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Konvergenz von Funktionenfolgen

Im folgenden Kapitel werden wir uns mit Folgen und Reihen (reeller) Funktionen
auseinandersetzen.

Definition 8.1

Eine Folge
f1, f2, f3, . . . , fn, . . .

von Funktionen
fn : I → R

auf einem Intervall I ⊂ R nennen wir Funktionenfolge auf I.

Notation: (fn)n∈N oder kürzer (fn), analog zu Zahlenfolgen.
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Konvergenz von Funktionenfolgen
Punktweise Konvergenz

Wir suchen nach geeigneten Konvergenzbegriffen für Funktionenfolgen.
Der Naheliegendste ist:

Definition 8.2

Eine Funktionenfolge (fn) auf I ⊂ R heißt punktweise konvergent gegen die
Funktion f : I → R wenn

lim
n→∞

fn(x) = f(x) für alle x ∈ I, (8.1)

d. h. wenn für jedes x ∈ I die Zahlenfolge (fn(x))n gegen f(x) konvergiert. Die
Funktion f heißt Grenzfunktion von (fn).

Äquivalent zu (8.1) ist die Aussage

|fn(x)− f(x)| → 0 für n→∞ für alle x ∈ I.
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Konvergenz von Funktionenfolgen
Punktweise Konvergenz, Beispiele und Probleme

Die Funktionenfolgen fn(x) = nx(1− x)n (links) und fn(x) = x(1− x)n (rechts)
konvergieren auf [0, 1] beide punktweise gegen f(x) = 0.
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Am Beispiel der Funktionenfolge links erkennen wir bereits, dass trotz punktweiser
Konvergenz auch für große n nicht alle Funktionswerte von fn beliebig nahe bei
Null liegen müssen.
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Konvergenz von Funktionenfolgen
Punktweise Konvergenz, Beispiele und Probleme

Punktweise Konvergenz ist generell eine recht schwache Eigenschaft.
Beispielsweise kann folgendes passieren:

• Die Grenzfunktion f ist nicht stetig, obwohl es alle Folgenglieder fn sind.

• Die Folge der Integrale
∫
I
fn(x) dx konvergiert, aber nicht gegen das Inte-

gral
∫
I
f(x) dx über die Grenzfunktion.

Illustrieren Sie dies an folgenden Beispielen:

• fn : [0, 1]→ R, fn(x) = xn,

• fn : [0, 1]→ R, fn(x) =

{
n2x, 0 ≤ x < 1

n ;
0, 1

n ≤ x ≤ 1.
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Konvergenz von Funktionenfolgen
Gleichmäßige Konvergenz

Die Problemfälle von S. 13 haben gemeinsam, dass die Funktionswerte fn(x) auch
für große n nicht gleichmäßig nahe bei f(x) liegen.

Wir formulieren daher einen strengeren Konvergenzbegriff:

Definition 8.3

Eine Funktionenfolge (fn) auf einem Intervall I ⊂ R heißt gleichmäßig konvergent
gegen f : I → R, wenn

sup
x∈I
|fn(x)− f(x)| → 0 für n→∞. (8.2)

Erinnerung: Das Supremum supM einer beschränkten Menge M ⊂ R ist deren kleinste obere
Schranke. Falls das Maximum existiert, gilt supM = maxM .
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Konvergenz von Funktionenfolgen
Beispiel

Die Funktionenfolge fn(x) = sinx+ 1
n sin(3x+ n) konvergiert auf R gleichmäßig

gegen f(x) = sinx, denn

sup
x∈R
|fn(x)− f(x)| = sup

x∈R

1

n
| sin(3x+ n)| = 1

n
→ 0 (n→∞).

Gezeichnet sind einige Glieder der Funk-
tionenfolge sowie deren Grenzfunktion.

Man beachte, dass ab einem bestimmten
n (hier z.B. n ≥ 5) alle Funktionsgra-
phen komplett innerhalb eines beliebig
dünnen „ε-Schlauchs“ um die Grenzfunk-
tion f verlaufen (blau gestrichelt).
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Konvergenz von Funktionenfolgen
Eigenschaften gleichmäßig konvergenter Funktionenfolgen

Satz 8.4

Konvergiert eine Funktionenfolge (fn) auf einem Intervall I gleichmäßig gegen
eine Funktion f , so konvergiert sie auch punktweise gegen f .

Gleichmäßige Konvergenz ist also „stärker“ als punktweise.

Satz 8.5

Konvergieren zwei Funktionenfolgen (fn) und (gn) auf einem Intervall I gleich-
mäßig gegen Funktionen f bzw. g, so konvergieren

• die Funktionenfolge (fn ± gn) gleichmäßig gegen f ± g,
• die Funktionenfolge (λfn), λ ∈ R, gleichmäßig gegen λf .
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Konvergenz von Funktionenfolgen
Eigenschaften gleichmäßig konvergenter Funktionenfolgen

Die gleichmäßige Konvergenz behebt auch die „Mängel“ von S. 13:

Satz 8.6

Ist (fn) eine auf dem Intervall I gleichmäßig konvergente Folge stetiger Funktio-
nen, so ist auch die Grenzfunktion f auf I stetig.

Satz 8.7

Ist (fn) eine auf dem Intervall [a, b] gleichmäßig konvergente Folge integrierbarer
Funktionen, so ist auch die Grenzfunktion f integrierbar, und es gilt∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx.
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Konvergenz von Funktionenfolgen
Eigenschaften gleichmäßig konvergenter Funktionenfolgen

Schließlich formulieren wir noch ein Ergebnis für die Ableitung bei gleichmäßiger
Konvergenz:

Satz 8.8

Ist (fn) eine auf dem Intervall [a, b] gleichmäßig konvergente Folge differenzierba-
rer Funktionen mit Grenzfunktion f , und ist die abgeleitete Funktionenfolge (f ′n)
auf [a, b] ebenfalls gleichmäßig konvergent, so ist f differenzierbar mit

f ′(x) = lim
n→∞

f ′n(x) (für alle x ∈ [a, b]).
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Konvergenz von Funktionenfolgen
Funktionenreihen

Wie bei Zahlenfolgen kann man zu einer Funktionenfolge (fn)n≥0 eine Partialsum-
menfolge definieren:

f0, f0 + f1, f0 + f1 + f2, . . . ,

n∑
k=0

fk, . . .

Diese Partialsummenfolge nennen wir auch Reihe der Funktionen fk. Die Funktionen
fk heißen Glieder der Funktionenreihe.

Notation:
∑∞
k=0 fk oder

∑∞
k=0 fk(x), sowohl für die Reihe selbst als auch für

deren Grenzwert, genau wie bei reellen Reihen.

Beispiel: Bereits bekannt ist die Funktionenreihe ex =
∑∞
k=0

xk

k! .
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Konvergenz von Funktionenfolgen
Gliedweises Integrieren und Differenzieren

Da Funktionenreihen spezielle Funktionenfolgen sind, kann man unsere Konvergenz-
begriffe wie auch die Sätze 8.4 - 8.8 direkt übertragen.

Sei
∑∞
k=0 fk gleichmäßig konvergent auf [a, b] mit

∑∞
k=0 fk = f .

Dann gelten:
• Sind alle Reihenglieder fk stetig, so ist auch die Summenfunktion f stetig,

und es gilt ∫ b

a

f(x) dx =

∫ b

a

[ ∞∑
k=0

fk(x)

]
dx =

∞∑
k=0

∫ b

a

fk(x) dx.

• Sind alle fk differenzierbar, und konvergiert die abgeleitete Reihe
∑∞
k=0 f

′
k

gleichmäßig auf [a, b], dann ist auch die Summe f differenzierbar und

f ′(x) =

[ ∞∑
k=0

fk(x)

]′
=

∞∑
k=0

f ′k(x).
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Konvergenz von Funktionenfolgen
Potenzreihen

Bei diesen Funktionenreihen wählt man als Glieder Funktionen vom Typ

fk(x) = ak(x− x0)k.

Als Teilsummen entstehen Polynome n-ten Grades: sn(x) =
∑n
k=0 ak(x− x0)k.

Definition 8.9

Eine Reihe der Form
∞∑
k=0

ak(x− x0)k (x, x0, ak ∈ R) (8.3)

heißt Potenzreihe mit Entwicklungspunkt x0 und Koeffizienten ak.

Die berühmteste Potenzreihe kennen Sie bereits: ex =
∑∞
k=0

1
k!x

k.

Sie besitzt den Entwicklungspunkt x0 = 0, die Koeffizienten ak = 1
k! und konver-

giert für alle x ∈ R.
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Konvergenz von Funktionenfolgen
Konvergenzverhalten

Wir untersuchen nun das Konvergenzverhalten von (8.3) in Abhängigkeit von x,
während ak und x0 fest gehalten werden.

Satz 8.10 (Cauchy-Hadamard∗)

Zu jeder Potenzreihe
∞∑
k=0

ak(x− x0)k

gibt es einen Konvergenzradius R ∈ [0,∞) ∪ {∞} mit folgenden Eigenschaften:

• Die Potenzreihe konvergiert (absolut) für x ∈ (x0 −R, x0 +R).
• Die Potenzreihe konvergiert gleichmäßig auf jedem abgeschlossenen Intervall
I ⊂ (x0 −R, x0 +R).
• Die Potenzreihe divergiert außerhalb [x0 − R, x0 + R] (nur sinnvoll für R 6=
∞).

∗Jacques Hadamard, 1865-1963, französischer Mathematiker
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Konvergenz von Funktionenfolgen
Prinzipskizze zum Konvergenzverhalten

x0−R x0 x0+R

Konvergenz
Divergenz Divergenz

? ?

• Das Intervall (x0−R, x0+R) wird auch Konvergenzintervall der Potenzreihe
genannt.
• Das Konvergenzverhalten an den kritischen Punkten x0−R und x0+R muss

immer gesondert untersucht werden.
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Konvergenz von Funktionenfolgen
Berechnung des Konvergenzradius

Satz 8.11

Sei
∑∞
k=0 ak(x− x0)k eine Potenzreihe mit Konvergenzradius R. Dann gilt:

• R = lim
k→∞

∣∣∣ ak
ak+1

∣∣∣, falls fast alle ak von Null verschieden sind, und dieser

Grenzwert existiert,

• R = 1

lim
k→∞

k
√
|ak|

, falls der Grenzwert im Nenner existiert. Dabei sind die Kon-

ventionen „ 1
∞ = 0“ und „ 10 =∞“ zu treffen.

Beweisidee: Quotienten- bzw. Wurzelkriterium für Zahlenreihen.
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Konvergenz von Funktionenfolgen
Beispiel

Der Konvergenzradius von ex =
∑∞
k=0

xk

k! ist ∞. Tatsächlich ergibt sich mit dem
erstgenannten Kriterium

R = lim
k→∞

∣∣∣∣ akak+1

∣∣∣∣ = lim
k→∞

(k + 1)!

k!
= lim
k→∞

(k + 1) =∞.

Untersuchen Sie das Konvergenzverhalten der Potenzreihen

∞∑
k=1

kkxk,

∞∑
k=0

xk

k + 1
,

∞∑
k=0

xk

2k
.

Vergessen Sie nicht, die Randpunkte des Konvergenzintervalls zu untersuchen.
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Konvergenz von Funktionenfolgen
Gliedweises Differenzieren und Integrieren

Die Ergebnisse von S. 20 gelten natürlich auch für Potenzreihen. Es gilt sogar

Satz 8.12

Die Potenzreihe
∑∞
k=0 ak(x− x0)k besitze den Konvergenzradius R > 0. Die Funktion

f : (x0 −R, x0 +R)→ R, f(x) =
∞∑
k=0

ak(x− x0)k

besitzt dann folgende Eigenschaften:

• f ist stetig.
• f ist auf jedem abgeschlossenen Teilintervall von (x0−R, x0 +R) integrierbar, wobei∫

f(x) dx =
∞∑
k=0

ak
k + 1

(x− x0)k+1 + C.

• f ist beliebig oft differenzierbar mit

f ′(x) =
∞∑
k=1

kak(x− x0)k−1, f ′′(x) =
∞∑
k=2

k(k − 1)ak(x− x0)k−2, usw.

Insbesondere ist f (n)(x0) = n! an, n = 0, 1, . . . .
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Konvergenz von Funktionenfolgen
Beispiel

Aus der Summenformel für die geometrische Reihe erhält man für

f : (−1, 1)→ R, f(x) =
1

1− x
die Potenzreihendarstellung

f(x) =
1

1− x =

∞∑
k=0

xk = 1 + x+ x2 + x3 + . . .

Durch gliedweises Differenzieren (Satz 8.12, Punkt 3) erhält man für die Ableitung
die Darstellung

f ′(x) =
1

(1− x)2 =

∞∑
k=1

kxk−1 =

∞∑
k=0

(k + 1)xk = 1 + 2x+ 3x2 + 4x3 + . . .

Wie lautet die Potenzreihendarstellung zu F (x) = ln(1− x) (x0 = 0, |x| < 1)?
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Konvergenz von Funktionenfolgen
Darstellbarkeit durch Potenzreihen

Es stellt sich die Frage, wann z.B. eine unendlich oft differenzierbare Funktion als
Potenzreihe geschrieben („in eine Potenzreihe entwickelt“) werden kann.

Aus der Formel in der letzten Zeile von Satz 8.12 ergibt sich, dass für die Koeffizi-
enten immer

ak =
f (k)(x0)

k!

gelten muss. Die aus Abschnitt 4.6 bekannte Taylor-Reihe
∞∑
k=0

f (k)(x0)

k!
(x− x0)k

ist also der einzige Kandidat für eine mögliche Potenzreihendarstellung von f .
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Konvergenz von Funktionenfolgen
Warnungen

Leider gibt es unendlich oft differenzierbare Funktionen, die man nicht als Potenz-
reihen schreiben kann. Es kann vorkommen, dass

• die Taylor-Reihe den Konvergenzradius R = 0 besitzt, d. h. nur für x = x0
konvergiert.

• die Taylor-Reihe durchaus konvergiert (R > 0), aber nicht gegen die Funkti-
on f (!!). Ein prominentes Beispiel ist die Funktion

f(x) =

{
e−

1
x2 , für x 6= 0;

0, für x = 0,

für die f (k)(0) = 0 für alle k ∈ N gilt. Die Taylorreihe ist somit die konstante
Funktion f̃ = 0 und hat mit f nichts zu tun.
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Konvergenz von Funktionenfolgen
Darstellbarkeit durch Potenzreihen

Wann genau eine unendlich oft differenzierbare Funktion f durch ihre Taylor-Reihe
dargestellt wird, ist schwierig zu charakterisieren.

Wir begnügen uns mit einer hinreichenden Bedingung:

Satz 8.13

Die Funktion f : I = (x0−r, x0+r)→ R sei unendlich oft differenzierbar. Gilt

lim
k→∞

rk

k!
max
x∈I
|f (k+1)(x)| = 0,

so besitzt die Taylor-Reihe
∑∞
k=0

f(k)(x0)
k! (x − x0)k den Konvergenzradius R ≥ r,

und es gilt

f(x) =

∞∑
k=0

f (k)(x0)

k!
(x− x0)k für alle x ∈ I.
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Konvergenz von Funktionenfolgen
Darstellbarkeit durch Potenzreihen

Man bestimme die Taylorreihe zu f(x) = sinx (x0 = 0). Wie verhält es sich
mit der Konvergenz? Könnte man diese Potenzreihe auch aus der Formel eix =
cosx+ i sinx erhalten?

Die Funktion f(x) = sinx und einige ihrer Taylorpolynome Tn(x) =
∑n
k=0

f(k)(0)
k!

xk.
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Konvergenz von Funktionenfolgen
Rechnen mit Potenzreihen

Schließlich kann man Potenzreihen gliedweise addieren und in Produkten von Po-
tenzreihen wie bei endlichen Summen ausmultiplizieren:

Satz 8.14

Für Summe und Produkt zweier Potenzreihen
∑∞
k=0 ak(x−x0)k und

∑∞
k=0 bk(x−

x0)
k gilt im gemeinsamen Konvergenzbereich:

∞∑
k=0

ak(x− x0)k +
∞∑
k=0

bk(x− x0)k =
∞∑
k=0

(ak + bk)(x− x0)k

bzw. ( ∞∑
k=0

ak(x− x0)k
)( ∞∑

k=0

bk(x− x0)k
)

=

∞∑
k=0

ck(x− x0)k

mit ck = a0bk + a1bk−1 + . . .+ akb0.
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Konvergenz von Funktionenfolgen
Rechnen mit Potenzreihen, Beispiel

ex sin(x) =

[
1 + x+

x2

2!
+
x3

3!
+ · · ·

] [
x− x3

3!
+
x5

5!
+ · · ·

]
= x+ x2 +

x3

3
− x5

30
− x6

90
− x7

630
+

x9

22680
+ · · ·

Bestätigen Sie mindestens die ersten vier Summanden durch detaillierte Rech-
nung.
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Konvergenz von Funktionenfolgen
Division von Potenzreihen

Will man die Koeffizienten von
∞∑
k=0

ck(x− x0)k =

∑∞
k=0 ak(x− x0)k∑∞
k=0 bk(x− x0)k

berechnen, formt man zunächst um:( ∞∑
k=0

ck(x− x0)k
)( ∞∑

k=0

bk(x− x0)k
)

=

∞∑
k=0

ak(x− x0)k

und führt dann einen Koeffizientenvergleich durch.

Mit Hilfe von

sinx = x−
x3

3!
+
x5

5!
−
x7

7!
+ · · · und cosx = 1−

x2

2!
+
x4

4!
−
x6

6!
+ · · ·

berechne man die ersten fünf Koeffizienten der Potenzreihe zu tanx = sin x
cos x

(x0 = 0).
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Fourier-Reihen

• Die nach dem französischen Mathematiker, Physiker,
Ägyptologe und Revolutionär Joseph Fourier (1768–
1830) benannte Fourier-Analyse ist ein Grundpfeiler der
angewandten Mathematik.
• Neben vielfältigen physikalischen Entdeckungen (Wär-

melehre) ist Fourier für seine Entdeckung bekannt, dass
– selbst unstetige – Funktionen als Überlagerung (Line-
arkombination, konvergente Reihe) der Funktionen

1, cos(kx), sin(kx) (k ∈ N)
dargestellt werden können. Joseph Fourier

• In vielen Anwendungen sind die Koeffizienten für große k vernachlässigbar
klein. Dies gestattet es, Signale in ihre Wellenanteile zu zerlegen, und sie
dann zu übermitteln, komprimieren, filtern, entrauschen, analysieren, klassifi-
zieren oder verschlüsseln.

• Die strenge mathematische Begründung der Konvergenz von Fourier-Reihen
dauerte bis in die 1960er Jahre (Carleson-Hunt-Theorem).
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Fourier-Reihen

Wir betrachten Reihendarstellungen für periodische Funktionen, zunächste speziell
für 2π-periodische Funktionen∗. Als Reihenglieder verwenden wir Funktionen, die
selbst 2π-periodisch sind:

Definition 8.15

Eine Reihe der Bauart

a0
2

+

∞∑
k=1

[ak cos(kx) + bk sin(kx)] (8.4)

mit reellen Konstanten (ak)k∈N0
und (bk)k∈N heißt trigonometrische Reihe.

Sind alle ak = 0, spricht man von einer Sinusreihe.
Sind alle bk = 0, spricht man von einer Kosinusreihe.
Eine Teilsumme (bis zum Index k = n) heißt trigonometrisches Polynom (vom
Grad n).

∗Zur Erinnerung: Das bedeutet f(x+ 2π) = f(x) für alle x ∈ R.
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Fourier-Reihen
Konvergenz und Eigenschaften der Grenzfunktion

Wir gehen zunächst von einer gegebenen trigonometrischen Reihe aus und bemer-
ken:

Satz 8.16

Ist die trigonometrische Reihe (8.4) für alle x ∈ R konvergent, so ist

f(x) =
a0
2

+

∞∑
k=1

[ak cos(kx) + bk sin(kx)] (8.5)

eine auf R definierte 2π-periodische Funktion.

Es macht also umgekehrt nur für 2π-periodische Funktionen Sinn, nach Darstel-
lungen der Form (8.5) zu suchen. Für Funktionen wie g(x) = x2 oder h(x) = ex

ist dies dagegen zwecklos (es sei denn, man betrachtet die periodische Fortsetzung
eines endlichen Abschnitts solcher nichtperiodischer Funktionen).
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Fourier-Reihen
Konvergenz und Eigenschaften der Grenzfunktion

Der folgende Satz liefert u. a. den Schlüssel zur Berechnung der gesuchten Reihen-
darstellungen:

Satz 8.17

Sind die Reihen
∑∞
k=0 ak und

∑∞
k=1 bk absolut konvergent, so konvergiert die

trigonometrische Reihe (8.4) punktweise auf ganz R. Die Summenfunktion

f(x) :=
a0
2

+
∞∑
k=1

[ak cos(kx) + bk sin(kx)]

ist dann stetig auf R, und es gelten

ak =
1

π

∫ π

−π
f(t) cos(kt) dt (k ∈ N0),

bk =
1

π

∫ π

−π
f(t) sin(kt) dt (k ∈ N).

(8.6)
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Fourier-Reihen
Hintergrund: Orthogonalitätsrelationen in L2(−π, π)

Um die Darstellungen in (8.6) zu erhalten, versieht man den Raum L2(−π, π) aller
Funktionen f mit

∫ π
−π |f(x)|2 dx <∞∗ mit dem Skalarprodukt

〈f, g〉 = 1

π

∫ π

−π
f(x)g(x) dx. (8.7)

Es lässt sich zeigen, dass die Funktionen sin(nx) und cos(mx) (m ∈ N0, n ∈ N)
diesbezüglich ein Orthonormalsystem bilden, d.h.

1

π

∫ π

−π
sin(nx) sin(mx) dx =

1

π

∫ π

−π
cos(nx) cos(mx) dx =

{
0, falls n 6= m,

1, falls n = m,

1

π

∫ π

−π
sin(nx) cos(mx) dx = 0 (n ∈ N,m ∈ N0).

Die Darstellung (8.6) der Koeffizienten ergibt sich damit wie in Satz 3.29 aus

ak = 〈f(·), cos(k ·)〉 und bk = 〈f(·), sin(k ·)〉.
Dieses Orthonormalsystem ist darüberhinaus vollständig, d.h. nur die Nullfunktion ist
orthogonal zu allen darin enthaltenen Funktionen. Ein solches vollständiges Orthonor-
malsystem heißt auch Orthonormalbasis der Hilbert-Raumes L2(−π, π).
∗Genaugenommen muss man hier den Lebesgueschen Integralbegiff verwenden.
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Fourier-Reihen
Darstellbarkeit durch Fourier-Reihen

Wir untersuchen nun für eine vorgegebene 2π-periodische Funktion f , ob sie sich
in eine trigonometrische Reihe entwickeln lässt.

Definition 8.18

Sei f : R → R eine 2π-periodische, auf [−π, π] integrierbare Funktion. Dann
heißen die Zahlen

ak =
1

π

∫ π

−π
f(t) cos(kt) dt (k ∈ N0),

bk =
1

π

∫ π

−π
f(t) sin(kt) dt (k ∈ N),

Fourier-Koeffizienten von f . Die Reihe

Rf (x) :=
a0
2

+

∞∑
k=1

[ak cos(kx) + bk sin(kx)]

heißt Fourier-Reihe von f .
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Fourier-Reihen
Taylor-Entwicklung vs. Fourier-Reihe

Beispiel: Wir vergleichen die Taylor-Entwicklung an der Stelle x0 = 0 (links) mit
der Fourier-Reihe (rechts) der (2π-periodischen) Funktion

f(x) = exp(sin3 x)

x
-3 -2 -1 0 1 2 3

0

0.5

1

1.5

2

2.5

3
f
t0
t3
t7
t7

x
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0
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1
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3
f
f0
f3
f4
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Fourier-Reihen
Anmerkungen

Da die Integranden die Periode 2π besitzen, kann auch jedes andere Intervall der
Länge 2π als Integrationsbereich verwendet werden.

Das konkrete Rechnen erleichtert häufig:

Satz 8.19

Ist f : R → R eine 2π-periodische, in [−π, π] integrierbare, und auf (−π, π)
gerade [ungerade] Funktion, dann ist die Fourier-Reihe von f eine Kosinusreihe
[eine Sinusreihe].

Man berechne die Fourier-Reihe zum Rechteckpuls

f(x) =

{
A, für |x| ≤ π/2,
0, für π/2 ≤ |x| ≤ π.
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Fourier-Reihen
Darstellbarkeit durch Fourier-Reihen

Wie bei den Taylor-Reihen stellen sich nun folgende Fragen:

• Wann konvergiert die Fourier-Reihe Rf (x)?

• Falls sie konvergiert,
unter welchen Bedingungen gilt dann auch Rf (x) = f(x)?

Zur Beantwortung brauchen wir einen weiteren Begriff:

Definition 8.20

Eine Funktion f : [a, b] → R heißt auf [a, b] stückweise glatt, wenn es eine Unter-
teilung

a = x0 < x1 < · · · < xn = b

von [a, b] gibt, so dass f auf jedem der Teilintervalle [xi−1, xi] stetig differenzier-
bar ist.
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Fourier-Reihen
Darstellbarkeit durch Fourier-Reihen

Satz 8.21

Ist die 2π-periodische Funktion f : R → R stückweise glatt auf [−π, π], so kon-
vergiert ihre Fourier-Reihe Rf punktweise auf R. Dabei gilt

Rf (x0) =
1

2

[
lim

x→x0−
f(x) + lim

x→x0+
f(x)

]
für alle x0 ∈ R.

Ist f stetig in x0, so folgt insbesondere Rf (x0) = f(x0).

Beispiel:

Teilsummen der Fourierentwicklung zum
Rechteckpuls, vgl. Bsp. S. 44.

0     pi 2 pi

0  

A/2

A

s
1
 

s
3
 

s
5
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Fourier-Reihen
Weiteres Beispiel

Für die Sägezahnfunktion f(x) = x (|x| ≤ π) ergibt sich

ak = 0 (k ∈ N0) sowie bk = 2
(−1)k+1

k
(k ∈ N).

Auch hier stellen wir die ersten Teilsummen dar:

0     pi 2 pi

−pi

0      

pi 

s
1
 

s
3
 

s
5
 

Anmerkung: Tabellen wichtiger Fourierentwicklungen findet man in gängigen Tafelwerken, z. B.
Merziger et al., S. 78 ff.
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Fourier-Reihen
Exkurs: Gibbssches Phänomen∗

Wir betrachten die Teilsummen s29 für Rechteckpuls und Sägezahnfunktion:

0     pi 2 pi

0  

A/2

A

s
29

 

0     pi 2 pi

−pi

0      

pi 

s
29

 

In einer kleinen Umgebung der Sprungstelle „überschwingen“ die Partialsummen sn
um etwa 9% der Sprunghöhe („overshoot“).
Dieses Gibbsche Phänomen verschwindet nicht für n→∞, bewegt sich aber näher
an die Sprungstelle.

Ein hübsches javascript-Programm zur Illustration des Gibbs-Phänomens findet man
hier.

∗Josiah Willard Gibbs, 1839-1903, US-amerikanischer Physiker
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Fourier-Reihen
Exkurs: Gibbssches Phänomen

Ein typisches Problem, welches durch Überschwingen verursacht wird, sind Arte-
fakte im JPG-Bildformat in der Nähe scharfer Kanten.

Grund ist u. a. die Verwendung einer Kosinustransformation im Kompressionsalgo-
rithmus, die ganz ähnliche Eigenschaften wie die Fouriertransformation aufweist.

Insbesondere für qualitativ hochwertige Balkengrafiken und Diagramme ist JPG
daher ein denkbar ungeeignetes Format.
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Fourier-Reihen
Fourier-Entwicklung von Funktionen mit beliebiger Periode

Ist f : R→ R periodisch mit Periode T , bestimmt man die

Kreisfrequenz ω :=
2π

T

und entwickelt

f(x) =
a0
2

+

∞∑
k=1

[ak cos(kωx) + bk sin(kωx)] ,

wobei

a0 =
2

T

∫ s+T

s

f(t) dt, ak =
2

T

∫ s+T

s

f(t) cos(kωt) dt,

sowie bk =
2

T

∫ s+T

s

f(t) sin(kωt) dt (k ∈ N).

Man nennt ω die Kreisfrequenz der Grundschwingung und kω (k > 1) die Kreisfre-
quenzen der harmonischen Oberschwingungen. Die Zahl s ∈ R ist beliebig.
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Fourier-Reihen
Besselsche Ungleichung und Gleichung

Satz 8.22
Für jede Funktion f ∈ L2(−π, π) mit den Fourier-Koeffizienten {ak}k∈N0 und {bk}k∈N gilt die
Besselsche Ungleichung

a20
2

+

n∑
k=1

(a2k + b2k) ≤
1

π

∫ π

−π
f(x)2 dx, n ∈ N0. (8.8)

Aus der Vollständigkeit unserer Orthonormalbasis {cos(kx), k ∈ N0; sin(kx), k ∈ N} folgt aus
der Besselschen Ungleichung für n→∞

Satz 8.23
Für jede Funktion f ∈ L2(−π, π) mit den Fourier-Koeffizienten {ak}k∈N0 und {bk}k∈N gilt die
Parsevalsche Gleichung

a20
2

+

∞∑
k=1

(a2k + b2k) =
1

π

∫ π

−π
f(x)2 dx, n ∈ N0. (8.9)

Gleichung (8.9) (eigentlich bereits (8.8)) zeigt, dass die Fourier-Koeffizienten von L2-Funktionen
Nullfolgen bilden.
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Fourier-Reihen
Gleichmäßige Konvergenz von Fourier-Reihen

Satz 8.24

Die Fourier-Reihe einer stetigen, stückweise glatten 2π-periodischen Funktion
f konvergiert gleichmäßig und absolut gegen f . Für ihre Fourier-Koeffizienten
{ak}k∈N0

und {bk}k∈N konvergieren ferner die Reihen

∞∑
k=0

|ak|, und
∞∑
k=1

|bk|.

Mit der Definition der Supremumsnorm auf einem reellen Intervall I

‖f‖∞ := sup
x∈I
|f(x)|

und der Bezeichnung Rnf (x) für die n-te Teilsumme der Fourier-Reihe einer Funktion
f lässt sich die gleichmäßige Konvergenz der Fourier-Reihe gegen f ausdrücken als

‖f −Rnf ‖∞ → 0 mit n→∞.
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Fourier-Reihen
Konvergenz von Fourier-Reihen im quadratischen Mittel

Eine weitere Norm für Funktionen auf [−π, π] ist die zum Skalarprodukt (8.7) ge-
hörende L2-Norm

‖f‖2 :=
√
〈f, f〉 =

(
1

π

∫ π

−π
f(x)2 dx

)1/2

.

Konvergenz in dieser Norm bezeichnet man als Konvergenz im quadratischen Mittel.

Satz 8.25
Die Fourier-Reihe einer Funktion f ∈ L2(−π, π) konvergiert im quadratischen
Mittel gegen f .
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Fourier-Reihen
Approximation quadratischen Mittel

Die Teilsummen Rnf der Fourier-Reihe einer Funktion f bilden ein trigonometrisches Polynom
vom Grad n. Jede dieser Teilsummen besitzt die Optimalitätseigenschaft, dass sie die unter
allen trigonometrischen Polynomen von Grad n

Tn(x) =
ã0
2

+

n∑
k=1

[ãk cos(kx) + b̃k sin(kx)]

die Funktion f in der L2-Norm am besten approximieren:

Satz 8.26
Für jedes n ∈ N0 wird der Quadratmittelfehler

‖f − Tn‖22 =
1

π

∫ π

−π
[f(x)− Tn(x)]2 dx

genau dann minimal, wenn Tn = Rnf . Ferner gilt

‖f −Rnf ‖22 =
1

π

∫ π

−π
f(x)2 dx−

[
a20
2

+
n∑
k=1

(a2k + bk)
2

]
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Fourier-Reihen
Gliedweise Integrierbarkeit und Differenzierbarkeit

• Die Fourier-Reihe einer stetigen, stückweise glatten periodischen Funktion ist
gliedweise integrierbar (gleichmäßige Konvergenz).

• Für die gliedweise Differenzierbarkeit muss auch die Reihe der Ableitungen
gleichmäßig konvergieren.

• Dies ist oft nicht erfüllt, etwa bei der Modellierung unstetiger oder nichtdiffe-
renzierbarer periodischer Vorgänge.

Wann kann eine Fourier-Reihe dennoch gliedweise integriert/differenziert werden?
Für die Integration gilt

Satz 8.27
Eine punktweise konvergente Fourier-Reihe R(x) kann gliedweise integriert wer-
den und es gilt

F (x) :=

∫ x

0

R(t) dt =
a0
2
x+

∞∑
k=1

[
ak
k

sin(kx)− bk
k

cos(kx)

]
+

∞∑
k=1

bk
k
,

wobei die Reihe gleichmäßig für alle x ∈ R gegen F (x) konvergiert.
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Fourier-Reihen
Gliedweise Integrierbarkeit und Differenzierbarkeit

Beispiel: Ungerade fortgesetzte 2-periodische Funktion

f(x) =

{
x− 1, 0 < x < 2,

0, x = 0.

Fourier-Reihe

Rf (x) = −
2

π

∞∑
k=1

sin(kπx)

k
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

konvergiert an allen Stetigkeitsstellen, also insbesondere in (0, 2), punktweise gegen
f(x) = x− 1. Die Ableitungsreihe

Rf ′(x) = −2
∞∑
k=1

cos(kπx)

divergiert an der Stelle x = 1, obwohl f dort stetig, sogar differenzierbar ist.
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Fourier-Reihen
Gliedweise Integrierbarkeit und Differenzierbarkeit

Beispiel: Gerade und stetig fortgesetzte 4-periodische Funktion

f̃(x) = |x| − 1.

Fourier-Reihe

Rf̃ (x) =

∞∑
k=1

(−1)k − 1(
kπ
2

)2 cos
(π
2
kx
)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

Ableitungsreihe

Rf̃ ′(x) =
4

π

∞∑
k=1

sin
(
(2k − 1)π2x

)
2k − 1

konvergiert (Leibniz-Kriterium) an der Stelle x = 1 gegen f̃ ′(1) = 1.
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Fourier-Reihen
Gliedweise Integrierbarkeit und Differenzierbarkeit

Satz 8.28
Eine punktweise konvergente Fourier-Reihe, die eine Funktion f darstellt, kann
man nur dann gliedweise an einer Stelle x differenzieren, wenn die Ableitungsrei-
he im Punkt x konvergent ist. Im Fall der Konvergenz stellt die Ableitungsreihe
f ′(x) dar. Hinreichend für die Konvergenz der Ableitungsreihe ist die Stetigkeit
und die stückweise stetige Differenzierbarkeit von f ′.

Oliver Ernst (Numerische Mathematik) Mathematik III Wintersemester 2018/19 58 / 404



Fourier-Reihen
Komplexe Darstellung reeller Fourier-Reihen

Periodische Funktionen mit Werten in den komplexen Zahlen lassen sich ebenfalls
in einer Fourier-Reihe entwickeln. Aufgrund der Beziehung zwischen der Sinus-,
Kosinus- und Exponentialfunktion besitzt die komplexe Schreibweise sogar eine ein-
fachere Form als jeweils eine reelle Fourier-Reihe für Real- und Imaginärteil.

Besitzt die stückweise glatte 2π-periodische Funktion f : R→ R die Fourier-Reihe

f(x) =
a0
2

+

∞∑
k=1

[ak cos(kx) + bk sin(kx)] ,

so lassen sich Sinus und Kosinus vermöge der Eulerschen Formel ausdrücken durch

cos(kx) =
eikx + e−ikx

2
, sin(kx) =

eikx − e−ikx

2i
,

und wir erhalten nach Einsetzen
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Fourier-Reihen
Komplexe Darstellung reeller Fourier-Reihen

f(x) =
a0
2

+

∞∑
k=1

[
ak

eikx + e−ikx

2
+ bk

eikx − e−ikx

2i

]

=
a0
2

+

∞∑
k=1

[
ak − ibk

2
eikx +

ak + ibk
2

e−ikx
]
.

Wir setzen nun

b0 := 0, a−k := ak, b−k := −bk, k ∈ N, (8.10)

sowie ck := (ak − ibk)/2, k ∈ Z, und erhalten

f(x) = c0 +

∞∑
k=1

ck e
ikx + c−k e

−ikx =

∞∑
k=−∞

ck e
ikx, (8.11)

wobei der Grenzwert als limn→∞
∑n
k=−n ck e

−ikx zu verstehen ist.
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Fourier-Reihen
Komplexe Darstellung reeller Fourier-Reihen

• Durch Multiplikation von (8.11) mit e−inx, n ∈ Z, Integration über [−π, π],
Vertauschung von Integration und Summation erhält man die komplexe Dar-
stellung der Fourier-Koeffizienten

ck =
1

2π

∫ π

−π
f(x) e−ikx dx, k ∈ Z. (8.12)

• Formel (8.12) gilt unter denselben Voraussetzungen wie die entsprechenden
Formeln für ak und bk.

• Für die Rückrechnung erhalten wir

ak = 2Re ck, bk = −2 Im ck k ∈ N0.

• An (8.10) erkennt man sofort, dass für reelle Funktionen f gilt ck = c−k.
• Die Konvergenzsätze 8.21 und 8.24 gelten unverändert für die komplexe Dar-

stellung.
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Fourier-Reihen
Komplexe Darstellung reeller Fourier-Reihen

Oft ist es praktischer, auch bei der Modellierung reellwertigen periodischer Funk-
tionen f = f(t) direkt die komplexe Darstellung

f(t) =

∞∑
k=−∞

ck e
ikωt

mit einer Kreisfrequenz ω > 0 anzusetzen. So lassen sich etwa die Fourier-Reihe
einer phasenverschobene Schwingungen g(t) = f(t− t0) leicht darstellen als

g(t) = f(t− t0) =
∞∑

k=−∞

ck e
ikω(t−t0) =

∞∑
k=−∞

[
ck e
−ikωt0

]︸ ︷︷ ︸
=:c̃k

eikωt,

was mit der trigonometrischen Variante deutlich umständlicher ginge.
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Fourier-Reihen
Fourier-Reihen komplexwertiger Funktionen

Außer bei der Feststellung, dass bei reellen Funktionen die komplexen Fourier-
Koeffizienten ck = c−k erfüllen, wurde bisher an keiner Stelle verwendet, dass die
betrachteten Funktionen reellwertig sind. Wir können daher viele der hergeleiteten
Ergebnisse auf periodische Funktionen

f : R→ C

übertragen.
Bei den Integralformeln für die Koeffizienten ck ist lediglich zu beachten, dass Real-
und Imaginärteile für sich integriert werden, d.h.∫

f(t) dt =

∫
Re f(t) dt+ i

∫
Im f(t) dt
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Fourier-Reihen
Fourier-Reihen komplexwertiger Funktionen: Rechenregeln

Satz 8.29 (Rechenregeln)
Sind f, g : R → C zwei T -periodische, stückweise glatte Funktionen mit den
Fourier-Reihen f(t) =

∑∞
k=−∞ fk e

ikωt und g(t) =
∑∞
k=−∞ gk e

ikωt mit ω =
2π/T , so gelten

(1) αf + βg =
∑∞
k=−∞(αfk + βgk) e

ikωt, α, β ∈ C. (Linearität)

(2) f(t) =
∑∞
k=−∞ f−k e

ikωt, (Konjugation)

(3) f(−t) =∑∞k=−∞ f−k e
ikωt, (Zeitumkehr)

(4) f(αt) =
∑∞
k=−∞ fk e

ikαωt, (Streckung, Ähnlichkeit)

(5) f(t+ τ) =
∑∞
k=−∞( eikωτfk) e

ikωt, (Translation, Phasenverschiebung)

(6) einωtf(t) =
∑∞
k=−∞ fk−n e

ikωt, n ∈ Z. (Translation im Frequenzbereich)

Verbindung zu 2π-periodischen Funktionen: Besitzt f die Periode T , so besitzt
F (t) := f( tω ) die Periode 2π.
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Fourier-Reihen
Fourier-Reihen komplexwertiger Funktionen: Parsevalsche Gleichung

Satz 8.30
Sind f und g zwei T -periodische, stückweise stetige Funktionen mit den Fourier-
Reihen f(t) =

∑∞
k=−∞ fk e

ikωt und g(t) =
∑∞
k=−∞ gk e

ikωt, so gelten

∞∑
k=−∞

fkgk =
1

T

∫ T

0

f(t)g(t) dt, (8.13)

∞∑
k=−∞

|fk|2 =
1

T

∫ T

0

|f(t)|2 dt (Parselvalsche Gleichung). (8.14)

• Aus (8.14) folgt für reellwertige Funktionen die schon behandelte reelle Ver-
sion der Parsevalschen Gleichung (8.9).
• Die Verbindung zwischen (8.14) und (8.9) ergibt sich durch Einsetzen der

Beziehung ck = (ak − ibk)/2 und Zusammenfassung der Summanden mit
Indices k und −k.
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Fourier-Reihen
Diskrete Fourier-Transformation

• In technischen Anwendungen liegen Funktionen (Signale) typischerweise
nicht in kontinuierlicher Form vor, sondern als diskrete Messwerte oder als
digitale Daten.

• Da die Abtastrate oft gleichabständig ist gehen wir von einer 2π-periodischen
Funktion f = f(x) aus, für die die Funktionswerte yj = f(xj) an den N + 1
Punkten

xj = j · 2π
N
, j = 0, . . . , N

gegeben sind. Aufgrund der Periodizität gilt y0 = yN .
• Dabei ist es eigentlich egal, ob die Funktionswerte {yj}Nj=0 nur als Messwer-

te oder durch Auswertung einer expliziten Formel für f an den Stützstellen
xj entstanden sind.

• Ziel ist es nun, die diskreten Werte in analoger Weise durch eine geeignete
Orthogonalbasis darzustellen und ggf. durch Abschneiden zu approximieren.
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Ziele erreicht?

Sie sollten nun (bzw. nach Abschluss der Übungen/Selbststudium):

• die Begriffe Funktionenfolge und -reihe gut verstanden haben,
• zwischen punktweiser und gleichmäßiger Konvergenz unterscheiden können

und einfache Funktionenfolgen darauf untersuchen können,
• über die Konvergenzeigenschaften einer Potenzreihe bescheidwissen und Kon-

vergenzradien sicher bestimmen können,
• Funktionen in Potenzreihen (Taylorreihen) entwickeln und mit Potenzreihen

sicher rechnen können,
• den Begriff der trigonometrischen Reihe verstanden haben,
• die Fourierreihen zu stückweise glatten, 2π−periodischen Funktionen berech-

nen können und über deren Konvergenz bescheidwissen,
• hinreichende Kriterien zu gleichmäßiger Konvergenz bzw. Konvergenz im

quadratischen Mittel kennen,
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Ziele erreicht?

• hinreichende Kriterien zur gliedweisen Integrierbarkeit und Differenzierbarkeit
von Fourier-Reihen kennen,

• reelle und komplexe Darstellung von Fourier-Reihen ineinander Umrechnen
können,
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