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Konvergenz von Funktionenfolgen

Im folgenden Kapitel werden wir uns mit Folgen und Reihen (reeller) Funktionen
auseinandersetzen.

Definition 8.1
Eine Folge
f17f27f37-'-7fn,...
von Funktionen
fn: I =R

auf einem Intervall I C R nennen wir Funktionenfolge auf I.

Notation: (f,)ncn oder kiirzer (f,,), analog zu Zahlenfolgen.
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Konvergenz von Funktionenfolgen

Punktweise Konvergenz

Wir suchen nach geeigneten Konvergenzbegriffen fiir Funktionenfolgen.
Der Naheliegendste ist:

Definition 8.2

Eine Funktionenfolge (f,,) auf I C R heit punktweise konvergent gegen die
Funktion f: I — R wenn

lim f,(z) = f(z) fir alle z € I, (8.1)

d. h. wenn fiir jedes « € T die Zahlenfolge (f,(x)), gegen f(x) konvergiert. Die
Funktion f heilt Grenzfunktion von (fy,).

Aquivalent zu (8.1) ist die Aussage

|fu(z) = f(x)] =0 fir n— oo fir alle z € I.
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Konvergenz von Funktionenfolgen

Punktweise Konvergenz, Beispiele und Probleme

Die Funktionenfolgen f,(z) = nz(1 — 2)™ (links) und f,(x) = 2(1 — z)™ (rechts)
konvergieren auf [0, 1] beide punktweise gegen f(z) = 0.

1lef

f5

—

1712 16 13

1 1712 ue 13

Am Beispiel der Funktionenfolge links erkennen wir bereits, dass trotz punktweiser

Konvergenz auch fiir groBe n nicht alle Funktionswerte von f,, beliebig nahe bei
Null liegen miissen.
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Konvergenz von Funktionenfolgen

Punktweise Konvergenz, Beispiele und Probleme
Punktweise Konvergenz ist generell eine recht schwache Eigenschaft.
Beispielsweise kann folgendes passieren:

® Die Grenzfunktion f ist nicht stetig, obwohl es alle Folgenglieder f,, sind.

® Die Folge der Integrale [ f,(x) da konvergiert, aber nicht gegen das Inte-
gral [} f(x) dz iber die Grenzfunkt|on

Illustrieren Sie dies an folgenden Beispielen:

° f,:[0,1] > R, fu(z)=2z",

¢ fr:[0,1] =R, fu(z) :{ g%,

—3 =

) [ e)
IA IN
5 8
A
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Konvergenz von Funktionenfolgen

GleichmaRige Konvergenz

Die Problemfille von S.13 haben gemeinsam, dass die Funktionswerte f,,(x) auch
fiir groRe n nicht gleichmaRig nahe bei f(z) liegen.

Wir formulieren daher einen strengeren Konvergenzbegriff:

Definition 8.3

Eine Funktionenfolge (f,,) auf einem Intervall I C R heiBt gleichmaRig konvergent
gegen f: I — R, wenn

sup | fn(z) — f(x)| = 0 fir n — oco. (8.2)
el

Erinnerung: Das Supremum sup M einer beschrinkten Menge M C R ist deren kleinste obere
Schranke. Falls das Maximum existiert, gilt sup M = max M.
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Konvergenz von Funktionenfolgen

Beispiel

Die Funktionenfolge f,,(z) = sinz + 1 sin(3z + n) konvergiert auf R gleichmaRig
gegen f(x) =sinz, denn

1 1
sup | fn(x) — f(z)| =sup —|sin(3z +n)| == =0 (n — o).
z€R zeR M n

N ///,/—l\\\ Gezeichnet sind einige Glieder der Funk-
OZ<\\\\\\\\ //// Ny tionenfolge sowie deren Grenzfunktion.
A 7 A\,
ol N\ N //’// \\f. Man beachte, dass ab einem bestimmten
: \\\\:/i/ : n (hier z.B. n > 5) alle Funktionsgra-
5 < " phen komplett innerhalb eines beliebig
Y SRR S diinnen ,,e-Schlauchs" um die Grenzfunk-

tion f verlaufen (blau gestrichelt).
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Konvergenz von Funktionenfolgen

Eigenschaften gleichmiRig konvergenter Funktionenfolgen

Satz 8.4

Konvergiert eine Funktionenfolge (f,) auf einem Intervall I gleichmaBig gegen
eine Funktion f, so konvergiert sie auch punktweise gegen f.

GleichmaRige Konvergenz ist also ,starker” als punktweise.

Konvergieren zwei Funktionenfolgen (f,,) und (gy) auf einem Intervall I gleich-
makig gegen Funktionen [ bzw. g, so konvergieren

® die Funktionenfolge (f, £ g.) gleichmiBig gegen f + g,
® die Funktionenfolge (\f,), A\ € R, gleichmalig gegen \f.
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Konvergenz von Funktionenfolgen

Eigenschaften gleichmiRig konvergenter Funktionenfolgen

Die gleichm3Rige Konvergenz behebt auch die ,Mangel* von S.13:

Ist (fy) eine auf dem Intervall I gleichmaRBig konvergente Folge stetiger Funktio-
nen, so ist auch die Grenzfunktion f auf I stetig.

Ist (f,) eine auf dem Intervall [a,b] gleichmaRig konvergente Folge integrierbarer
Funktionen, so ist auch die Grenzfunktion f integrierbar, und es gilt
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Konvergenz von Funktionenfolgen

Eigenschaften gleichmiRig konvergenter Funktionenfolgen

Schlielich formulieren wir noch ein Ergebnis fiir die Ableitung bei gleichmaRiger
Konvergenz:

Satz 8.8

Ist (f,) eine auf dem Intervall [a, ] gleichmiBig konvergente Folge differenzierba-
rer Funktionen mit Grenzfunktion f, und ist die abgeleitete Funktionenfolge (f!)
auf [a, b] ebenfalls gleichmiBig konvergent, so ist f differenzierbar mit

flz)= Jim fr(x) (fir alle z € [a,b]).
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Konvergenz von Funktionenfolgen

Funktionenreihen

Wie bei Zahlenfolgen kann man zu einer Funktionenfolge (f,,)n>0 eine Partialsum-
menfolge definieren:

fo, fot+fi, fot+rfi+fo, .., ka,...
k=0

Diese Partialsummenfolge nennen wir auch Reihe der Funktionen fi. Die Funktionen
fx heiBen Glieder der Funktionenreihe.

Notation: > ., fr oder > ., fr(x), sowohl fiir die Reihe selbst als auch fiir
deren Grenzwert, genau wie bei reellen Reihen.

Beispiel: Bereits bekannt ist die Funktionenreihe e = >"77 | mk—):
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Konvergenz von Funktionenfolgen

Gliedweises Integrieren und Differenzieren

Da Funktionenreihen spezielle Funktionenfolgen sind, kann man unsere Konvergenz-
begriffe wie auch die Satze 8.4 - 8.8 direkt iibertragen.

Sei > poo [r gleichmaRig konvergent auf [a,b] mit "7 fr = f.
Dann gelten:

® Sind alle Reihenglieder f} stetig, so ist auch die Summenfunktion f stetig,
und es gilt

/bf(a:) dxz/b [ifk(x)] dx:i " () d.
@ @ k=0

k=0"?
® Sind alle f, differenzierbar, und konvergiert die abgeleitete Reihe Y7 f/
gleichmiRig auf [a, b], dann ist auch die Summe f differenzierbar und

fiz) = lz fk(w)] =Y fila).
k=0 k=0
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Konvergenz von Funktionenfolgen

Potenzreihen

Bei diesen Funktionenreihen wihlt man als Glieder Funktionen vom Typ

fe(x) = ap(z — xo)k.

Als Teilsummen entstehen Polynome n-ten Grades: s, (z) = >, _, ar(z — x0)*.

Definition 8.9

Eine Reihe der Form
(o]
Z ax(z — z0)* (z,z0,ar € R) (8.3)
k=0

heiBt Potenzreihe mit Entwicklungspunkt g und Koeffizienten ay.

Die beriihmteste Potenzreihe kennen Sie bereits: e* = 77 | Lak.

Sie besitzt den Entwicklungspunkt xg = 0, die Koeffizienten a; = % und konver-

giert fiir alle z € R.
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Konvergenz von Funktionenfolgen

Konvergenzverhalten

Wir untersuchen nun das Konvergenzverhalten von (8.3) in Abhangigkeit von z,
wihrend a; und xg fest gehalten werden.

Satz 8.10 (Cauchy-Hadamard*)

Zu jeder Potenzreihe

o0
Z ap(x — xo)k
k=0

gibt es einen Konvergenzradius R € [0,00) U {oo} mit folgenden Eigenschaften:

® Die Potenzreihe konvergiert (absolut) fiir x € (zg — R, x¢ + R).

® Dje Potenzreihe konvergiert gleichmaPig auf jedem abgeschlossenen Intervall
IC (J}O — R, Io—l—R)

e Die Potenzreihe divergiert auBerhalb [xo — R, zo + R] (nur sinnvoll fiir R #
).

*Jacques Hadamard, 1865-1963, franzésischer Mathematiker
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Konvergenz von Funktionenfolgen

Prinzipskizze zum Konvergenzverhalten

.CL’()—R Xy )

? ?
l Konvergenz l
| |
1 |

_|_

® Das Intervall (g — R, x¢+ R) wird auch Konvergenzintervall der Potenzreihe
genannt.

® Das Konvergenzverhalten an den kritischen Punkten zq — R und ¢+ R muss
immer gesondert untersucht werden.
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Konvergenz von Funktionenfolgen

Berechnung des Konvergenzradius

Satz 8.11

Sei Y 22 ar(z — x0)* eine Potenzreihe mit Konvergenzradius R. Dann gilt:

* R = klim , falls fast alle a;, von Null verschieden sind, und dieser
—00 1

Grenzwert existiert,

A

o R — 1+’WI falls der Grenzwert im Nenner existiert. Dabei sind die Kon-
m ap
k—oco

ventionen ,,-~ = 0" und ,,

e = o0 zu treffen.
(o)

(=]

Beweisidee: Quotienten- bzw. Wurzelkriterium fiir Zahlenreihen.
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Konvergenz von Funktionenfolgen

Beispiel

Der Konvergenzradius von e” = »"7° | 27 ist co. Tatsachlich ergibt sich mit dem
erstgenannten Kriterium

|
= lim £&jlll.:

R = lim

k—o0

Q41

Untersuchen Sie das Konvergenzverhalten der Potenzreihen

oo oo oo £L’
k. .k

> ktat, C D

k=1 k=0 k=0

Vergessen Sie nicht, die Randpunkte des Konvergenzintervalls zu untersuchen.
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Konvergenz von Funktionenfolgen

Gliedweises Differenzieren und Integrieren

Die Ergebnisse von S. 20 gelten natiirlich auch fiir Potenzreihen. Es gilt sogar

Satz 8.12

Die Potenzreihe Y pe , a(x — 0)* besitze den Konvergenzradius R > 0. Die Funktion

fi:(xo—R,z0+R) =R, f(z):Zak(z—zo)k

besitzt dann folgende Eigenschaften:

® f ist stetig.
® f ist auf jedem abgeschlossenen Teilintervall von (xg — R, xo + R) integrierbar, wobei

/f(x)dx—zk —z)ft 4+ C.

® f ist beliebig oft differenzierbar mit

= ikak(x —x0)*t, f(x) = ik(k —Dag(z —z0)* 2, usw.

k=2

Insbesondere ist f™) (z9) = nla,, n=0,1,... .
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Konvergenz von Funktionenfolgen

Beispiel

Aus der Summenformel fiir die geometrische Reihe erhilt man fir

1
1—2z

f:(-1,1) =R, f(z)=

die Potenzreihendarstellung

1 —
11—z

fz) =

o
Zxk =l+z+a?+2°+. ..
k=0
Durch gliedweises Differenzieren (Satz 8.12, Punkt 3) erhalt man fiir die Ableitung
die Darstellung
1 o0 oo

f(z)= Ao :kak_l =Z(k+1)xk =1+2z+32% +42® + ...
k=1 k=0

Wie lautet die Potenzreihendarstellung zu F(z) = In(1 — z) (2o =0, |z| < 1)? |
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Konvergenz von Funktionenfolgen

Darstellbarkeit durch Potenzreihen

Es stellt sich die Frage, wann z.B. eine unendlich oft differenzierbare Funktion als
Potenzreihe geschrieben (,in eine Potenzreihe entwickelt") werden kann.

Aus der Formel in der letzten Zeile von Satz 8.12 ergibt sich, dass fiir die Koeffizi-
enten immer

_ f(k)(xo)
K
gelten muss. Die aus Abschnitt 4.6 bekannte Taylor-Reihe

ak

k

i f(k)(xo)

o (x — x0)

k=0

ist also der einzige Kandidat fiir eine mogliche Potenzreihendarstellung von f.
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Konvergenz von Funktionenfolgen

Leider gibt es unendlich oft differenzierbare Funktionen, die man nicht als Potenz-
reihen schreiben kann. Es kann vorkommen, dass

¢ die Taylor-Reihe den Konvergenzradius R = 0 besitzt, d. h. nur fiir t = xg
konvergiert.

® die Taylor-Reihe durchaus konvergiert (R > 0), aber nicht gegen die Funkti-
on f (!). Ein prominentes Beispiel ist die Funktion

- e_o%?, fir x #0;
f(x)_{o, fiir 2 = 0,

fiir die f(*)(0) = 0 fiir alle k € N gilt. Die Taylorreihe ist somit die konstante
Funktion f =0 und hat mit f nichts zu tun.
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Konvergenz von Funktionenfolgen

Darstellbarkeit durch Potenzreihen

Wann genau eine unendlich oft differenzierbare Funktion f durch ihre Taylor-Reihe
dargestellt wird, ist schwierig zu charakterisieren.

Wir begniigen uns mit einer hinreichenden Bedingung:

Satz 8.13

Die Funktion f : I = (xo—7,x0+7) — R sei unendlich oft differenzierbar. Gilt

k
,
im — (k+1) =
o el @l=0

(k)
so besitzt die Taylor-Reihe Y 72 . k(!m) (z — mo)* den Konvergenzradius R > r,

und es gilt

f(x):ki%%(x_%)k fiir alle x € I.
=0
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Konvergenz von Funktionenfolgen

Darstellbarkeit durch Potenzreihen

Man bestimme die Taylorreihe zu f(z) = sinz (zg = 0). Wie verhilt es sich
mit der Konvergenz? Kdnnte man diese Potenzreihe auch aus der Formel ¢ =
cosx + isinx erhalten?

(k)
Die Funktion f(x) = sinz und einige ihrer Taylorpolynome T, (z) = > 7 _, fT(O)zk.
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Konvergenz von Funktionenfolgen

Rechnen mit Potenzreihen

SchlieRlich kann man Potenzreihen gliedweise addieren und in Produkten von Po-
tenzreihen wie bei endlichen Summen ausmultiplizieren:

Satz 8.14

Fiir Summe und Produkt zweier Potenzreihen Y-, ax(z—z0)* und > oo b (z—
x0)* gilt im gemeinsamen Konvergenzbereich:

o0
Zakx—xo —l—Zbkx—mo :Zak—i—bk m—xo)k
bzw. )

<Z ak(z — il?o)k) (Z bi(z — ﬂﬂo)k) = crlw — o)
k=0 k=0 k=0

mit ¢, = apbg + a1bg—1 + ... + agbo.
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Konvergenz von Funktionenfolgen

Rechnen mit Potenzreihen, Beispiel

21 3!

—x+x2+x—3—m—5————+—+
- 3 30 90 630 22680

L 2 8 23 gh
e’sin(zr)=|1+z+ 4+ + | |le—=+—+

Bestatigen Sie mindestens die ersten vier Summanden durch detaillierte Rech- J
nung.
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Konvergenz von Funktionenfolgen

Division von Potenzreihen

Will man die Koeffizienten von

e’} o] k
_p0r(r —x
ek (@ — )" = Z’&TO a 0>k
2 > o bl — o)

berechnen, formt man zunichst um:

oo oo oo
(Z cp(z — xo)k> (Z bi(x — xo)k> = Z ar(x — z0)*

k=0 k=0 k=0
und fiihrt dann einen Koeffizientenvergleich durch.
Mit Hilfe von

$3 5175 (137 2132 1’4 .'136
s1nx::v—§+a—ﬁ+~~ und cosle—a—l-—'—a—k-n

berechne man die ersten fiinf Koeffizienten der Potenzreihe zu tanz = %
(1‘0 = 0)
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@ Potenz- und Fourier-Reihen
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® Die nach dem franzésischen Mathematiker, Physiker,
Agyptologe und Revolutionir Joseph Fourier (1768
1830) benannte Fourier-Analyse ist ein Grundpfeiler der
angewandten Mathematik.

® Neben vielféltigen physikalischen Entdeckungen (Wair-
melehre) ist Fourier fiir seine Entdeckung bekannt, dass
— selbst unstetige — Funktionen als Uberlagerung (Line-
arkombination, konvergente Reihe) der Funktionen

1, cos(kz),sin(kz) (k€ N)

dargestellt werden kdnnen. Joseph Fourier

® |n vielen Anwendungen sind die Koeffizienten fiir groBe k vernachlassigbar
klein. Dies gestattet es, Signale in ihre Wellenanteile zu zerlegen, und sie
dann zu tbermitteln, komprimieren, filtern, entrauschen, analysieren, klassifi-
zieren oder verschliisseln.

® Die strenge mathematische Begriindung der Konvergenz von Fourier-Reihen
dauerte bis in die 1960er Jahre (Carleson-Hunt-Theorem).
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Fourier-Reihen

Wir betrachten Reihendarstellungen fiir periodische Funktionen, zunichste speziell
fiir 2m-periodische Funktionen*. Als Reihenglieder verwenden wir Funktionen, die
selbst 27-periodisch sind:

Definition 8.15

Eine Reihe der Bauart

o0
30 4 ; ay, cos(kx) + by sin(kz)] (8.4)
mit reellen Konstanten (ay)ken, und (bx)ken heift trigonometrische Reihe.
Sind alle ax = 0, spricht man von einer Sinusreihe.
Sind alle b = 0, spricht man von einer Kosinusreihe.

Eine Teilsumme (bis zum Index k = n) heilt trigonometrisches Polynom (vom
Grad n).

*Zur Erinnerung: Das bedeutet f(z + 27) = f() fiir alle z € R.
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Fourier-Reihen

Konvergenz und Eigenschaften der Grenzfunktion

Wir gehen zunidchst von einer gegebenen trigonometrischen Reihe aus und bemer-
ken:

Satz 8.16

Ist die trigonometrische Reihe (8.4) fiir alle x € R konvergent, so ist

f(z) = % + 3 lax cos(ka) + by sin(ka)] (8.5)
k=1

eine auf R definierte 2m-periodische Funktion.

Es macht also umgekehrt nur fiir 27w-periodische Funktionen Sinn, nach Darstel-
lungen der Form (8.5) zu suchen. Fiir Funktionen wie g(z) = 22 oder h(z) = &”
ist dies dagegen zwecklos (es sei denn, man betrachtet die periodische Fortsetzung
eines endlichen Abschnitts solcher nichtperiodischer Funktionen).
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Fourier-Reihen

Konvergenz und Eigenschaften der Grenzfunktion

Der folgende Satz liefert u. a. den Schliissel zur Berechnung der gesuchten Reihen-
darstellungen:

Satz 8.17

Sind die Reihen Y7~ ai und Y7~ | by absolut konvergent, so konvergiert die
trigonometrische Reihe (8.4) punktweise auf ganz R. Die Summenfunktion

f(z) = % + Z [ax, cos(kx) + by, sin(kx)]
k=1

ist dann stetig auf R, und es gelten

o — % " F(t) cos(kt) dt (k € No),
- (8.6)
b=~ [ ft)sin(kt)dt (k€ N).
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Fourier-Reihen

Hintergrund: Orthogonalititsrelationen in L2(—, )

Um die Darstellungen in (8.6) zu erhalten, versieht man den Raum L2?(—m, ) aller
Funktionen f mit [*_|f(z)|* dz < co* mit dem Skalarprodukt

(o) =1 [ s (©.7)

™

Es ldsst sich zeigen, dass die Funktionen sin(nz) und cos(maz) (m € Ng,n € N)
diesbeziiglich ein Orthonormalsystem bilden, d.h.

0, fallsn#m,
1, fallsn=m,

1 [~ 1 [~

f/ sin(nz) sin(mz) dz = f/ cos(nz) cos(mz) dx =
FLg — FLg —

1 us

— / sin(nz) cos(mzx) dz = 0 (n € N,m € Np).
T™J—n

Die Darstellung (8.6) der Koeffizienten ergibt sich damit wie in Satz 3.29 aus
ar = (f(-),cos(k-)) und b = (f(),sin(k-)).

Dieses Orthonormalsystem ist dariiberhinaus vollstindig, d.h. nur die Nullfunktion ist

orthogonal zu allen darin enthaltenen Funktionen. Ein solches vollstandiges Orthonor-

malsystem heiRt auch Orthonormalbasis der Hilbert-Raumes L?(—m, ).
*Genaugenommen muss man hier den Lebesgueschen Integralbegiff verwenden.
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Fourier-Reihen

Darstellbarkeit durch Fourier-Reihen

Wir untersuchen nun fiir eine vorgegebene 2m-periodische Funktion f, ob sie sich
in eine trigonometrische Reihe entwickeln |&sst.

Definition 8.18

Sei f : R — R eine 27-periodische, auf [—, ] integrierbare Funktion. Dann
heilen die Zahlen

a = % : F(t) cos(kt)dt  (k € No),
b — % " f(t)sin(kt)dt (k € N),
Fourier-Koeffizienten von f. Di:TReihe
Ry(z) := % I 3 lay cos(kx) + by, sin(kx)]
k=1

heiRt Fourier-Reihe von f.
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Fourier-Reihen

Taylor-Entwicklung vs. Fourier-Reihe

Beispiel: Wir vergleichen die Taylor-Entwicklung an der Stelle 29 = 0 (links) mit
der Fourier-Reihe (rechts) der (2m-periodischen) Funktion

f(z) = exp(sin® z)

3 T T T T T T 3
T —f
— 1 7f0
25 —hl{ 25} — |
t, f
—t —f
2t 4 2t g
1.5+ 4 1.5 4
1 1 %
25+ 4 05 4
obs . . . L L ol L L L L L L
2 1 0 1 2 3 -3 2 1 0 1 2 3
X X
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Fourier-Reihen

Anmerkungen

Da die Integranden die Periode 27 besitzen, kann auch jedes andere Intervall der
Lange 27 als Integrationsbereich verwendet werden.

Das konkrete Rechnen erleichtert hiufig:

Satz 8.19

Ist f : R — R eine 2n-periodische, in [—m, x| integrierbare, und auf (—m, )
gerade [ungerade] Funktion, dann ist die Fourier-Reihe von f eine Kosinusreihe
[eine Sinusreihe].

Man berechne die Fourier-Reihe zum Rechteckpuls

fa) = {A, fiir 2| < 7/2,

0, fir /2 < |z| <.
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Fourier-Reihen

Darstellbarkeit durch Fourier-Reihen

Wie bei den Taylor-Reihen stellen sich nun folgende Fragen:
® Wann konvergiert die Fourier-Reihe Ry (z)?

® Falls sie konvergiert,
unter welchen Bedingungen gilt dann auch Ry (z) = f(z)?

Zur Beantwortung brauchen wir einen weiteren Begriff:

Definition 8.20

Eine Funktion f : [a,b] — R heit auf [a, b] stiickweise glatt, wenn es eine Unter-
teilung

a=xp<x11<---<x,=>0

von [a, b] gibt, so dass f auf jedem der Teilintervalle [z;_1, ;] stetig differenzier-
bar ist.
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Fourier-Reihen

Darstellbarkeit durch Fourier-Reihen

Satz 8.21

Ist die 2m-periodische Funktion f : R — R stiickweise glatt auf [—m, x|, so kon-
vergiert ihre Fourier-Reihe Ry punktweise auf R. Dabei gilt

T—x0— T—To+

Ry(xo) = % [ lim f(z)+ lim f(x)} fiir alle o € R.

Ist f stetig in xo, so folgt insbesondere R¢(xo) = f(xo).

Beispiel:

Teilsummen der Fourierentwicklung zum
Rechteckpuls, vgl. Bsp. S. 44.
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Fourier-Reihen

Weiteres Beispiel

Fiir die Sdgezahnfunktion f(z) = = (Jz| < 7) ergibt sich

)k+1

-1
ar =0 (k€ Ny) sowie by = Z(T (k € N).

Auch hier stellen wir die ersten Teilsummen dar:

Anmerkung: Tabellen wichtiger Fourierentwicklungen findet man in gingigen Tafelwerken, z. B.
Merziger et al., S. 78ff.
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Fourier-Reihen

Exkurs: Gibbssches Phanomen*

Wir betrachten die Teilsummen sy9 fiir Rechteckpuls und Sagezahnfunktion:

Sz

|
=

In einer kleinen Umgebung der Sprungstelle ,,iiberschwingen” die Partialsummen s,
um etwa 9 % der Sprunghdhe (,,overshoot").

Dieses Gibbsche Phinomen verschwindet nicht fiir n — oo, bewegt sich aber niher
an die Sprungstelle.

Ein hiibsches javascript-Programm zur Illustration des Gibbs-Phinomens findet man
hier.
*Josiah Willard Gibbs, 1839-1903, US-amerikanischer Physiker
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Fourier-Reihen

Exkurs: Gibbssches Phanomen

Ein typisches Problem, welches durch Uberschwingen verursacht wird, sind Arte-
fakte im JPG-Bildformat in der N3he scharfer Kanten.

Grund ist u. a. die Verwendung einer Kosinustransformation im Kompressionsalgo-
rithmus, die ganz dhnliche Eigenschaften wie die Fouriertransformation aufweist.

Insbesondere fiir qualitativ hochwertige Balkengrafiken und Diagramme ist JPG
daher ein denkbar ungeeignetes Format.
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Fourier-Reihen

Fourier-Entwicklung von Funktionen mit beliebiger Periode

Ist f: R — R periodisch mit Periode T', bestimmt man die
Kreisfrequenz w = —

und entwickelt

= ?0 + Z ay, cos(kwzx) + by, sin(kwz)],

k=1
wobei
2 s+T 2 s+T
ao = i f@t) dt, a = % i f(t) cos(kwt) dt,
2 s+T
sowie by = T f(t)sin(kwt) dt (k€ N).

S

Man nennt w die Kreisfrequenz der Grundschwingung und kw (k > 1) die Kreisfre-
quenzen der harmonischen Oberschwingungen. Die Zahl s € R ist beliebig.
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Fourier-Reihen

Besselsche Ungleichung und Gleichung

Fiir jede Funktion f € L?(—m, ) mit den Fourier-Koeffizienten {ax }ren, und {bi}ren gilt die
Besselsche Ungleichung

g rl@rtss | f@Pds nelo (38)

Aus der Vollstandigkeit unserer Orthonormalbasis {cos(kx), k € No;sin(kx), k € N} folgt aus
der Besselschen Ungleichung fiir n — oo

Fiir jede Funktion f € L?(—m, ) mit den Fourier-Koeffizienten {ax }ken, und {by}ren gilt die
Parsevalsche Gleichung

@, v 2 L[ 2
R ; az + b3) == f(z)* de, n € Np. (8.9)

—T

Gleichung (8.9) (eigentlich bereits (8.8)) zeigt, dass die Fourier-Koeffizienten von L2-Funktionen
Nullfolgen bilden.
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Fourier-Reihen

GleichmaRige Konvergenz von Fourier-Reihen

Satz 8.24

Die Fourier-Reihe einer stetigen, stiickweise glatten 2m-periodischen Funktion
f konvergiert gleichmaBig und absolut gegen f. Fiir ihre Fourier-Koeffizienten
{ak tren, und {by}ren konvergieren ferner die Reihen

e°) (e°)
> lakl,  und Y |bel.
k=0 k=1

Mit der Definition der Supremumsnorm auf einem reellen Intervall T

[[flloc == sup | f ()]
xzel

und der Bezeichnung R’} () fiir die n-te Teilsumme der Fourier-Reihe einer Funktion
f lasst sich die gleichmaRige Konvergenz der Fourier-Reihe gegen f ausdriicken als

If = Rfllo =0 mit n— oo.
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Fourier-Reihen

Konvergenz von Fourier-Reihen im quadratischen Mittel

Eine weitere Norm fiir Funktionen auf [—7, ] ist die zum Skalarprodukt (8.7) ge-
hérende 7.>-Norm

Ilei= VT = (2 [ s ao) "

Konvergenz in dieser Norm bezeichnet man als Konvergenz im quadratischen Mittel.

Die Fourier-Reihe einer Funktion f € L?*(—m, ) konvergiert im quadratischen
Mittel gegen f.
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Fourier-Reihen

Approximation quadratischen Mittel

Die Teilsummen R} der Fourier-Reihe einer Funktion f bilden ein trigonometrisches Polynom
vom Grad n. Jede dieser Teilsummen besitzt die Optimalitatseigenschaft, dass sie die unter
allen trigonometrischen Polynomen von Grad n

To(z) = % +) “[an cos(kx) + by sin(kz)]
k=1

die Funktion f in der L2-Norm am besten approximieren:

Satz 8.26

Fiir jedes n € Ny wird der Quadratmittelfehler

=Tl =3 [ (@)~ Tulo)? do

genau dann minimal, wenn T, = R’. Ferner gilt
2 _ 1 [T 2
1F - Ry =~ [ @) do-

—T

2 n
4o
D) a4 ;(ai =F bk)2
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Fourier-Reihen

Gliedweise Integrierbarkeit und Differenzierbarkeit

® Die Fourier-Reihe einer stetigen, stiickweise glatten periodischen Funktion ist
gliedweise integrierbar (gleichmaRige Konvergenz).

e Fiir die gliedweise Differenzierbarkeit muss auch die Reihe der Ableitungen
gleichmaRig konvergieren.

® Dies ist oft nicht erfiillt, etwa bei der Modellierung unstetiger oder nichtdiffe-
renzierbarer periodischer Vorginge.

Wann kann eine Fourier-Reihe dennoch gliedweise integriert/differenziert werden?
Fiir die Integration gilt

Satz 8.27

Eine punktweise konvergente Fourier-Reihe R(x) kann gliedweise integriert wer-
den und es gilt

. T _ @ (o] a_k . ~ b_k o b_k
F(z) .—/0 R(t) dt = 5 &t ; [ . sin(kzx) . cos(kx)] —I—; o

wobei die Reihe gleichmaRig fiir alle x € R gegen F(x) konvergiert.

Oliver Ernst (Numerische Mathematik) Mathematik 111 Wintersemester 2018/19 55 /404



Fourier-Reihen

Gliedweise Integrierbarkeit und Differenzierbarkeit

Beispiel: Ungerade fortgesetzte 2-periodische Funktion

nl
r—1, 0<z <2,
f(.’ﬂ) = { 05}
0, z = 0.
o]
Fourier-Reihe
-0.5F
2 = sin(krx)
Rp(w) =—=3 —
k=1 -2 -1.5 -1 -0.5 0 0.5 1 15 2

konvergiert an allen Stetigkeitsstellen, also insbesondere in (0, 2), punktweise gegen
f(z) = z — 1. Die Ableitungsreihe

Ry (x) = -2 Z cos(kmx)
k=1

divergiert an der Stelle x = 1, obwohl f dort stetig, sogar differenzierbar ist.
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Fourier-Reihen

Gliedweise Integrierbarkeit und Differenzierbarkeit

Beispiel: Gerade und stetig fortgesetzte 4-periodische Funktion

F(@) =2l -1
Fourier-Reihe
= (—D)F —1 T
Rj(z) = Z ( 5 08 (gkx>
o (%)
Ableitungsreihe
4 o0

k=1

sin ((2k — 1)Zx)
2k —1

konvergiert (Leibniz-Kriterium) an der Stelle z = 1 gegen f/(1) = 1.
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Fourier-Reihen

Gliedweise Integrierbarkeit und Differenzierbarkeit

Satz 8.28

Eine punktweise konvergente Fourier-Reihe, die eine Funktion f darstellt, kann
man nur dann gliedweise an einer Stelle x differenzieren, wenn die Ableitungsrei-
he im Punkt x konvergent ist. Im Fall der Konvergenz stellt die Ableitungsreihe
f/(z) dar. Hinreichend fiir die Konvergenz der Ableitungsreihe ist die Stetigkeit
und die stiickweise stetige Differenzierbarkeit von f’.
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Fourier-Reihen

Komplexe Darstellung reeller Fourier-Reihen

Periodische Funktionen mit Werten in den komplexen Zahlen lassen sich ebenfalls
in einer Fourier-Reihe entwickeln. Aufgrund der Beziehung zwischen der Sinus-,
Kosinus- und Exponentialfunktion besitzt die komplexe Schreibweise sogar eine ein-
fachere Form als jeweils eine reelle Fourier-Reihe fiir Real- und Imaginarteil.

Besitzt die stiickweise glatte 2m-periodische Funktion f : R — R die Fourier-Reihe

flx) = 50 + Z ay, cos(kx) + by sin(kzx)],
k=1

so lassen sich Sinus und Kosinus vermoge der Eulerschen Formel ausdriicken durch
eikw + e—ikz ikx —ikx

5 , sin(kz) = SR

k =
cos(kx) 57 ,

und wir erhalten nach Einsetzen
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Fourier-Reihen

Komplexe Darstellung reeller Fourier-Reihen

e zkz —ikx ikx —ikx
ao + e € e
= —+ +b
f(x) 5 E [ak 5 k 5 ]

=

—

o0 .
o ap ap — ’Lbk ikz ai + ’Lbk _ikx
S ; [ g Bt D v

=

Wir setzen nun
by := 0, a_p = ag, b_p:=—by, keEN, (8.10)
sowie ¢, := (ap — ibg)/2, k € Z, und erhalten
fl@)=co+ Z Ck et 4 C_k e kT — Z Ck eZkI, (8.11)
k=1 k=—o00

wobei der Grenzwert als lim,, oo > p_ _, ¢k € "F zu verstehen ist.

—n
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Fourier-Reihen

Komplexe Darstellung reeller Fourier-Reihen

e Durch Multiplikation von (8.11) mit e~""® n € Z, Integration iiber [—m, 7],
Vertauschung von Integration und Summation erhilt man die komplexe Dar-
stellung der Fourier-Koeffizienten

1 [7 :
an=~— [ fl)e ™ dx, kecZ (8.12)

~or o

® Formel (8.12) gilt unter denselben Voraussetzungen wie die entsprechenden
Formeln fiir a und by.
® Fiir die Riickrechnung erhalten wir
ar = 2Reck, b =-2Imcy k € Np.
® An (8.10) erkennt man sofort, dass fiir reelle Funktionen f gilt ¢, = .

® Die Konvergenzsitze 8.21 und 8.24 gelten unverindert fiir die komplexe Dar-
stellung.
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Fourier-Reihen

Komplexe Darstellung reeller Fourier-Reihen

Oft ist es praktischer, auch bei der Modellierung reellwertigen periodischer Funk-
tionen f = f(t) direkt die komplexe Darstellung

mit einer Kreisfrequenz w > 0 anzusetzen. So lassen sich etwa die Fourier-Reihe
einer phasenverschobene Schwingungen g(t) = f(t — to) leicht darstellen als

o0

g t_t c elk:w(t to) — c e—ikwto eik:wt’
(t) = 0) Z k Z [k ]

k=—o0 k=—o00

=:Cp

was mit der trigonometrischen Variante deutlich umstéandlicher ginge.
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Fourier-Reihen

Fourier-Reihen komplexwertiger Funktionen

AuBer bei der Feststellung, dass bei reellen Funktionen die komplexen Fourier-
Koeffizienten ¢, = ¢, erfiillen, wurde bisher an keiner Stelle verwendet, dass die
betrachteten Funktionen reellwertig sind. Wir kdnnen daher viele der hergeleiteten
Ergebnisse auf periodische Funktionen

fR—>C

tibertragen.

Bei den Integralformeln fiir die Koeffizienten ¢, ist lediglich zu beachten, dass Real-
und Imaginarteile fiir sich integriert werden, d.h.

/f(t) dt:/Ref(t) dt—H’/Imf(t) dt
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Fourier-Reihen

Fourier-Reihen komplexwertiger Funktionen: Rechenregeln

Satz 8.29 (Rechenregeln)

Sind f,g : R — C zwei T-periodische, stiickweise glatte Funktionen mit den
Fourier-Reihen f(t) = Y_p2__ fre™ und g(t) = Yoo . gre™! mitw =
27 /T, so gelten

0 af +Bg =1 (afy+ Bgr) e, a,B € C. (Linearitit)
8 f(t) = X3 o Fr e, (Konjugation)
© f(—t)=> e _ oo [k etkwt, (Zeitumkehr)
0 flat) =37 freoet, (Streckung, Ahnlichkeit)
0 f(t+71)=2po_(erTfi)ethet) (Translation, Phasenverschiebung)

0 ™l f(t) = re_ . fe—ne®t, nez. (Translation im Frequenzbereich)

y

Verbindung zu 2m-periodischen Funktionen: Besitzt f die Periode T, so besitzt
F(t) := f(L) die Periode 2.
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Fourier-Reihen

Fourier-Reihen komplexwertiger Funktionen: Parsevalsche Gleichung

Satz 8.30

Sind f und g zwei T-periodische, stiickweise stetige Funktionen mit den Fourier-
Reihen f(t) = Y22 fre™! und g(t) =Y oo gr e, so gelten

[eS) T
> =g [ 105 (813)
k=—o00

il
Z |fel? = %/0 |f () dt (Parselvalsche Gleichung). (8.14)

k=—oc0

4

® Aus (8.14) folgt fiir reellwertige Funktionen die schon behandelte reelle Ver-
sion der Parsevalschen Gleichung (8.9).
® Die Verbindung zwischen (8.14) und (8.9) ergibt sich durch Einsetzen der

Beziehung ¢, = (ax — ibx)/2 und Zusammenfassung der Summanden mit
Indices k und —k.
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Fourier-Reihen

Diskrete Fourier-Transformation

® In technischen Anwendungen liegen Funktionen (Signale) typischerweise
nicht in kontinuierlicher Form vor, sondern als diskrete Messwerte oder als
digitale Daten.

® Da die Abtastrate oft gleichabstandig ist gehen wir von einer 27m-periodischen

Funktion f = f(z) aus, fiir die die Funktionswerte y; = f(z;) an den N +1

Punkten
2T

Fa
gegeben sind. Aufgrund der Periodizitat gilt yo = yn-.

z; =7 j=0,...,N

e Dabei ist es eigentlich egal, ob die Funktionswerte {y]—}évzo nur als Messwer-
te oder durch Auswertung einer expliziten Formel fiir f an den Stiitzstellen
x; entstanden sind.

® Ziel ist es nun, die diskreten Werte in analoger Weise durch eine geeignete
Orthogonalbasis darzustellen und ggf. durch Abschneiden zu approximieren.
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Ziele erreic

Sie sollten nun (bzw. nach Abschluss der Ubungen/Selbststudium):

die Begriffe Funktionenfolge und -reihe gut verstanden haben,

zwischen punktweiser und gleichmé&Biger Konvergenz unterscheiden kdnnen
und einfache Funktionenfolgen darauf untersuchen kdnnen,

tiber die Konvergenzeigenschaften einer Potenzreihe bescheidwissen und Kon-
vergenzradien sicher bestimmen kdnnen,

Funktionen in Potenzreihen (Taylorreihen) entwickeln und mit Potenzreihen
sicher rechnen kdnnen,

den Begriff der trigonometrischen Reihe verstanden haben,

die Fourierreihen zu stiickweise glatten, 2w —periodischen Funktionen berech-
nen kénnen und iiber deren Konvergenz bescheidwissen,

hinreichende Kriterien zu gleichmaRiger Konvergenz bzw. Konvergenz im
quadratischen Mittel kennen,
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Ziele erreicht?

® hinreichende Kriterien zur gliedweisen Integrierbarkeit und Differenzierbarkeit
von Fourier-Reihen kennen,

® reelle und komplexe Darstellung von Fourier-Reihen ineinander Umrechnen
konnen,
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