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1 Einführung und Begriffe TU Chemnitz, Sommersemester 2013



Numerik 5

1.1 Mathematische Modellbildung und numerische Si-
mulation am Beispiel eines Wasserkreislaufs

”Simulation ist die Nachbildung eines dynamischen Prozesses in ei-
nem Modell, um zu Erkenntnissen zu gelangen, die auf die Wirklichkeit
übertragbar sind“ (VDI-Richtlinie 3633).

Zum einen ist die rechnerische Simulation dann unumgänglich, wenn reale
Experimente mit den Untersuchungsobjekten undurchführbar sind: Denken
Sie etwa an die Entstehung von Galaxien oder an Untersuchungsobjekte,
die erst geplant sind, also real noch gar nicht existieren. Aber auch wenn
reale Experimente möglich sind, ist es oft kostengünstiger und ressourcen-
schonender, stattdessen numerische Simulationen einzusetzen.
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Modelle müssen nicht notwendig
rechnerisch/mathematisch sein.

A. W. Philips, (London School of Eco-
nomics) mit dem Analogcomputer MO-
NIAC zur Modellierung ökonomischer
Vorgänge (”hydraulic macroeconomics“)
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vgl. Davis & Hersch: Descartes’ Dream. Dover, 2005
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A. Physikalische Grundlagen.

[EVANGELISTA TORRICELLI (1608–1647)]:

Abflussgeschwindigkeit v =
√

2gh, g = 9.81 (Gravitationsbeschleunigung),

h = Höhe des Wasserspiegels.

Abflussrate als Funktion des im Behälter befindlichen Wasservolumens V
(falls es sich um einen Zylinder mit Grundfläche A handelt)

f = a
√

2gV/A = c
√
V mit c := a

√
2g/A .

Der Parameter c kann über a variiert werden, wenn der Abfluss einen Hahn
besitzt. Wir sprechen von einem Steuerungsparameter.
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Numerik 9

B. Mathematisches Modell.

U(t), V (t),W (t), R(t) : Wassermengen zur Zeit t in den Behältern.

f1, . . . , f5 : Abflussfunktionen mit den Steuerungsparametern

c1, . . . , c5.

p = p(t) : ”Pumpenfunktion“

Änderungsraten der Wasservolumina: Zuflüsse weniger Abflüsse, d.h.

U ′(t) = p(t)− f1(U(t))− f2(U(t))

V ′(t) = f1(U(t))− f3(V (t))− f4(V (t))

W ′(t) = f2(U(t)) + f4(V (t))− f5(W (t))

R′(t) = f3(V (t)) + f5(W (t))− p(t).

(1.1)

Diese Gleichungen, sog. (gewöhnliche) Differentialgleichungen, heißen die
Kontinuitätsgleichungen unseres Systems.

1.1 Modellbildung und numerische Simulation TU Chemnitz, Sommersemester 2013
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Anfangszustand: Wassermengen in Behältern zu einem festen Zeitpunkt,
etwa für t = 0.

Das Verhalten unseres Systems ist für alle Zeiten t > 0 durch die obi-
gen Differentialgleichungen eindeutig bestimmt. Die Aufgabe, eine Lösung
des Systems (1.1) zu bestimmen, welche gegebene Anfangsbedingungen
erfüllt, nennt man ein Anfangswertaufgabe.

Addiert man alle Gleichungen, so ergibt sich

U ′(t) + V ′(t) +W ′(t) +R′(t) = 0,

ein globales Erhaltungsprinzip, welches besagt, dass sich die Gesamtwas-
sermenge in unserer Apperatur nicht verändert. (Es handelt sich hier um
ein geschlossenes System.)
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C. Algorithmus.

Anfangswertaufgaben lassen sich nur in Ausnahmefällen geschlossen
lösen (reine Mathematik: in unserem Fall gibt es genau eine Lösung).

Aufgabe der Numerik: Bereitstellung von Näherungslösungen.

Idee: Wir betrachten die Gleichungen nicht mehr für jeden beliebigen
Zeitpunkt, sondern nur noch zu bestimmten diskreten Zeitpunkten, etwa für
t0 = 0, t1 = 1, . . . (Diskretisierung).

Un := U(tn), . . . , Rn := R(tn) (Volumina, die sich zum Zeitpunkt tn in den
Behältern U, . . . , R befinden).

Änderungsrate U ′(tn) wird durch U(tn+1)−U(tn) = Un+1−Un approximiert
(wir nähern hier eine Tangentensteigung durch eine Sekantensteigung an).

1.1 Modellbildung und numerische Simulation TU Chemnitz, Sommersemester 2013
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Un+1 = Un + pn − f1(Un)− f2(Un)

Vn+1 = Vn + f1(Un)− f3(Vn)− f4(Vn)

Wn+1 = Wn + f2(Un) + f4(Vn)− f5(Wn)

Rn+1 = Rn + f3(Vn) + f5(Wn)− pn.

(1.2)

Diese vier Gleichungen heißen die diskreten Kontinuitätsgleichungen un-
serer Kreislaufs (System von vier Differenzengleichungen).

Addition liefert globales Erhaltungsprinzip

Un+1 + Vn+1 +Wn+1 +Rn+1 = Un + Vn +Wn +Rn.

Legt man noch einen Anfangszustand fest (etwa U0 = V0 = W0 = 0

sowie R0 = Gesamtwassermenge = 100) und wählt geeignete Werte für
die Parameter, etwa c1 =

√
12, c2 = c4 =

√
2, c3 = 1, c5 = 2 sowie p = 17,

so können wir unser Modell ”laufen lassen“.

1.1 Modellbildung und numerische Simulation TU Chemnitz, Sommersemester 2013
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D. Gleichgewichtswerte.

Simulation: Jede der Größen Un, Vn, Wn und Rn nähert sich mit zuneh-
mendem n einem Gleichgewichtswert U∞, V∞, W∞, R∞, wenn wir die
Steuerungsparameter nicht ändern.

Bestimme Gleichgewichtswerte ohne (zeitaufwendige) Simulation:

p = f1(U∞) + f2(U∞)

f1(U∞) = f3(V∞) + f4(V∞)

f5(W∞) = f2(U∞) + f4(V∞).

Die vierte Gleichung (p = f3(V∞) + f5(W∞)) ist redundant.

Hier – im Gegensatz zur ”Praxis“ – Gleichungen einfach (Dreiecksform).
Vorsicht: Die theoretisch ermittelten Gleichgewichtswerte können, aber
müssen nicht im Fassungsbereich der Behälter liegen (Nebenbedingun-
gen).

1.1 Modellbildung und numerische Simulation TU Chemnitz, Sommersemester 2013
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E. Steuerung.

Wesentliches Ziel von Simulationen: Optimierung des Systemverhaltens
bzw. Entscheidungshilfen für die Steuerung des Systems.

In unserem Beispiel etwa: Wie muss man die Steuerungsparameter wählen,
damit sich ein erwünschter (vorgegebener) Gleichgewichtszustand einstellt
(auch hier: Nebenbedingungen, man kann z.B. die Hähne nicht beliebig
weit öffnen).

Fixiert man p, so führt dies in unserem Fall zu drei Bedingungen für die fünf
Parameter c1, . . . , c5:

c1 = −c2 + p/
√
U∞

c4 = −c3 + c1
√
U∞/

√
V∞

c5 = c2
√
U∞/

√
W∞ + c4

√
V∞/

√
W∞.

In realen Systemen ist ein solches Steuerungsproblem nicht explizit lösbar,
man wird es nur näherungsweise und iterativ lösen können.

1.1 Modellbildung und numerische Simulation TU Chemnitz, Sommersemester 2013
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F. Kritik.

Realität→ mathematisches Modell
→ Algorithmus
→ numerische Simulation der Realität.

Bei jedem dieser drei Übergänge haben wir Fehler begangen.

— Modellierungsfehler. Unser Modell setzt wirbelfreien Wasserfluss vor-
aus; in der Realität werden sich aber Wirbel bilden. Die Torricelli-
sche Ausflussformel ist nur gültig, wenn sich die Spiegelhöhe langsam
ändert und keine Druckdifferenz zwischen Spiegel und Austrittsöffnung
besteht, Voraussetzungen, die in der Realität nicht immer erfüllt sind.

— Diskretisierungsfehler. Wir haben den stetigen Strom des Wassers
durch ”Durchschnittswerte“ (bez. Zeit und Raum) ersetzt.

— Rundungsfehler. Computer ”rechnen falsch“.

1.1 Modellbildung und numerische Simulation TU Chemnitz, Sommersemester 2013
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1.2 Linearisierung und Iterationsverfahren am Beispiel
des Newton-Verfahrens

Problem. Bestimme die Nullstelle(n) einer Funktion

f : R ⊇ D → R, x 7→ f(x),

bzw. die Lösung(en) der Gleichung

f(x) = 0, x ∈ D .

Konkreter: Bestimme
√
a, a > 0, d.h. die positive Nullstelle der Funktion

f : R→ R, x 7→ x2 − a,

mit Hilfe der Grundrechenarten.

1.2 Linearisierung und Iterationsverfahren TU Chemnitz, Sommersemester 2013
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Mathematischer Hintergrund.

[NIELS HENRIK ABEL (1802–1829)], [EVARISTE GALOIS (1811–1832)]:
Es ist unmöglich, die Nullstellen allgemeiner nichtlinearer Funktionen ele-
mentar zu berechnen.
Präziser: Die n Lösungen einer Gleichung der Form

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0

können für n > 4 i.A. nicht mit Hilfe der Grundrechenarten und der Wurzel-
funktionen durch die Koeffizienten dargestellt werden. Für n = 2:

x1,2 =
−a1 ±

√
a21 − 4a0

2
.

Für n = 3 und n = 4 gibt es ähnliche (kompliziertere) Formeln.

D.h.: Bei der Nullstellenbestimmung nichtlinearer Funktionen (oder, was
dasselbe ist, bei der Lösung nichtlinearer Gleichungen) ist man so gut wie
immer auf numerische Verfahren angewiesen!

1.2 Linearisierung und Iterationsverfahren TU Chemnitz, Sommersemester 2013
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Angenommen, x0 ist Näherung für
√
a mit dem Fehler e:

√
a = x0 + e (z.B. x0 = a).

Gesucht ist eine bessere Näherung x1. Taylor-Entwicklung:

0 = f(
√
a) = f(x0 + e) = f(x0) + f ′(x0) e︸ ︷︷ ︸

Taylor-Polynom

+
1

2
f ′′(ξ) e2

mit ξ ∈ (x0,
√
a), falls x0 <

√
a, bzw. ξ ∈ (

√
a, x0), falls x0 >

√
a.

Man kann die Gleichung 0 = f(x0) + f ′(x0) e + 1
2 f
′′(ξ) e2 nicht nach e

auflösen (ξ ist unbekannt!). Ist e aber klein, so ist e2 noch viel kleiner und
wir vernachlässigen den Term mit dem Faktor e2, d.h. wir betrachten die
lineare Gleichung

0 = f(x0) + f ′(x0) ẽ mit Lösung ẽ = − f(x0)

f ′(x0)
(falls f ′(x0) 6= 0).

1.2 Linearisierung und Iterationsverfahren TU Chemnitz, Sommersemester 2013
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Dann ist x1 := x0 + ẽ = x0 − f(x0)/f ′(x0) zwar keine Nullstelle von f , aber
(hoffentlich) eine bessere Näherung für eine Nullstelle von f als x0.

Auf die gleiche Weise gewinnt man aus x1 eine neue Näherung x2 usw.
Man setzt ein Iterationsverfahren ein:

Wähle eine Ausgangsnäherung x0 .

Für m = 1, 2, . . . iteriere gemäß

xm := xm−1 −
f(xm−1)

f ′(xm−1)
.

(1.3)

Für f(x) = x2 − a ergibt sich als Iterationsvorschrift

xm :=
1

2

(
xm−1 +

a

xm−1

)
(m = 1, 2, . . .). (1.4)

1.2 Linearisierung und Iterationsverfahren TU Chemnitz, Sommersemester 2013
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Man ersetzt das komplizierte Problem f(x) = 0 durch das lineare Problem
f(xm−1) + f ′(xm−1)ẽ = 0 und korrigiert xm = xm−1 + ẽ. Äquivalent: Wir
betrachten die Tangente an den Graphen von f im Punkt (xm−1, f(xm−1)),

y = f(xm−1) + f ′(xm−1) (x− xm−1) ,

und berechnen die Nullstelle xm dieser linearen Funktion.

Die Idee der Linearisierung lässt sich also wie folgt beschreiben: Erset-
ze ein kompliziertes Problem durch ein benachbartes lineares Problem
(bzw. durch eine Folge solcher Probleme). In unserem Beispiel wurde die
komplizierte Gleichung f(x) = 0 durch eine Folge linearer Gleichungen,
nämlich der Tangentengleichungen, ersetzt. Eine Linearisierung führt fast
immer auf ein Iterationsverfahren, weil ein Korrekturschritt i.Allg. nicht aus-
reicht, um eine brauchbare Näherung für die Lösung des komplizierten
Ausgangsproblems zu bestimmen.

1.2 Linearisierung und Iterationsverfahren TU Chemnitz, Sommersemester 2013
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Für f(x) = x2 − a mit a = 2:

x0 x1 x2 x3 x4

2 1.5 1.41 . . . 1.41421 . . . 1.41421356237 . . .

(Nur die korrekten Ziffern von x2, x3 und x4 sind angeben.)

Es stellen sich folgende Fragen:

1. Konvergiert das Verfahren, d.h. gilt limm→∞ xm =
√
a, für jede Wahl

des Startwerts x0?
Offenbar nicht, z.B. für x0 = 0 ist x1 noch nicht einmal definiert.

2. Also, für welche x0 konvergiert die Folge {xm}m≥0 gegen
√
a ?

3. Wann bricht man das Verfahren ab? Schranken für den Abbruchfehler
|xm −

√
a| sind erforderlich.

1.2 Linearisierung und Iterationsverfahren TU Chemnitz, Sommersemester 2013
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1.3 Diskretisierung und Stabilität
am Beispiel der Wärmeleitungsgleichung

Problem. Die Temperatur

u(x, t), 0 ≤ x ≤ π,

in einem homogenen Stab mit konstantem Querschnitt habe zur Zeit
t = 0 den Wert u(x, 0) = f(x). Der Stab sei wärmeisoliert – außer
an den Rändern x = 0 und x = π, wo die Temperatur konstant auf
u(0, t) = u(π, t) = 0 gehalten wird (t > 0).

Bestimme die Wärmeverteilung u(x, t∗), 0 ≤ x ≤ π, im Stab zur Zeit t∗ > 0.

1.3 Diskretisierung und Stabilität TU Chemnitz, Sommersemester 2013
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Mathematisches Modell.

Energieerhaltungssatz und Fouriersches Gesetz (”Wärme fließt in Richtung
abfallender Temperatur und zwar umso intensiver, je größer die Tempera-
turdifferenzen sind“): Gesucht ist eine Funktion

u : [0, π]× [0,∞)→ R, (x, t) 7→ u(x, t),

die die folgenden Eigenschaften besitzt:

∂u

∂t
(x, t) = γ2

∂2u

∂x2
(x, t) , 0 < x < π, t > 0 (1.5a)

mit einer Materialkonstanten γ(≡ 1). Außerdem

u(x, 0) = f(x), 0 ≤ x ≤ π, (Anfangsbedingung) (1.5b)

z.B. f(x) = 3 sin(x)− sin(2x) + sin(3x),

u(0, t) = u(π, t) = 0, t ≥ 0, (Randbedingungen). (1.5c)

1.3 Diskretisierung und Stabilität TU Chemnitz, Sommersemester 2013
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(1.5a) heißt Wärmeleitungsgleichung.

Für komplizierte Anfangs- und Randbedingungen oder ortsabhängige Ma-
terialkonstanten kann man die Lösung solcher Probleme nicht explizit
angeben. Es lässt sich jedoch beweisen, dass (1.5a), (1.5b), (1.5c) auch
dann ein sachgemäß gestelltes Problem (im Sinne von [JACQUES SALOMON

HADAMARD (1865–1963)]) ist:

1. Es besitzt eine Lösung.

2. Diese ist eindeutig.

3. Sie hängt ferner stetig von den Daten (in diesem Fall den Anfangs- und
Randbedingungen) ab!

1.3 Diskretisierung und Stabilität TU Chemnitz, Sommersemester 2013
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Diskretisierung durch finite Differenzen: Bestimme u nur noch auf einem
Gitter oder Netz

Ωh,k = {(xi, tj) : xi = ih für i = 0, 1, . . . n+ 1, tj = jk für j = 0, 1, . . .} .

Dabei sind h := π/(n + 1) bzw. k > 0 die Schrittweiten (Gitter- oder
Netzweiten) in x- bzw. t-Richtung. Unsere Näherung für u(xi, tj) werden
wir mit ui,j bezeichnen.

In einem zweiten Schritt müssen wir die partiellen Ableitungen ∂u/∂t bzw.
∂2u/∂x2 aus (1.5a) durch Ausdrücke annähern, die wir auf dem Gitter
bestimmen können.

1.3 Diskretisierung und Stabilität TU Chemnitz, Sommersemester 2013
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Dazu betrachten wir zuerst eine Funktion in einer Variablen,

f : R ⊇ I = [α, β]→ R , x 7→ f(x),

und nehmen an, dass f in x0 ∈ I differenzierbar ist. Weil

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

gilt, liegt es nahe, f ′(x0) etwa durch eine der drei Formeln

f(x0 + h)− f(x0)

h
(Vorwärtsdifferenz) (1.6)

f(x0)− f(x0 − h)

h
(Rückwärtsdifferenz) (1.7)

f(x0 + h)− f(x0 − h)

2h
(zentrale Differenz) (1.8)

anzunähern. Dabei soll die Schrittweite h natürlich ”klein“ sein.

1.3 Diskretisierung und Stabilität TU Chemnitz, Sommersemester 2013
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Die zweite Ableitung f ′′(x0) approximieren wir durch eine zentrale Differenz
zweiter Ordnung

f ′′(x0) ∼ f ′(x0 + h)− f ′(x0)

h

∼
f(x0+h)−f(x0)

h − f(x0)−f(x0−h)
h

h
(1.9)

=
f(x0 + h)− 2f(x0) + f(x0 − h)

h2
.

1.3 Diskretisierung und Stabilität TU Chemnitz, Sommersemester 2013
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Diskretisierungsfehler:

a) Ist f in I zweimal stetig differenzierbar, so gilt

f(x0 + h)− f(x0)

h
= f ′(x0) + C1h

mit |C1| ≤ 1
2 maxx∈I |f ′′(x)| (analog für Rückwärtsdifferenz).

b) Ist f in I dreimal stetig differenzierbar, so gilt

f(x0 + h)− f(x0 − h)

2h
= f ′(x0) + C3h

2

mit |C3| ≤ 1
6 maxx∈I |f ′′′(x)|.

c) Ist f in I viermal stetig differenzierbar, so gilt

f(x0 + h)− 2f(x0) + f(x0 − h)

h2
= f ′′(x0) + C4h

2

mit |C4| ≤ 1
12 maxx∈I |f (4)(x)|.

1.3 Diskretisierung und Stabilität TU Chemnitz, Sommersemester 2013
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Analog bei partiellen Ableitungen, z.B.:

∂u

∂t
(x, t) ≈ u(x, t+ k)− u(x, t)

k
,

∂u

∂x
(x, t) ≈ u(x+ h, t)− u(x, t)

h

und

∂2u

∂x2
(x, t) ≈ u(x+ h, t)− 2u(x, t) + u(x− h, t)

h2
.

1.3 Diskretisierung und Stabilität TU Chemnitz, Sommersemester 2013
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Approximiere ∂u/∂t(x, t0) durch eine Vorwärtsdifferenz und ∂u2/∂x2(x, t0)

durch eine zentrale Differenz zweiter Ordnung.

Für n = 4 ergibt sich dann

u1,1 − u1,0
k

=
u0,0 − 2u1,0 + u2,0

h2
,

u2,1 − u2,0
k

=
u1,0 − 2u2,0 + u3,0

h2
,

u3,1 − u3,0
k

=
u2,0 − 2u3,0 + u4,0

h2
,

u4,1 − u4,0
k

=
u3,0 − 2u4,0 + u5,0

h2
.

1.3 Diskretisierung und Stabilität TU Chemnitz, Sommersemester 2013
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Wir lösen diese Gleichungen nach ui,1 auf und setzen τ := k/h2.
(Beachte u0,0 = u5,0 = 0, Randbedingungen!)

u1,1

u2,1

u3,1

u4,1

 =


u1,0

u2,0

u3,0

u4,0

+ τ


−2 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −2



u1,0

u2,0

u3,0

u4,0

 .
Alle Einträge auf der rechten Seite dieser Gleichung sind bekannt (Anfangs-
bedingung!), wir können also die Näherungswerte ui,1 für die Zeitschicht
t = k bestimmen. Analog kann man danach aus den Werten ui,1 die Werte
ui,2 für die Zeitschicht t = 2k berechnen, usw.

1.3 Diskretisierung und Stabilität TU Chemnitz, Sommersemester 2013
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Explizites Euler-Verfahren:

Ziel: Berechne Näherungen ui,j für die Lösung u(ih, jk) von (1.5a), (1.5b),
(1.5c), wobei 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Bestimme u (0) := [u1,0, u2,0, . . . , un,0]
T

= [f(x1), f(x2), . . . , f(xn)]
T

aus der gegebenen Anfangsbedingung.

Für j = 1, 2, . . . ,m

berechne u (j) = [u1,j , u2,j , . . . , un,j ]
T durch

u (j) = [I + τAh] u (j−1). (1.10)

Dabei bezeichnen

• I die Einheitsmatrix der Dimension n× n,
• τ = k/h2,
• Ah die Tridiagonalmatrix Ah = tridiag(1,−2, 1) ∈ Rn×n (s.o.) und
• u (j) den Vektor, der die Näherungen für die Temperatur zur Zeit t = jk

enthält.
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Für k = 1/11, h = π/30:
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Die folgende Tabelle zeigt, dass man für kleinere Werte von k sogar noch
unsinnigere Werte erhält. Erst wenn die Zeitschrittweite k ”winzig“ ist,
ergeben sich brauchbare Näherungen.

k u(7h, 1) u(14h, 1) u(21h, 1) u(28h, 1)

1/11 3.7 100 3.1 100 -6.3 100 -1.3 100

1/50 -2.7 1023 -3.7 1023 8.5 1023 -2.7 1023

1/100 1.4 1024 -6.1 1025 1.1 1026 -3.5 1025

1/150 6.5 106 -1.2 107 1.2 107 -3.3 106

1/200 7.2 10−1 1.1 100 9.1 10−1 2.4 10−1

1/250 7.2 10−1 1.1 100 9.1 10−1 2.4 10−1

0 7.2 10−1 1.1 100 9.1 10−1 2.4 10−1

(h = π/30, k = 0 bedeutet hier, dass es sich bei den zugehörigigen u-
Werten um die Funktionswerte der exakten Lösung handelt.)
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Implizites Euler-Verfahren:

Einziger Unterschied zum expliziten Verfahren:

∂u

∂t
(x, t) ≈ u(x, t)− u(x, t− k)

k
.

Nun ergibt sich für die Gitterpunkte auf der ersten Zeitschicht t = k (im
Spezialfall n = 4)

u1,1

u2,1

u3,1

u4,1

 =


u1,0

u2,0

u3,0

u4,0

+ τ


−2 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −2



u1,1

u2,1

u3,1

u4,1

 .
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Die Unbekannten auf der neuen Zeitschicht sind hier implizit durch die
Werte auf der alten Zeitschicht gegeben, nämlich als Lösung eines li-
nearen Gleichungssystems. D.h. in jedem Zeitschritt des impliziten Euler-
Verfahrens muss ein lineares Gleichungssystem gelöst werden.

Bestimme u (0) := [u1,0, u2,0, . . . , un,0]
T

= [f(x1), f(x2), . . . , f(xn)]
T

aus der gegebenen Anfangsbedingung.

Für j = 1, 2, . . . ,m

berechne u (j) = [u1,j , u2,j , . . . , un,j ]
T als Lösung von

(I − τAh)u (j) = u (j−1). (1.11)

Für k = 1/11 und h = π/30 ergibt sich:
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Warum verhalten sich explizites und implizites Verfahren so unter-
schiedlich?

Bezeichnungen: Exakte Lösung für t = jk

u
(j)
∗ (h, k) := [u(h, jk), u(2h, jk), . . . , u(nh, jk)]

T ∈ Rn.

Näherungslösung für t = jk

u
(j)
Verf(h, k) ∈ Rn mit Verf ∈ {ex, im}.

Globaler Diskretisierungsfehler dieser Verfahren

e
(j)
Verf(h, k) := u

(j)
∗ (h, k)− u

(j)
Verf(h, k).

Von einem ”vernünftigen“ Verfahren wird man erwarten, dass der globa-
le Diskretisierungsfehler gegen Null strebt, wenn die Schrittweiten klein
werden,

e(j)(h, k)→ 0 für jk fixiert und h, k → 0.
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Der lokale Diskretisierungsfehler der beiden Verfahren ist durch

d
(j)
ex (h, k) := u

(j)
∗ (h, k)− [I + τAh]u

(j−1)
∗ (h, k),

d
(j)
im (h, k) := [I − τAh]u

(j)
∗ (h, k)− u

(j−1)
∗ (h, k)

(τ = k/h2) erklärt. Er gibt an, wie gut die exakte Lösung die jeweilige
Differenzenapproximation erfüllt (vgl. (1.10) und (1.11)).

Es gilt (C1, C2 unabhängig von h, k, j und `)∣∣∣[d (j)
Verf(h, k)]`

∣∣∣ ≤ k(C1k + C2h
2) (` = 1, 2, . . . , n), Verf ∈ {ex, im}.

Die lokalen Diskretisierungsfehler der beiden Verfahren sind qualitativ
gleich. Insbesondere erfüllen sie

d (j)(h, k)→ 0 für k, h→ 0

(solche Verfahren nennt man konsistent). Dass sich die globalen Diskre-
tisierungsfehler trotzdem erheblich unterscheiden, liegt am unterschiedli-
chen Stabilitätsverhalten der beiden Algorithmen.
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Entscheidend: Zusammenhang zwischen globalen und lokalen Diskreti-
sierungsfehlern

e
(j)
ex (h, k) = [I + τAh]e

(j−1)
ex (h, k) + d

(j)
ex (h, k),

[I − τAh]e
(j)
im (h, k) = e

(j−1)
im (h, k) + d

(j)
im (h, k).

Einheitliche Schreibweise:

e(j)(h, k) = Bh,ke
(j−1)(h, k) + g

(j)
h,k (1.12)

mit der Fehlerfortpflanzungsmatrix

Bh,k :=

{
I + τAh für das explizite Euler-Verfahren,

(I − τAh)−1 für das implizite Euler-Verfahren
(1.13)

und einem Vektor

g
(j)
h,k :=

{
d
(j)
ex (h, k) (explizit),

(I − τAh)−1d
(j)
im (h, k) (implizit).

(1.14)
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Betrachten wir nun ganz abstrakt das Wachstumsverhalten einer Vektorfol-
ge {e(j)}j=0,1,..., die rekursiv durch

e(j) := Be(j−1) + g (j) (j = 1, 2, . . .) mit e(0) = 0

gegeben ist. Es gilt

e(1) = g (1),

e(2) = Be(1) + g (2) = Bg (1) + g (2),

e(3) = Be(2) + g (3) = B2g (1) +Bg (2) + g (3),

... =
...

e(j) = Be(j−1) + g (j) =

j∑
m=1

Bj−mg (m).
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Das bedeutet

‖e(j)‖2 = ‖
j∑

m=1

Bj−mg (m)‖2 ≤
j∑

m=1

‖B‖j−m2 ‖g (m)‖2

≤ [ max
1≤m≤j

‖g (m)‖2]

j∑
m=1

‖B‖j−m2 .

(1.15)

Der erste Faktor max1≤m≤j ‖g (m)‖2 wird bei beiden Euler-Verfahren (wie
bei allen konsistenten Differenzenschemata) beliebig klein, wenn h und k
nur genügend klein gewählt sind. Der zweite Faktor,

j∑
m=1

‖B‖j−m2 =

{
j, falls ‖B‖2 = 1,

(‖B‖j2 − 1)/(‖B‖2 − 1), falls ‖B‖2 6= 1
,

ist beschränkt falls ‖B‖2 < 1 (nämlich durch 1/(1−‖B‖2)). Ist aber ‖B‖2 ≥
1, so wächst er über alle Schranken.
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Wir nennen nun ein Differenzenverfahren stabil, wenn die Norm der zu-
gehörigen Fehlerfortpflanzungsmatrix kleiner als 1 ist (und andernfalls
instabil).

Mit (1.15) haben wir ein ”Metatheorem“ der numerischen Mathematik be-
wiesen: Stabilität (dh. der zweite Faktor auf der rechten Seite von (1.15)
ist beschränkt) und Konsistenz (dh. der erste Faktor strebt mit h und k

gegen 0) eines Differenzenschemas implizieren, dass der globale Diskre-
tisierungsfehler ebenfalls gegen 0 geht (für h, k → 0) – man spricht dann
von einem konvergenten Verfahren. Kürzer gefasst,

Stabilität + Konsistenz ⇒ Konvergenz.
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Für das explizite Euler-Verfahren gilt

‖Bh,k‖2 = ‖I + τAh‖2 < 1 genau dann, wenn τ =
k

h2
≤ 1

2

(das explizite Euler-Verfahren ist nur bedingt stabil, d.h. unter der oben an-
gegebenen Bedingung), während das implizite Euler-Verfahren unbedingt
stabil ist (d.h. ohne Bedingungen an h und k),

‖Bh,k‖2 = ‖(I − τAh)−1‖2 < 1 für alle h und k.
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