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Integraltransformationen
Begriff

• Dieses Kapitel kann als Erweiterung der Fourier-Transformation auf
nichtperiodische bzw. auf ganz R definierte Funktionen betrachtet werden.

• In diesem Fall ist die Transformierte jedoch eine (ebenfalls auf R) definierte
Funktion anstelle zweier reeller Zahlenfolgen (oder einer komplexen) wie bei
den Fourier-Reihen.

• Neben der Fourier-Transformation gibt es weitere ähnliche (lineare)
Abbildungen von Funktionen auf Funktionen.

• Diese gestatten es, Eigenschaften der Ausgangsfunktion (wie Glattheit oder
Frequenzspektrum) sichtbar zu machen, vereinfachen aber auch
Aufgabenstellungen wie die Lösung von Differentialgleichungen.
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Integraltransformationen
Allgemein

Definition 12.1
Eine Integraltransformation ist eine Abbildung T : f 7→ Tf der Form

(Tf)(ξ) =

∫
D

K(x, ξ) f(x) dx, ξ ∈ Ω.

Die Funktion K(x, ξ) heißt Kernfunktion der Integraltransformation. D ist dabei
ein (nicht notwendig beschränktes) reelles Intervall und Ω ⊂ R (bzw. M ⊂ C) der
Definitionsbereich der transformierten Funktion Tf .
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Integraltransformationen
Beispiele

1 Fourier-Transformation:

f 7→ Ff, (Ff)(ξ) =
1

2π

∫ ∞
−∞

e−iξxf(x) dx, ξ ∈ R.

Hier ist D = Ω = R, K(x, ξ) = 1
2π e
−iξx.

2 Laplace-Transformation:

f 7→ L f, (L f)(s) =

∫ ∞
0

e−stf(t) dt, s ∈ C.

Hier ist D = [0,∞), Ω ⊂ C, und K(t, s) = e−st. Die Bezeichnung der
Variablen mit t und s ist konventionsbedingt.

Oliver Ernst (Numerische Mathematik) Mathematik III Wintersemester 2014/15 226 / 298



Integraltransformationen
Cauchyscher Hauptwert

Uneigentliche Integrale der Form ∫ ∞
−∞

f(t) dt

sind im Allgemeinen durch den Grenzwert

lim
A,B→∞

∫ A

−B
f(t) dt

definiert, wobei die Grenzwerte A → ∞ und B → ∞ unabhängig voneinander
durchzuführen sind, d.h. das uneigentliche Integral existiert, wenn diese Grenzwerte
unabhängig voneinander existieren.
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Integraltransformationen
Cauchyscher Hauptwert

Bei Integraltransformationen ist es oft erforderlich, einen allgemeineren Konver-
genzbegriff für die auftretenden uneigentlichen Integrale heranzuziehen, bei dem
die untere und obere Integrationsgrenze gleichzeitig und symmetrisch gegen ±∞
streben.

Man sagt, das Integral
∫∞
−∞ f(t) dt existiert als Cauchyscher Hauptwert (C.H.),

wenn der Grenzwert

lim
A→∞

∫ A

−A
f(t) dt = lim

A→∞

∫ A

a

[f(−t) + f(t)] dt+

∫ a

−a
f(t) dt (a > 0 beliebig)

existiert. Man schreibt dann

C.H.

∫ ∞
−∞

f(t) dt := lim
A→∞

∫ A

−A
f(t) dt.

Offenbar folgt aus der (üblichen) Existenz des uneigentlichen Integrals auch die des
Cauchyschen Haupwerts (und stimmt dann mit diesem überein). Die Umkehrung
gilt nicht (Gegenbeispiel: f(t) = sin t).
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Fourier-Transformation
Motivation

Wir gehen wieder aus von der komplexen Darstellung der Fourier-Reihe einer
2π-periodischen Funktion f :

f(x) =

∞∑
k=−∞

ck e
ikx, ck =

1

2π

∫ π

−π
f(x) e−ikx dx, k ∈ Z.

Für eine Periode T = 2πL, (L > 0) lauten diese Beziehungen

f(x) =

∞∑
k=−∞

ck e
ikx/L, ck =

1

2πL

∫ Lπ

−Lπ
f(x) e−ikx/L dx, k ∈ Z. (12.1)

• Erinnerung: c−k = ck falls f reellwertig.
• Zuordnung zwischen Funktion und komplexer Zahlenfolge

f ∈ L2(−Lπ,Lπ)←→ {ck}k∈Z.

• Umkehrabbildung: Summierung der Fourier-Reihe.
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Fourier-Transformation
Motivation

Einsetzen der Fourier-Darstellung:

f(x) =

∞∑
k=−∞

(
1

2πL

∫ Lπ

−Lπ
f(t) e−ikt/L dx

)
eikx/L

=

∞∑
k=−∞

1

L

1

2π

∫ Lπ

−Lπ
f(t) eik(x−t)/L dx

Setze ∆ξ := 1
L und beachte, dass ein Ausdruck der Form

∞∑
k=−∞

g(k∆ξ) ·∆ξ

als Riemannsche Summe einer Funktion g zur äquidistanten Zerlegung {k∆ξ}k∈Z
von R aufgefasst werden kann, welcher für geeignete g in das Integral∫ ∞

−∞
g(ξ) dξ

übergeht.
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Fourier-Transformation
Motivation

So erhält man beim Grenzübergang L→∞ bzw. ∆ξ → 0

f(x) =

∞∑
k=−∞

(
1

2π

∫ Lπ

−Lπ
f(t) eik∆ξ(x−t) dx

)
·∆ξ

−→
∫ ∞
−∞

(
1

2π

∫ ∞
−∞

f(t) eiξ(x−t) dt

)
dξ

=

∫ ∞
−∞

eiξx
(

1

2π

∫ ∞
−∞

f(t) e−iξt dt

)
dξ

oder kurz

f(x) =

∫ ∞
−∞

f̂(ξ) eiξx dξ mit f̂(ξ) :=
1

2π

∫ ∞
−∞

f(t) eiξt dt. (12.2)
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Fourier-Transformation
Motivation

Bemerkungen:
• Die Beziehungen (12.2) für eine auf ganz R definierte, nicht notwendig
periodische Funktion f (oder mit „Periode T =∞“) entspricht den
Beziehungen (12.1) für eine Funktion f mit Periode T = 2πL.

• Der Funktion f wird durch (12.2) anstatt – wie bei periodischen Funktionen
– einer Folge komplexer Zahlen {ck}k∈Z, nun eine Funktion f̂(ξ), ξ ∈ R
zugeordnet.

• Analog zur Beziehung c−k = ck für reellwertige periodische Funktionen ergibt
sich hier f̂(−ξ) = f̂(ξ), wie man aus (12.2) leicht herleitet.

• Die Darstellung (12.2) (links) zerlegt die Funktion f in Grundschwingungen
eiξx mit dem kontinuierlichen Frequenzparameter ξ.

• Die obigen Überlegungen waren rein formaler Natur, d.h. wir haben die
Gültigkeit des Grenzübergangs und die Existenz der auftretenden Integrale
stillschweigend vorausgesetzt. Wir geben nun hinreichende Bedingungen
hierfür an.
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Fourier-Transformation
Existenz der Fourier-Integrale

Definition 12.2 (absolute Integrierbarkeit)
Eine Funktion f : R→ C heißt über R absolut integrierbar, falls das uneigentliche
Integral ∫ ∞

−∞
|f(t)| dt

existiert.

Satz 12.3 (Kriterium für absolute Integrierbarkeit)
Ist f : R→ C stückweise stetig, g über R absolut integrierbar und gilt

|f(x)| ≤ |g(x)|, ∀x ∈ R,

so ist auch f über R absolut integrierbar.
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Fourier-Transformation
Existenz der Fourier-Integrale

Satz 12.4 (Existenz des Fourier-Integrals)
Ist f über R stückweise stetig und absolut integrierbar, so existiert das Integral∫ ∞

−∞
f(t) e−iξt dt

für alle ξ ∈ R.

• Die Aussage folgt mit der absoluten Integrierbarkeit von f wegen∣∣∣∣∫ ∞
−∞

f(t) e−iξt dt

∣∣∣∣ ≤ ∫ ∞
−∞
|f(t) e−iξt|︸ ︷︷ ︸

=|f(t)|

dt

für alle ξ ∈ R.
• Da obige Abschätzung gleichmäßig in ξ gilt, ist das Fourier-Integral eine

stetige Funktion von ξ.
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Fourier-Transformation
Definition

Definition 12.5
Sei f eine auf R stückweise stetige und absolut integrierbare Funktion. Die für alle
ξ ∈ R definierte Funktion

f̂(ξ) =
1

2π

∫ ∞
−∞

e−iξxf(x) dx (12.3)

heißt Fourier-Transformierte oder Spektralfunktion von f . Die durch (12.3)
definierte Abbildung F : f 7→ f̂ = Ff (auch F [f ]) heißt Fourier-Transformation.

Mit der Eulerschen Formel erhält man

f̂(ξ) =
1

2π

∫ ∞
−∞

cos(ξx)f(x) dx− i

2π

∫ ∞
−∞

sin(ξx)f(x) dx =: f̂c(ξ)− if̂s(ξ).

Hierbei heißen fc und fs Kosinustransformation bzw. Sinustransformation von f .
Neben f̂ , f̂c und f̂s wird auch die Schreibweise Ff , Fcf bzw. Fsf verwendet.
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Fourier-Transformation
Definition

Bemerkung: Beim Nachschlagen von Fourier-Transformierten in mathematischen
Formelsammlungen ist Folgendes zu beachten:

• In der Literatur findet man die Beziehung (12.2) zwischen einer Funktion und
ihrer Fourier-Transformierten auch in der Form

f(x) = c1

∫ ∞
−∞

f̂(ξ) e−ξx dξ, f̂(ξ) = c2

∫ ∞
−∞

f(x) e−iξx dx

mit c1c2 = 1
2π , wobei neben der hier verwendeten (c1 = 1, c2 = 1

2π ) die
gebräuchlichsten Varianten c1 = c2 = 1√

2π
bzw. c1 = 1

2π , c2 = 1 sind.

• Auch wird manchmal anstelle von e−iξx als Kern der Fourier-Transformation
eiξx verwendet. In diesem Fall ergibt sich als Fourier-Transformierte einer
(reellwertigen) Funktion f die konjugiert-komplexe Funktion zu f̂ .

Man bestimme die Fourier-Transformierte zur Funktion f(x) = e−|x|.
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Fourier-Transformation
Umkehrabbildung

Satz 12.6 (Inverse Fourier Transformation)

Für eine auf R stückweise glatte, absolut integrierbare Funktion f mit
Fourier-Transformierten f̂ gilt in allen Punkten x ∈ R

f(x+) + f(x−)

2
= C.H.

∫ ∞
−∞

f̂(ξ) eiξx dξ.

Insbesondere gilt in allen Stetigkeitspunkten x ∈ R von f

f(x) = C.H.

∫ ∞
−∞

f̂(ξ) eiξx dξ.

Satz 12.7 (Eindeutigkeit)
Erfüllen die Funktionen f1 und f2 die Voraussetzungen von Satz 12.6 und gilt
f̂1(ξ) = f̂2(ξ) für alle ξ ∈ R, so gilt in jedem Punkt x ∈ R, in welchem f1 und f2

stetig sind, f1(x) = f2(x).
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Fourier-Transformation
Eigenschaften

Satz 12.8 (Linearität)
Sind f , f1 und f2 auf R stückweise stetige und dort absolut integrierbare
Funktionen, so gilt

F [f1 + f2] = F [f1] + F [f2], F [αf = αF [f ] ∀α ∈ R.

Satz 12.9 (Verschiebungssatz)
Ist f auf R stückweise stetig und dort absolut integrierbar, so gilt für alle c ∈ R

F [f(x± c)] = e±icξF [f ](ξ), ξ ∈ R.
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Fourier-Transformation
Faltung

Definition 12.10
Unter dem Faltungsprodukt zweier auf R definierter Funktionen f und g versteht
man den Ausdruck

(f ∗ g)(x) =
1

2π

∫ ∞
−∞

f(x− t)g(t) dt.

• Die Definition ist sinnvoll, wenn das Integral existiert. Hinreichend hierfür ist
z.B. dass beide Funktionen stetig sind, eine davon absolut integrierbar und
die andere beschränkt ist.

• Die Faltung ist kommutativ, d.h. es gilt f ∗ g = g ∗ f (Substitution x− t = y).

Satz 12.11 (Faltungssatz)
Seien f und g auf R beschränkte, stetige und absolut integrierbare Funktionen.
Dann gilt F [f ∗ g] = F [f ] ·F [g].
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Fourier-Transformation
Differentiation

Satz 12.12
Sei f eine auf R stetige, stückweise glatte Funktion. Ferner seien f und f ′ auf R absolut
integrierbar. Dann gilt

(Ff ′)(ξ) = iξ(Ff)(ξ), ξ ∈ R.

Satz 12.13
Sei f eine auf R stetige, stückweise glatte Funktion und seien f und f ′ auf R absolut
integrierbar. Ferner besitze f die n Sprungstellen x1, . . . , xn. Dann gilt

(Ff ′)(ξ) = iξ(Ff)(ξ)− 1

2π
−

n∑
k=1

[f(xk+)− f(xk−)]e−iξxk , ξ ∈ R.

Satz 12.14
Sei f eine (r − 1)-mal stetig differenzierbare Funktion und f (r−1) stückweise glatt. Ferner
seien f, f ′, . . . , f (r) absolut integrierbar. Dann gilt

(Ff (r))(ξ) = (iξ)r(Ff)(ξ), ξ ∈ R.
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Laplace-Transformation
Motivation

Für die Existenz ihrer Fourier-Transformation muss eine Funktion absolut integrier-
bar sein. Viele Funktionen, welche in Anwendungen auftretende Vorgänge beschrei-
ben, sind dies nicht, etwa die Heaviside-Funktion

H(x) =

{
0 x < 0,

1 x ≥ 0,
x ∈ R,

oder auch f(t) = eαt, f(t) = sin(ωt), etc. Oft beschreiben solche Funktionen auch
impulsiv gestartete Phänomene (Einschaltvorgang), d.h. es gilt

f(t) = 0 für t < 0,

mit (einfachheitshalber) den Einschaltzeitpunkt als t = 0 gewählt.
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Laplace-Transformation
Konvergenzerzeugender Faktor

Um auch solche Funktionen transformieren zu können führt man einen konver-
genzerzeugenden Faktor

e−αt, α > 0

ein und betrachtet anstelle von f die gewichtete Funktion

f̃(t) =

{
0 t < 0,

e−αtf(t) t ≥ 0.

Als formale Fourier-Transformierte erhält man dann

(F f̃)(s) =
1

2π

∫ ∞
−∞

f̃(t)e−ist dt =
1

2π

∫ ∞
0

e−(α+is)tf(t) dt

oder, mit z = α+ is,

(F f̃)(s) =
1

2π

∫ ∞
0

e−ztf(t) dt.
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Laplace-Transformation
Definition

Definition 12.15
Die Abbildung, welche einer Funktion f : [0,∞]→ R die Funktion

F (z) =

∫ ∞
0

e−ztf(t) dt (12.4)

zuordnet, heißt Laplace-Transformation, die Funktion F Laplace-Transformierte
von f . Alternative Bezeichnungen: (L f)(z),L [f ](z).

• Auf komplexwertige Funktionen f gehen wir nicht weiter ein.
• Wieder ist zu klären, unter welchen Bedingungen das Integral (12.4) existiert.

Definition 12.16
Die Funktion f : [0,∞]→ R ist von exponentieller Ordnung γ, falls es Konstanten
M > 0 und γ ∈ R gibt, sodass für alle t ≥ 0 gilt

|f(t)| ≤Meγt. (12.5)
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Laplace-Transformation
Existenz

Beispiele: Polynome sowie sin und cos sind von exponentieller Ordnung. Mit Hilfe
der Taylor-Reihe der Exponentialfunktion erhält man etwa

|t3| = t3 ≤ 6et = 6 + 6t+ 3t2 + t3 + . . . , t ≥ 0.

Satz 12.17 (Existenz der Laplace-Transformierten)

Ist die Funktion f : [0,∞)→ R stückweise stetig und von exponentieller Ordnung
γ, so existiert deren Laplace-Transformierte F (z) für alle z ∈ C mit Re z > γ.

• Das Integral (12.4) existiert unter den Voraussetzungen von Satz 12.17 in
einer rechten Halbebene der komplexen Ebene.

• Diese erstreckt sich umso weiter nach links, je schwächer die Funktion für
t→∞ wächst.
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Laplace-Transformation
Beispiele

(1) Für die Heaviside-Funktion

Ha(t) := H(t− a) =

{
0, t < a,

1, t ≥ a

ergibt sich

(LHa)(z) =

{
e−az

z , a 6= 0,
1
z , a = 0,

Re z > 0.

(2) Für die Exponentialfunktion eat, a ≥ 0, erhält man

L [eat](z) =
1

z − a
, Re z > a.
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Laplace-Transformation
Inverse

Wie kann man aus einer Laplace-Transformierten die Ausgangsfunktion wiederge-
winnnen?

Satz 12.18

Für die Laplace-Transformation F einer auf R stückweise glatten, für t < 0
verschwindenden Funktion f von exponentieller Ordnung γ gilt für alle
x = Re z > γ

1

2πi
lim
A→∞

∫ x+iA

x−iA
F (z)ezt dz =


f(t+)+f(t−)

2 t > 0,
f(t+)

2 t = 0,

0 t < 0.

Insbesondere gilt für jeden Stetigkeitspunkt t von f

f(t) =
1

2πi
lim
A→∞

∫ x+iA

x−iA
F (z)ezt dz, x = Re z > γ.
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Laplace-Transformation
Eindeutigkeit

Satz 12.19 (Eindeutigkeitssatz)
Gilt für zwei Funktionen f und g, welche die Voraussetzungen von Satz 12.18
erfüllen, die Beziehung

F (z) = G(z), Re z > γ,

so gilt in jedem Punkt t, an denen f und g stetig sind,

f(t) = g(t).

Mit dem Eindeutigkeitssatz kann man Schlüsse folgender Bauart ziehen: aus den
beiden Tatsachen, dass

F (z) = (L f)(z) =
1

z − 4
und L [e4t](z) =

1

z − 4

folgt f(t) = e4t.
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Laplace-Transformation
Rechenregeln

Satz 12.20 (Linearität)
Für zwei stückweise stetige Funktionen f, g : [0,∞)→ R von exponentieller
Ordnung und beliebige reelle Zahlen a, b gilt

L [af + bg] = aL [f ] + bL [g].
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Laplace-Transformation
Rechenregeln

Satz 12.21 (Transformation von Ableitung und Integral)

Die Funktion f sei stückweise stetig in [0,∞) und von exponentieller Ordnung γ.
(a) Ist f stückweise glatt, so gilt

L f ′ = z(L f)− f(0). (12.6)

(b) Ist f zudem (k − 1)-mal stetig differenzierbar und f (k−1) stückweise glatt,
sowie neben f auch f ′, f ′′, . . . , f (k−1) von exponentieller Ordnung γ, so gilt
für Re z > γ

L f (k−1) = zkL f − zk−1f(0)− zk−2f ′(0)− · · · − f (k−1)(0). (12.7)

(c) Für Re z > γ gilt

L

[∫ t

0

f(τ) dτ

]
=

1

z
L f. (12.8)
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Laplace-Transformation
Rechenregeln

Man verifiziere dir Beziehung

L [tn] =
n!

zn+1
.

Oliver Ernst (Numerische Mathematik) Mathematik III Wintersemester 2014/15 252 / 298



Laplace-Transformation
Rechenregeln

Satz 12.22 (Laplace-Transformation der Ableitung einer unstetigen
Funktion)

Die Funktion f habe an der Stelle t = a > 0 eine Unstetigkeit in Form einer
Sprungstelle. Ansonsten seien die Voraussetzungen des Satzes 12.22 erfüllt. Dann
gilt

(L f ′) = z(L f)− f(0)− [f(a+)− f(a−)]e−az.
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Laplace-Transformation
Rechenregeln

Satz 12.23 (Dämpfung, Verschiebung, Streckung)
Die Funktion f sei von exponentieller Ordnung γ sowie

F (z) = (L f)(z) =

∫ ∞
0

e−ztf(t) dt, Re z > γ.

(a) Ein Dämpfungsfaktor e−at im Originalbereich bewirkt eine Verschiebung im
Bildbereich:

L [e−atf(t)] = F (z + a), Re z > γ − a.

(b) Für a > 0 gilt

L [f(at)] =
1

a
F
(z
a

)
, Re z > aγ.
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Laplace-Transformation
Rechenregeln

Definition 12.24
Unter dem Faltungsprodukt der Funktionen f und g verstehen wir hier die
Funktion

(f ∗ g)(t) =

∫ ∞
−∞

f(t− τ)g(τ) dτ, t ∈ R.

Satz 12.25 (Faltungssatz)
Die Funktion f sei in R stetig, die Funktion g stückweise stetig. Beide seien von
exponentieller Ordnung γ, und es gelte f(t) = g(t) = 0 für t < 0. Dann existiert
die Laplace-Transformierte der Faltung f ∗ g für Re z > γ und es gilt

L (f ∗ g) = (L f) · (L g).

also ist die Laplace-Transformierte des Faltungsproduktes zweier Funktionen gleich
dem Produkt der Laplace-Transformierten der Funktionen.
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Laplace-Transformation
Differentialgleichungen

Gegeben sei die Anfangswertaufgabe

y(n)(t) + an−1y
(n−1)(t) + · · ·+ a1y

′(t) + a0y(t) = r(t)

mit Anfangsbedingungen

y(0) = y′(0) = · · · = y(n−1) = 0

und einer stückweise stetigen Funktion r = r(t) von exponentieller Ordnung. Mit
den Laplace-Trenasformationen Y = L y und R = L r gilt dann

Y (z) =
R(z)

zn + an−1zn−1 + · · ·+ a1z + a0
=: R(z)G(z).
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Laplace-Transformation
Differentialgleichungen

Findet man nun eine Funktion g = g(t) mit L g = G, so gilt nach dem Faltungssatz

L y = Y = GR = (L g) · (L r) = L (g ∗ r)

oder

y(t) =

∫ t

0

g(t− τ)r(τ) dτ.

Die Funktion K(t, τ) := g(t − τ) heißt Greensche Funktion für das obige An-
fangswertproblem. Hat man die Greensche Funktion gefunden, ist die Lösung des
Anfangswertproblems für unterschiedliche rechte Seiten r(t) auf die Berechnung
eines Integrals reduziert.
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Laplace-Transformation
Beispiele

Man löse folgende Differentialgleichungsprobleme mit Hilfe der
Laplace-Transformation:
(1)

y′′ + 9y = cos(2x), y(0) = 1, y
(π

2

)
= −1.

(2)
u′ = u+ 5v, v′ = −(u+ 3v), u(0) = 1, v(0) = 0.
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Laplace-Transformation
Impulse

Oft gilt es zeitliche Vorgänge zu modellieren, welche durch extrem kurz andauernden
Wirkungen charakterisiert sind, etwa ein Hammerschlag oder kurzzeitige Stromstö-
ße, bei denen aber nur der „Gesamtimpuls“ von Interesse ist. Dieser kann, sofern
sich die Wirkung zwischen t0 und t1 ereignet, durch Ausdrücke der Form

I =

∫ t1

t0

f(t) dt, t1 nahe bei t0

beschrieben werden.
Eine „Impulsfunktion“ wäre z.B. für 0 < ε „klein“

δε(t) :=

{
1
ε t ∈ (0, ε),

0 sonst,
t ∈ R.

Hier ist ∫ ∞
−∞

δε(t) dt = 1.
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Laplace-Transformation
Impulse

Mit Hilfe der Heaviside-Funktion lässt sich δε schreiben als

δε(t) =
1

ε
[H(0)−H(t− ε)] .

Als Idealisierung möchte man gerne den Gesamtimpuls auf den Punkt t = 0 kon-
zentrieren, etwa durch den Grenzübergang

δ(t) := lim
ε→0

δε(t) =

{
0 t 6= 0,

∞ t = 0,
unter Beibehaltung von

∫ ∞
−∞

δ(t) dt = 1.

Der Grenzwert ∞ ist jedoch nicht zulässig, und die Integralbeziehung nach unserer
Definition des Riemann-Integrales ist nicht möglich.
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Laplace-Transformation
Impulse

Abhilfe schafft der Begriff der verallgemeinerten Funktionen oder auch Distributio-
nen, welche nur durch deren Wirkung auf stetige Funktionen g definiert sind:∫ ∞

−∞
g(t)δ(t− t0) dt := lim

ε→0

∫ ∞
−∞

g(t)δε(t) dt.

Unter Nutzung des Mittelwertsatzes der Integralrechnung erhalten wir

lim
ε→0

∫ ∞
−∞

g(t)δε(t) dt = lim
ε→0

∫ ε

0

g(t)
1

ε
dt = lim

ε→0
g(t0 + ηε) = g(t0).

Die δ-Distribution ist daher definiert durch∫ ∞
−∞

g(t)δ(t− t0) = g(t0) bzw.
∫ ∞
−∞

g(t)δ(t0 − t) = g(t0), g stetig.

(12.9)
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Laplace-Transformation
Impulse

Setzen wir noch g(t) = 0 für t < 0, so erhalten wir∫ ∞
0

g(t)δ(t− t0) dt = g(t0).

Speziell für die Funktion

g(t) =

{
e−zt t ≥ 0,

0 t < 0
, z ∈ C,

erhalten wir die Laplace-Transformierte der δ-Distribution∫ ∞
0

e−ztδ(t) dt = e−z·0 = 1.

Allgemeiner gilt

(L δ)(z) ≡ 1, L [δ(t− a)](z) = e−az.
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Laplace-Transformation
Impulse

Die Heaviside-Funktion ergibt sich nun als

H(t) =

∫ t

−∞
δ(τ) dτ, t 6= 0.

Die Beziehung (12.9) bedeutet, dass für stetige Funktionen g

δ ∗ g = g,

also die Faltung mit δ die Funktion unverändert lässt.
Zur Behandlung von Einschaltvorgängen, d.h. der plötzlichen Aktivierung einer Stö-
rung g(t) zu einem Zeitpunkt t = a, benötigt man die Laplace-Transformation der
Funktion s(t) = H(t− a)g(t− a):

Satz 12.26
Sei g(t) eine stückweise stetige Funktion und a eine positive Zahl. Dann gilt
L [H(t− a)g(t− a)] = e−azL [g(t)].
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Ziele erreicht?

Sie sollten nun (bzw. nach Abschluss der Übungen/Selbststudium):

• Die Gemeinsamkeiten und Unterschiede von Fourier-Reihen und
Fourier-Transformation verstanden haben.

• Einfache Fourier-Integrale und inverse Fourier-Integrale berechnen können.
• Voraussetzungen für die Existenz sowie die wichtigsten Rechenregeln für
Fourier-Transformationen kennen.

• Den grundlegenden Ansatz verstanden haben, wie man mit Fourier- oder
Laplace-Transformationen Differentialgleichungsprobleme lösen kann.
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