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Integraltransformationen

Begriff

e Dieses Kapitel kann als Erweiterung der Fourier-Transformation auf
nichtperiodische bzw. auf ganz R definierte Funktionen betrachtet werden.

e In diesem Fall ist die Transformierte jedoch eine (ebenfalls auf R) definierte
Funktion anstelle zweier reeller Zahlenfolgen (oder einer komplexen) wie bei
den Fourier-Reihen.

o Neben der Fourier-Transformation gibt es weitere dhnliche (lineare)
Abbildungen von Funktionen auf Funktionen.

o Diese gestatten es, Eigenschaften der Ausgangsfunktion (wie Glattheit oder
Frequenzspektrum) sichtbar zu machen, vereinfachen aber auch
Aufgabenstellungen wie die Lésung von Differentialgleichungen.
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Integraltransformationen

Allgemein

Definition 12.1
Eine Integraltransformation ist eine Abbildung T : f — T'f der Form

(TF)(E) = /D K(z.6) f(z) dz, €€

Die Funktion K (z,£) heilt Kernfunktion der Integraltransformation. D ist dabei
ein (nicht notwendig beschréanktes) reelles Intervall und Q C R (bzw. M C C) der
Definitionsbereich der transformierten Funktion T'f.
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Integraltransformationen

Beispiele

©® Fourier-Transformation:

Hierist D = Q =R, K(z,§) = %e—igz_
® Laplace-Transformation:

fos Zf (Zh)s) = /Ooe-stf@) i, seC.
0

Hier ist D = [0,00), Q C C, und K(t,s) = e *. Die Bezeichnung der
Variablen mit ¢ und s ist konventionsbedingt.
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Integraltransformationen

Cauchyscher Hauptwert

Uneigentliche Integrale der Form

/_ 0; F(t) dt

sind im Allgemeinen durch den Grenzwert

lim /A f(t) dt
-B

A,B—o0

definiert, wobei die Grenzwerte A — oo und B — oo unabhingig voneinander
durchzufiihren sind, d.h. das uneigentliche Integral existiert, wenn diese Grenzwerte
unabhingig voneinander existieren.
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Integraltransformationen

Cauchyscher Hauptwert

Bei Integraltransformationen ist es oft erforderlich, einen allgemeineren Konver-
genzbegriff fiir die auftretenden uneigentlichen Integrale heranzuziehen, bei dem
die untere und obere Integrationsgrenze gleichzeitig und symmetrisch gegen oo
streben.

Man sagt, das Integral ffooo f(¢t) dt existiert als Cauchyscher Hauptwert (C.H.),
wenn der Grenzwert

A A a
Jim / Fydt= tim [ [f=t)+ f@) dt+ [ f@) dt (a> 0 beliebig)
—A

A—o0 A—oo J, _a

existiert. Man schreibt dann

[e%S) A
C.H./ F(t) dt = lim / F(t) dt.
Offenbar folgt aus der (iiblichen) Existenz des uneigentlichen Integrals auch die des
Cauchyschen Haupwerts (und stimmt dann mit diesem (berein). Die Umkehrung
gilt nicht (Gegenbeispiel: f(t) = sint).
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Fourier-Transformation

Motivation

Wir gehen wieder aus von der komplexen Darstellung der Fourier-Reihe einer
27-periodischen Funktion f:

o0
. 1 ™ i
f(z) = k_z_: cp e, =50 | f(z)e™™* dx, keZ.

Fiir eine Periode T' = 27 L, (L > 0) lauten diese Beziehungen
s 1 Lr

flx) = Z cx eikz/L’ cp = T . f(z) e—ikz/L de, kezZ. (12.1)

e Erinnerung: c_p = ¢ falls f reellwertig.

e Zuordnung zwischen Funktion und komplexer Zahlenfolge
fe LQ(—LTF,LW) — {Ck}keZ-

o Umkehrabbildung: Summierung der Fourier-Reihe.
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Fourier-Transformation

Motivation

Einsetzen der Fourier-Darstellung:

e L
f(z) = Z (27‘-% - f(t)e—ikt/L d:Z?) eika/L

k=—o0
00 Lm
S 11 F(t) ekED/L g
ke oo L 271' _Lm

Setze A¢ := % und beachte, dass ein Ausdruck der Form

o0

> g(kAg) - A¢

k=—o00

als Riemannsche Summe einer Funktion g zur dquidistanten Zerlegung {kA&}kez
von R aufgefasst werden kann, welcher fiir geeignete g in das Integral

JARLGR:

—o0
ibergeht.

Oliver Ernst (Numerische Mathematik) Mathematik 111 Wintersemester 2014/15 231 / 298



Fourier-Transformation

Motivation

So erhdlt man beim Grenziibergang L — oo bzw. A — 0

e} 1 L
fl@)= 3 (g RIOL x)A&

k=—o00

T L)
:/m <27T/ ) ZEtdt)d&

= /_ f&)e® de mit  f(€) ::% /_ f(t) et dt. (12.2)

oder kurz
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Fourier-Transformation

Motivation

Bemerkungen:

Die Beziehungen (12.2) fiir eine auf ganz R definierte, nicht notwendig
periodische Funktion f (oder mit ,Periode T' = 0c0") entspricht den
Beziehungen (12.1) fiir eine Funktion f mit Periode T' = 27 L.

Der Funktion f wird durch (12.2) anstatt — wie bei periodischen Funktionen
— einer Folge komplexer Zahlen {cg} ez, nun eine Funktion f(£),£ € R
zugeordnet.

Analog zur Beziehung c_j, = ¢ fiir reellwertige periodische Funktionen ergibt
sich hier f(—¢) = f(£), wie man aus (12.2) leicht herleitet.

Die Darstellung (12.2) (links) zerlegt die Funktion f in Grundschwingungen
€'¢® mit dem kontinuierlichen Frequenzparameter .

Die obigen Uberlegungen waren rein formaler Natur, d.h. wir haben die
Giiltigkeit des Grenziibergangs und die Existenz der auftretenden Integrale
stillschweigend vorausgesetzt. Wir geben nun hinreichende Bedingungen
hierfiir an.
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Fourier-Transformation

Existenz der Fourier-Integrale

Definition 12.2 (absolute Integrierbarkeit)
Eine Funktion f : R — C heilt iiber R absolut integrierbar, falls das uneigentliche

Integral .
[ ol

— 00

existiert.

Satz 12.3 (Kriterium fiir absolute Integrierbarkeit)
Ist f: R — C stiickweise stetig, g liber R absolut integrierbar und gilt

[f(@)] < lg(x)l,  VzeR,

so ist auch f liber R absolut integrierbar.
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Fourier-Transformation

Existenz der Fourier-Integrale

Satz 12.4 (Existenz des Fourier-Integrals)

Ist f liber R stiickweise stetig und absolut integrierbar, so existiert das Integral

/oo f(t)e it dt

fiir alle £ € R.

e Die Aussage folgt mit der absoluten Integrierbarkeit von f wegen

‘ / Ft) et dt’ < / F() e i€t dt

—oo — 00 S———
o)

fir alle £ € R.

e Da obige Abschitzung gleichméRig in £ gilt, ist das Fourier-Integral eine
stetige Funktion von &.
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Fourier-Transformation

Definition

Definition 12.5

Sei f eine auf R stiickweise stetige und absolut integrierbare Funktion. Die fiir alle
& € R definierte Funktion

oo

o 1 .
_ —i€x
=5 [ i@ ar (123)
heit Fourier-Transformierte oder Spektralfunktion von f. Die durch (12.3)

definierte Abbildung .% : f — f = .Z f (auch .Z[f]) heiRt Fourier- Transformation.

v,

Mit der Eulerschen Formel erhalt man
~ 1 Rl 1 0 . ~ A
f©) =57 | eosten)f(o) do - 5 [ siniea) f(o) do = Ful) - iF.(6).

Hierbei heifen f. und fs Kosinustransformation bzw. Sinustransformation von f.

Neben f, f. und f, wird auch die Schreibweise .7 f, .Z.f bzw. %, f verwendet.
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Fourier-Transformation

Definition

Bemerkung: Beim Nachschlagen von Fourier-Transformierten in mathematischen
Formelsammlungen ist Folgendes zu beachten:

e In der Literatur findet man die Beziehung (12.2) zwischen einer Funktion und
ihrer Fourier-Transformierten auch in der Form

fo=c [ fOeei fO-c| fe
mit ci1co = % wobei neben der hier verwendeten (¢; = 1,¢5 = %) die

gebriuchlichsten Varianten ¢; = ¢y = \/% bzw. ¢; = 5=, co = 1 sind.

e Auch wird manchmal anstelle von e~%* als Kern der Fourier-Transformation
€' verwendet. In diesem Fall ergibt sich als Fourier-Transformierte einer
(reellwertigen) Funktion f die konjugiert-komplexe Funktion zu f.

Man bestimme die Fourier-Transformierte zur Funktion f(z) = e~ 1#l. J
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Fourier-Transformation
Umkehrabbildung

Satz 12.6 (Inverse Fourier Transformation)

Fiir eine auf R stiickweise glatte, absolut integrierbare Funktion f mit
Fourier-Transformierten f gilt in allen Punkten z € R

Insbesondere gilt in allen Stetigkeitspunkten = € R von f

fla) = c.n. [ T e e de.

Satz 12.7 (Eindeutigkeit)

Erfiillen die Funktionen f; und f5 die Voraussetzungen von Satz 12.6 und gilt
f1(8) = f2(&) fiir alle £ € R, so gilt in jedem Punkt z € R, in welchem f; und fo
stetig sind, fi(x) = f2(x).
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Fourier-Transformation
Eigenschaften

Satz 12.8 (Linearitat)

Sind f, f1 und f5 auf R stiickweise stetige und dort absolut integrierbare
Funktionen, so gilt

Flfi+ fo] = Zfi] + Zlfa),  Zlaf =aZ[f] VaeR.

| A

Satz 12.9 (Verschiebungssatz)
Ist f auf R stiickweise stetig und dort absolut integrierbar, so gilt fiir alle c € R

Zf(z+c)] = eFCF[f](€), £€R
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Fourier-Transformation
Faltung

Definition 12.10

Unter dem Faltungsprodukt zweier auf R definierter Funktionen f und g versteht
man den Ausdruck

(f * 9@ / flz — t)g(t) dat

e Die Definition ist sinnvoll, wenn das Integral existiert. Hinreichend hierfiir ist
z.B. dass beide Funktionen stetig sind, eine davon absolut integrierbar und
die andere beschrankt ist.

e Die Faltung ist kommutativ, d.h. es gilt f*g = g=* f (Substitution x — ¢ = y).

Satz 12.11 (Faltungssatz)

Seien f und g auf R beschrankte, stetige und absolut integrierbare Funktionen.

Dann gilt Z[f x g] = Z[f] - 9]
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Fourier-Transformation

Differentiation

Satz 12.12

Sei f eine auf R stetige, stiickweise glatte Funktion. Ferner seien f und f’ auf R absolut
integrierbar. Dann gilt

(Zf)E) =i&(F)E), R

Satz 12.13
Sei f eine auf R stetige, stiickweise glatte Funktion und seien f und f’ auf R absolut
integrierbar. Ferner besitze f die n Sprungstellen x4, ..., z,. Dann gilt
(ZF)O) = i&(FE) — 5= — D_[fl@r+) — flax—)le ™™,  £€R
k=1
Satz 12.14

Sei f eine (r — 1)-mal stetig differenzierbare Funktion und f("=1) stiickweise glatt. Ferner
seien f, f’,..., f) absolut integrierbar. Dann gilt

(FIO)E) = (&) (FN)E), E€R.

y
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Laplace-Transformation

Motivation

Fiir die Existenz ihrer Fourier-Transformation muss eine Funktion absolut integrier-
bar sein. Viele Funktionen, welche in Anwendungen auftretende Vorginge beschrei-
ben, sind dies nicht, etwa die Heaviside-Funktion

H(x):{o <0 eR,

1 >0,

oder auch f(t) = e, f(t) = sin(wt), etc. Oft beschreiben solche Funktionen auch
impulsiv gestartete Phdnomene (Einschaltvorgang), d.h. es gilt

f(t)=0 fir t<0,

mit (einfachheitshalber) den Einschaltzeitpunkt als ¢ = 0 gewahlt.
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Laplace-Transformation

Konvergenzerzeugender Faktor

Um auch solche Funktionen transformieren zu konnen fiihrt man einen konver-

genzerzeugenden Faktor
—at

e, a>0
ein und betrachtet anstelle von f die gewichtete Funktion

~ 0 t <0,
10 = {eo‘tf(t) t>0.

Als formale Fourier-Transformierte erhilt man dann
~ 1 . . 1 o0 .
(ﬂf)(s) — %/ f(t)e—zst dt — %/0 e—(a+zs)tf(t) dt
—0o0
oder, mit 2 = a + s,

(D) =5 [ e
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Laplace-Transformation

Definition

Definition 12.15

Die Abbildung, welche einer Funktion f : [0, 00] — R die Funktion

F(z) = / T et dt (12.4)

0

zuordnet, heiRt Laplace-Transformation, die Funktion F' Laplace-Transformierte
von f. Alternative Bezeichnungen: (£ f)(z),-Z[f](z).

o Auf komplexwertige Funktionen f gehen wir nicht weiter ein.
o Wieder ist zu klaren, unter welchen Bedingungen das Integral (12.4) existiert.

Definition 12.16

Die Funktion f : [0, 00] — R ist von exponentieller Ordnung ~, falls es Konstanten
M > 0 und v € R gibt, sodass fiir alle ¢ > 0 gilt

|f(t)| < Me. (12.5)
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Laplace-Transformation

Existenz

Beispiele: Polynome sowie sin und cos sind von exponentieller Ordnung. Mit Hilfe
der Taylor-Reihe der Exponentialfunktion erhalt man etwa

3] =17 <6e' =646t +3t>+t>+..., >0

Satz 12.17 (Existenz der Laplace-Transformierten)

Ist die Funktion f : [0,00) — R stiickweise stetig und von exponentieller Ordnung
7, so existiert deren Laplace-Transformierte F(z) fiir alle z € C mit Rez > ~.

e Das Integral (12.4) existiert unter den Voraussetzungen von Satz 12.17 in
einer rechten Halbebene der komplexen Ebene.

e Diese erstreckt sich umso weiter nach links, je schwacher die Funktion fiir
t — oo wichst.
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Laplace-Transformation

Beispiele

(1) Fur die Heaviside-Funktion

0, t<a,
1, t>a

ergibt sich

—az

(XHM@:{?T’Q#S Rez > 0.
P a =V,

(2) Fir die Exponentialfunktion e, a > 0, erhilt man

ZLe™(z) = zia’ Rez > a.
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Laplace-Transformation

Inverse

Wie kann man aus einer Laplace-Transformierten die Ausgangsfunktion wiederge-
winnnen?

Satz 12.18

Fiir die Laplace-Transformation F einer auf R stiickweise glatten, fiir t < 0
verschwindenden Funktion f von exponentieller Ordnung ~ gilt fiir alle
x=Rez >~y

1 z+iA f(H);f(t_) t>0,

— 1 F(2)e® dz = { LB —
omi A, | F(Z)eT dz 2 t=0,
0 t<0.

Insbesondere gilt fiir jeden Stetigkeitspunkt ¢ von f

=— 1 zt _
o) = 2mi A A F(z)e” dz, z=Rez>1.

y
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Laplace-Transformation
Eindeutigkeit

Satz 12.19 (Eindeutigkeitssatz)

Gilt fiir zwei Funktionen f und g, welche die Voraussetzungen von Satz 12.18
erfiillen, die Beziehung

F(z) =G(z), Rez > 7,
so gilt in jedem Punkt ¢, an denen f und g stetig sind,
f(t) = g(t).

Mit dem Eindeutigkeitssatz kann man Schliisse folgender Bauart ziehen: aus den
beiden Tatsachen, dass

4

FE) = (Z0)(E) = 5 uwnd Z[)() =

folgt f(t) = e.
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Laplace-Transformation

Rechenregeln

Satz 12.20 (Linearitat)

Fiir zwei stiickweise stetige Funktionen f, g : [0,00) — R von exponentieller
Ordnung und beliebige reelle Zahlen a, b gilt

Llaf +bg] = aZ[f] + bZL]g].
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Laplace-Transformation

Rechenregeln

Satz 12.21 (Transformation von Ableitung und Integral)

Die Funktion f sei stiickweise stetig in [0,00) und von exponentieller Ordnung ~.
(a) Ist f stiickweise glatt, so gilt

L1 = 2(Zf) - £(0). (12.6)
(b) Ist f zudem (k — 1)-mal stetig differenzierbar und f(*~1) stiickweise glatt,
sowie neben f auch f/, f”,..., f#~1 von exponentieller Ordnung v, so gilt
fir Rez > v
LfETD =P Lf = FT0) =T 0) = - fET0). (127)
(c) Fir Rez > v gilt
t
<z [/ f(7) dT:| = éiﬂf (12.8)
0

4
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Laplace-Transformation

Rechenregeln

Man verifiziere dir Beziehung
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Laplace-Transformation

Rechenregeln

Satz 12.22 (Laplace-Transformation der Ableitung einer unstetigen
Funktion)

Die Funktion f habe an der Stelle t = a > 0 eine Unstetigkeit in Form einer
Sprungstelle. Ansonsten seien die Voraussetzungen des Satzes 12.22 erfiillt. Dann

gilt
(L) = 2(Zf) = £(0) — [f(a+) — fla—)]e”*.
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Laplace-Transformation

Rechenregeln

Satz 12.23 (Dampfung, Verschiebung, Streckung)

Die Funktion f sei von exponentieller Ordnung ~ sowie

F(2) = (Zf)(z) = /O Tettf)dt,  Rez> .

(a) Ein Dampfungsfaktor e~“* im Originalbereich bewirkt eine Verschiebung im
Bildbereich:

Ll f()] =F(z+a), Rez>7y-—a.
(b) Fir a > 0 gilt

Z[f(at)] = 1F (E) , Rez > ay.
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Laplace-Transformation

Rechenregeln

Definition 12.24

Unter dem Faltungsprodukt der Funktionen f und g verstehen wir hier die
Funktion

(f*g)(t /ft—r T) dr, teR.

| A\

Satz 12.25 (Faltungssatz)

Die Funktion f sei in R stetig, die Funktion g stiickweise stetig. Beide seien von
exponentieller Ordnung ~, und es gelte f(¢) = g(¢) = 0 fiir ¢ < 0. Dann existiert
die Laplace-Transformierte der Faltung f x g fiir Rez > ~ und es gilt

L(fxg)=(ZLf) (Lyg).

also ist die Laplace-Transformierte des Faltungsproduktes zweier Funktionen gleich
dem Produkt der Laplace-Transformierten der Funktionen.

v
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Laplace-Transformation

Differentialgleichungen

Gegeben sei die Anfangswertaufgabe
Y () + an—1y" V(@) + - ary/(8) + aoy(t) = (1)
mit Anfangsbedingungen
y(0) =y'(0)=---=y""V =0

und einer stiickweise stetigen Funktion r = r(¢) von exponentieller Ordnung. Mit
den Laplace-Trenasformationen Y = Zy und R = Zr gilt dann

Y(z) = R(z) = R(2)G(2).

2+ Ap_12" L a1z +ag
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Laplace-Transformation

Differentialgleichungen

Findet man nun eine Funktion g = ¢(t) mit £g = G, so gilt nach dem Faltungssatz
ZLy=Y =GR=(Zg) - (Lr)=L(gxr)
oder .
o) = [ gtt=ryrr) ar

Die Funktion K(t,7) := g(t — 7) heiBt Greensche Funktion fiir das obige An-
fangswertproblem. Hat man die Greensche Funktion gefunden, ist die Ldsung des
Anfangswertproblems fiir unterschiedliche rechte Seiten r(¢) auf die Berechnung
eines Integrals reduziert.
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Laplace-Transformation

Beispiele

Man lse folgende Differentialgleichungsprobleme mit Hilfe der
Laplace-Transformation:

(1) z
y" +9y =cos(2z), y(0)=1,y (_) =L

(2)
v =u+5v, v =—(u+3v), uw(0) =1, v(0)=0.
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Laplace-Transformation

Impulse

Oft gilt es zeitliche Vorgadnge zu modellieren, welche durch extrem kurz andauernden
Wirkungen charakterisiert sind, etwa ein Hammerschlag oder kurzzeitige Stromsto-
RBe, bei denen aber nur der ,Gesamtimpuls” von Interesse ist. Dieser kann, sofern
sich die Wirkung zwischen ¢ und ¢, ereignet, durch Ausdriicke der Form

t1
I= f(t) dt, t1 nahe bei ¢

to

beschrieben werden.
Eine ,Impulsfunktion” ware z.B. fiir 0 < ¢, klein"

1
Oe(t) = { t€(09), teR.
0 sonst,

/O:O 5c(t) dt = 1.
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Laplace-Transformation

Impulse
Mit Hilfe der Heaviside-Funktion l3sst sich d. schreiben als

[H(0) — H(t —€)].

a =

Als Idealisierung méchte man gerne den Gesamtimpuls auf den Punkt ¢ = 0 kon-
zentrieren, etwa durch den Grenziibergang

0 t+#0,

oo t=0,

8(t) = lim 8.(t) = {

e—0

oo
unter Beibehaltung von / 5(t) dt = 1.
— 0o

Der Grenzwert oo ist jedoch nicht zuldssig, und die Integralbeziehung nach unserer
Definition des Riemann-Integrales ist nicht méglich.
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Laplace-Transformation

Impulse

Abhilfe schafft der Begriff der verallgemeinerten Funktionen oder auch Distributio-
nen, welche nur durch deren Wirkung auf stetige Funktionen g definiert sind:

/oo g(1)(t — to) dt = lim /jo g(t)d(t) dt.

Unter Nutzung des Mittelwertsatzes der Integralrechnung erhalten wir

o0 €

1
lim g(t)dc(t) dt = lim g(t)z dt = 21_12[(1] g(to +ne) = g(to).

e—0 — o e—0 0

Die ¢-Distribution ist daher definiert durch

oo

| a0t -t =gt) baw [ 080 -1 = gtt0). g stets
- - (12.9)
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Laplace-Transformation

Impulse

Setzen wir noch g(t) = 0 fiir t < 0, so erhalten wir

/O T g(05(t — to) dt = glto).

Speziell fiir die Funktion

e t>0
t) = - z€C,
g() {0 t<O0

erhalten wir die Laplace-Transformierte der é-Distribution
/ e Fo(t) dt = e *0 = 1.
0
Allgemeiner gilt

(Zd)(z) =1, Z6(t —a)](z) = e *%.
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Laplace-Transformation

Impulse

Die Heaviside-Funktion ergibt sich nun als

t
H(t) = / S(r)dr, £ 40.
Die Beziehung (12.9) bedeutet, dass fiir stetige Funktionen g

dxg=g,

also die Faltung mit ¢ die Funktion unveridndert l3sst.
Zur Behandlung von Einschaltvorgingen, d.h. der pl6tzlichen Aktivierung einer Sto-

rung g(t) zu einem Zeitpunkt ¢ = a, bendtigt man die Laplace-Transformation der
Funktion s(t) = H(t — a)g(t — a):

Sei g(t) eine stiickweise stetige Funktion und a eine positive Zahl. Dann gilt
ZH(t —a)g(t —a)] = e”**L[g(t)].
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Ziele erreic

Sie sollten nun (bzw. nach Abschluss der Ubungen/Selbststudium):
e Die Gemeinsamkeiten und Unterschiede von Fourier-Reihen und
Fourier-Transformation verstanden haben.
e Einfache Fourier-Integrale und inverse Fourier-Integrale berechnen kénnen.

e Voraussetzungen fiir die Existenz sowie die wichtigsten Rechenregeln fiir
Fourier-Transformationen kennen.

e Den grundlegenden Ansatz verstanden haben, wie man mit Fourier- oder
Laplace-Transformationen Differentialgleichungsprobleme I6sen kann.
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