 1

1 ζ2 ζ4 ζ6 1 ζ2 ζ4 ζ6

1 ζ4 1 ζ4 1 ζ4 1 ζ4

1 ζ6 ζ4 ζ2 1 ζ6 ζ4 ζ2

1 ζ ζ2 ζ3 ζ4 ζ5 ζ6 ζ7

1 ζ3 ζ6 ζ ζ4 ζ7 ζ2 ζ5

1 ζ5 ζ2 ζ7 ζ4 ζ ζ6 ζ3

1 ζ7 ζ6 ζ5 ζ4 ζ3 ζ2 ζ1


=:

[
B1,1 B1,2

B2,1 B2,2

]

6.5 Schnelle Fourier-Transformation (FFT) TU Chemnitz, Sommersemester 2013



Numerik 316

Wir untersuchen die einzelnen Blöcke: Wegen ζ = ζ8 ist ζ2 = ζ4, d.h.

B1,1 = B1,2 =


1 1 1 1

1 ζ4 ζ24 ζ34

1 ζ24 ζ44 ζ64

1 ζ34 ζ64 ζ94

 = F4.

Aus den Spalten 0,1,2 bzw. 3 von B2,1 ”klammern“ wir ζ0, ζ1, ζ2 bzw. ζ3

”aus“:

B2,1 =


1 1 1 1

1 ζ2 ζ4 ζ6

1 ζ4 1 ζ4

1 ζ6 ζ4 ζ2




1 0 0 0

0 ζ 0 0

0 0 ζ2 0

0 0 0 ζ3

 = F4D4.

6.5 Schnelle Fourier-Transformation (FFT) TU Chemnitz, Sommersemester 2013



Numerik 317

Analog:

B2,2 =


1 1 1 1

1 ζ2 ζ4 ζ6

1 ζ4 1 ζ4

1 ζ6 ζ4 ζ2



ζ4 0 0 0

0 ζ5 0 0

0 0 ζ6 0

0 0 0 ζ7

 = F4(ζ4D4) = −F4D4.

Insgesamt erhalten wir

PF8 =

[
F4 F4

F4D4 −F4D4

]
=

[
F4 O

O F4

][
I4 I4

D4 −D4

]
.

6.5 Schnelle Fourier-Transformation (FFT) TU Chemnitz, Sommersemester 2013



Numerik 318

Satz 6.18. Seien m gerade, σ die folgende (even/odd) Permutation

σ = [0, 2 . . . ,m− 2, 1, 3, . . . ,m− 1]

und P = Pσ die zugehörige Permutationsmatrix.
Dann besitzt die zeilenpermutierte Fourier-Matrix Fm die Zerlegung

PFm =

[
Fm/2 Fm/2

Fm/2Dm/2 −Fm/2Dm/2

]
=

[
Fm/2 O

O Fm/2

][
Im/2 Im/2

Dm/2 −Dm/2

]
.

Dabei bezeichnet Dm/2 die Diagonalmatrix

Dm/2 = diag
(
ζ0m, ζ

1
m, . . . , ζ

m/2−1
m

)
∈ C(m/2)×(m/2)

mit ζm = ωm = e−2πi/m.

6.5 Schnelle Fourier-Transformation (FFT) TU Chemnitz, Sommersemester 2013



Numerik 319

Berechne jetzt y = Fmx für ein x ∈ Cm (m gerade). Gemäß der Zerlegung
von Fm aus Satz 6.18 unterteilen wir dies in zwei Schritte:

1. Reduktionsschritt: Berechne

z =

[
Im/2 Im/2

Dm/2 −Dm/2

]
x .

Im Fall m = 8 ergibt sich:

z0 = x0 + x4, z1 = x1 + x5, z2 = x2 + x6, z3 = x3 + x7

z4 = (x0 − x4), z5 = (x1 − x5)ζm, z6 = (x2 − x6)ζ2m, z7 = (x3 − x7)ζ3m

(m/2 komplexe Multiplikationen und m komplexe Additionen).

2. Teilprobleme: Berechne

Fm/2z (0 : m/2− 1) und Fm/2z (m/2 : m− 1)

(zwei Fourier-Transformationen der Dimension m/2).

6.5 Schnelle Fourier-Transformation (FFT) TU Chemnitz, Sommersemester 2013



Numerik 320

Ist m = 2p eine Zweierpotenz, so ist m/2 ebenfalls gerade und die beiden
Fourier-Transformationen der Dimension m/2 können auf vier Fourier-
Transformationen der Dimension m/4 reduziert werden.

Der Aufwand zur Reduktion beträgt 2·m/4 = m/2 komplexe Multiplikationen
(und 2 · m/2 = m komplexe Additionen). Dieser Prozess wird solange
fortgesetzt bis man eine Multiplikation mit Fm auf m Multiplikationen mit
F1 = [1] reduziert hat (eine Multiplikation mit F1 erfordert offenbar keinen
Aufwand).

Dieses Reduktionsverfahren heißt schnelle Fourier-Transformation (FFT =
Fast Fourier Transform).

Satz 6.19. Zur Durchführung einer schnellen Fourier-Transformation der
Ordnung m = 2p sind

m

2
p =

m

2
log2(m) komplexe Multiplikationen

und m log2(m) komplexe Additionen erforderlich.

6.5 Schnelle Fourier-Transformation (FFT) TU Chemnitz, Sommersemester 2013



Numerik 321

Die naive Berechnung einer Fourier-Transformation der Länge m = 2p

durch Fmx erfordert also 2p+1/p-mal mehr Multiplikationen als ihre Be-
rechnung durch FFT. Wenn z.B. für p = 20 die FFT-Version eine Sekunde
benötigt, so benötigt Fmx etwa 29 Stunden.

Verbleibendes Problem: Bestimmt man y = Fmx durch FFT, so erhält
man zunächst eine permutierte Version ỹ = Qy von y mit einer Permutati-
onsmatrix Q ∈ Rm×m.

Es gilt: Besitzt fürm = 2p der Index i ∈ {0, 1, . . . ,m−1} die Binärdarstellung
i = bp−12p−1 + · · ·+ b222 + b12 + b0 =: [bp−1 . . . b2 b1 b0]2, und ist

r(i) := [b0 b1 b2 . . . bp−1]2 = b02p−1 + b12p−2 + b22p−3 + · · ·+ bp−1

(bit reversal), dann gelten

yi = ỹr(i) und ỹi = yr(i).

6.5 Schnelle Fourier-Transformation (FFT) TU Chemnitz, Sommersemester 2013



Numerik 322

6.6 Anwendungen der FFT

Schnelle Berechnung einer Faltung: Sei

Sm :=
{
x = {. . . , x0, x1, . . . , xm−1, . . .} : xj ∈ C

}
der Raum der doppelseitigenm-periodischen Folgen. Sm ist isomorph zum
Cm. Auf Sm sind zwei Multiplikationen definiert:

Hadamard-Produkt: [x � y ]k = xkyk,

Faltung oder Cauchy-Produkt: [x ∗ y ]k =
m−1∑
j=0

xjyk−j .

Lemma 6.20 (Faltungssatz). Für x ,y ∈ Sm gelten

Fm(x ∗ y) = (Fmx )� (Fmy),

mFm(x � y) = (Fmx ) ∗ (Fmy).

6.6 Anwendungen der FFT TU Chemnitz, Sommersemester 2013



Numerik 323

Ist m = 2p, so kann die Faltung wegen

x ∗ y = F−1m [(Fmx )� (Fmy)] =
1

m
F̄m [(Fmx )� (Fmy)]

durch drei FFT’s, also mit m(1.5 log2(m) + 1) komplexen Multiplikationen,
bestimmt werden (konventionelle Berechnung erfordert m2 Multiplikatio-
nen). Dies wird zur Multiplikation großer ganzer Zahlen und zur Multiplika-
tion von Polynomen eingesetzt.

6.6 Anwendungen der FFT TU Chemnitz, Sommersemester 2013



Numerik 324

Eine Matrix A ∈ Cm×m heißt zirkulant, wenn sie die Form

A = circul(a0, . . . , am−1) =



a0 a1 · · · am−2 am−1

am−1 a0 · · · am−3 am−2
...

...
. . .

...
...

a2 a3 · · · a0 a1

a1 a2 · · · am−1 a0


besitzt.

6.6 Anwendungen der FFT TU Chemnitz, Sommersemester 2013



Numerik 325

Lemma 6.21. Mit Hilfe der (zirkulanten) Shiftmatrix

Sm := circul(0, 1, 0 . . . , 0) ∈ Cm×m

kann jede zirkulante Matrix A = circul(a0, a1, . . . , am−1) in der Form

A = p(Sm) = a0Im + a1Sm + a2S
2
m + · · · am−1Sm−1m ,

d.h. als Polynom in Sm, geschrieben werden.

Die Eigenwerte λj von A sind deshalb durch

λj = p
(
ωjm
)

= p (exp (2πij/m)) (j = 0, 1, . . . ,m− 1)

gegeben.

vj =
[
ω0
m, ω

j
m, ω

2j
m , . . . , ω

(m−1)j
m

]>
ist ein zugehöriger Eigenvektor.

6.6 Anwendungen der FFT TU Chemnitz, Sommersemester 2013



Numerik 326

Lemma 6.22. Seien a = [a0, a1, . . . , am−1]
> ∈ Cm, A = circul(a) und

x ∈ Cm. Dann ist
A>x = a ∗ x .

Satz 6.23. Seien a , b ∈ Cm und A = circul(a).
Dann gelten:

(a) det(A) 6= 0⇔ alle Komponenten von Fma sind von 0 verschieden.
(b) Das LGS A>x = b ist genau dann lösbar, wenn [Fma ]j = 0 stets

[Fmb]j = 0 impliziert (j = 0, 1, . . . ,m− 1).
(c) Ist A>x = b lösbar, so gilt für jede Lösung x ∗:

[Fmx ∗]j = [Fmb]j/[Fma ]j

für alle j ∈ {0, 1, . . . ,m− 1} mit [Fma ]j 6= 0. Ist [Fma ]j = 0 (und folglich
[Fmb]j = 0), so kann [Fmx ∗]j beliebig gewählt werden.

6.6 Anwendungen der FFT TU Chemnitz, Sommersemester 2013



Numerik 327

Mit Hilfe der FFT kann das Produkt einer zirkulanten Matrix der Dimension
m mit einem Vektor also in nur m(1.5 log2(m) + 1) komplexen Multiplikatio-
nen berechnet werden (vgl. Lemma 6.22).

Darüberhinaus kann ein m-dimensionales lineares Gleichungssystem
A>x = b mit einer zirkulanten Koeffizientenmatrix

A>, A = circul(a),

i.W. durch 3 FFT’s (in ebenfalls m(1.5 log2(m) + 1) komplexen Multiplikatio-
nen) gelöst werden (vgl. Satz 6.23): Ist A invertierbar, so gilt

A−>b =
1

m
Fm ((Fmb) ./ (Fma)) ,

wobei ./ komponentenweise Division bezeichnet.

6.6 Anwendungen der FFT TU Chemnitz, Sommersemester 2013



Numerik 328

6.7 Mustererkennung und Rekonstruktion von Signalen

Interpretiere die m Ecken eines Polygons, (x0, y0), . . . , (xm−1, ym−1), als
komplexe Zahlen: f0 = x0 + iy0, . . . , fm−1 = xm−1 + iym−1 (i2 = −1).

Das Ergebnis einer diskreten Fourier-Analyse dieser Zahlen

[c0, c1, . . . , cm−1]> =
1

m
Fm[f0, f1, . . . , fm−1]>

nennt man diskretes komplexes Spektrum des Polygons. Es spiegelt geo-
metrische Eigenschaften des Polygons wider und kann daher zur Klassifi-
kation von Formen (Mustererkennung) verwendet werden.
Lage- und größenunabhängig ist das normierte Amplitudenspektrum

ak = |ck+2/c1| (k = 0, . . . ,m− 3).

6.7 Mustererkennung und Rekonstruktion von Signalen TU Chemnitz, Sommersemester 2013



Numerik 329

0 1 2 3 4 5
0

1

2

3

4

5

10 20 30
0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5
0

1

2

3

4

5

10 20 30
0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5
0

1

2

3

4

5

10 20 30
0

0.1

0.2

0.3

0.4

0.5

a1 < a2, a2 > a3; a1 > a2, a2 > a3; a1 > a2, a2 < a3;

6.7 Mustererkennung und Rekonstruktion von Signalen TU Chemnitz, Sommersemester 2013



Numerik 330

0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Polygon
E      
F      
H      

6.7 Mustererkennung und Rekonstruktion von Signalen TU Chemnitz, Sommersemester 2013



Numerik 331

0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Polygon
E      
F      
H      

6.7 Mustererkennung und Rekonstruktion von Signalen TU Chemnitz, Sommersemester 2013



Numerik 332

0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Polygon
E      
F      
H      

6.7 Mustererkennung und Rekonstruktion von Signalen TU Chemnitz, Sommersemester 2013



Numerik 333

Gegeben: Signal f (Dimension m = 1024),

k = 8 (16, 32).

Aufgabe: Unterlege f mit Rauschen, bestimme die

k groessten Fourier-Koeffizienten und

rekonstruiere aus diesen das Signal.

f_rausch = f + .1*randn(size(f));

c = fft(f_rausch);

[ignore,j] = sort(abs(c));

ind = [m-k+1:m];

c_compr = zeros(size(c));

c_compr(j(ind)) = c(j(ind));

recon = ifft(c_compr);

6.7 Mustererkennung und Rekonstruktion von Signalen TU Chemnitz, Sommersemester 2013



Numerik 334

0 200 400 600 800 1000
−10

−5

0

5

10
Signal

0 200 400 600 800 1000
−10

−5

0

5

10
Signal (verrauscht)

0 200 400 600 800 1000
−10

−5

0

5

10
Rekonstruktion mit 8 Fourier−Koeffizienten

0 200 400 600 800 1000
0

1

2

3

4
Fehler

6.7 Mustererkennung und Rekonstruktion von Signalen TU Chemnitz, Sommersemester 2013



Numerik 335

0 200 400 600 800 1000
−10

−5

0

5

10
Signal

0 200 400 600 800 1000
−10

−5

0

5

10
Signal (verrauscht)

0 200 400 600 800 1000
−10

−5

0

5

10
Rekonstruktion mit 16 Fourier−Koeffizienten

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Fehler

6.7 Mustererkennung und Rekonstruktion von Signalen TU Chemnitz, Sommersemester 2013



Numerik 336

0 200 400 600 800 1000
−10

−5

0

5

10
Signal

0 200 400 600 800 1000
−10

−5

0

5

10
Signal (verrauscht)

0 200 400 600 800 1000
−10

−5

0

5

10
Rekonstruktion mit 32 Fourier−Koeffizienten

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

Fehler

6.7 Mustererkennung und Rekonstruktion von Signalen TU Chemnitz, Sommersemester 2013


	Interpolation und numerische Approximation
	Polynominterpolation
	Spline-Interpolation
	Lineare Spline-Interpolation
	Kubische Spline-Interpolation

	Bestapproximation in Innenprodukträumen
	Trigonometrische Interpolation
	Schnelle Fourier-Transformation (FFT)
	Anwendungen der FFT
	Mustererkennung und Rekonstruktion von Signalen


