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1 Einfuhrung und Begriffe

1.1 Mathematische Modellbildung und numerische
Simulation am Beispiel eines Wasserkreislaufs

1.2 Linearisierung und lterationsverfahren
am Beispiel des Newton-Verfahrens

1.3 Diskretisierung und Stabilitat
am Beispiel der Warmeleitungsgleichung
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1.1 Mathematische Modellbildung und numerische Si-
mulation am Beispiel eines Wasserkreislaufs

»~oimulation ist die Nachbildung eines dynamischen Prozesses in ei-
nem Modell, um zu Erkenntnissen zu gelangen, die auf die Wirklichkeit
ubertragbar sind“ (VDI-Richtlinie 3633).

Zum einen ist die rechnerische Simulation dann unumganglich, wenn reale
Experimente mit den Untersuchungsobjekten undurchfihrbar sind: Denken
Sie etwa an die Entstehung von Galaxien oder an Untersuchungsobijekte,
die erst geplant sind, also real noch gar nicht existieren. Aber auch wenn
reale Experimente moglich sind, ist es oft kostengunstiger und ressourcen-
schonender, stattdessen numerische Simulationen einzusetzen.
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Modelle muissen nicht notwendig
rechnerisch/mathematisch sein.

A. W. Philips, (London School of Eco-
nomics) mit dem Analogcomputer MO-
NIAC zur Modellierung Okonomischer
Vorgange (,hydraulic macroeconomics®)
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vgl. Davis & Hersch: Descartes’ Dream. Dover, 2005
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A. Physikalische Grundlagen.

[EVANGELISTA TORRICELLI (1608-1647)]:

Abflussgeschwindigkeit v = v/2gh, ¢ = 9.81 (Gravitationsbeschleunigung),
h = Hohe des Wasserspiegels.

Abflussrate als Funktion des im Behalter befindlichen Wasservolumens V
(falls es sich um einen Zylinder mit Grundflache A handelt)

f=av29V/A=cVV mit c:=ay/29/A.

Der Parameter ¢ kann Uber a variiert werden, wenn der Abfluss einen Hahn
besitzt. Wir sprechen von einem Steuerungsparameter.

1.1 Modellbildung und numerische Simulation TU Chemnitz, Sommersemester 2013
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B. Mathematisches Modaell.

Ut),V(t),W(t), R(t) :Wassermengen zur Zeit t in den Behaltern.

fi,..., f5 . Abflussfunktionen mit den Steuerungsparametern
C1y...,Cs.
p=p(t) . Pumpenfunktion®

Anderungsraten der Wasservolumina:  Zufliisse weniger Abfliisse, d.h.

Ut = plt)— HiU®) - U)

Vi) = AU®) - BVE) - (V) 1)
W(t) = faU@) + f(V(D) — F5(V (1)

R() = HVO)+ W) - p(t)

Diese Gleichungen, sog. (gewohnliche) Differentialgleichungen, heil3en die
Kontinuitatsgleichungen unseres Systems.

1.1 Modellbildung und numerische Simulation

TU Chemnitz, Sommersemester 2013



Numerik 10

Anfangszustand: Wassermengen in Behaltern zu einem festen Zeitpunkt,
etwa far ¢t = 0.

Das Verhalten unseres Systems ist fur alle Zeiten ¢ > 0 durch die obi-
gen Differentialgleichungen eindeutig bestimmt. Die Aufgabe, eine Losung
des Systems (1.1) zu bestimmen, welche gegebene Anfangsbedingungen
erflllt, nennt man ein Anfangswertaufgabe.

Addiert man alle Gleichungen, so ergibt sich
U'(t)+V'(t)+ W'(t) + R'(t) = 0,

ein globales Erhaltungsprinzip, welches besagt, dass sich die Gesamtwas-
sermenge in unserer Apperatur nicht verandert. (Es handelt sich hier um
ein geschlossenes System.)
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C. Algorithmus.

Anfangswertaufgaben lassen sich nur in Ausnahmefallen geschlossen
losen (reine Mathematik: in unserem Fall gibt es genau eine Losung).

Aufgabe der Numerik: Bereitstellung von Naherungslosungen.

ldee: Wir betrachten die Gleichungen nicht mehr flir jeden beliebigen
Zeitpunkt, sondern nur noch zu bestimmten diskreten Zeitpunkten, etwa fur
to =0,t; = 1,... (Diskretisierung).

U, :=Ul(t,),...,R, := R(t,) (Volumina, die sich zum Zeitpunkt ¢,, in den
Behaltern U, ..., R befinden).

Anderungsrate U’ (t,,) wird durch U (t,,41)—U (t,,) = Upn+1 —U,, approximiert
(wir nahern hier eine Tangentensteigung durch eine Sekantensteigung an).

1.1 Modellbildung und numerische Simulation TU Chemnitz, Sommersemester 2013
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Ui = Un+pn— f1(Un) = f2(Uy)

Vit = Vn+ fl(Un) _ fB(Vn) — f4(v’n) (1 .2)
Wpy1 = Wn‘|’f2<Un>+f4<Vn) _f5(Wn>

Roy1r = Ro+ f3(Va) + fs(Wn) — pn.

Diese vier Gleichungen hei3en die diskreten Kontinuitatsgleichungen un-
serer Kreislaufs (System von vier Differenzengleichungen).

Addition liefert globales Erhaltungsprinzip
Un—l—l + Vn—|—1 + Wn—l—l + Rn—l—l — Un + Vn + Wn + Rn

Legt man noch einen Anfangszustand fest (etwa Uy = Vj = Wy = 0
sowie Ry = Gesamtwassermenge = 100) und wahlt geeignete Werte flr
die Parameter, etwa ¢; = V12, ¢o = ¢4 = V2, ¢35 = 1, ¢5 = 2 sowie p = 17,
so konnen wir unser Modell ,Jaufen lassen®.

1.1 Modellbildung und numerische Simulation TU Chemnitz, Sommersemester 2013
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D. Gleichgewichtswerte.

Simulation: Jede der Grof3en U,,, V,,, W,, und R,, nahert sich mit zuneh-
mendem n einem Gleichgewichiswert Uy, Voo, Woo, Roo, WENn wir die
Steuerungsparameter nicht andern.

Bestimme Gleichgewichtswerte ohne (zeitaufwendige) Simulation:

p = fl(Uoo) ‘|'f2(UOO)
fl(UOO) — f3(VOO) ‘|‘f4(VOO)
f5(WOO) — f2(UOO) +f4(VOO)°

Die vierte Gleichung (p = f3(Vx) + f5(Wx)) ist redundant.

Hier —im Gegensatz zur ,Praxis® — Gleichungen einfach (Dreiecksform).
Vorsicht: Die theoretisch ermittelten Gleichgewichtswerte kOnnen, aber
mussen nicht im Fassungsbereich der Behalter liegen (Nebenbedingun-

gen).

1.1 Modellbildung und numerische Simulation TU Chemnitz, Sommersemester 2013
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E. Steuerung.

Wesentliches Ziel von Simulationen: Optimierung des Systemverhaltens
bzw. Entscheidungshilfen flr die Steuerung des Systems.

In unserem Beispiel etwa: Wie muss man die Steuerungsparameter wahlen,
damit sich ein erwinschter (vorgegebener) Gleichgewichtszustand einstellt
(auch hier: Nebenbedingungen, man kann z.B. die Hahne nicht beliebig
weit 6ffnen).

Fixiert man p, so fuhrt dies in unserem Fall zu drei Bedingungen fr die finf
Parameter ¢4, ..., c5:

i = —C2 +p/ V Uoo
C4 = —C3 + 1 \/Uoo/\/voo

s = 2\ Uso/VWoo + s/ VooV Wao.

In realen Systemen ist ein solches Steuerungsproblem nicht explizit Iosbar,
man wird es nur naherungsweise und iterativ losen konnen.

1.1 Modellbildung und numerische Simulation TU Chemnitz, Sommersemester 2013
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F. Kritik.

Realitat — mathematisches Modell
— Algorithmus
— numerische Simulation der Realitat.

Bei jedem dieser drei Ubergénge haben wir Fehler begangen.

— Modellierungsfehler. Unser Modell setzt wirbelfreien Wasserfluss vor-
aus; in der Realitat werden sich aber Wirbel bilden. Die Torricelli-
sche Ausflussformel ist nur gultig, wenn sich die Spiegelhohe langsam
andert und keine Druckdifferenz zwischen Spiegel und Austrittsoffnung
besteht, Voraussetzungen, die in der Realitat nicht immer erflllt sind.

— Diskretisierungsfehler. Wir haben den stetigen Strom des Wassers
durch ,Durchschnittswerte” (bez. Zeit und Raum) ersetzt.

— Rundungsfehler. Computer ,rechnen falsch®.

1.1 Modellbildung und numerische Simulation TU Chemnitz, Sommersemester 2013
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1.2 Linearisierung und Iterationsverfahren am Beispiel
des Newton-Verfahrens

Problem. Bestimme die Nullstelle(n) einer Funktion
f:RDOD — R, x — f(x),
bzw. die Losung(en) der Gleichung
f(x) =0, reD.
Konkreter: Bestimme +/a, a > 0, d.h. die positive Nullstelle der Funktion
f: R — R, T — 22— a,

mit Hilfe der Grundrechenarten.

1.2 Linearisierung und lterationsverfahren TU Chemnitz, Sommersemester 2013
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Mathematischer Hintergrund.

[NIELS HENRIK ABEL (1802—1829)], [EVARISTE GALOIS (1811-1832)]:

Es ist unmoglich, die Nullstellen allgemeiner nichtlinearer Funktionen ele-
mentar zu berechnen.

Praziser: Die n Losungen einer Gleichung der Form

" +a, 12"+ +axr+ag=0

kOnnen flr n > 4 i.A. nicht mit Hilfe der Grundrechenarten und der Wurzel-
funktionen durch die Koeffizienten dargestellt werden. Fur n = 2:

—ay £ +/a? — dag
5 :
FUr n = 3 und n = 4 gibt es ahnliche (kompliziertere) Formeln.

1,2 =

D.h.: Bei der Nullstellenbestimmung nichtlinearer Funktionen (oder, was
dasselbe ist, bei der Losung nichtlinearer Gleichungen) ist man so gut wie
immer auf numerische Verfahren angewiesen!

1.2 Linearisierung und lterationsverfahren TU Chemnitz, Sommersemester 2013
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Angenommen, zq ist Naherung fir /a mit dem Fehler e:
va=x9+e (z.B.xzg=a0).

Gesucht ist eine bessere Naherung x;. Taylor-Entwicklung:

\

0= F(Va) = f(zo +€) = (o) + (@) + 5 f(6) ¢

Taylor-Polynom

mit £ € (xg, /), falls zg < \/a, bzw. £ € (\/a, xg), falls zg > /a.

Man kann die Gleichung 0 = f(zo) 4+ f'(z0) e + 3 f”(£) €* nicht nach e
aufldsen (¢ ist unbekannt!). Ist e aber klein, so ist e? noch viel kleiner und
wir vernachlassigen den Term mit dem Faktor e2, d.h. wir betrachten die
lineare Gleichung

f (o)

0= f(il?o) + f/(x()) e mit Lésung € = _f’(ib’o)

(falls f'(xzq) # 0).

1.2 Linearisierung und lterationsverfahren TU Chemnitz, Sommersemester 2013



Numerik

20

Dannist xy :=xo+ € =29 — f(x0)/f (o) zwar keine Nullstelle von f, aber
(hoffentlich) eine bessere Naherung fur eine Nullstelle von f als xg.

Auf die gleiche Weise gewinnt man aus z; eine neue Naherung =, usw.
Man setzt ein lterationsverfahren ein:

Wabhle eine Ausgangsnaherung x .

FGUrm =1,2,... iteriere gemal3 (1.3)
f(xm—l)
T = Tyl — .
! f/(ajm—l)
Fir f(z) = 22 — a ergibt sich als lterationsvorschrift
=z +— (m=1,2,..)) (1.4)
ZIZ‘m.—Q LTm—1 Zo 1 m = 1,4,...). .

1.2 Linearisierung und lterationsverfahren TU Chemnitz, Sommersemester 2013
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Man ersetzt das komplizierte Problem f(z) = 0 durch das lineare Problem
f(@m_1) + f'(xm—1)é = 0 und korrigiert x,, = z.,_1 + €. Aquivalent: Wir
betrachten die Tangente an den Graphen von f im Punkt (z,,_1, f(zm_1)),

y = f(@m-1) + f(@m1) (@ —2pm_1),

und berechnen die Nullstelle x,,, dieser linearen Funktion.

Die Idee der Linearisierung lasst sich also wie folgt beschreiben: Erset-
ze ein kompliziertes Problem durch ein benachbartes lineares Problem
(bzw. durch eine Folge solcher Probleme). In unserem Beispiel wurde die
komplizierte Gleichung f(z) = 0 durch eine Folge linearer Gleichungen,
namlich der Tangentengleichungen, ersetzt. Eine Linearisierung flhrt fast
immer auf ein lterationsverfahren, weil ein Korrekturschritt i.Allg. nicht aus-
reicht, um eine brauchbare Naherung fur die Losung des komplizierten
Ausgangsproblems zu bestimmen.

1.2 Linearisierung und lterationsverfahren TU Chemnitz, Sommersemester 2013
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Fir f(z) = 2% — a mit a = 2:

o | L1 )

X3

L4

2 | 1.5]141...

1.41421 ...

1.41421356237 . ..

des Startwerts xo?

Es stellen sich folgende Fragen:

1. Konvergiert das Verfahren, d.h. qilt lim,, .. =,

(Nur die korrekten Ziffern von x5, x3 und x4 sind angeben.)

Va, fr jede Wahl

Offenbar nicht, z.B. fur 2o = 0 ist 21 noch nicht einmal definiert.

2. Also, fur welche z( konvergiert die Folge {x,,}n>0 gegen /a ?

3. Wann bricht man das Verfahren ab? Schranken fir den Abbruchfehler
|z, — +/a| sind erforderlich.

1.2 Linearisierung und lterationsverfahren
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1.3 Diskretisierung und Stabilitat

Problem. Die Temperatur

u(x,t), 0<z<m,

u(0,t) = u(m,t) = 0 gehalten wird (¢ > 0).

am Beispiel der Warmeleitungsgleichung

in einem homogenen Stab mit konstantem Querschnitt habe zur Zeit
t = 0 den Wert u(x,0) = f(z). Der Stab sei warmeisoliert — auB3er
an den Randern z = 0 und x = m, wo die Temperatur konstant auf

Bestimme die Warmeverteilung u(x,t*), 0 < x < m, im Stab zur Zeitt* > 0.

1.3 Diskretisierung und Stabilitat

TU Chemnitz, Sommersemester 2013
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Mathematisches Modell.

Energieerhaltungssatz und Fouriersches Gesetz (,Warme flie3t in Richtung
abfallender Temperatur und zwar umso intensiver, je grof3er die Tempera-
turdifferenzen sind“): Gesucht ist eine Funktion

u: 0,7 x [0,00) > R, (x,t) = u(z,t),
die die folgenden Eigenschaften besitzt:
%(m,t) - gi’;"@ )y, O<z<m t>0 (1.5a)
mit einer Materialkonstanten v(= 1). AuBBerdem
u(x,0) = f(x), 0<z<m, (Anfangsbedingung) (1.5b)
z.B. f(x) = 3sin(x) — sin(2z) + sin(3x),

u(0,t) = u(mw,t) =0, t >0, (Randbedingungen). (1.5¢C)

1.3 Diskretisierung und Stabilitat TU Chemnitz, Sommersemester 2013
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Waerme

Zeit Ort
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(1.5a) heiBt Warmeleitungsgleichung.

FUr komplizierte Anfangs- und Randbedingungen oder ortsabhangige Ma-
terialkonstanten kann man die Losung solcher Probleme nicht explizit
angeben. Es lasst sich jedoch beweisen, dass (1.5a), (1.5b), (1.5¢) auch
dann ein sachgemal3 gestellies Problem (im Sinne von [JACQUES SALOMON
HADAMARD (1865-1963)]) ist:

1. Es besitzt eine Losung.

2. Diese ist eindeutig.

3. Sie hangt ferner stetig von den Daten (in diesem Fall den Anfangs- und
Randbedingungen) ab!

1.3 Diskretisierung und Stabilitat TU Chemnitz, Sommersemester 2013
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Diskretisierung durch finite Differenzen: Bestimme « nur noch auf einem
Gitter oder Netz

Qh’k:{(ﬂii,tj) cx; =thfUrte=0,1,...n+ 1, t; :jk:furj:O,l,}

Dabei sind h := 7w/(n + 1) bzw. £ > 0 die Schrittweiten (Gitter- oder
Netzweiten) in x- bzw. ¢-Richtung. Unsere Naherung fur u(z;,t;) werden
wir mit u; ; bezeichnen.

In einem zweiten Schritt missen wir die partiellen Ableitungen ou /0t bzw.
0%u/0x* aus (1.5a) durch Ausdriicke annahern, die wir auf dem Gitter
bestimmen konnen.

1.3 Diskretisierung und Stabilitat TU Chemnitz, Sommersemester 2013
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Dazu betrachten wir zuerst eine Funktion in einer Variablen,
f:ROI=|a,0] >R, x— f(x),
und nehmen an, dass f in xy € I differenzierbar ist. Well

(o) = lim f(xo + h) — f(xo)

h—0 h

gilt, liegt es nahe, f'(x() etwa durch eine der drei Formeln

f(xo+h) — f(xo)

2 (Vorwértsdifferenz) (1.6)
fzo) — i(xo —h) (Riackwartsdifferenz) (1.7)
f o + h)2—hf(wo —h) (zentrale Differenz) (1.8)

anzunahern. Dabei soll die Schrittweite h naturlich ,klein® sein.

1.3 Diskretisierung und Stabilitat TU Chemnitz, Sommersemester 2013
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Die zweite Ableitung f” (x() approximieren wir durch eine zentrale Differenz
zweiter Ordnung

f'(xo +h) — f'(xo)

f//(:EO) ~ h

f(xo+h)—f(xo)  f(xo)—f(xo—h)
h h
h

f(xo+h) —2f(xo) + f(xo —h)
h? ‘

1.3 Diskretisierung und Stabilitat TU Chemnitz, Sommersemester 2013
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Diskretisierungsfehler:

a) Ist f in I zweimal stetig differenzierbar, so gilt

f(xo + h) — f(xo)
h

mit |C1| < 2 max,¢; | f”(x)| (analog fir Rickwartsdifferenz).

— f/(ZU()) -+ Clh

b) Ist f in I dreimal stetig differenzierbar, so gilt
f(xo+h)— f(zo—h)
2h

mit |Cs| < & max,e; | (x)).

= f'(zo) + C3h”

c) Ist f in I viermal stetig differenzierbar, so gilt

f(xo+Nh) —2f(xo) + f(xo — )
h2

mit |Cy| < & maxyer [P (2)].

_ f//(xo) 4+ C4h2

1.3 Diskretisierung und Stabilitat TU Chemnitz, Sommersemester 2013
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Analog bei partiellen Ableitungen, z.B.:

ou _u(r,t+ k) — u(w,t)
o (Bt~ k ’
ou u(x + h,t) —u(z,t)
—($, t) ~
Ox h
und
0*u _ulr+h,t) = 2u(wz,t) +u(x — h,t)
preCie B2 '

1.3 Diskretisierung und Stabilitat TU Chemnitz, Sommersemester 2013
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FUr n = 4 ergibt sich dann

U1 — U1,0

Approximiere du/dt(x,ty) durch eine Vorwartsdifferenz und du? /0x*(x, to)
durch eine zentrale Differenz zweiter Ordnung.

Up,0 — 2U1,0 + U2 0

k

U2.1 — U2,0

h? ’
u1,0 — 2u2,0 + U3,0

k

u3,1 — uU3,0

h? ’
U2,0 — 2U3,0 + Ua 0

k

Ug,1 — U4,0

h? ’

k

uz,0 — 2U4,0 + Us 0
h? .

1.3 Diskretisierung und Stabilitat
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Wir 16sen diese Gleichungen nach u; ; auf und setzen 7 := k/h?.
(Beachte ug,0 = us o = 0, Randbedingungen!)

Alle Eintrage auf der rechten Seite dieser Gleichung sind bekannt (Anfangs-
bedingung!), wir konnen also die Naherungswerte v, ; fur die Zeitschicht
t = k bestimmen. Analog kann man danach aus den Werten u; ; die Werte
u; o fOr die Zeitschicht t = 2k berechnen, usw.

1.3 Diskretisierung und Stabilitat

TU Chemnitz, Sommersemester 2013



Numerik

35

Ziel: Berechne Naherungen w; ; flr die Losung u(ih, jk) von (1.5a), (1.5b),

Explizites Euler-Verfahren:

(

1.5¢), wobel 1 <1< n,1<j5<m.

Bestimme w?) := [u1.0,u2.0,- -, unol’ = [f(x1), f(22),..., f(zn)]"
aus der gegebenen Anfangsbedingung.
Firj=1,2,....m

berechne u) = [uy ;,usj,...,un ]’ durch

ull) = [T +7A;] ulU~Y, (1.10)

Dabei bezeichnen

I die Einheitsmatrix der Dimension n x n,

T =k/h?,

Ay, die Tridiagonalmatrix A, = tridiag(1, —2,1) € R™*" (s.0.) und

1) den Vektor, der die Naherungen fir die Temperatur zur Zeit t = jk
enthalt.

1.3 Diskretisierung und Stabilitat
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Fir k = 1/11, h = 7/30:

EROELEIYY

Ort

Zeit

TU Chemnitz, Sommersemester 2013
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Die folgende Tabelle zeigt, dass man flr kleinere Werte von k£ sogar noch
unsinnigere Werte erhalt. Erst wenn die Zeitschrittweite k£ ,winzig” ist,
ergeben sich brauchbare Naherungen.

k w(7h,1) | w(14h,1) | w(21h,1) | u(28h,1)
1/11 | 3.710° | 3.1 10° -6.310° | -1.3 10°
1/50 | -2.710%% | -3.710%% | 8.510%% | -2.7 10?3
1/100 | 1.4 10%* | -6.110%° | 1.1 10*% | -3.510%°
1/150 | 6.510° | -1.2107 | 1.210" | -3.310°
1/200 | 7.210~' | 1.1 10° 9.110°! | 24 10!
1/250 | 7.2101 | 1.1 10° 9.110°! | 24 107!
0 721071 | 1.1 10" 9.110°! | 24 107!

(h = 7/30, k = 0 bedeutet hier, dass es sich bei den zugehdrigigen u-
Werten um die Funktionswerte der exakten Losung handelt.)

1.3 Diskretisierung und Stabilitat
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Spezialfall n = 4)

Ui,
U1

us, 1

Ugq.1

Implizites Euler-Verfahren:

du

Uu1,0
u2,0
us,o

U4,0

Einziger Unterschied zum expliziten Verfahren:

u(xz,t) —u(x,t — k) |

k

Nun ergibt sich fur die Gitterpunkte auf der ersten Zeitschicht t = k (im

Ui, 1
U1

us, 1

Ugq.1

1.3 Diskretisierung und Stabilitat
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Die Unbekannten auf der neuen Zeitschicht sind hier implizit durch die
Werte auf der alten Zeitschicht gegeben, namlich als Losung eines Ii-
nearen Gleichungssystems. D.h. in jedem Zeitschritt des impliziten Euler-
Verfahrens muss ein lineares Gleichungssystem gelost werden.

Bestimme (¥ := [u1 o, u2.0, -, tunol" = [f(21), f(22),..., f(zn)]"
aus der gegebenen Anfangsbedingung.
Firj=1,2,....m

berechne v = [uy ;,uz;,...,un;]" als Ldsung von

(I —7Ap)uY) = uU~b, (1.11)

Fir k = 1/11 und h = 7/30 ergibt sich:

1.3 Diskretisierung und Stabilitat TU Chemnitz, Sommersemester 2013
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Anfangswert (t=0)

numerische Loesung (t=1)
15 : .

0.5

15

0.5

0.06

0.04}

0.02}

exakte Loesung (t=1)

1.3 Diskretisierung und Stabilitat
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Warum verhalten sich explizites und implizites Verfahren so unter-
schiedlich?

Bezeichnungen: Exakte Losung far t = jk
D (h, k) = [ulh, ik),u(2h, 7k), . .., u(nh, jk)]* € R™.
Naherungslosung far ¢t = jk
w)(h, k) € R mit Verf € {ex,im}.
Globaler Diskretisierungsfehler dieser Verfahren
el (h, k) == ul?) (h, k) — wdh(h, k).

Von einem ,verninftigen“ Verfahren wird man erwarten, dass der globa-
le Diskretisierungsfehler gegen Null strebt, wenn die Schrittweiten klein
werden,

e (h, k) — 0 fir jk fixiert und h, k — 0.

1.3 Diskretisierung und Stabilitat TU Chemnitz, Sommersemester 2013



Numerik 42

Der lokale Diskretisierungsfehler der beiden Verfahren ist durch
d (h,k) = wP (b k) —[I+7A)u Y (0, k),
d9(h,k) = [I—7Aul (b k) — uwl ™ (k)

(r = k/h?) erklart. Er gibt an, wie gut die exakte Losung die jeweilige
Differenzenapproximation erfallt (vgl. (1.10) und (1.11)).

Es qilt (C7, C> unabhangig von h, k, 5 und /)

erf

M<”wwm+guak+cm% (¢=1,2,...,n), Verfe {ex,im}.

Die lokalen Diskretisierungsfehler der beiden Verfahren sind qualitativ
gleich. Insbesondere erfillen sie

d9(h,k) -0 fir kh—0

(solche Verfahren nennt man konsistent). Dass sich die globalen Diskre-
tisierungsfehler trotzdem erheblich unterscheiden, liegt am unterschiedli-
chen Stabilitatsverhalten der beiden Algorithmen.
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Entscheidend: Zusammenhang zwischen globalen und lokalen Diskreti-
sierungsfehlern

es (k) = [I+7Anles (b, k) + dg (h, k),
I —rA)e (h k) = eg " (hk)+dg) (b k).
Einheitliche Schreibweise:
e (h, k) = By re "V (h,k) + g} (1.12)
mit der Fehlerfortpflanzungsmatrix
I+ 1Ay, fir das explizite Euler-Verfahren,
Bk = . ) o (1.13)
(I —TApR) far das implizite Euler-Verfahren
und einem Vektor
40 diy (h, k) | (explizit), 1.14)
Pk (I—7Ax)"'dY (h,k)  (implizit).
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Betrachten wir nun ganz abstrakt das Wachstumsverhalten einer Vektorfol-
ge {e¥};_o1..., die rekursiv durch

e .= BelU=V 4 gl (5=1,2,...) mite® =0

gegeben ist. Es gilt

e — g
J
) = BelV 1 g = 3 pimmgm
m=1
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Das bedeutet

J J
lePla =11 B ™g™ 2 < > 1Bl "lg"™ |
m= m= (1.15)

1<m

j
< [ max_ IIQ(’”)H Z 1Bz

Der erste Faktor maxi<,,<; ||g\"™||> wird bei beiden Euler-Verfahren (wie
bei allen konsistenten Differenzenschemata) beliebig klein, wenn h und &
nur genugend klein gewahlt sind. Der zweite Faktor,

N~ s
2 T ; )
(IBllz = 1)/([Bll2 —1),  falls|[Bll2 # 1

m=1

ist beschrankt falls || B||2 < 1 (namlich durch 1/(1 —||B||2)). Ist aber || B||2 >
1, so wachst er Uber alle Schranken.
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Wir nennen nun ein Differenzenverfahren stabil, wenn die Norm der zu-
gehorigen Fehlerfortpflanzungsmatrix kleiner als 1 ist (und andernfalls
instabil).

Mit (1.15) haben wir ein ,Metatheorem® der numerischen Mathematik be-
wiesen: Stabilitat (dh. der zweite Faktor auf der rechten Seite von (1.15)
ist beschrankt) und Konsistenz (dh. der erste Faktor strebt mit ~ und &
gegen 0) eines Differenzenschemas implizieren, dass der globale Diskre-
tisierungsfehler ebenfalls gegen 0 geht (fr h, K — 0) — man spricht dann
von einem konvergenten Verfahren. Klrzer gefasst,

Stabilitat + Konsistenz = Konvergenz.
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FUr das explizite Euler-Verfahren gilt
ko1
|Brxll2 = |l +TAn|]2 <1 genaudann,wenn 7= 3 < 5

(das explizite Euler-Verfahren ist nur bedingt stabil, d.h. unter der oben an-
gegebenen Bedingung), wahrend das implizite Euler-Verfahren unbedingt
stabil ist (d.h. ohne Bedingungen an h und k),

1Bnrlla = I(I —7Ap)"Yls <1 furalle hund k.

1.3 Diskretisierung und Stabilitat TU Chemnitz, Sommersemester 2013



	Einführung und Begriffe
	Modellbildung und numerische Simulation
	Linearisierung und Iterationsverfahren
	Diskretisierung und Stabilität


