TU-Chemnitz, Fakultät für Mathematik - Professur Numerische Mathematik Vorlesung: Prof. Dr. Oliver Ernst Übung: Dr. Roman Unger

Homepage zur Übung: https://www.tu-chemnitz.de/mathematik/numa/lehre/nla-2017

3. Übung - Projektionen

Aufgabe 1

Geben Sie jeweils die idempotente Matrix $P_{\mathcal{R},\mathcal{S}}$ zur *Projektion auf* \mathcal{R} *orthogonal zu* \mathcal{S} an:

- 1. $\mathcal{R} = \text{span}\{(1,0)^{\top}\} \text{ und } \mathcal{S} = \text{span}\{(1,1)^{\top}\},$
- 2. $\mathcal{R} = \text{span}\{(1,2)^{\top}\} = \mathcal{S}.$

Aufgabe 2

Es sei $u \in \mathbb{R}^n$ mit ||u|| = 1 und $P = uu^{\top}$ sowie $Q = I_n - uu^{\top}$.

- 1. Bestimmen Sie Bild und Kern von ${\cal P}$ und ${\cal Q}$ und zeigen Sie, dass beide Orthogonalprojektionen sind.
- 2. Zeigen Sie, dass $\operatorname{rang} P = 1$ und $\operatorname{rang} Q = n 1$ und bestimmen Sie alle Eigenwerte und die zugehörigen Eigenunterräume von P und Q.

Aufgabe 3

Es seien \mathcal{R} und \mathcal{S}^{\perp} nicht-leere, komplementäre Unterräume des \mathbb{C}^n . Beweisen Sie die folgenden Aussagen über Projektionen.

- 1. $I_n P_{\mathcal{R},\mathcal{S}} = P_{\mathcal{S}^{\perp},\mathcal{R}^{\perp}}$.
- 2. $P_{\mathcal{R},\mathcal{S}}^{\top}$ ist eine Projektion.
- 3. Jede Projektion $P=P_{\mathcal{R},\mathcal{S}}$ ist *diagonalisierbar*, d.h., es existiert eine reguläre Matrix $T\in\mathbb{C}^{n\times n}$, so dass TPT^{-1} eine Diagonalmatrix ist. Zu welcher Diagonalmatrix ist P änhlich?
- 4. Für jede Projektion $P_{\mathcal{R},\mathcal{S}}$ ist $||P_{\mathcal{R},\mathcal{S}}|| \geq 1$. Dabei gilt Gleichheit genau dann, wenn $P_{\mathcal{R},\mathcal{S}}$ eine Orthogonalprojektion ist.
- 5. Eine Projektion $P_{\mathcal{R},\mathcal{S}}$ ist genau dann symmetrisch d.h., selbstadjungiert bzgl. eines zugrundeliegenden Innenproduktes wenn sie eine Orthogonalprojektion ist.